2016无为县无为中学自主招生数学试卷及答案解析(PDF打印版)
【精品】2016年安徽省芜湖市无为县英博学校高二上学期期中数学试卷带解析答案
2015-2016学年安徽省芜湖市无为县英博学校高二(上)期中数学试卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括( )A .一个圆台、两个圆锥B .两个圆台、一个圆锥C .两个圆台、一个圆柱D .一个圆柱、两个圆锥2.(5分)如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系一定是( )A .平行B .相交C .平行或相交D .垂直相交3.(5分)a 、b 表示两条直线,α、β、γ表示三个平面,下列命题中错误的是( )A .a ⊂α,b ⊂α,且a ∥β,b ∥β,则α∥βB .a 、b 是异面直线,则存在唯一的平面与a 、b 等距C .a ⊥α,b ⊂β,a ⊥b ,则α∥βD .α⊥γ,γ∥β,a ⊥α,b ⊥β,则a ⊥b4.(5分)如图梯形A 1B 1C 1D 1是一平面图形ABCD 的斜二侧直观图,若A 1D 1∥O′y′A 1B 1∥C 1D 1,A 1B 1=C 1D 1=2,A 1D 1=1,则四边形ABCD 的面积是( )A .10B .5C .5D .105.(5分)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为( )A.B.C.D.6.(5分)已知直线l⊥平面α,直线m⊂平面β,给出下列四个命题:①α∥β⇒l⊥m②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确的命题有()个.A.1个 B.2个 C.3个 D.4个7.(5分)一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是()A.(80+16)cm2 B.96cm2C.(96+16)cm2D.112cm28.(5分)已知PA⊥正方形ABCD所在的平面,垂足为A,连结PB,PC,PD,AC,BD,则互相垂直的平面有()A.5对 B.6对 C.7对 D.8对9.(5分)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°10.(5分)已知球的直径SC=4,A,B是该球球面上的两点.AB=2,∠ASC=∠BSC=45°,则棱锥S﹣ABC的体积为()A.B.C.D.二、填空题(本大题共5小题,每小题5分,共20分.把答案填在题中横线上)11.(5分)P点在则△ABC所在的平面外,O点是P点在平面ABC内的射影,PA、PB、PC两两垂直,则D点是则△ABC的.(填外心,内心,垂心,重心)12.(5分)如图,在底半径为2,母线长为4的圆锥中内接一个高为的圆柱,圆柱的表面积13.(5分)如图,正方体ABCD﹣A1B1C1D1中,AB=2,点E为AD的中点,点F 在CD上,若EF∥平面AB1C,则线段EF的长度等于.14.(5分)等边△ABC的边长为a,过△ABC的中心O作OP⊥平面ABC且OP=a,则点P到△ABC的边BC的距离为.15.(5分)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤))16.(12分)一个几何体的三视图如图所示:(1)画出该几何体的直观图.(2)求该几何体的体积.17.(12分)已知正方体的全面积为24cm2:(1)求该正方体的内切球的体积;(2)求该正方体的外接球的体积.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分别是PA,BC的中点,且PD=AD=1.(Ⅰ)求证:MN∥平面PCD;(Ⅱ)求证:平面PAC⊥平面PBD.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.(Ⅰ)求证:CE⊥平面PAD;(Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P﹣ABCD的体积.20.(13分)三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是AB,A1C的中点.(1)求证:MN∥平面BCC1B1.(2)求证:MN⊥平面A1B1C.(3)求三棱锥M﹣A1B1C的体积.21.(14分)如图甲,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD,A 是PB的中点.现沿AD把平面PAD折起,使得PA⊥AB(如图乙所示),E、F分别为BC、AB边的中点.(Ⅰ)求证:PA⊥平面ABCD;(Ⅱ)求证:平面PAE⊥平面PDE;(Ⅲ)在PA上找一点G,使得FG∥平面PDE.四、附加题(15分)22.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求四面体B﹣DEF的体积.2015-2016学年安徽省芜湖市无为县英博学校高二(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括()A.一个圆台、两个圆锥B.两个圆台、一个圆锥C.两个圆台、一个圆柱D.一个圆柱、两个圆锥【解答】解:等腰梯形较长的边可能是下底也可能是腰当较长的边是下底时,等腰梯形线旋转一周所得的几何体包括,一个圆柱、两个圆锥当较长的边是腰时,等腰梯形线旋转一周所得的几何体包括,一个圆锥,一个圆台再挖掉一个圆锥故选:D.2.(5分)如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系一定是()A.平行B.相交C.平行或相交D.垂直相交【解答】解:在两个平面内分别有一条直线,这两条直线互相平行,当两个平面相交时,在这两个平面内存在直线,使得这两条直线互相平行.当两个平面平行时,在这两个平面内存在直线,使得这两条直线互相平行.故这两个平面有可能相交或平行.∴这两个平面的位置关系是相交或平行.故选:C.3.(5分)a、b表示两条直线,α、β、γ表示三个平面,下列命题中错误的是()A.a⊂α,b⊂α,且a∥β,b∥β,则α∥βB.a、b是异面直线,则存在唯一的平面与a、b等距C.a⊥α,b⊂β,a⊥b,则α∥βD.α⊥γ,γ∥β,a⊥α,b⊥β,则a⊥b【解答】解:由a、b表示两条直线,α、β、γ表示三个平面,知:a⊂α,b⊂α,且a∥β,b∥β,则当且仅当a,b相交时,才有α∥β,故A错误;a、b是异面直线,则存在唯一的平面α使它与a、b都平行且与a、b的距离相等,故B正确;a⊥α,b⊂β,a⊥b,则由平面与平面平行的判定定理得α∥β,故C正确;α⊥γ,γ∥β,a⊥α,b⊥β,则由平面与平面垂直的性质得a⊥b,故D正确.故选:A.4.(5分)如图梯形A1B1C1D1是一平面图形ABCD的斜二侧直观图,若A1D1∥O′y′A1B1∥C1D1,A1B1=C1D1=2,A1D1=1,则四边形ABCD的面积是()A.10 B.5 C.5 D.10【解答】解:如图,根据直观图画法的规则,直观图中A1D1∥O′y′,A1D1=1,⇒原图中AD∥Oy,从而得出AD⊥DC,且AD=2A1D1=2,直观图中A1B1∥C1D1,A1B1=C1D1=2,⇒原图中AB∥CD,AB=CD=2,即四边形ABCD上底和下底边长分别为2,3,高为2,如图.故其面积S=(2+3)×2=5.故选:B.5.(5分)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为()A.B.C.D.【解答】解:左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条对角线,对角线是由左下角到右上角的线,故选:C.6.(5分)已知直线l⊥平面α,直线m⊂平面β,给出下列四个命题:①α∥β⇒l⊥m②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确的命题有()个.A.1个 B.2个 C.3个 D.4个【解答】解:∵直线l⊥平面α,直线m⊂平面β,∴①α∥β⇒l⊥β⇒l⊥m,故①成立;α⊥β⇒l∥m或l与m异面,故②不成立;l∥m⇒m⊥α⇒α⊥β,故③成立;l⊥m⇒α,β相交或平等,故④不成立.故选:B.7.(5分)一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是()A.(80+16)cm2 B.96cm2C.(96+16)cm2D.112cm2【解答】解:由已知中的三视图可得,该几何体由一个正方体和四棱锥组合而成,正方体的每个面均为边长为4cm的正方形,四棱锥侧面的底面长为4cm,侧面高为:=2cm,故几何体的表面积S=5×4×4+4××4×2=(80+16)cm2,故选:A.8.(5分)已知PA⊥正方形ABCD所在的平面,垂足为A,连结PB,PC,PD,AC,BD,则互相垂直的平面有()A.5对 B.6对 C.7对 D.8对【解答】解:如图,∵PA⊥正方形ABCD所在的平面,垂足为A,∴PA⊥平面ABCD,∵PA⊂平面PAB,∴平面PAB⊥平面ABCD;∵PA⊂平面PAD,∴平面PAD⊥平面ABCD;∵PA⊂平面PAC,∴平面PAC⊥平面ABCD;∵PA⊥AB,AD⊥AB,∴AB⊥平面PAD,∵AB⊂平面PAB,∴平面PAB⊥平面PAD;同理,CD⊥平面PAD,∵CD⊂平面PCD,∴平面PCD⊥平面PAD;同理,BC⊥平面PAB,∵BC⊂平面PBC,∴平面PBC⊥平面PAB;∵AC⊥BD,PA⊥BD,∴BD⊥平面PAC,∵BD⊂平面PBD,∴平面PBD⊥平面PAC.故选:C.9.(5分)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选:C.10.(5分)已知球的直径SC=4,A,B是该球球面上的两点.AB=2,∠ASC=∠BSC=45°,则棱锥S﹣ABC的体积为()A.B.C.D.【解答】解:如图:由题意球的直径SC=4,A,B是该球球面上的两点.AB=2,∠ASC=∠BSC=45°,求出SA=AC=SB=BC=2,∠SAC=∠SBC=90°,所以平面ABO与SC垂直,则=V C﹣AOB+V S﹣AOB,进而可得:V S﹣ABC所以棱锥S﹣ABC的体积为:=.故选:C.二、填空题(本大题共5小题,每小题5分,共20分.把答案填在题中横线上)11.(5分)P点在则△ABC所在的平面外,O点是P点在平面ABC内的射影,PA、PB、PC两两垂直,则D点是则△ABC的垂心.(填外心,内心,垂心,重心)【解答】解:∵P点在则△ABC所在的平面外,O点是P点在平面ABC内的射影,PA、PB、PC两两垂直,∴PA⊥平面PBC,∴PA⊥BC,又∵PO⊥底面ABC,∴PO⊥BC,∴BC⊥平面PAO,∴AO⊥BC,同理可证BO⊥AC,CO⊥AB,∴O是△ABC的垂心.故答案为:垂心.12.(5分)如图,在底半径为2,母线长为4的圆锥中内接一个高为的圆柱,圆柱的表面积(2+2)π【解答】解:设圆锥的底面半径为R,圆柱的底面半径为r,表面积为S,作出几何体的轴截面如下图所示:则BC=2,AC=4,AB==2.△ABC∽△ADE,故,即∴r=1,∴S底=2π,S侧=2π,∴S=(2+2)π.故答案为:(2+2)π13.(5分)如图,正方体ABCD﹣A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于.【解答】解:∵EF∥平面AB1C,EF⊆平面AC,平面AB1C∩平面AC=AC,∴EF∥AC,又点E为AD的中点,点F在CD上,∴点F是CD的中点,∴EF=.故答案为.14.(5分)等边△ABC的边长为a,过△ABC的中心O作OP⊥平面ABC且OP=a,则点P到△ABC的边BC的距离为.【解答】解:如图所示,AO与BC边相交于点D.∵等边△ABC的边长为a,O是△ABC的中心,∴AD=a,PD⊥BC.OD=AD=a,在RtPOD中,PD===.故答案为:.15.(5分)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.【解答】解:由三视图可知,此多面体是一个底面边长为2的正方形,且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为.三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤))16.(12分)一个几何体的三视图如图所示:(1)画出该几何体的直观图.(2)求该几何体的体积.【解答】解:(1)该几何体的直观图如下图所示:(2)棱锥的底面面积S=×(1+2)×2=3,高h=1,故V=Sh=317.(12分)已知正方体的全面积为24cm2:(1)求该正方体的内切球的体积;(2)求该正方体的外接球的体积.【解答】解:(1)∵正方体的全面积为24cm2,∴正方体的棱长为2cm,又∵球内切于该正方体,∴这个球的直径为2cm,则这个球的半径为1cm,∴球的体积V=cm3,(2)∵球外接于该正方体,∴这个球的直径为2cm,则这个球的半径为cm,∴球的体积V=×=4πcm3.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分别是PA,BC的中点,且PD=AD=1.(Ⅰ)求证:MN∥平面PCD;(Ⅱ)求证:平面PAC⊥平面PBD.【解答】证明:(Ⅰ)取AD中点E,连接ME,NE,则ME∥PD,NE∥CD,∵ME,NE⊂平面MNE,ME∩NE=E,∴平面MNE∥平面PCD,∵MN⊂平面MNE,∴MN∥平面PCD;(Ⅱ)∵ABCD为正方形,∴AC⊥BD,∵PD⊥平面ABCD,∴PD⊥AC,∵PD∩BD=D,∴AC⊥平面PBD,∵AC⊂平面PAC,∴平面PAC⊥平面PBD.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.(Ⅰ)求证:CE⊥平面PAD;(Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P﹣ABCD的体积.【解答】解:(Ⅰ)证明:因为PA⊥平面ABCD,CE⊂平面ABCD,所以PA⊥CE,因为AB⊥AD,CE∥AB,所以CE⊥AD又PA∩AD=A,所以CE⊥平面PAD.(Ⅱ)由(Ⅰ)可知CE⊥AD,在Rt△ECD中,DE=CDcos45°=1,CE=CDsin45°=1,又因为AB=CE=1,AB∥CE,所以四边形ABCE为矩形,所以=,又PA⊥平面ABCD,PA=1,所以20.(13分)三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是AB,A1C的中点.(1)求证:MN∥平面BCC1B1.(2)求证:MN⊥平面A1B1C.(3)求三棱锥M﹣A1B1C的体积.【解答】(Ⅰ)证明:连接BC1,AC1,∵在△ABC1中,M,N是AB,A1C的中点∴MN∥BC1.又∵MN不属于平面BCC1B1,∴MN∥平面BCC1B1.(Ⅱ)解:∵三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,∴四边形BCC1B1是正方形.∴BC1⊥B1C.∴MN⊥B1C.连接A1M,CM,△AMA1≌△BMC.∴A1M=CM,又N是A1C的中点,∴MN⊥A1C.∵B1C与A1C相交于点C,∴MN⊥平面A1B1C.(Ⅲ)解:由(Ⅱ)知MN是三棱锥M﹣A1B1C的高.在直角△MNC中,,∴.又..21.(14分)如图甲,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD,A 是PB的中点.现沿AD把平面PAD折起,使得PA⊥AB(如图乙所示),E、F分别为BC、AB边的中点.(Ⅰ)求证:PA⊥平面ABCD;(Ⅱ)求证:平面PAE⊥平面PDE;(Ⅲ)在PA上找一点G,使得FG∥平面PDE.【解答】解:(Ⅰ)证:因为PA⊥AD,PA⊥AB,AB∩AD=A,所以PA⊥平面ABCD (4分)(Ⅱ)证:因为BC=PB=2CD,A是PB的中点,所以ABCD是矩形,又E为BC边的中点,所以AE⊥ED.又由PA⊥平面ABCD,得PA⊥ED,且PA∩AE=A,所以ED⊥平面PAE,而ED⊂平面PDE,故平面PAE⊥平面PDE(9分)(Ⅲ)过点F作FH∥ED交AD于H,再过H作GH∥PD交PA于G,连接FG.由FH∥ED,ED⊂平面PED,得FH∥平面PED;由GH∥PD,PD⊂平面PED,得GH∥平面PED,又FH∩GH=H,所以平面FHG∥平面PED(12分)再分别取AD、PA的中点M、N,连接BM、MN,易知H是AM的中点,G是AN 的中点,GH∥PC,FH∥ED,从而当点G满足时,有FG∥平面PDE.(14分)四、附加题(15分)22.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求四面体B﹣DEF的体积.【解答】解:(1)证明:设AC与BD交于G,则G为AC的中点.连接EG,GH,由于H为BC的中点,故GH AB,又,∴四边形EFGH为平行四边形,∴FH∥平面EDB;(2)证明:由四边形ABCD是正方形,有AB⊥BC,又EF∥AB,∴EF⊥BC,而EF⊥FB,∴EF⊥平面BFC,∴EF⊥FH,∴AB⊥FH,又BF=FC,H为BC的中点,∴FH⊥BC,∴FH⊥平面ABCD,∴FH⊥AC,又FH∥EG,∴AC⊥EG,又AC⊥BD,EG∩BD=G∴AC⊥平面EDB;(3)解:∵EF⊥FB,∠BFC=90°,∴BF⊥平面CDEF,∴BF为四面体B﹣DEF的高,又BC=AB=2,∴BF=FC=,S=EF•FC=四面体B﹣DEF的体积.V B==.﹣DEF赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
(完整word版)2016年河南省普通高中招生考试试卷数学(含答案)word版,推荐文档
2016年河南省普通高中招生考试试卷数学」、选择题:(每小题3分,共24分)11 •-的相反数是()1 1 A .1 B . 1C .— 3D . 3332 •某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为()A . 9.5 X 10—7B . 9.5 X 10_8C . 0.95 X 10_7D . 95X 10_53.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )A. Z=4.下列计算正确的是( A . 82. 25.如图,过反比例函数AOB = 2,则k 的值为(A . 2B . 32B . ( — 3) = 6 k /—(x x)C . 3a 4—2a 22=a 3、2 5D . (— a) =a0)的图像上一点A 作AB 丄x 轴于点B,连接AO ,若S A 6.如图,在△ ABC 中,/ ACB = 90°, AC = 8, 则DE 的长为( )AB =10. DE 垂直平分AC 交AB 于点E ,A . 6B . 5C . 4)D . (0 , - .2)7•下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差 3.6 3.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D. 丁8. 如图,已知菱形OABC的顶点0(0 , 0) , B(2 , 2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为(A. (1,- 1)B. ( -1二、填空题(每小题3分,共21分)9. _______________________ 计算:(-2)°—3 8 = .10. ______________________________________________________________________ 如图,在口ABCD中,BE丄AB交对角线AC于点E,若/ 1 =20°,则/ 2的度数是____________ 11. ______________________________________________________________________ 若关于x的一元二次方程X2+3X— k= 0有两个不相等的实数根,则k的取值范围____________ . 12•在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,则该班小明和小亮被分在同一组的概率是______ .13. ______________________________________________________________________已知A(0 , 3) , B(2 , 3)是抛物线尸一x2+bx+ c上两点,该抛物线的顶点坐标是 _________ .14. 如图,在扇形AOB中,/ AOB=90°,以点A为圆心,OA的长为半径作弧OC交弧AB于点C.若OA= 2,则阴影部分的面积为 ________.15•如图,已知AD 〃 BC , AB 丄BC , AB = 3•点E 为射线BC 上一个动点,连接 人丘‘将厶ABE 沿AE 折叠,点B 落在点B '处,过点B '作AD 的垂线,分别交AD , BC 于点M 、 N •当点B '为线段MN 的三等分点时,BE 的长为 ________三、解答题:(本大题共8个小题,满分75分) 16. (8分)先化简,再求值:(-^ 1) ^X -,其中x 的值从不等式组 % 1的整数解中选取. x x x 2x 12x 1417. (9分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走 的步数,记录如下:5640 6430 6520 6798 7325 8430 8215 7453 7446 6754 7638 6834 7326 6830 8648 8753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:请根据以上信息解答下列问题: (1) 填空:m= _____ ,n = _____ (2) 补全频数统计图;(3) 这20名“健步走运动”团队成员一天步行步数的中位数落在 _____ 组;组别 步数分组 频数 A 5500<x <65002 B6500W X V 750010 C 7500<x <8500 m D8500<x <95003E 9500< x < 10500 nD3步数分组统计表(4) 若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.18. (9分)如图,在Rt A ABC中,/ ABC= 90°,点M是AC的中点,以AB为直径作O O分别交AC、BM于点D、E.(1) 求证:MD =ME;⑵填空:①若AB = 6,当AD = 2DM 时,DE= ____ ;②连接OD、OE,当/A的度数为_______ 时,四边形ODME是菱形.19. (9分)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°.升旗时,国旗上端悬挂在距地面2.25米处.若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/ 秒的速度匀速上升?(参考数据:sin37°= 0.60,coS37°= 0.80 , tan37°= 0.75)20. (9 分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3 只A型节能灯和2只B型节能灯共需29元.(1) 求一只A型节能灯和一只B型节能灯的售价各是多少元?(2) 学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21. (10 分)某班“数学兴趣小组”对函数y= x2—2|x|的图像和性质进行了探究,探究过程如下,5请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x …—3—2.5—2—101234…y…3m0—10—10 1.253…其中,m= _____ .(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图像的一部分, 请画出该图像的另一部分.⑶观察函数图像,写出两条函数的性质:(4)进一步探究函数图像发现:①函数图像与x轴有—个交点,所以对应方程x2—2|x|= 0有___ 个实数根;②方程x2—2|x| =2有____ 个实数根;22. (10 分)(1)发现:如图1,点A为线段BC外一动点,且BC=a, AB = b.填空:当点A位于______ 时,线段AC的长取得最大值,且最大值为______ .(用含a, b的式子表示)⑵应用:点A为线段BC外一动点,且BC = 3, AB= 1.如图2所示,分别以AB、AC为边,作等边三角形ABD和等边三角形ACE,连接CD、BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.⑶拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2, PM = PB,/BPM = 90°.请直接写出线段AM长的最大值及此时点P的坐标.2 .抛物线23. (11y -x2 bx c经过点A,交y轴于点B(0 , - 2) •点P为抛物线上一个动点,经过点3P作x轴的垂线PD,过点B作BD丄PD于点D,连接PB,设点P的横坐标为m.(1) 求抛物线的解析式;(2) 当厶BDP为等腰直角三角形时,求线段PD的长;(3) 如图2,将厶BDP绕点B逆时针旋转,得到△BD P',且旋转角/PBP丄/OAC,当2016年河南省普通高中招生考试 数学试题参考答案及评分标准说明:1. 如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2. 评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程 度决定对后面给分的多少,但原则上不超过后继部分应得分数之半. 3. 评分标准中,如无特殊说明,均为累计给分. 4. 评分过程中,只给整数分数. 一、选择题每小题3分,共24分.、填空题每小题3分,共21分.三、解答题本大题共8个小题,满分75分. 2x_ (x 1)(x 1) .....(x 1)2若使分式有意义,只能取x =2,二原式=2 (8)2 117. 1. 4,1 ; ........................................... 2 分2. 按人数为4和1正确补全直方图.; ........................... 4分3.B ; .................................................... 6分4 3 14. -------------------- 12048(人). ......................................................8 分20 18. 1 .在Rt ^ ABC 中,点M 是AC 的中点,•••MA = MB ,•••/A =Z MBA................................................................. 2 分•••四边形ABED 是圆内接四边形,• /ADE +Z ABE = 180° ,16.原式=x(x 1) x 1 x 1解x 1得 2x 1 41 x i ,所以不等式组的整数解为—仙‘2又/ADE+Z MDE = 180° ,•••/ MDE = Z MBA.同理可证:Z MED = Z A. ...................................................................... 4分•••Z MDE = Z MED, /• MD =ME . ........................................................... 5 分2. ①2; ................................................. 7分②60° (或60). ......................................................................................... 9 分19. 过点C作CD丄AB,垂足为D,贝U DB= 9.在Rt A CBD 中,Z BCD = 45°,•CD = DB 9 . ...................................tan 45在Rt^ACD 中,Z ACD = 37. 5°,•AD = CD • tan37. 5°= 9X0. 75= 6. 75.• AB= AD+ DB= 6. 75+ 9= 15. 75.15. 75-2. 25.-45 = 0.3 米/秒..•国旗应以约0. 3 米/秒的速度匀速上升.20. 1.设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元.1分依题意得x 3y 26,解得x 5 . ....................................................... 3分3x 2y 29 y 7所以一只A型节能灯的售价是5元,一只B型节能灯的售价是7元. ……4分2. 设购进A型节能灯m只,总费用为w元.依题意得w =5m +750 m . = 2m 350 . ............................................................. 5分T 2 0,•当m取最大值时w有最小值. ............................... 6分又m 3(50 m),• m 37.5而m为正整数,•当m =37时,w最小= 2 37 350 276 . ............................... 8分此时50 37 13.所以最省钱的购买方案是购进37只A型节能灯,13只B型节能灯. ........ 9分21 . 1 . 0;2. 正确补全图像.;3. 可从函数的最值,增减性,图像的对称性等方面阐述,答案不惟一,合理即可.4. ① 3,3 ; ® 2 ; @ 1 a 0 .23注:本题不累计给分,除3•中每条性质为2分外,其他每空1分. 22. 1 . CB 延长线上,a b ; ..................................... 2分2.①DC = BE .理由如下:•••△ ABD 和厶ACE 为等边三角形, •••AD =AB,AC =AE, Z BAD =Z CAE = 60°.•••/ BAD +Z BAC =Z CAE +Z BAC,即/ CAD =Z EAB. ......................................... 5 分 • △ CAD ^A EAB .• DC = BE ................................................................... 6 分②BE 长的最大值是4. ................................................................................... 8分 3. AM 的最大值为3 2 2,点P 的坐标为(2 ..2,.. 2) . ......................................... 10分【提示】如图1,构造△ BNP ^A MAP ,则NB =AM .由1.知,当点N 在BA 的延长线上时, NB有最大值如图2.,易得AN = 2 2,^AM = NB = 3 2.2 .过点P 作PE 丄x 轴于E ,4,解得 x = 3. •A3,0 ..•••抛物线y 2x 2 3232 3b3 2 c23.bx c 经过点 A3,0 .、B0,— 2.,23•抛物线的解析式为y4x 2 32 4 2.v点 P 的横坐标为 m P m,-m 2 m 2 D m , 2 .. 3 3 若厶BDP 为等腰直角三角形,则PD = BD .4 m . 32 ①当点P 在直线BD 上方时,PD = 2m 3 I .若点P 在y 轴左侧,则m<0, BD = ••• 2m 2 3 II .若点 4m = m , • m i = 0 舍去.,3 P 在y 轴右侧,则m >0, BD = 4m = m , • m i = 0舍去.,3m 2=丄舍去..27 m2=—2- 2 ②当点P 在直线BD 下方时,m >0, BD = m , PD = 2m 232m 2 3综上, 4 m = m , 3 7或丄 2 21./ m 1 = 0 舍去.,m 2=—2即当△ BDP 为等腰直角三角形,PD 的长为-或丄.…8分2 24聶 4)P(25 11) ............................ 3 ),P 3(8,32).【提示I :/ PBP ' =Z OAC, 0A =3, 0C =4, 4 3 • AC = 5, /.sin / PBP ' = 4 , cos /PBP ' = 3 . 5 5 ①当点P '落在x 轴上时,过点D '作D ' N 丄x 轴,垂足为N , 交 BD 于点 M ,/ DBD '= 3. R( 一 5,—A3P 2( 5,11分如图 1, ND ' - MD ' = 2, 如图 2, ND ' + MD ' = 2, ••• R( - 5,4 5 4), P 2(5,/ ND ' P '= / PBP ' .,即 3(2m 2 -m)( 4 m ) 5 3 3 5,即 3(2m 2 4 m)( 4 m ) 5 3 3 54 5 4、2 23 3 ②当点P'落在y 轴上时,如图3,过点D '作D ' M 丄x 轴, 交BD 于点M ,过点P '作P ' N 丄y 轴,交MD '的延长线于点N , Z DBD '=Z ND' P '=Z PBP '.4 2 c 4 3P N = BM,即 (一mm ) m5 3 3 5AN xBDD图325 11 P3G 8,32\PN A *B M 70图2。
历年高中自主招生数学考试试卷及答案
高中自主招生考试数学试卷1、试卷分试题卷和答题卷两部分。
满分为100分,考试时间为70分钟。
2、答题时,应该在答题卷密封区内写明姓名、学校和准考证号码。
3、所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。
一、选择题:(每个题目只有一个正确答案,每题4分,共32分) 1.计算tan602sin 452cos30︒+︒-︒的结果是( )A .2B .2C .1D .32.如图,边长为1的正方形ABCD 绕点A 逆时针旋转30︒到正方形AB C D ''',图中阴影部分的面积为( )A .313-B .33C .314-D .123.已知b a ,为实数,且1=ab ,设11+++=b b a a M ,1111+++=b a N ,则N M ,的大小关系是( )A .N M >B .N M =C .N M <D .无法确定 4. 一名考生步行前往考场, 10分钟走了总路程的41,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了( )A .20分钟 B.22分钟 C.24分钟 D .26分钟5.二次函数1422++-=x x y 的图象如何移动就得到22x y -=的图象( ) A. 向左移动1个单位,向上移动3个单位。
B. 向右移动1个单位,向上移动3个单位。
C. 向左移动1个单位,向下移动3个单位。
D. 向右移动1个单位,向下移动3个单位。
6.下列名人中:①比尔•盖茨 ②高斯 ③刘翔 ④诺贝尔 ⑤陈景润 ⑥陈省身 ⑦高尔基 ⑧爱因斯坦,其中是数学家的是( )A .①④⑦B .②④⑧C .②⑥⑧D .②⑤⑥7.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示:欲购买的 商品原价(元)优惠方式一件衣服 420 每付现金200元,返购物券200元,且付款时可以使用购物券 一双鞋 280 每付现金200元,返购物券200元,但付款时不可以使用购物券 一套化妆品300付款时可以使用购物券,但不返购物券ABC DB 'D 'C '请帮张阿姨分析一下,选择一个最省钱的购买方案. 此时,张阿姨购买这三件物品实际所付出的钱的总数为( )A . 500元B . 600元C . 700元D . 800元 8.向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如上图所示,那么水瓶的形状是( )二、填空题:(每题6分,共30分)9. 若关于x 的分式方程3131+=-+x ax 在实数范围内无解,则实数=a _____. 10.三角形的两边长为4cm 和7cm ,则这个三角形面积的最大值为_____________cm 2. 11.对正实数b a ,作定义b a ab b a +-=*,若444=*x ,则x 的值是________.12.已知方程()0332=+-+x a x 在实数范围内恒有解,并且恰有一个解大于1小于2,则a 的取值范围是 .13.如果有2007名学生排成一列,按1、2、3、4、5、4、3、2、1、2、3、4、5、4、3、2、1……的规律报数,那么第2007名学生所报的数是 .三、解答题:(本题有4个小题,共38分)解答应写出文字说明, 证明过程或推演步骤。
重点中学高中部自主招生数学考试试题(含答案)
2016年高中部自主招生考试试题数学(试题卷)一.选择题(共6小题,每小题6分,共36分)1.一列数a1,a2,a3,…,其中a1=,a n =(n为不小于2的整数),则a100=()A.B.2C.﹣1 D.﹣22.已知,则的值为()A.B.C.D.或13.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F 关于BD对称,AC与BD相交于点G,则()A.1+tan∠ADB=B.2BC=5CFC.∠AEB+22°=∠DEF D.4cos∠AGB=4.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A.B.C.D.5.如图所示,在直角坐标系中,A点坐标为(﹣3,﹣2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为()A.(﹣4,0)B.(﹣2,0) C.(﹣4,0)或(﹣2,0)D.(﹣3,0)6.已知抛物线y=﹣x2+1的顶点为P,点A是第一象限内该二次函数图象上一点,过点A作x轴的平行线交二次函数图象于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,连结PA、PD,PD交AB于点E,△PAD与△PEA()A.始终不相似B.始终相似C.只有AB=AD时相似D.无法确定二.填空题(共4小题,每小题6分,共24分)7.如果函数y=b的图象与函数y=x2﹣3|x﹣1|﹣4x﹣3的图象恰有三个交点,则b的可能值是.8.如图,已知直线交x轴、y轴于点A、B,⊙P的圆心从原点出发以每秒1个单位的速度向x轴正方向移动,移动时间为t(s),半径为,则t=s时⊙P与直线AB相切.9.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={﹣2,0,1,5,7},B={﹣3,0,1,3,5},则A+B=.10.对于X,Y定义一种新运算“*”:X*Y=aX+bY,其中a,b为常数,等式右边是通常的加法和乘法的运算.若成立,那么2*3=.三.解答题(共5题,每题12分,共60分)11.如图,二次函数与x轴交于A、B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动.设PQ交直线AC于点G.(1)求直线AC的解析式;(2)设△PQC的面积为S,求S关于t的函数解析式;(3)在y轴上找一点M,使△MAC和△MBC都是等腰三角形.直接写出所有满足条件的M点的坐标;(4)过点P作PE⊥AC,垂足为E,当P点运动时,线段EG的长度是否发生改变,请说明理由.试题图备用图12.已知直线y=﹣x+4与x轴和y轴分别交与B、A两点,另一直线经过点B和点D(11,6).(1)求AB、BD的长度,并证明△ABD是直角三角形;(2)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标;(3)一动点P速度为1个单位/秒,沿A﹣B﹣D运动到D点停止,另有一动点Q从D点出发,以相同的速度沿D ﹣B﹣A运动到A点停止,两点同时出发,PQ的长度为y(单位长),运动时间为t(秒),求y关于t的函数关系式.13.在边长为1的正方形ABCD中,以点A为圆心,AB为半径作圆,E是BC边上的一个动点(不运动至B,C),过点E作弧BD的切线EF,交CD于F,H是切点,过点E作EG⊥EF,交AB于点G,连接AE.(1)求证:△AGE是等腰三角形;(2)设BE=x,△BGE与△CEF的面积比,求y关于x的函数关系式,并写出自变量x的取值范围;(3)在BC边上(点B、C除外)是否存在一点E,使得GE=EF,若存在,求出此时BE的长,若不存在,请说明理由.14.如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.15.如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线的函数解析式;(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH 的面积;②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.2016年高中部自主招生考试数学参考答案选择题1-6.ABABDB填空题7.﹣6、﹣8.或249.{﹣3,﹣2,0,1,3,5,7}10.1解答题11.(1)y=﹣x2+2,x=0时,y=2,y=0时,x=±2,∴A(﹣2,0),B(2,0),C(0,2),设直线AC的解析式是y=kx+b,代入得:,解得:k=1,b=2,即直线AC的解析式是y=x+2;(2)当0<t<2时,OP=(2﹣t),QC=t,∴△PQC的面积为:S=(2﹣t)t=﹣t2+t,当2<t≤4时,OP=(t﹣2),QC=t,∴△PQC的面积为:S=(t﹣2)t=t2﹣t,∴;(3)当AC=CM=BC时,M的坐标是:(0,),(0,﹣2);当AM=BM=CM时,M的坐标是:(0,0),(0,);一共四个点,(0,),(0,0),(0,),(0,﹣2);(4)当0<t<2时,过G作GH⊥y轴,垂足为H.由AP=t,可得AE=.∵GH∥OP∴即=,解得GH=,所以GC=GH=.于是,GE=AC﹣AE﹣GC==.即GE的长度不变.当2<t≤4时,过G作GH⊥y轴,垂足为H.由AP=t,可得AE=.由即=,∴GH(2+t)=t(t﹣2)﹣(t﹣2)GH,∴GH(2+t)+(t﹣2)GH=t(t﹣2),∴2tGH=t(t﹣2),解得GH=,所以GC=GH=.于是,GE=AC﹣AE+GC=2﹣t+=,即GE的长度不变.综合得:当P点运动时,线段EG的长度不发生改变,为定值.12.(1)令x=0,y=4,令y=0,则﹣x+4=0,解得x=3,所以,A(0,4),B(3,0),由勾股定理得,AB==5,BD==10,过点D作DH⊥y轴于H,DH=11,AH=2,由勾股定理得,AD===,∵AB2=25,BD2=100,∴AB2+BD2=AD2,∴△ABD是直角三角形;(2)设OC长为x,由等腰三角形以及勾股定理得到x2+42=(11﹣x)2+62,解得x=,所以,C(,0);(3)设t秒时相遇,由题意得,t+t=5+10,解得t=7.5,点P在AB上时,0≤t≤5,PB=5﹣t,BQ=10﹣t,PQ===,点P、Q都在BD上重合前,5<t≤7.5,PQ=5+10﹣t﹣t=15﹣2t,重合后,7.5<t≤10,PQ=t+t﹣5﹣10=2t﹣15,点Q在AB上时,10<t≤15,PB=t﹣5,BQ=t﹣10,PQ===.13.(1)连AH,∵AH⊥EF,GE⊥EF,∴GE∥AH,∴∠GEA=∠EAH,∵AH=AB,AE=AE,∠ABE=∠AHB,∴△AHE≌△ABE,∴∠BAE=∠EAH,∴∠BAE=∠GEA,∴AG=EG,即△AGE是等腰三角形.(2)∵EH=EB=x,∴EC=1﹣x,CF=1﹣FD,∵FD=FH,∴EF=EH+HF=x+FD,在Rt△ECF中,EF2=EC2+CF2,∴(1﹣x)2+(1﹣FD)2=(x+FD)2,整理得,(1+x)FD=1﹣x,∴,∵∠B=∠C,又GE⊥EF,∴∠GEB=∠FEC,∴△GEB∽△EFC,∴,∴,∴(0<x<1).(3)假设BC上存在一点E,能使GE=EF,则,∴,解得x=0或x=1,经检验x=0或x=1是原方程的解但动点E不能与B,C点重合,故x≠0且x≠1,∴BC边上符合条件的E点不存在.14.(1)∵AE切⊙O于点E,∴AE⊥CE,又OB⊥AT,∴∠AEC=∠CBO=90°,又∠BCO=∠ACE,∴△AEC∽△OBC,又∠A=30°,∴∠COB=∠A=30°;(2)∵AE=3,∠A=30°,∴在Rt△AEC中,tanA=tan30°=,即EC=AEtan30°=3,∵OB⊥MN,∴B为MN的中点,又MN=2,∴MB=MN=,连接OM,在△MOB中,OM=R,MB=,∴OB==,在△COB中,∠BOC=30°,∵cos∠BOC=cos30°==,∴BO=OC,∴OC=OB=,又OC+EC=OM=R,∴R=+3,整理得:R2+18R﹣115=0,即(R+23)(R﹣5)=0,解得:R=﹣23(舍去)或R=5,则R=5;(3)以EF为斜边,有两种情况,以EF为直角边,有四种情况,所以六种,画直径FG,连接EG,延长EO与圆交于点D,连接DF,如图所示:∵EF=5,直径ED=10,可得出∠FDE=30°,∴FD=5,则C△EFD=5+10+5=15+5,由(2)可得C△COB=3+,∴C△EFD:C△COB=(15+5):(3+)=5:1.∵EF=5,直径FG=10,可得出∠FGE=30°,∴EG=5,则C△EFG=5+10+5=15+5,∴C△EFG:C△COB=(15+5):(3+)=5:1.15.(1)由题意得:A(4,0),C(0,4),对称轴为x=1.设抛物线的解析式为y=ax2+bx+c,则有:,解得.∴抛物线的函数解析式为:y=﹣x2+x+4.(2)①当m=0时,直线l:y=x.∵抛物线对称轴为x=1,∴CP=1.如答图1,延长HP交y轴于点M,则△OMH、△CMP均为等腰直角三角形.∴CM=CP=1,∴OM=OC+CM=5.S△OPH=S△OMH﹣S△OMP=(OM)2﹣OM•CP=×(×5)2﹣×5×1=﹣=,∴S△OPH=.②当m=﹣3时,直线l:y=x﹣3.设直线l与x轴、y轴交于点G、点D,则G(3,0),D(0,﹣3).假设存在满足条件的点P.a)当点P在OC边上时,如答图2﹣1所示,此时点E与点O重合.设PE=a(0<a≤4),则PD=3+a,PF=PD=(3+a).过点F作FN⊥y轴于点N,则FN=PN=PF,∴EN=|PN﹣PE|=|PF﹣PE|.在Rt△EFN中,由勾股定理得:EF==.若PE=PF,则:a=(3+a),解得a=3(+1)>4,故此种情形不存在;若PF=EF,则:PF=,整理得PE=PF,即a=3+a,不成立,故此种情形不存在;若PE=EF,则:PE=,整理得PF=PE,即(3+a)=a,解得a=3.∴P1(0,3).b)当点P在BC边上时,如答图2﹣2所示,此时PE=4.若PE=PF,则点P为∠OGD的角平分线与BC的交点,有GE=GF,过点F分别作FH⊥PE于点H,FK⊥x轴于点K,∵∠OGD=135°,∴∠EPF=45°,即△PHF为等腰直角三角形,设GE=GF=t,则GK=FK=EH=t,∴PH=HF=EK=EG+GK=t+t,∴PE=PH+EH=t+t+t=4,解得t=4﹣4,则OE=3﹣t=7﹣4,∴P2(7﹣4,4)c)∵A(4,0),B(2,4),∴可求得直线AB解析式为:y=﹣2x+8;联立y=﹣2x+8与y=x﹣3,解得x=,y=.设直线BA与直线l交于点K,则K(,).当点P在线段BK上时,如答图2﹣3所示.设P(a,8﹣2a)(2≤a≤),则Q(a,a﹣3),∴PE=8﹣2a,PQ=11﹣3a,∴PF=(11﹣3a).与a)同理,可求得:EF=.若PE=PF,则8﹣2a=(11﹣3a),解得a=1﹣2<0,故此种情形不存在;若PF=EF,则PF=,整理得PE=PF,即8﹣2a=•(11﹣3a),解得a=3,符合条件,此时P3(3,2);若PE=EF,则PE=,整理得PF=PE,即(11﹣3a)=(8﹣2a),解得a=5>,故此种情形不存在.d)当点P在线段KA上时,如答图2﹣4所示.∵PE、PF夹角为135°,∴只可能是PE=PF成立.∴点P在∠KGA的平分线上.设此角平分线与y轴交于点M,过点M作MN⊥直线l于点N,则OM=MN,MD=MN,由OD=OM+MD=3,可求得M(0,3﹣3).又因为G(3,0),可求得直线MG的解析式为:y=(﹣1)x+3﹣3.联立直线MG:y=(﹣1)x+3﹣3与直线AB:y=﹣2x+8,可求得:P4(1+2,6﹣4).e)当点P在OA边上时,此时PE=0,等腰三角形不存在.综上所述,存在满足条件的点P,点P坐标为:(0,3)、(3,2)、(7﹣4,4)、(1+2,6﹣4).。
【期中试卷】安徽省巢湖市2015-2016学年八年级下期中数学试卷含答案解析
2015-2016学年安徽省巢湖市无为实验中学八年级(下)期中数学试卷一、选择题1.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠2.一直角三角形的两直角边长为12和16,则斜边上中线长为()A.20 B.10 C.18 D.253.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC 等于()A.1cm B.2cm C.3cm D.4cm4.下列二次根式中,是最简二次根式的是()A.B.C.D.5.已知,则=()A.B.﹣C.D.6.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行.当电子甲虫爬行2015cm时停下,则它停的位置是()A.点F B.点G C.点A D.点C7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16B.16 C.8D.89.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2﹣2 B.6 C.2﹣2 D.410.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为()A.B.C.D.2二、填空题11.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的F点上,则DF的长为.12.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于.13.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.14.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是(只填写序号).三、解答题(共90分)15.计算:.16.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB:AD=时,四边形MENF是正方形.17.如图,E、F、G、H分别是边AB、BC、CD、DA的中点.当BD、AC满足什么条件时,四边形EFGH是正方形.18.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?19.如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.20.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,即当AE为多少米时?有DC2=AE2+BC2.21.已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP 是腰长为5的等腰三角形时,求点P的坐标.22.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?23.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2015-2016学年安徽省巢湖市无为实验中学八年级(下)期中数学试卷参考答案与试题解析一、选择题1.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2x﹣1>0,解得x>.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.一直角三角形的两直角边长为12和16,则斜边上中线长为()A.20 B.10 C.18 D.25【考点】直角三角形斜边上的中线;勾股定理.【分析】根据勾股定理求出斜边长,根据直角三角形斜边上的中线等于斜边的一半求出答案.【解答】解:∵两直角边分别为12和16,∴斜边==20,∴斜边上的中线的长为10,故选B.【点评】本题考查的是直角三角形的性质和勾股定理,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.3.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC 等于()A.1cm B.2cm C.3cm D.4cm【考点】平行四边形的性质.【专题】几何图形问题.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,所以根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.4.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、被开方数含分母,故A错误;B、被开方数含开的尽的因数,故B错误;C、被开方数不含分母,被开方数不含开的尽的因数或因式,故C正确;D、被开方数含开的尽的因数因式,故D错误;故选:C.【点评】本题考查了最简二次根式,最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式.5.已知,则=()A.B.﹣C.D.【考点】二次根式的化简求值.【分析】由平方关系:()2=(a+)2﹣4,先代值,再开平方.【解答】解:∵()2=(a+)2﹣4=7﹣4=3,∴=±.故选C.【点评】本题考查了已知代数式与所求代数式关系的灵活运用,开平方运算,开平方运算时,一般要取“±”.6.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行.当电子甲虫爬行2015cm时停下,则它停的位置是()A.点F B.点G C.点A D.点C【考点】菱形的性质.【专题】规律型.【分析】利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm,即每移动8cm 为一个循环组依次循环,用2015除以8,根据商和余数的情况确定最后停的位置所在的点即可.【解答】解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2015÷8=251…7,所以当电子甲虫爬行2015cm时停下,它停的位置是G点.故选B.【点评】本题考查了菱形四边相等的性质,以及规律型﹣﹣图形的变化类,观察图形得到每移动8cm为一个循环组依次循环是解题的关键.7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【考点】正方形的判定;平行四边形的性质;菱形的判定;矩形的判定.【专题】证明题.【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D 、根据对角线相等的平行四边形是矩形可知当AC=BD 时,它是矩形,不是正方形,故D 选项错误;综上所述,符合题意是D 选项;故选:D .【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.8.已知菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD=120°,AC=4,则该菱形的面积是( )A .16B .16C .8D .8 【考点】菱形的性质.【分析】首先由四边形ABCD 是菱形,求得AC ⊥BD ,OA=AC ,∠BAC=∠BAD ,然后在直角三角形AOB 中,利用30°角所对的直角边等于斜边的一半与勾股定理即可求得OB 的长,然后由菱形的面积等于其对角线积的一半,即可求得该菱形的面积.【解答】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=OC=AC=×4=2,∠BAC=∠BAD=×120°=60°,∴AC=4,∠AOB=90°,∴∠ABO=30°,∴AB=2OA=4,OB=2,∴BD=2OB=4,∴该菱形的面积是: ACBD=×4×4=8.故选C .【点评】此题考查了菱形的性质,直角三角形的性质.解题的关键是注意数形结合与方程思想的应用,注意菱形的面积等于其对角线积的一半.9.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2﹣2 B.6 C.2﹣2 D.4【考点】翻折变换(折叠问题).【专题】压轴题.【分析】当∠BFE=∠B'FE,点B′在DE上时,此时B′D的值最小,根据勾股定理求出DE,根据折叠的性质可知B′E=BE=2,DE﹣B′E即为所求.【解答】解:如图,当∠BFE=∠B'FE,点B′在DE上时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=2,∵AD=6,∴DE==2,∴DB′=2﹣2.故选:A.【点评】本题主要考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,确定点B′在何位置时,B′D的值最小,是解决问题的关键.10.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为()A.B.C.D.2【考点】坐标与图形性质;等边三角形的性质;勾股定理.【专题】压轴题.【分析】过P点作PD⊥x轴,垂足为D,根据A(﹣,0)、B(0,1)求OA、OB,利﹣S△ADP,列方程求用勾股定理求AB,可得△ABC的面积,利用S△ABP=S△AOB+S梯形BODPa.【解答】解:过P点作PD⊥x轴,垂足为D,由A(﹣,0)、B(0,1),得OA=,OB=1,∵△ABC为等边三角形,由勾股定理,得AB==2,∴S△ABC=×2×=,﹣S△ADP又∵S△ABP=S△AOB+S梯形BODP=××1+×(1+a)×3﹣×(+3)×a,=,由2S△ABP=S△ABC,得=,∴a=.故选C.【点评】本题考查了点的坐标与线段长的关系,不规则三角形面积的表示方法.二、填空题11.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的F点上,则DF的长为6.【考点】翻折变换(折叠问题).【分析】根据矩形的性质得出CD=AB=8,∠D=90°,根据折叠性质得出CF=BC=10,根据勾股定理求出即可.【解答】解:∵四边形ABCD是矩形,∴AB=DC=8,∠D=90°,∵将矩形ABCD沿CE折叠后,点B落在AD边的F点上,∴CF=BC=10,在Rt△CDF中,由勾股定理得:DF===6,故答案为:6.【点评】本题考查了勾股定理,折叠的性质,矩形的性质的应用,解此题的关键是求出CF 和DC的长,题目比较典型,难度适中.12.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于2π.【考点】勾股定理.【专题】计算题.【分析】根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆面积.【解答】解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故答案为:2π.【点评】此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.13.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是25.【考点】平面展开-最短路径问题.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.【点评】本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.14.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是①②③⑤(只填写序号).【考点】正方形的性质;全等三角形的判定与性质.【专题】压轴题.【分析】由已知得AB=AD,AE=AF,利用“HL”可证△ABE≌△ADF,利用全等的性质判断①②③正确,在AD上取一点G,连接FG,使AG=GF,由正方形,等边三角形的性质可知∠DAF=15°,从而得∠DGF=30°,设DF=1,则AG=GF=2,DG=,分别表示AD,CF,EF的长,判断④⑤的正确性.【解答】解:∵AB=AD,AE=AF=EF,∴△ABE≌△ADF(HL),△AEF为等边三角形,∴BE=DF,又BC=CD,∴CE=CF,∴∠BAE=(∠BAD﹣∠EAF)=(90°﹣60°)=15°,∴∠AEB=90°﹣∠BAE=75°,∴①②③正确,在AD上取一点G,连接FG,使AG=GF,则∠DAF=∠GFA=15°,∴∠DGF=2∠DAF=30°,设DF=1,则AG=GF=2,DG=,∴AD=CD=2+,CF=CE=CD﹣DF=1+,∴EF=CF=+,而BE+DF=2,∴④错误,⑤∵S△ABE+S△ADF=2×AD×DF=2+,S△CEF=CE×CF==2+,∴⑤正确.故答案为:①②③⑤.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的运用.关键是利用全等三角形的性质,把条件集中到直角三角形中,运用勾股定理求解.三、解答题(共90分)15.计算:.【考点】实数的运算.【分析】先把二次根式化简后再计算.【解答】解:原式=4+2﹣﹣,=.【点评】本题主要考查了实数的运算,关键是二次根式的化简求值,是中学阶段的重点.16.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB:AD=1:2时,四边形MENF是正方形.【考点】矩形的性质;全等三角形的判定与性质;平行四边形的判定;正方形的判定.【专题】几何图形问题.【分析】(1)根据矩形性质得出AB=DC,∠A=∠D=90°,根据全等三角形的判定推出即可;(2)求出四边形MENF是平行四边形,求出∠BMC=90°和ME=MF,根据正方形的判定推出即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵M为AD的中点,∴AM=DM,在△ABM和△DCM中∴△ABM≌△DCM(SAS).(2)解:当AB:AD=1:2时,四边形MENF是正方形,理由是:∵AB:AD=1:2,AM=DM,AB=CD,∴AB=AM=DM=DC,∵∠A=∠D=90°,∴∠ABM=∠AMB=∠DMC=∠DCM=45°,∴∠BMC=90°,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,∴∠MBC=∠MCB=45°,∴BM=CM,∵N、E、F分别是BC、BM、CM的中点,∴BE=CF,ME=MF,NF∥BM,NE∥CM,∴四边形MENF是平行四边形,∵ME=MF,∠BMC=90°,∴四边形MENF是正方形,即当AB:AD=1:2时,四边形MENF是正方形,故答案为:1:2.【点评】本题考查了矩形的性质和判定,平行四边形的判定,正方形的判定,全等三角形的性质和判定,三角形的中位线的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.17.如图,E、F、G、H分别是边AB、BC、CD、DA的中点.当BD、AC满足什么条件时,四边形EFGH是正方形.【考点】三角形中位线定理;正方形的判定.【分析】在△ABC中,E、F分别是边AB、BC中点,得到EF∥AC,且EF=AC,GH∥AC,且GH=AC,得到四边形EFGH是平行四边形,知四边形EFGH是平行四边形,再由AC=BD,得出EH=EF,从而证得四边形EFGH是菱形.对角线相等,推知四边形EFGH是正方形【解答】解:当AC=BD且AC⊥BD时,四边形EFGH是正方形.理由如下:在△ABC中,E、F分别是边AB、BC中点,所以EF∥AC,且EF=AC,同理有GH∥AC,且GH=AC,∴EF∥GH且EF=GH,故四边形EFGH是平行四边形.EH∥BD且EH=BD,若AC=BD,则有EH=EF,又因为四边形EFGH是平行四边形,∴四边形EFGH是菱形.即:当AC=BD且AC⊥BD时,四边形EFGH是正方形.【点评】本题考查了三角形的中位线定理、菱形的判定及性质、平行四边形的判定及性质以及正方形的判定,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.18.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?【考点】勾股定理的应用.【专题】应用题.【分析】关键描述语:产品收购站E,使得C、D两村到E站的距离相等,在Rt△DAE和Rt△CBE中,设出AE的长,可将DE和CE的长表示出来,列出等式进行求解即可.【解答】解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25﹣x)2,x=10.故:E点应建在距A站10千米处.【点评】本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.19.如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的判定与性质.【专题】几何综合题.【分析】(1)根据平行四边形的性质得到两角一边对应相等,利用AAS判定△ABE≌△FCE,从而得到AB=CF;(2)由已知可得四边形ABFC是平行四边形,BC=AF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠CFE,∠ABE=∠FCE,∵E为BC的中点,∴EB=EC,∴△ABE≌△FCE,∴AB=CF.(2)解:当BC=AF时,四边形ABFC是矩形.理由如下:∵AB∥CF,AB=CF,∴四边形ABFC是平行四边形,∵BC=AF,∴四边形ABFC是矩形.【点评】此题主要考查了学生对全等三角形的判定,平行四边形的性质及矩形的判定等知识点的掌握情况.20.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,即当AE为多少米时?有DC2=AE2+BC2.【考点】勾股定理;含30度角的直角三角形;正方形的性质.【专题】动点型.【分析】根据已知得出设AE=x米,可得EC=(12﹣x)米,利用勾股定理得出DC2=DE2+EC2=4+(12﹣x)2,AE2+BC2=x2+36,即可求出x的值.【解答】解:如图,连接CD,设AE=x米,∵坡角∠A=30°,∠B=90°,BC=6米,∴AC=12米,∴EC=(12﹣x)米,∵正方形DEFH的边长为2米,即DE=2米,∴DC2=DE2+EC2=4+(12﹣x)2,AE2+BC2=x2+36,∵DC2=AE2+BC2,∴4+(12﹣x)2=x2+36,解得:x=米,答:当AE为米时,有DC2=AE2+BC2.【点评】此题主要考查了勾股定理的应用以及一元二次方程的应用,根据已知表示出CE,AE的长度是解决问题的关键.21.已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C 的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP 是腰长为5的等腰三角形时,求点P的坐标.【考点】矩形的性质;坐标与图形性质;等腰三角形的性质;勾股定理.【分析】根据当OP=OD时,以及当OD=PD时和当OP=PD时,分别进行讨论得出P点的坐标.【解答】解:过P作PM⊥OA于M.(1)当OP=OD时,OP=5,CO=4,∴易得CP=3,∴P(3,4);(2)当OD=PD时,PD=DO=5,PM=4,∴易得MD=3,从而CP=2或CP'=8,∴P(2,4)或(8,4);综上,满足题意的点P的坐标为(3,4)、(2,4)、(8,4),【点评】此题主要考查了矩形的性质以及坐标与图形的性质和等腰三角形的性质,根据△ODP是腰长为5的等腰三角形进行分类讨论是解决问题的关键.22.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF,请回答下列问题:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?【考点】矩形的判定;全等三角形的判定与性质;平行四边形的判定.【分析】(1)四边形ADEF平行四边形.根据△ABD,△EBC都是等边三DAE角形容易得到全等条件证明△DBE≌△ABC,然后利用全等三角形的性质和平行四边形的判定可以证明四边形ADEF平行四边形.(2)若边形ADEF是矩形,则∠DAE=90°,然后根据已知可以得到∠BAC=150°.(3)当∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在.【解答】解:(1)四边形ADEF是平行四边形.理由:∵△ABD,△EBC都是等边三角形.∴AD=BD=AB,BC=BE=EC∠DBA=∠EBC=60°∴∠DBE+∠EBA=∠ABC+∠EBA.∴∠DBE=∠ABC.在△DBE和△ABC中∵BD=BA∠DBE=∠ABCBE=BC,∴△DBE≌△ABC.∴DE=AC.又∵△ACF是等边三角形,∴AC=AF.∴DE=AF.同理可证:AD=EF,∴四边形ADEF平行四边形.(2)∵四边形ADEF是矩形,∴∠FAD=90°.∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.∴∠BAC=150°时,四边形ADEF是矩形.(3)当∠BAC=60°时,以A,D,E,F为顶点的四边形不存在.理由如下:若∠BAC=60°,则∠DAF=360°﹣∠BAC﹣∠DAB﹣∠FAC=360°﹣60°﹣60°﹣60°=180°.此时,点A、D、E、F四点共线,∴以A、D、E、F为顶点的四边形不存在.【点评】此题主要用等边三角形的性质,全等三角形的性质与判定来解决平行四边形的判定问题,也探讨了矩形,平行四边形之间的关系.23.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【考点】相似形综合题.【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)分两种情况讨论即可求解.【解答】(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).【点评】本题考查了直角三角形的性质,菱形的判定与性质,正确利用t表示DF、AD的长是关键.。
安徽省巢湖市无为一中2016届高三上学期第一次月考数学理试卷
无为一中2015—2016第一学期高三第一次月考数 学 试 卷(理)时间:120分钟 总分:150分一.选择题(每小题5分,共12小题,共60分)1.函数y =(x +1)0|x|-x 的定义域是( )A .{x|x <0}B .{x|x >0}C .{x|x <0且x ≠-1}D .{x|x ≠0且x ≠-1,x ∈R}2.圆ρ=2(cos θ-sin θ)的圆心的一个极坐标是( )A.⎝⎛⎭⎫1,π4B.⎝⎛⎭⎫1,7π4C.⎝⎛⎭⎫2,π4D.⎝⎛⎭⎫2,7π4 3.若实数x 、y 满足1x 2+1y2=1,则x 2+2y 2有( ) A .最大值3+2 2 B .最小值3+2 2C .最大值6D .最小值64.若直线y =m 与y =3x -x 3的图象有三个不同交点,则m 取值范围为( )A .-2<m <2B .-2≤m ≤2C .m <-2或m >2D .m ≤-2或m ≥25.下列函数中,在其定义域上既是奇函数又是减函数的是( )A .f(x)=1xB .f(x)=-xC .f(x)=2-x -2x D .f(x)=-tan x6.函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( )A .(-∞,0)∪(12,2] B .(-∞,2] C .(-∞,12)∪[2,+∞) D .(0,+∞) 7.已知命题p :∃x 0∈R,有x 20=-1;命题q :∀x∈(0,π2),有x >sinx.则下列命题是真命题的是( )A.p ∧qB.p ∨(⌝q)C.p ∧(⌝q)D. (⌝p)∧q8.与参数方程为⎩⎨⎧x =t ,y =21-t (t 为参数)等价的普通方程为( )A .x 2+y 24=1 B .x 2+y 24=1(0≤x ≤1) C .x 2+y 24=1(0≤y ≤2) D .x 2+y 24=1(0≤x ≤1,0≤y ≤2) 9.如果不等式a x x +-<|1|2的解集是区间)3,3(-的子集,则实数a 的取值范围是( )(A ))7,(-∞ (B )]7,(-∞ (C ))5,(-∞ (D )]5,(-∞10.已知关于x 的函数y =log a (2-ax)在[1,2]上是增函数,则a 的取值范围是( )A .(0,1)B .(1,2)C .(0,2)D .[2,+∞)11.在下列四个函数中,满足性质:“对于区间(1,2)上的任意x 1,x 2(x 1≠x 2),||f (x 1)-f (x 2)<||x 2-x 1恒成立”的只有( )A .f(x)=1xB .f(x)=|x|C .f(x)=2xD .f(x)=x 2 12.已知函数f(x)为偶函数且满足:f(x)=f(4-x),当x ∈[0,2]时,f(x)=x -1,则不等式xf(x)>0在[-1,3]上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)二.填空题(每小题5分,共4小题,共20分)13.命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为_____________.14.已知集合A ={x ∈R||x +3|+|x -4|≤9},B ={x ∈R|x =4t +1t-6,t ∈(0,+∞)},则集合A ∩B =____________.15. 已知2(3)4log 3233x f x =+,则8(2)(4)(8)...(2)f f f f ++++的值= .16. 函数f(x)的定义域为D ,若对于任意的x 1,x 2∈D ,当x 1<x 2时,都有f(x 1)≤f(x 2),则称函数f(x)为定义域D 上的非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:①f(0)=0,②f(1-x)+f(x)=1,③f ⎝⎛⎭⎫x 3=12f(x),则f ⎝⎛⎭⎫13+f ⎝⎛⎭⎫512的值为________. 三.解答题(本大题共70分,其中第17题10分,其它各题分别为12分) 17(10分).设关于x 的不等式x(x -a -1)<0(a ∈R)的解集为M ,不等式x 2-2x -3≤0的解集为N.(1)当a =1时,求集合M ; (2)若M ⊆N ,求实数a 的取值范围.18(12分).已知p:-x 2+4x+32≥0,q:x 2-2x+1-m 2≤0(m>0).(1)若p 是q 的充分不必要条件,求实数m 的取值范围.(2)若“p ”是“q ”的充分不必要条件,求实数m 的取值范围.19(12分).如图,在极坐标系中,圆C 的圆心坐标为(1,0),半径为1.(1) 求圆C 的极坐标方程;(2) 若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系,已知直线l 的参数方程为π-1cos ,6πsin 6x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),试判断直线l 与圆C 的位置关系.20(12分).已知函数f(x)=aln x -x +a -1x. (1)若a =4,求f(x)的极值;(2)若f(x)在定义域内无极值,求实数a 的取值范围.21(12分).已知定义在R 上的奇函数f(x)有最小正周期4,且x ∈(0,2)时,f(x)=e x x. (1)求f(x)在[-2,2]上的解析式;(2)若函数y=f(x)-2m 在(12,2)内有两个零点,求实数m 的取值范围.22(12分). 设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:①当x∈R时,f(x)的最小值为0,且f(x-1)=f(-x-1)恒成立;②当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成立.(1) 求f(1) 的值;(2) 求f(x)的解析式;(3) 求最大的实数m(m>1),使得存在实数t,当x∈[1,m]时,f(x+t)≤x恒成立.。
2016年内地新疆高中班招生数学试卷带答案解析
2016年内地新疆高中班招生数学试卷一、选择题,共9小题,每小题5分,共45分.1.(5分)﹣2的绝对值是()A.2 B.﹣2 C.±2 D.2.(5分)如图,AB∥CD,CE平分∠BCD,∠B=36°,则∠DCE等于()A.18°B.36°C.45°D.54°3.(5分)不等式组的解集是()A.x>4 B.x≤3 C.3≤x<4 D.无解4.(5分)一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A.B.C.D.5.(5分)一个扇形的圆心角是120°,面积为3πcm2,那么这个扇形的半径是()A.1cm B.3cm C.6cm D.9cm6.(5分)小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A.B.C.D.7.(5分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小8.(5分)轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.259.(5分)两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是()A.﹣=15 B.﹣=C.﹣=15 D.﹣=二、填空题,共小题,每小题5分,共30分.10.(5分)计算(1﹣)(x+1)的结果是.11.(5分)关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是.12.(5分)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是小时.13.(5分)如图所示,△ABC中,E,F分别是边AB,AC上的点,且满足==,则△AEF与△ABC的面积比是.14.(5分)如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为m(结果保留根号).15.(5分)如图,在▱ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB 和∠CBA,若AD=5,AP=8,则△APB的周长是.三、解答题,共8小题,共75分16.(6分)计算:()﹣1+|1﹣|﹣tan30°.17.(7分)解方程组.18.(10分)某学生社团为了解本校学生喜欢球类运动的情况,随机抽取了若干名学生进行问卷调查,要求每位学生只能填写一种自己喜欢的球类运动,并将调查的结果绘制成如下的两幅不完整的统计图.请根据统计图表提供的信息,解答下列问题:(1)参加调查的人数共有人;在扇形图中,m=;将条形图补充完整;(2)如果该校有3500名学生,则估计喜欢“篮球”的学生共有多少人?(3)该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列表法,求抽取到的两种球类恰好是“篮球”和“足球”的概率.19.(10分)如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC 交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.20.(10分)周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?21.(10分)如图,直线y=2x+3与y轴交于A点,与反比例函数y=(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.22.(10分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.23.(12分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,﹣4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形.2016年内地新疆高中班招生数学试卷参考答案与试题解析一、选择题,共9小题,每小题5分,共45分.1.(5分)﹣2的绝对值是()A.2 B.﹣2 C.±2 D.【解答】解:﹣2的绝对值是:2.故选:A.2.(5分)如图,AB∥CD,CE平分∠BCD,∠B=36°,则∠DCE等于()A.18°B.36°C.45°D.54°【解答】解:∵AB∥CD,∴∠BCD=∠B=36°,∵CE平分∠BCD,∴∠DCE=18°.故选:A.3.(5分)不等式组的解集是()A.x>4 B.x≤3 C.3≤x<4 D.无解【解答】解:,解①得:x<4,解②得:x≥3,则不等式的解集是:3≤x<4.故选:C.4.(5分)一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A.B.C.D.【解答】解:∵2个红球、3个白球,一共是5个,∴从布袋中随机摸出一个球,摸出红球的概率是.故选:C.5.(5分)一个扇形的圆心角是120°,面积为3πcm2,那么这个扇形的半径是()A.1cm B.3cm C.6cm D.9cm【解答】解:设扇形的半径为R,由题意:3π=,解得R=±3,∵R>0,∴R=3cm,∴这个扇形的半径为3cm.故选B.6.(5分)小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是()A.B.C.D.【解答】解:根据题意,从20分钟到30分钟在书店里看书,离家距离没有变化,是一条平行于x轴的线段.故选B.7.(5分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小【解答】解:(A)图象开口向下,所以a<0,故(A)错误;(B)图象与y轴交点在y轴的正半轴,所以C>0,故(B)错误;(C)因为对称轴为x=1,所以(﹣1,0)与(3,0)关于x=1对称,故x=3是ax2+bx+c=0的一个根;故(C)正确;(D)由图象可知:当x<1时,y随x的增大而增大;故(D)错误.故选(C)8.(5分)轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.25【解答】解:根据题意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴△ABC为等腰直角三角形,∵BC=50×0.5=25,∴AC=BC=25(海里).故选D.9.(5分)两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是()A.﹣=15 B.﹣=C.﹣=15 D.﹣=【解答】解:设第二组的步行速度为x千米/小时,则第一组的步行速度为1.2x 千米/小时,第一组到达乙地的时间为:7.5÷1.2x;第二组到达乙地的时间为:7.5÷x;∵第一组比第二组早15分钟(小时)到达乙地,∴列出方程为:﹣==.故答案为D.二、填空题,共小题,每小题5分,共30分.10.(5分)计算(1﹣)(x+1)的结果是x.【解答】解:原式=•(x+1)=x,故答案为:x11.(5分)关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是k>﹣1.【解答】解:∵关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,∴△=22+4k>0,解得k>﹣1.故答案为:k>﹣1.12.(5分)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是 6.4小时.【解答】解:=6.4.故答案为:6.4.13.(5分)如图所示,△ABC中,E,F分别是边AB,AC上的点,且满足==,则△AEF与△ABC的面积比是1:9.【解答】解:∵==,∴,又∵∠A=∠A,∴△AEF∽△ABC,∴△AEF与△ABC的面积比=1:9,故答案为:1:9.14.(5分)如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为30m(结果保留根号).【解答】解:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=60m,在Rt△ABD中,AB=AD•sin∠ADB=60×=30 (m).故答案为:30 .15.(5分)如图,在▱ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB 和∠CBA,若AD=5,AP=8,则△APB的周长是24.【解答】解:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24;故答案为:24.三、解答题,共8小题,共75分16.(6分)计算:()﹣1+|1﹣|﹣tan30°.【解答】解:()﹣1+|1﹣|﹣tan30°=2+﹣1﹣3×=1+﹣3=﹣2.17.(7分)解方程组.【解答】解:①+②得,3x=15,解得x=5,把x=5代入①得,10+3y=7,解得y=﹣1.故方程组的解为:.18.(10分)某学生社团为了解本校学生喜欢球类运动的情况,随机抽取了若干名学生进行问卷调查,要求每位学生只能填写一种自己喜欢的球类运动,并将调查的结果绘制成如下的两幅不完整的统计图.请根据统计图表提供的信息,解答下列问题:(1)参加调查的人数共有600人;在扇形图中,m=30;将条形图补充完整;(2)如果该校有3500名学生,则估计喜欢“篮球”的学生共有多少人?(3)该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列表法,求抽取到的两种球类恰好是“篮球”和“足球”的概率.【解答】解:(1)∵240÷40%=600(人)∴参加调查的人数共有600人;∵1﹣40%﹣20%﹣10%=30%,∴在扇形图中,m=30..(2)3500×40%=1400(人)答:喜欢“篮球”的学生共有1400人.(3)2÷6=.答:抽取到的两种球类恰好是“篮球”和“足球”的概率是.故答案为:600、30.19.(10分)如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC 交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.【解答】证明:∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,∵AD∥BC,∴∠ADE=∠CBF,在Rt△AED和Rt△CFB中,∵,∴Rt△AED≌Rt△CFB(AAS),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.20.(10分)周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?【解答】解:设要邀请x支球队参加比赛,由题意,得x(x﹣1)=28,解得:x1=8,x2=﹣7(舍去).答:应邀请8支球队参加比赛.21.(10分)如图,直线y=2x+3与y轴交于A点,与反比例函数y=(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵BC⊥x轴于点C,且C点的坐标为(1,0),∴在直线y=2x+3中,当x=1时,y=2+3=5,∴点B的坐标为(1,5),又∵点B(1,5)在反比例函数y=上,∴k=1×5=5,∴反比例函数的解析式为:y=;(2)将点D(a,1)代入y=,得:a=5,∴点D坐标为(5,1)设点D(5,1)关于x轴的对称点为D′(5,﹣1),过点B(1,5)、点D′(5,﹣1)的直线解析式为:y=kx+b,可得:,解得:,∴直线BD′的解析式为:y=﹣x+,根据题意知,直线BD′与x轴的交点即为所求点P,当y=0时,得:﹣x+=0,解得:x=,故点P的坐标为(,0).22.(10分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∵GC∥BF,∴△AGC∽△ABF,∴∴BF==23.(12分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,﹣4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,将A、B点的坐标代入函数解析式,得,解得,2配方,得y=﹣(x﹣)2+,顶点坐标为(,);(2)E点坐标为(x,﹣x2+x﹣4),S=2×OA•y E=6(﹣x2+x﹣4)即S=﹣4x2+28x﹣24;(3)平行四边形OEAF的面积为24时,平行四边形OEAF可能为菱形,理由如下:当平行四边形OEAF的面积为24时,即﹣4x2+28x﹣24=24,化简,得x2﹣7x+12=0,解得x=3或4,当x=3时,EO=EA,平行四边形OEAF为菱形.当x=4时,EO≠EA,平行四边形OEAF不为菱形.∴平行四边形OEAF的面积为24时,平行四边形OEAF可能为菱形.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
2017年芜湖四县(无为、南陵、繁昌、芜湖县)高一自主招生数学试卷及答案
BC
AD
BAC ABC
AB BC AD BE BF CD m n EF BD
AB
1 2
AC
第 9 题图
m
n
E AE AD x, y AC AB CDE 2 D
yx
A
ABC
B
D
E
C
第 10 题图
x
x a n m (a 0)
mn mn m n m n m n m n
1 5 y x 3 3 x2 y 2 5
(1) (2)
…………………………6 分
把(1)代入(2) ,整理得,
第 13 题
x2 x 2 0 ,∴ x 2, x 1 ,…………………8 分
∴ C(2,1), D(1,2) .故 a 的取值范围是 2 a 1 .……10 分 14.(10 分) 解: (1)由直线 y
a
P
l
AB P
解:
a
APB
y P A O B l
x
第 13 题图
y
t
4 x4 3
BC C
A B
C t
A
x
AC AB
D D DE x轴 CDE AOB
x轴正方向
DE 2
t CE D C
y B
y B E
A
O
C
x
A
O
C
D
x
图(1)
图(2)
x
ABC k
证明:
x 2 3x 2 k (k 3 2 x) 0
当 AC AD (即 t △CDE 与△AOB 相似. ……………………10 分 15.(14 分) 证明: (1)关于 x 的一元二次方程 x 3 x 2 k (k 3 2 x) 0 ,化简得
2016年河南省普通高中招生数学试题与答案解析
2016 年河南省一般高中招生数学试题及答案分析一、选择题(每题 3 分,共 24 分)1的相反数是()3A. -1 B. 133【答案】: B【分析】:依据相反数的定义,很简单获得- 1 的相反数是 1,选 B 。
332. 某种细胞的直径是 0.00000095 米,将 0.00000095 用科学计数法表示为( ) A.9.5 × 10- 7×10-8 C.0.95 × 10- 7 D. 95 ×10-8【答案】: A【分析】: 科学记数法的表示形式为 a 10n 的形式,此中 1 a <10 , n 为整数。
确立 n的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数相同。
当原数绝对值> 1 时,n 是正数; 当原数的绝对值<1 时,n 是负数。
将用科学记数法表示9.5 × 10-7,选 A 。
3. 下边几何图形是由四个同样的小正方体搭成的, 此中主视图和左视图同样的是( )ABCD【答案】: C【分析】:此题考察了三视图的知识,主视图是从物体的前方看获得的视图,左视图是从物体的左面看获得的视图,找到主视图和左视图同样的是 ,选 C 。
4. 以下计算正确的选项是( ) A. 8 - 2 = 2 B. (-3 )2=64-2a 2=a 2 D.( -a 3)2 =a 5【答案】: A【分析】:依占有理数的定义幂的运算性质,运算正确的选项是 A ,选 A 。
5. 如图,过反比率函数 y= k(x >0)的图像上一点 A 作 AB ⊥x 轴于点 B ,连x 接 AO ,若 S △ AOB =2,则 k 的值为( ). . .【答案】: Cy【分析】:此题考察了反比率函数y= k( x> 0)的图像上一x点 A 作 AB⊥ x 轴于点 B,连结 AO,已知△ AOB的面积求k 的方法是:k1xy 2 ,∴k=4.应选C. 226. 如图,在△ ABC中,∠ACB=90,AC=8,AB=10,DE 垂直均分 AC交 AB于点 E,则 DE的长是()【答案】: D【分析】:此题考察了直角三角形中勾股定理的应用及垂直均分线的性AO B x第5题ADE质,先求 BC=6,再获得DE∥BC,且DE等于BC的一半,即1C第6题B 2×6 =3,应选 D。
无为中学自主招生数学试题
自主招生数学试题一.选择题(共6小题)1.已知函数,若使y=k成立的x值恰好有三个,则k的值为()A.0B.1C.2D.32.如果|x﹣a|=a﹣|x|(x≠0,x≠a),那么=()A.2a B.2x C.﹣2a D.﹣2x3.a,b,c为有理数,且等式成立,则2a+999b+1001c的值是()A.1999 B.2000 C.2001 D.不能确定4.(2013?莒南县一模)如图,两个反比例函数y=和y=(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为()A.k1+k2B.k1﹣k2C.k1?k2D.5.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)6.如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()A.B.C.D.二.填空题(共7小题)7.三个数a、b、c的积为负数,和为正数,且,则ax3+bx2+cx+1的值是_________.8.如图正方形ABCD中,E是BC边的中点,AE与BD相交于F点,△DEF的面积是1,那么正方形ABCD的面积是_________.9.(2013?沐川县二模)如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB 上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为_________;面积小于2011的阴影三角形共有_________个.10.你见过像,,…这样的根式吗?这一类根式叫做复合二次根式.有一些复合二次根式可以化简,如.请用上述方法化简:=_________.11.不等式组有六个整数解,则a的取值范围为_________.12.小明是一位刻苦学习、勤于思考、勇于创新的同学,一天他在解方程x2=﹣1时,突发奇想:x2=﹣1在实数范围内无解,如果存在一个数i,使i2=﹣1,那么若x2=﹣1,则x=±i,从而x=±i是方程x2=﹣1的两个根.据此可知:①i可以运算,例如:i3=i2?i=﹣1×i=﹣i,则i2011=_________,②方程x2﹣2x+2=0的两根为_________(根用i表示)13.(2013?日照)如右图,直线AB交双曲线于A、B,交x轴于点C,B为线段AC的中点,过点B作BM⊥x 轴于M,连结OA.若OM=2MC,S△OAC=12.则k的值为_________.三.解答题(共7小题)14.在“学科能力”展示活动中,某区教委决定在甲、乙两校举行“学科能力”比赛,为此甲、乙两学校都选派相同人数的选手参加,比赛结束后,发现每名参赛选手的成绩都是70分、80分、90分、l00分这四种成绩中的一种,并且甲、乙两校的选手获得100分的人数也相等.现根据甲、乙两校选手的成绩绘制如下两幅不完整统计图:(1)甲校选手所得分数的中位数是_________,乙校选手所得分数的众数是_________;(2)请补全条形统计图;(3)比赛后,教委决定集中甲、乙两校获得100分的选手进行培训,培训后,从中随机选取两位选手参加市里的决赛,请用列表法或树状图的方法,求所选两位选手来自同一学校的概率.15.(2012?兰州)若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1?x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c (a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1﹣x2|====;参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC 为等腰三角形.(1)当△ABC为直角三角形时,求b2﹣4ac的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.16.(2013?威海)如图,在平面直角坐标系中,直线y=x+与直线y=x交于点A,点B在直线y=x+上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.(1)求点A,B的坐标;(2)求抛物线的函数表达式及顶点E的坐标;(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.17.(2012?内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.自主招生数学试题参考答案与试题解析一.选择题(共6小题)1.(2011?随州)已知函数,若使y=k成立的x值恰好有三个,则k的值为()A.0B.1C.2D.3考点:二次函数的图象.专题:压轴题;数形结合.分析:首先在坐标系中画出已知函数的图象,利用数形结合的方法即可找到使y=k成立的x值恰好有三个的k值.解答:解:函数的图象如图:根据图象知道当y=3时,对应成立的x有恰好有三个,∴k=3.故选D.点评:此题主要考查了利用二次函数的图象解决交点问题,解题的关键是把解方程的问题转换为根据函数图象找交点的问题.2.如果|x﹣a|=a﹣|x|(x≠0,x≠a),那么=()A.2a B.2x C.﹣2a D.﹣2x考点:二次根式的性质与化简;绝对值;完全平方公式;含绝对值符号的一元一次方程.专题:计算题.分析:由绝对值的定义可知,一个数的绝对值要么等于它本身,要么等于它的相反数,根据已知条件|x﹣a|=a﹣|x|,得出|x|=x且x≤a.再根据完全平方公式及二次根式的性质=|a|进行化简,最后去括号、合并同类项即可得出结果.解答:解:∵|x﹣a|=a﹣|x|,∴|x|=x且x≤a.∴a﹣x>0,a+x>0.∴=﹣=|a﹣x|﹣|a+x|=a﹣x﹣(a+x)=a﹣x﹣a﹣x=﹣2x.故选D.点评:本题考查了绝对值的定义,完全平方公式,二次根式的性质,二次根式的化简及整式的加减运算,难度中等,其中根据绝对值的定义,结合已知条件得出|x|=x且x≤a是解题的关键.3.a,b,c为有理数,且等式成立,则2a+999b+1001c的值是()A.1999 B.2000 C.2001 D.不能确定考点:二次根式的性质与化简.分析:将已知等式右边化简,两边比较系数可知a、b、c的值,再计算式子的值.解答:解:∵==,∴a+b+c=,∴a=0,b=1,c=1,2a+999b+1001c=2000.故选B.点评:本题考查了二次根式的性质与化简,将复合二次根式化简并比较系数是解题的关键.4.(2013?莒南县一模)如图,两个反比例函数y=和y=(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为()A.k1+k2B.k1﹣k2C.k1?k2D.考点:反比例函数系数k的几何意义.专题:压轴题;数形结合.分析:四边形PAOB的面积为矩形OCPD的面积减去三角形ODB与三角形OAC的面积,根据反比例函数中k的几何意义,其面积为k1﹣k2.解答:解:根据题意可得四边形PAOB的面积=S﹣S OBD﹣S OAC,矩形OCPD由反比例函数中k的几何意义,可知其面积为k1﹣k2.故选B.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.5.(2012?南开区一模)如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)考点:坐标与图形变化-旋转;等腰梯形的性质.专题:规律型.分析:由P、A两点坐标可知,点P绕点A旋转180°得点P1,即为直线PA与x轴的交点,依此类推,点P2为直线P1B与y轴的交点,由此发现一般规律.解答:解:由已知可以得到,点P1,P2的坐标分别为(2,0),(2,﹣2).记P2(a2,b2),其中a2=2,b2=﹣2.根据对称关系,依次可以求得:P3(﹣4﹣a2,﹣2﹣b2),P4(2+a2,4+b2),P5(﹣a2,﹣2﹣b2),P6(4+a2,b2).令P6(a6,b2),同样可以求得,点P10的坐标为(4+a6,b2),即P10(4×2+a2,b2),由于2010=4×502+2,所以点P2010的坐标为(2010,﹣2).故选B.点评:本题考查了旋转变换的规律.关键是根据等腰梯形,点的坐标的特殊性,寻找一般规律.6.(2013?荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()A.B.C.D.考点:圆周角定理;勾股定理;锐角三角函数的定义.专题:压轴题.分析:首先过点A作AD⊥OB于点D,由在Rt△AOD中,∠AOB=45°,可求得AD与OD的长,继而可得BD 的长,然后由勾股定理求得AB的长,继而可求得sinC的值.解答:解:过点A作AD⊥OB于点D,∵在Rt△AOD中,∠AOB=45°,∴OD=AD=OA?cos45°=×1=,∴BD=OB﹣OD=1﹣,∴AB==,∵AC是⊙O的直径,∴∠ABC=90°,AC=2,∴sinC=.故选B.点评:此题考查了圆周角定理、三角函数以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.二.填空题(共7小题)7.三个数a、b、c的积为负数,和为正数,且,则ax3+bx2+cx+1的值是1.考点:代数式求值;绝对值.专题:计算题.分析:由三个数a、b、c的积为负数,可知三数中只有一个是负数,或三个都是负数;又三数的和为正,故a、b、c中只有一个是负数,根据对称轮换式的性质,不妨设a<0,b>0,c>0,求x的值即可.解答:解:∵abc<0,∴a、b、c中只有一个是负数,或三个都是负数;又∵a+b+c>0,∴a、b、c中只有一个是负数.不妨设a<0,b>0,c>0,则ab<0,ac<0,bc>0,x=﹣1+1+1﹣1﹣1+1=0,当x=0时,ax3+bx2+cx+1=0a+0b+0c=0+1=1.故本题答案为1.点评:观察代数式,交换a、b、c的位置,我们发现代数式不改变,这样的代数式成为轮换式,我们不用对a、b、c再讨论.有兴趣的同学可以在课下查阅资料,看看轮换式有哪些重要的性质.8.如图正方形ABCD中,E是BC边的中点,AE与BD相交于F点,△DEF的面积是1,那么正方形ABCD的面积是6.考点:面积及等积变换.分析:先设△BEF的面积是x,由于E是BC中点,那么S△DBE=S△DCE,易求S正方形=4(1+x),又四边形ABCD 是正方形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△BEF∽△DAF,于是S△BEF:S△DAF=()2,E是BC中点可知BE:AD=1:2,于是S△DAF=4x,进而可得S正方形=S△ABF+S△BEF+S△ADF+S△DEF+S△DCE=1+x+4x+1+1+x,等量代换可得4(1+x)=1+x+4x+1+1+x,解可求x,进而可求正方形的面积.解答:解:如右图,设△BEF的面积是x,∵E是BC中点,∴S△DBE=S△DCE,∴S△BCD=2(1+x),∴S正方形=4(1+x),∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴△BEF∽△DAF,∴S△BEF:S△DAF=()2,∵E是BC中点,∴BE=CE,∴BE:AD=1:2,∴S△DAF=4x,∵S△ABE=S△BED,∴S△ABF=S△DEF=1,∴S正方形=S△ABF+S△BEF+S△ADF+S△DEF+S△DCE=1+x+4x+1+1+x,∴4(1+x)=1+x+4x+1+1+x,解得x=0.5,∴S正方形=4(1+x)=4(1+0.5)=6.点评:本题考查了面积以及等积变换、相似三角形的判定和性质,解题的关键是找出正方形面积的两种表示方式.9.(2013?沐川县二模)如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB 上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为;面积小于2011的阴影三角形共有6个.考点:相似三角形的判定与性质;平行线的性质;三角形的面积.分析:根据面积比等于相似比的平方,可得出=,=,再由平行线的性质可得出==,==,从而可推出相邻两个阴影部分的相似比为1:2,面积比为1:4,先利用等底三角形的面积之比等于高之比可求出第一个及第二个阴影部分的面积,再由相似比为1:2可求出面积小于2011的阴影部分的个数.解答:解:由题意得,△A2B1B2∽△A3B2B3,∴==,==,又∵A1B1∥A2B2∥A3B3,∴===,==,∴OA1=A1A2,B1B2=B2B3继而可得出规律:A1A2=A2A3=A3A4…;B1B2=B2B3=B3B4…又△A2B1B2,△A3B2B3的面积分别为1、4,∴S△A1B1A2=,S△A2B2A3=2,继而可推出S△A3B3A4=8,S△A,4B4A5=32,S△A5B5A6=128,S△A6B6A7=512,S△A7B7A8=2048,故可得小于2011的阴影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6个.故答案是:;6.点评:此题考查了相似三角形的判定与性质及平行线的性质,解答本题的关键是掌握相似比等于面积比的平方,及平行线分线段成比例,难度较大,注意仔细观察图形,得出规律.10.你见过像,,…这样的根式吗?这一类根式叫做复合二次根式.有一些复合二次根式可以化简,如.请用上述方法化简:=.考点:二次根式的性质与化简.分析:因为5=2+3=()2+()2,且2=2××,由此把原式改为完全平方式,进一步因式分解,化简得出答案即可.解答:解:===+.故答案为:+.点评:此题考查活用完全平方公式,把数分解成完全平方式,进一步利用公式因式分解化简,注意在整数分解时参考后面的二次根号里面的数值.11.不等式组有六个整数解,则a的取值范围为<a≤.考点:一元一次不等式组的整数解.分析:先求出不等式组的解集,再根据整数解有六个得到关于a的不等式组,然后解不等式组即可求解.解答:解:解不等式组,得﹣4<x≤5﹣4a.由题意,知此不等式组的六个整数解为﹣3,﹣2,﹣1,0,1,2,则2≤5﹣4a<3,解得<a≤.故答案为<a≤.点评:本题考查了一元一次不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.小明是一位刻苦学习、勤于思考、勇于创新的同学,一天他在解方程x2=﹣1时,突发奇想:x2=﹣1在实数范围内无解,如果存在一个数i,使i2=﹣1,那么若x2=﹣1,则x=±i,从而x=±i是方程x2=﹣1的两个根.据此可知:①i可以运算,例如:i3=i2?i=﹣1×i=﹣i,则i2011=﹣i.,②方程x2﹣2x+2=0的两根为1±i.(根用i表示)考点:一元二次方程的应用.专题:新定义.分析:(1)根据题中规律可知i1=1,i2=﹣1,i3=﹣i,i4=1,可以看出4个一次循环,可以此求解.(2)把方程x2﹣2x+2=0变形为(x﹣1)2=﹣1,根据题目规律和平方根的定义可求解.解答:解:(1)i2011=i502×4+3=﹣i.(2)x2﹣2x+2=0(x﹣1)2=﹣1x﹣1=±ix=1+i或x=1﹣i.故答案为:﹣i;1±i.点评:本题考查了用配方法解一元二次方程以及找出题目中的规律,从而求得解.13.(2013?日照)如右图,直线AB交双曲线于A、B,交x轴于点C,B为线段AC的中点,过点B作BM⊥x 轴于M,连结OA.若OM=2MC,S△OAC=12.则k的值为8.考点:反比例函数与一次函数的交点问题.专题:压轴题.分析:过A作AN⊥OC于N,求出ON=MN=CM,设A的坐标是(a,b),得出B(2a,b),根据三角形AOC 的面积求出ab=8,把B的坐标代入即可求出答案.解答:解:过A作AN⊥OC于N,∵BM⊥OC∴AN∥BM,∵,B为AC中点,∴MN=MC,∵OM=2MC,∴ON=MN=CM,设A的坐标是(a,b),则B(2a,b),∵S△OAC=12.∴?3a?b=12,∴ab=8,∵B在y=上,∴k=2a?b=ab=8,故答案为:8.点评:本题考查了一次函数和反比例函数的交点问题和三角形的面积的应用,主要考查学生的计算能力.三.解答题(共7小题)14.在“学科能力”展示活动中,某区教委决定在甲、乙两校举行“学科能力”比赛,为此甲、乙两学校都选派相同人数的选手参加,比赛结束后,发现每名参赛选手的成绩都是70分、80分、90分、l00分这四种成绩中的一种,并且甲、乙两校的选手获得100分的人数也相等.现根据甲、乙两校选手的成绩绘制如下两幅不完整统计图:(1)甲校选手所得分数的中位数是90分,乙校选手所得分数的众数是80分;(2)请补全条形统计图;(3)比赛后,教委决定集中甲、乙两校获得100分的选手进行培训,培训后,从中随机选取两位选手参加市里的决赛,请用列表法或树状图的方法,求所选两位选手来自同一学校的概率.考点:条形统计图;扇形统计图;中位数;众数;列表法与树状图法.分析:(1)先设甲学校学生获得100分的人数为x,根据甲、乙两学校参加数学竞赛的学生人数相等,可得出方程,解出x的值,继而可得出甲校选手所得分数的中位数,及乙校选手所得分数的众数;(2)列出树状图后,求解即可得出所选两位选手来自同一学校的概率.解答:解:(1)先设甲学校学生获得100分的人数为x,由题意得,x=(x+2+3+5)×,解得:x=2,即获得100分的人数有2人.故可得甲校选手所得分数的中位数是90分;乙校选手所得分数的众数80分.(2)则两位选手来自同一学校的概率==.点评:本题考查了条形统计图及扇形统计图的知识,要求同学们有一定的读图能力,能在条形统计图及扇形统计图中得到解题需要用到的信息,有一定难度.15.(2012?兰州)若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1?x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c (a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1﹣x2|====;参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC 为等腰三角形.(1)当△ABC为直角三角形时,求b2﹣4ac的值;(2)当△ABC为等边三角形时,求b2﹣4ac的值.考点:抛物线与x轴的交点;根与系数的关系;等腰三角形的性质;等边三角形的性质.分析:(1)当△ABC为直角三角形时,由于AC=BC,所以△ABC为等腰直角三角形,过C作CE⊥AB于E,则AB=2CE.根据本题定理和结论,得到AB=,根据顶点坐标公式,得到CE=||=,列出方程,解方程即可求出b2﹣4ac的值;(2)当△ABC为等边三角形时,解直角△ACE,得CE=AE=,据此列出方程,解方程即可求出b2﹣4ac的值.解答:解:(1)当△ABC为直角三角形时,过C作CE⊥AB于E,则AB=2CE.∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,则|b2﹣4ac|=b2﹣4ac.∵a>0,∴AB=,又∵CE=||=,∴,∴,∴,∵b2﹣4ac>0,∴b2﹣4ac=4;(2)当△ABC为等边三角形时,由(1)可知CE=,∴,∵b2﹣4ac>0,∴b2﹣4ac=12.点评:本题考查了等腰直角三角形、等边三角形的性质,抛物线与x轴的交点及根与系数的关系定理,综合性较强,难度中等.16.(2013?威海)如图,在平面直角坐标系中,直线y=x+与直线y=x交于点A,点B在直线y=x+上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.(1)求点A,B的坐标;(2)求抛物线的函数表达式及顶点E的坐标;(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.考点:二次函数综合题.分析:(1)由直线y=x+与直线y=x交于点A,列出方程组,通过解该方程组即可求得点A的坐标;根据∠BOA=90°得到直线OB的解析式为y=﹣x,则,通过解该方程组来求点B的坐标即可;(2)把点A、B、O的坐标分别代入已知二次函数解析式,列出关于系数a、b、c的方程组,通过解方程组即可求得该抛物线的解析式;(3)如图,作DN⊥x轴于点N.欲证明OD与CF平行,只需证明同位角∠CMN与∠DON相等即可.解答:解:(1)由直线y=x+与直线y=x交于点A,得,解得,,∴点A的坐标是(3,3).∵∠BOA=90°,∴OB⊥OA,∴直线OB的解析式为y=﹣x.又∵点B在直线y=x+上,∴,解得,,∴点B的坐标是(﹣1,1).综上所述,点A、B的坐标分别为(3,3),(﹣1,1).(2)由(1)知,点A、B的坐标分别为(3,3),(﹣1,1).∵抛物线y=ax2+bx+c过点A,O,B,∴,解得,,∴该抛物线的解析式为y=x2﹣x,或y=(x﹣)2﹣.∴顶点E的坐标是(,﹣);(3)OD与CF平行.理由如下:由(2)知,抛物线的对称轴是x=.∵直线y=x与抛物线的对称轴交于点C,∴C(,).设直线BC的表达式为y=kx+b(k≠0),把B(﹣1,1),C(,)代入,得,解得,,∴直线BC的解析式为y=﹣x+.∵直线BC与抛物线交于点B、D,∴﹣x+=x2﹣x,解得,x1=,x2=﹣1.把x1=代入y=﹣x+,得y1=,∴点D的坐标是(,).如图,作DN⊥x轴于点N.则tan∠DON==.∵FE∥x轴,点E的坐标为(,﹣).∴点F的纵坐标是﹣.把y=﹣代入y=x+,得x=﹣,∴点F的坐标是(﹣,﹣),∴EF=+=.∵CE=+=,∴tan∠CFE==,∴∠CFE=∠DON.又∵FE∥x轴,∴∠CMN=∠CFE,∴∠CMN=∠DON,∴OD∥CF,即OD与CF平行.点评:本题考查了二次函数综合题.其中涉及到的知识点有:待定系数法求二次函数解析式,一次函数与二次函数交点问题,平行线的判定以及锐角三角函数的定义等知识点.此题难度较大.17.(2012?内江)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.考点:根与系数的关系;根的判别式.专题:压轴题.分析:(1)先设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,得出+=﹣,?=,再根据这个一元二次方程的两个根分别是已知方程两根的倒数,即可求出答案.(2)根据a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,得出a,b是x2﹣15x﹣5=0的解,求出a+b和ab的值,即可求出的值.(3)根据a+b+c=0,abc=16,得出a+b=﹣c,ab=,a、b是方程x2+cx+=0的解,再根据c2﹣4?≥0,即可求出c的最小值.解答:解:(1)设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,则:+==﹣,?==,若一个一元二次方程的两个根分别是已知方程两根的倒数,则这个一元二次方程是:x2+x+=0;(2)∵a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,∴a,b是x2﹣15x﹣5=0的解,当a≠b时,a+b=15,ab=﹣5,====﹣47.当A=B时,原式=2;(3)∵a+b+c=0,abc=16,∴a+b=﹣c,ab=,∴a、b是方程x2+cx+=0的解,∴c2﹣4?≥0,c2﹣≥0,∵c是正数,∴c3﹣43≥0,c3≥43,c≥4,∴正数c的最小值是4.点评:本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.18.(2013?钦州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.考点:切线的判定与性质;扇形面积的计算.专题:计算题;压轴题.分析:(1)由AB为圆O的切线,利用切线的性质得到OD垂直于AB,在直角三角形BDO中,利用锐角三角函数定义,根据tan∠BOD及BD的值,求出OD的值即可;(2)连接OE,由AE=OD=3,且OD与AE平行,利用一组对边平行且相等的四边形为平行四边形,根据平行四边形的对边平行得到OE与AD平行,再由DA与AE垂直得到OE与AC垂直,即可得证;(3)阴影部分的面积由三角形BOD的面积+三角形ECO的面积﹣扇形DOF的面积﹣扇形EOG的面积,求出即可.解答:解:(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.点评:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.19.(2013?益阳)如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.考点:旋转的性质;等腰三角形的性质;等腰梯形的判定.专题:压轴题.分析:(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;(2)由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,根据全等三角形证明方法得出即可;(3)分别根据①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,②当点E的像E′与点N重合时,求出α即可.解答:(1)证明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°,又∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠BEC=180°﹣∠C﹣∠CBE=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BC.(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,∵在△CAE′和△BAF′中,∴△CAE′≌△BAF′,∴CE′=BF′.(3)存在CE′∥AB,理由:由(1)可知AE=BC,所以,在△AEF绕点A逆时针旋转过程中,E点经过的路径(圆弧)与过点C且与AB平行的直线l交于M、N两点,如图:①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,∴∠BAM=∠ABC=72°,又∠BAC=36°,∴α=∠CAM=36°.②当点E的像E′与点N重合时,由AB∥l得,∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣2×72°=36°,∴α=∠CAN=∠CAM+∠MAN=72°.所以,当旋转角为36°或72°时,CE′∥AB.点评:此题主要考查了旋转的性质以及等腰三角形的性质和等腰梯形的性质等知识,根据数形结合熟练掌握相关定理是解题关键.20.(2013?昭通)如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a≠0)上.(1)求抛物线的解析式.(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标.(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P 的坐标(点P、O、D分别与点N、O、B对应)考点:二次函数综合题.专题:压轴题.分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;(3)首先求出直线A′B的解析式,进而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标.解答:解:(1)∵A(3,0)、B(4,4)、O(0,0)在抛物线y=ax2+bx+c (a≠0)上.∴,解得:,故抛物线的解析式为:y=x2﹣3x;(2)设直线OB的解析式为y=k1x(k1≠0),由点B(4,4)得4=4 k1,解得k1=1.∴直线OB的解析式为y=x,∠AOB=45°.∵B(4,4),∴点B向下平移m个单位长度的点B′的坐标为(4,0),故m=4.∴平移m个单位长度的直线为y=x﹣4.解方程组解得:,∴点D的坐标为(2,﹣2).(3)∵直线OB的解析式y=x,且A(3,0).∵点A关于直线OB的对称点A′的坐标为(0,3).设直线A′B的解析式为y=k2x+3,此直线过点B(4,4).∴4k2+3=4,解得k2=.∴直线A′B的解析式为y=x+3.∵∠NBO=∠ABO,∴点N在直线A′B上,设点N(n,n+3),又点N在抛物线y=x2﹣3x上,∴n+3=n2﹣3n.解得n1=﹣,n2=4(不合题意,舍去),∴点N的坐标为(﹣,).如图,将△NOB沿x轴翻折,得到△N1OB1,则N1(﹣,﹣),B1(4,﹣4).∴O、D、B1都在直线y=﹣x上.过D点做DP1∥N1B1,∵△P1OD∽△NOB,∴△P1OD∽△N1OB1,∴P1为O N1的中点.∴==,∴点P1的坐标为(﹣,﹣).将△P1OD沿直线y=﹣x翻折,可得另一个满足条件的点到x轴距离等于P1到y轴距离,点到y轴距离等于P1到x轴距离,∴此点坐标为:(,).综上所述,点P的坐标为(﹣,﹣)和(,).点评:此题主要考查了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.。
高中自主招生考试数学试题(含答案详解)
一中自主招生考试数学试题一.选择题(共6小题,满分24分,每小题4分)1.(4分)如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是()A.﹣2<a<2B.C.D.2.(4分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟3.(4分)如图是一个正方体的表面展开图,已知正方体的每一个面都有一个实数,且相对面上的两个数互为倒数,那么代数式的值等于()A.B.﹣6C.D.64.(4分)(2008•青岛)如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)5.(4分)如图,四边形BDCE内接于以BC为直径的⊙A,已知:,则线段DE的长是()A.B.7C.4+3D.3+46.(4分)如图,张三同学把一个直角边长分别为3cm,4cm的直角三角形硬纸板,在桌面上翻滚(顺时针方向),顶点A的位置变化为A1⇒A2⇒A3,其中第二次翻滚时被桌面上一小木块挡住,使纸板一边A2C1与桌面所成的角恰好等于∠BAC,则A翻滚到A2位置时共走过的路程为()A.8cm B.8πcm C.2cm D.4πcm二.填空题(共6小题,满分24分,每小题4分)7.(4分)若x+=3,则x2+=_________.8.(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________cm2.9.(4分)如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为_________cm.10.(4分)对于正数x,规定f(x)=,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(98)+f(99)+f(100)=_________.11.(4分)甲,乙,丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每﹣局的输方去当下﹣局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.那么,整个比赛的第10局的输方一定是_________.12.(4分)(2002•广州)如图所示,在正方形ABCD中,AO⊥BD,OE,FG,HI都垂直于AD,EF,GH,IJ都垂直于AO,若已知S△AIJ=1,则正方形ABCD的面积为_________.三.解答题(共6小题,满分52分)13.(6分)把几个数用大括号围起来,中间用逗号断开,如:{1,2,3},{2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.(1)请你判断集合{1,2},{1,4,7}是不是好的集合;(2)请你写出满足条件的两个好的集合的例子.14.(8分)(2007•丽水)在课外活动时间,小王、小丽、小华做“互相踢踺子”游戏,踺子从一人传到另一人就记为踢一次.(1)若从小丽开始,经过两次踢踺后,踺子踢到小华处的概率是多少?(用树状图或列表法说明)(2)若经过三次踢踺后,踺子踢到小王处的可能性最小,应确定从谁开始踢,并说明理由.15.(8分)某中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?16.(10分)如图,⊙O的直径EF=cm,Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=cm.E、F、A、B 四点共线.Rt△ABC以1cm/s的速度沿EF所在直线由右向左匀速运动,设运动时间为t(s),当t=0s时,点B与点F重合.(1)当t为何值时,Rt△ABC的直角边与⊙O相切?(2)当Rt△ABC的直角边与⊙O相切时,请求出重叠部分的面积(精确到0.01).17.(10分)(2008•广东)(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.18.(10分)(2008•益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.答案与评分标准一.C ,C ,A ,C ,D ,D甲,256,二.7,40,3,,三.解:(1)集合{1,2}不是好的集合,这是因为8﹣1=7,而7不是{1,2}中的数,所以{1,2}不是好的集合,{1,4,7}是好的集合,这是因为8﹣1=7,7是{1,4,7}中的数,8﹣4=4,4也是{1,4,7}中的数,8﹣7=1,1又是{1,4,7}中的数.所以{1,4,7}是好的集合;(2)答案不唯一.集合{4}、{3,4,5}、{2,6}、{1,2,4,6,7}、{0,8}等都是好的集合.解:(1)踺子踢到小华处的概率是.树状图如下:列表法如下:小丽小王小华小王(小丽,小王)(小王,小华)小华(小华,小丽)(小华,小王)(2)小王.树状图如下:理由:若从小王开始踢,三次踢踺后,踺子踢到小王处的概率是,踢到其它两人处的概率都是,因此,踺子踢到小王处的可能性是最小.解:(1)由题意可设拆旧舍x平方米,建新舍y平方米,则答:原计划拆建各4500平方米.(2)计划资金y1=4500×80+4500×800=3960000元实用资金y2=1.1×4500×80+0.9×4500×800=4950×80+4050×800=396000+3240000=3636000∴节余资金:3960000﹣3636000=324000∴可建绿化面积=平方米答:可绿化面积1620平方米.解:(1)∵∠BAC=30°,AB=,∴BC=又∵⊙O的直径EF=,即半径为,∠ACB=90°,∴当点B运动到圆心O时,AC边与⊙O相切.(如图1所示)(1分)此时运动距离为FO=,∴t=s.(2分)当BC边与⊙O相切时(如图2所示),设切点为G.连接OG,则OG⊥BC.(3分)由已知,∠BOG=∠BAC=30°,OG=,∴BO=2.(4分)又FO=,∴BF=.(此步亦可利用相似求解,请参照给分)∴此时s.(5分)由上所述,当秒时,Rt△ABC的直角边与⊙O相切.(6分)(2)由图1,此时⊙O与Rt△ABC的重叠部分为扇形COF.(7分)由已知,∠COF=60°,∴.(8分)由图2,设AC与⊙O交于点M,此时⊙O与Rt△ABC的重叠部分为扇形OMGE加上△OAM.(9分)过点M作MN⊥OG于N,则MN=GC.由(1)可知BG=1则MN=GC=.(10分)∴,∴∠MON=25°,即∠MOE=55°.(11分)∴.(12分)又∵OM=,∴点M到AB的距离h=OM•sin∠MOE≈1.419,(13分)∴S△AOM =•OA•h≈1.229cm2此时⊙O与Rt△ABC的重叠部分的面积为S扇形OMEF+S△AOM≈2.67cm2.(14分)解:(1)如图3,∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图4,∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.又∵OD=OA,∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,∴∠AEB=60°.解:(1)根据题意可得:A(﹣1,0),B(3,0);则设抛物线的解析式为y=a(x+1)(x﹣3)(a≠0),又∵点D(0,﹣3)在抛物线上,∴a(0+1)(0﹣3)=﹣3,解之得:a=1∴y=x2﹣2x﹣3(3分)自变量范围:﹣1≤x≤3(4分)(2)设经过点C“蛋圆”的切线CE交x轴于点E,连接CM,在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=在Rt△MCE中,∵MC=2,∠CMO=60°,∴ME=4∴点C、E的坐标分别为(0,),(﹣3,0)(6分)∴切线CE 的解析式为(8分)(3)设过点D(0,﹣3),“蛋圆”切线的解析式为:y=kx ﹣3(k≠0)(9分)由题意可知方程组只有一组解即kx﹣3=x2﹣2x﹣3有两个相等实根,∴k=﹣2(11分)∴过点D“蛋圆”切线的解析式y=﹣2x﹣3.(12分)。
芜湖一中2016年高一自主招生测验考试数学试卷
芜湖一中2016年高一自主招生考试数 学 试 卷一、选择题(每小题6分,共42分) 1.方程301x y x +-=+的整数解共有( )组 A .1B .2C .3D .42.当1,2,3,,2015n =L 时,二次函数22()(21)1y n n x n x =+-++的图象与x 轴所截得的线段长度之和为( ) A .20162017 B .20152016C .20142015D .201320143.某几何体的三视图如图所示,则该几何体的体积为( ) A .168π+ B .88π+ C .1616π+ D .816π+ 4.已知直角ABC V 的面积为13,斜边BC 长为14,则2211AB AC +=( ) A .1413B .1413C .1314D .13145.已知关于x 的不等式组255332x x x t x +⎧->-⎪⎪⎨+⎪-<⎪⎩只有五个整数解,则t 的取值范围是( )A .1162t -<<-B .1162t -≤<-C .1162t -<≤-D .1162t -≤≤-6.已知a b >,2a b +=,则22a b a b+-的最小值为( )A .22B .2C .2D .17.如图,正方形ABCD 的边长为4个单位,一动点P 从点A 出发,沿正方形边界按顺时针A→B→C→D→A 的方向运动,以每前进5个单位后退3个单位的方式移动。
已知点P 每秒前进或后退1个单位,设n x 表示第n 秒点P第3题与A 的距离,则2019x 为( ) A .17B .25C .5D .42二、填空题(每小题6分,共54分)8.已知a 是方程2310x x -+=的根,则分式543226213a a a a a-+--的值是 。
9.在ABC V 中,AC=2,3BC =,则A ∠的取值范围是 。
10.已知关于x 的不等式2x x k +-≥有实数解,则实数k 的取值范围是 。
2016-2017学年安徽省芜湖市无为县八年级(下)期末数学试卷含答案
安徽省芜湖市无为县八年级〔下〕期末数学试卷一、选择题〔本大题共10小题,每题4分,共40分〕1.〔4分〕如果在实数范围内有意义,那么x的取值范围是〔〕A.x≠4 B.x≤4 C.x≥4 D.x<4A.B.C.D.3.〔4分〕以下根式中与是同类二次根式的是〔〕A.B.C.D.4.〔4分〕用以下各组线段为边,能构成直角三角形的是〔〕A.1cm,2cm,3cm B.cm,cm,cm C.1cm,2cm,cm D.2cm,3cm,4cm5.〔4分〕数据:2,1,4,6,9,8,6,1,那么这组数据的中位数是〔〕A.4 B.6 C.5 D.4和66.〔4分〕如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC 的中点,那么四边形ADEF的周长为〔〕A.8 B.10 C.12 D.167.〔4分〕在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的2=1.2,S乙2平均数均是9.1环,方差分别是S甲A.甲比乙稳定B.乙比甲稳定C.甲和乙一样稳定 D.甲、乙稳定性没法比照8.〔4分〕如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,那么图1中小正方形顶点A,B在围成的正方体上的距离是〔〕A.0 B.1 C.D.9.〔4分〕假设式子+〔k﹣1〕0+1﹣k的图象可能是〔〕A.B.C.D.10.〔4分〕如图,在周长为12的菱形ABCD中,AE=1,AF=2,假设P为对角线BD上一动点,那么EP+FP的最小值为〔〕A.1 B.2 C.3 D.4二、填空题〔本大题共4小题,每题5分,共20分〕11.〔5分〕化简的结果是.12.〔5分〕根据如图中的程序,当输入x=2时,输出结果y=.13.〔5分〕数据1、0、2、3、x的平均数是2,x=.14.〔5分〕如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么〔a+b〕2的值为.三、解答题〔本大题共2小题,每题8分,共16分〕15.〔8分〕计算:+×﹣〔+2〕16.〔8分〕x=2+,y=2﹣,求代数式x2﹣y2的值.四、解答题〔本大题共2小题,每题8分,共16分〕17.〔8分〕图中的小正方形边长为1,△ABC的三个顶点都在小正方形的顶点上,求:〔1〕△ABC的面积;〔2〕边AC的长.18.〔8分〕如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.证明:FD=AB.五、解答题〔本大题共2小题,每题10分,共20分〕19.〔10分〕体育课上,老师为了解女学生定点投篮的情况,随机抽取10名女生进行每人4次定点投篮的测试,进球数的统计如下图.〔1〕求女生进球数的平均数、众数;〔2〕投球4次,进球3个以上〔含3个〕为优秀,全校有女生480人,估计为“优秀〞等级的女生约为多少人?20.〔10分〕如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1.〔1〕求CD的长;〔2〕求△ABC的面积.六、解答题〔本大题共12分〕〔2〕当x=﹣〔3〕求当﹣3<y≤1时,自变量x取值范围.七、解答题〔本大题共12分〕22.〔12分〕某移动通讯公司开设了两种通讯业务:“全球通〞使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行〞不缴月租费,每通话1min付费0.6元.假设一个月内通话x min,两种方式的费用分别为y1元和y2元.〔1〕写出y1、y2〔2〕一个月内通话多少分钟,两种移动通讯费用相同;〔3〕某人估计一个月内通话300min,应选择哪种移动通讯合算些.八、解答题〔本大题共14分〕23.〔14分〕如图,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°〔1〕求证:∠BAG=∠CBF;〔2〕求证:AG=FG;〔3〕假设GF=2BG,CF=,求AB的长.2021-2021学年安徽省芜湖市无为县八年级〔下〕期末数学试卷参考答案与试题解析一、选择题〔本大题共10小题,每题4分,共40分〕1.〔4分〕〔2021•张家港市一模〕如果在实数范围内有意义,那么x的取值范围是〔〕A.x≠4 B.x≤4 C.x≥4 D.x<4【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解.【解答】解:根据题意得:4﹣x≥0,解得x≤4.应选B.【点评】主要考查了二次根式的意义和性质.概念:式子〔a≥0〕叫二次根式.性质:二次根式中的被开方数必须是非负数,否那么二次根式无意义.A.B.C.D.【分析】【解答】解:A、图象满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A符合题意;B、图象不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B 不符合题意;C、图象不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C 不符合题意;D、图象不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D 不符合题意;应选:A.【点评】3.〔4分〕〔2002•曲靖〕以下根式中与是同类二次根式的是〔〕A.B.C.D.【分析】先将各选项化简,再找到被开方数为6的选项即可.【解答】解:因为=2;A、与2被开方数不同,故不是同类二次根式;B、与2被开方数不同,故不是同类二次根式;C、与2被开方数不同,故不是同类二次根式;D、与2被开方数相同,故是同类二次根式;应选D.【点评】4.〔4分〕〔2021春•无为县期末〕用以下各组线段为边,能构成直角三角形的是〔〕A.1cm,2cm,3cm B.cm,cm,cm C.1cm,2cm,cm D.2cm,3cm,4cm【分析】根据勾股定理的逆定理对四组数据进行逐一判断即可.【解答】解:A、∵12+22≠32,∴不能构成直角三角形;B、∵2+2≠2,∴不能构成直角三角形;C、∵12+2=22,∴能构成直角三角形;D、∵22+32=≠42,∴不能构成直角三角形.应选C.【点评】此题考查的是用勾股定理的逆定理判断三角形的形状,即只要三角形的三边满足a2+b2=c2,那么此三角形是直角三角形.5.〔4分〕〔2021•景德镇三模〕数据:2,1,4,6,9,8,6,1,那么这组数据的中位数是〔〕A.4 B.6 C.5 D.4和6【分析】要求中位数,是按从小到大的顺序排列的,所以只要找出最中间的一个数〔或最中间的两个数〕即可,此题是最中间的两个数的平均数.【解答】解:从小到大排列此数据为:1、1、2、4、6、6、8、9,第4位和第5位分别是4和6,平均数是5,那么这组数据的中位数是5.应选C.【点评】此题考查了中位数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,那么正中间的数字即为所求;如果是偶数个,那么找中间两位数的平均数.6.〔4分〕〔2021•路南区一模〕如图,在△ABC中,AB=6,AC=10,点D,E,F 分别是AB,BC,AC的中点,那么四边形ADEF的周长为〔〕A.8 B.10 C.12 D.16【分析】根据三角形的中位线定理,判断出四边形ADEF平行四边形,根据平行四边形的性质求出ADEF的周长即可.【解答】解:∵点D,E,F分别是AB,BC,AC的中点,∴DE∥AC,EF∥AB,DE=AC=5,EF=AB=3,∴四边形ADEF平行四边形,∴AD=EF,DE=AF,∴四边形ADEF的周长为2〔DE+EF〕=16,应选:D.【点评】此题考查了三角形中位线定理,利用中位线定理判断出四边形ADEF为平行四边形是解题的关键.7.〔4分〕〔2021•邯郸一模〕在一次射击训练中,甲、乙两人各射击10次,两2=1.2,S乙2人10次射击成绩的平均数均是9.1环,方差分别是S甲A.甲比乙稳定B.乙比甲稳定C.甲和乙一样稳定 D.甲、乙稳定性没法比照【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,说明这组数据分布比拟集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.2,S乙2=1.6,∴S甲2<S乙2,∴甲、乙两人在这次射击训练中成绩稳定的是甲,∴甲比乙稳定;应选A.【点评】此题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,说明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,说明这组数据分布比拟集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.〔4分〕〔2021•嘉祥县模拟〕如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,那么图1中小正方形顶点A,B在围成的正方体上的距离是〔〕A.0 B.1 C.D.【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【解答】解:将图1折成正方体后点A和点B为同一条棱的两个端点,故此AB=1.应选:B.【点评】此题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置关系是解题的关键.9.〔4分〕〔2021•历下区一模〕假设式子+〔k﹣1〕0+1﹣k的图象可能是〔〕A.B.C.D.【分析】首先根据二次根式中的被开方数是非负数,以及a0=1〔a≠+1﹣k的图象可能是哪个即可.【解答】解:∵式子+〔k﹣1〕0有意义,∴k﹣1≥0,且k﹣1≠0,解得k>1,∴k﹣1>0,1﹣k<0,∴+1﹣k的图象如下图:应选:B.【点评】>0时,〔0,b〕在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,〔0,b〕在y轴的负半轴,直线与y轴交于负半轴.10.〔4分〕〔2021•三亚模拟〕如图,在周长为12的菱形ABCD中,AE=1,AF=2,假设P为对角线BD上一动点,那么EP+FP的最小值为〔〕A.1 B.2 C.3 D.4【分析】+FP有最小值,然后求得EF′的长度即可.【解答】∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.应选:C.【点评】此题主要考查的是菱形的性质、轴对称﹣﹣路径最短问题,明确当E、P、F′在一条直线上时EP+FP有最小值是解题的关键.二、填空题〔本大题共4小题,每题5分,共20分〕11.〔5分〕〔2021春•无为县期末〕化简的结果是+1.【分析】的分母、分子同时乘+1即可.【解答】解:==+1故答案为:+1.【点评】12.〔5分〕〔2021春•无为县期末〕根据如图中的程序,当输入x=2时,输出结果y=﹣1.【分析】直接利用x的取值范围得出对应的关系式,进而得出答案.【解答】解:∵x>1时,y=﹣x+1,∴当输入x=2时,输出结果y=﹣2+1=﹣1.故答案为:﹣1.【点评】13.〔5分〕〔2021•海陵区一模〕数据1、0、2、3、x的平均数是2,x=4.【分析】根据这组数据的平均数是2和算术平均数的计算公式列式计算即可.【解答】解:∵这组数据的平均数是2,∴〔1+0+2+3+x〕÷5=2,∴x=4.故答案为:4.【点评】此题考查了算术平均数,熟记公式是解决此题的关键.14.〔5分〕〔2021•黄冈校级自主招生〕如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么〔a+b〕2的值为25.【分析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据〔a+b〕2=a2+2ab+b2即可求解.【解答】解:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12那么〔a+b〕2=a2+2ab+b2=13+12=25.故答案是:25.【点评】此题考查勾股定理,以及完全平方式,正确根据图形的关系求得a2+b2和ab的值是关键.三、解答题〔本大题共2小题,每题8分,共16分〕15.〔8分〕〔2021春•无为县期末〕计算:+×﹣〔+2〕【分析】先进行二次根式的乘法运算,然后把化为最简二次根式后合并即可.【解答】解:原式=2+﹣﹣2=2+2﹣﹣2=.【点评】此题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.〔8分〕〔2021春•无为县期末〕x=2+,y=2﹣,求代数式x2﹣y2的值.【分析】根据x=2+,y=2﹣,即可求得x+y与x﹣y的值,然后根据平方差公式对所求式子因式分解,再将x+y与x﹣y的值代入即可解答此题.【解答】解:∵x=2+,y=2﹣,∴x+y=4,x﹣y=2,∴x2﹣y2=〔x+y〕〔x﹣y〕=4×2=8.【点评】四、解答题〔本大题共2小题,每题8分,共16分〕17.〔8分〕〔2021春•无为县期末〕图中的小正方形边长为1,△ABC的三个顶点都在小正方形的顶点上,求:〔1〕△ABC的面积;〔2〕边AC的长.【分析】〔1〕利用三角形所在的正方形面积减三个小直角三角形的面积即可求出;〔2〕利用勾股定理求出AC边的长.=3×3﹣〔×3×1+×2×1+×2×3〕=;【解答】解:〔1〕S△ABC〔2〕AC==.【点评】此题主要考查了勾股定理的知识,解题的关键是掌握勾股定理以及切割法求三角形的面积.18.〔8分〕〔2021•个旧市一模〕如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.证明:FD=AB.【分析】由在平行四边形ABCD中,E是AD边上的中点,易证得△ABE≌△DFE 〔AAS〕,继而证得FD=AB.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠F,∵E是AD边上的中点,∴AE=DE,在△ABE和△DFE中,,∴△ABE≌△DFE〔AAS〕,∴FD=AB.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.注意平行四边形的对边平行.五、解答题〔本大题共2小题,每题10分,共20分〕19.〔10分〕〔2021春•无为县期末〕体育课上,老师为了解女学生定点投篮的情况,随机抽取10名女生进行每人4次定点投篮的测试,进球数的统计如下图.〔1〕求女生进球数的平均数、众数;〔2〕投球4次,进球3个以上〔含3个〕为优秀,全校有女生480人,估计为“优秀〞等级的女生约为多少人?【分析】〔1〕根据平均数、众数的定义进行计算即可;〔2〕先算出样本的优秀率,再估计总体的优秀人数.【解答】解:〔1〕女生进球数的平均数:〔1×2+2×3+3×4+4×1〕÷10=2.4;女生进球数的众数:进球3个的人数最多,那么女生进球的总数为3;〔2〕优秀率:×100%×480=240〔人〕,答:全校有女生480人,估计为“优秀〞等级的女生约为240人.【点评】此题考查了众数、用样本件总体以及加权平均数,掌握平均数、众数的定义以及优秀率的求法是解题的关键.20.〔10分〕〔2021春•无为县期末〕如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1.〔1〕求CD的长;〔2〕求△ABC的面积.【分析】〔1〕由条件易求AC的长,再根据勾股定理即可求出CD的长;〔2〕首先求出BD的长,结合〔1〕即可得到BC的长,由三角形面积公式计算即可.【解答】解:〔1〕∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠C=30°,AD=1,∴AC=2AD=2,∴CD==;〔2〕∵∠B=45°,∴∠BAD=45°,∴BD=AD=1,∴BC=BD+CD=1+,∴△ABC的面积=AD•BC=.【点评】此题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.六、解答题〔本大题共12分〕〔2〕当x=﹣〔3〕求当﹣3<y≤1时,自变量x取值范围.【分析】+b〔k≠0〕,再利用待定系数法可得方程组,再解方程组可得k、b的值,进而得到解析式y=﹣x+5;〔2〕把x=﹣代入y=﹣x+5中计算出y的值即可;〔3〕根据k的值可得y随x的增大而减小,然后计算出y=﹣3时x的值,y=1时x的值,进而得到x的取值范围.【解答】+b〔k≠0〕,∵当x=﹣4时,y=9;当x=6时,y=﹣1,∴,解得:,+5;〔2〕把x=﹣代入y=﹣x+5中得:y=+5=5;〔3〕∵k=﹣1,∴y随x的增大而减小,当y=﹣3时,﹣3=﹣x+5,x=8,当y=1时,1=﹣x+5,x=4,故当﹣3<y≤1时,自变量x取值范围,4≤x<8.【点评】七、解答题〔本大题共12分〕22.〔12分〕〔2021•石家庄模拟〕某移动通讯公司开设了两种通讯业务:“全球通〞使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行〞不缴月租费,每通话1min付费0.6元.假设一个月内通话x min,两种方式的费用分别为y1元和y2元.〔1〕写出y1、y2〔2〕一个月内通话多少分钟,两种移动通讯费用相同;〔3〕某人估计一个月内通话300min,应选择哪种移动通讯合算些.【分析】〔1〕因为移动通讯公司开设了两种通讯业务:“全球通〞使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行〞不缴月租费,每通话1min付费0.6元.假设一个月内通话xmin,两种方式的费用分别为y1元和y2元,那么y1=50+0.4x,y2=0.6x;1=y2,解方程即可;1、y2的值,再做比拟即可.【解答】解:〔1〕y1=50+0.4x;y2=0.6x;1=y2,那么50+0.4x=0.6x,解之,得x=250所以通话250分钟两种费用相同;那么y1=50+0.4×300=170;y2=0.6×300=180所以选择全球通合算.【点评】八、解答题〔本大题共14分〕23.〔14分〕〔2021春•无为县期末〕如图,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°〔1〕求证:∠BAG=∠CBF;〔2〕求证:AG=FG;〔3〕假设GF=2BG,CF=,求AB的长.【分析】〔1〕根据同角的余角相等即可证明;〔2〕过C点作CH⊥BF于H点,根据条件可证明△AGB≌△BHC,所以AG=BH,BG=CH,又因为BH=BG+GH,所以可得BH=HF+GH=FG,进而证明AG=FG;〔3〕在Rt△ABG中,分别求出BG、AG即可解决问题;【解答】〔1〕证明:过C点作CH⊥BF于H点,∵∠CFB=45°∴CH=HF,∵∠ABG+∠BAG=90°,∠FBE+∠ABG=90°∴∠BAG=∠FBE,〔2〕证明:∵AG⊥BF,CH⊥BF,∴∠AGB=∠BHC=90°,在△AGB和△BHC中,,∴△AGB≌△BHC,∴AG=BH,BG=CH,∵BH=BG+GH,∴BH=HF+GH=FG,∴AG=FG;〔3〕解:在Rt△CHF中,∠CFB=45°,∵CF=,∴CH=FH=1,由〔2〕可知BG=CH,AG=FG,∴BG=1,∵GF=2BG,∴FG=AG=2,在Rt△ABG中,AB===.【点评】此题考查了正方形的性质、全等三角形的判定和性质以及勾股定理的运用,题目的综合性很强,对学生的解题要求能力很高.。
2015-2016学年安徽省巢湖市八年级下期中数学试卷含答案解析
2015-2016学年安徽省巢湖市无为实验中学八年级(下)期中数学试卷一、选择题1.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠2.一直角三角形的两直角边长为12和16,则斜边上中线长为()A.20 B.10 C.18 D.253.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm4.下列二次根式中,是最简二次根式的是()A.B.C.D.5.已知,则=()A.B.﹣C.D.6.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFG AB…的顺序沿菱形的边循环爬行.当电子甲虫爬行2015cm时停下,则它停的位置是()A.点F B.点G C.点A D.点C7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16B.16 C.8D.89.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2﹣2 B.6 C.2﹣2 D.410.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为()A.B.C.D.2二、填空题11.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的F点上,则DF的长为.12.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于.13.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.14.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是(只填写序号).三、解答题(共90分)15.计算:.16.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM 、CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB:AD= 时,四边形MENF是正方形.17.如图,E、F、G、H分别是边AB、BC、CD、DA的中点.当BD、AC满足什么条件时,四边形EFGH是正方形.18.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E 站的距离相等,则E站应建在距A站多少千米处?19.如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.20.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,即当AE为多少米时?有D C2=AE2+BC2.21.已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP是腰长为5的等腰三角形时,求点P的坐标.22.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE 、△ACF,请回答下列问题:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?23.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4c m/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2015-2016学年安徽省巢湖市无为实验中学八年级(下)期中数学试卷参考答案与试题解析一、选择题1.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2x﹣1>0,解得x>.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.一直角三角形的两直角边长为12和16,则斜边上中线长为()A.20 B.10 C.18 D.25【考点】直角三角形斜边上的中线;勾股定理.【分析】根据勾股定理求出斜边长,根据直角三角形斜边上的中线等于斜边的一半求出答案.【解答】解:∵两直角边分别为12和16,∴斜边==20,∴斜边上的中线的长为10,故选B.【点评】本题考查的是直角三角形的性质和勾股定理,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.3.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm【考点】平行四边形的性质.【专题】几何图形问题.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,所以根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.4.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、被开方数含分母,故A错误;B、被开方数含开的尽的因数,故B错误;C、被开方数不含分母,被开方数不含开的尽的因数或因式,故C正确;D、被开方数含开的尽的因数因式,故D错误;故选:C.【点评】本题考查了最简二次根式,最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式.5.已知,则=()A.B.﹣C.D.【考点】二次根式的化简求值.【分析】由平方关系:()2=(a+)2﹣4,先代值,再开平方.【解答】解:∵()2=(a+)2﹣4=7﹣4=3,∴=±.故选C.【点评】本题考查了已知代数式与所求代数式关系的灵活运用,开平方运算,开平方运算时,一般要取“±”.6.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFG AB…的顺序沿菱形的边循环爬行.当电子甲虫爬行2015cm时停下,则它停的位置是()A.点F B.点G C.点A D.点C【考点】菱形的性质.【专题】规律型.【分析】利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm,即每移动8cm 为一个循环组依次循环,用2015除以8,根据商和余数的情况确定最后停的位置所在的点即可.【解答】解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2015÷8=251…7,所以当电子甲虫爬行2015cm时停下,它停的位置是G点.故选B.【点评】本题考查了菱形四边相等的性质,以及规律型﹣﹣图形的变化类,观察图形得到每移动8cm为一个循环组依次循环是解题的关键.7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【考点】正方形的判定;平行四边形的性质;菱形的判定;矩形的判定.【专题】证明题.【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2 +AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D 选项错误;综上所述,符合题意是D选项;故选:D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16B.16 C.8D.8【考点】菱形的性质.【分析】首先由四边形ABCD是菱形,求得AC⊥BD,OA=AC,∠BAC=∠BAD,然后在直角三角形AOB中,利用30°角所对的直角边等于斜边的一半与勾股定理即可求得OB的长,然后由菱形的面积等于其对角线积的一半,即可求得该菱形的面积.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=×4=2,∠BAC=∠BAD=×120°=60°,∴AC=4,∠AOB=90°,∴∠ABO=30°,∴AB=2OA=4,OB=2,∴BD=2OB=4,∴该菱形的面积是:ACBD=×4×4=8.故选C.【点评】此题考查了菱形的性质,直角三角形的性质.解题的关键是注意数形结合与方程思想的应用,注意菱形的面积等于其对角线积的一半.9.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2﹣2 B.6 C.2﹣2 D.4【考点】翻折变换(折叠问题).【专题】压轴题.【分析】当∠BFE=∠B'FE,点B′在DE上时,此时B′D的值最小,根据勾股定理求出DE,根据折叠的性质可知B′E=BE=2,DE﹣B′E即为所求.【解答】解:如图,当∠BFE=∠B'FE,点B′在DE上时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=2,∵AD=6,∴DE==2,∴DB′=2﹣2.故选:A.【点评】本题主要考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,确定点B′在何位置时,B′D的值最小,是解决问题的关键.10.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为()A.B.C.D.2【考点】坐标与图形性质;等边三角形的性质;勾股定理.【专题】压轴题.【分析】过P点作PD⊥x轴,垂足为D,根据A(﹣,0)、B(0,1)求OA、OB,利用勾股定理求AB,可得△ABC的面积,利用S△ABP=S△AOB+S梯形BODP﹣S△ADP,列方程求a .【解答】解:过P点作PD⊥x轴,垂足为D,由A(﹣,0)、B(0,1),得OA=,OB=1,∵△ABC为等边三角形,由勾股定理,得AB==2,∴S△ABC=×2×=,又∵S△ABP=S△AOB+S梯形BODP﹣S△ADP=××1+×(1+a)×3﹣×(+3)×a,=,由2S△ABP=S△ABC,得=,∴a=.故选C.【点评】本题考查了点的坐标与线段长的关系,不规则三角形面积的表示方法.二、填空题11.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的F点上,则DF的长为 6 .【考点】翻折变换(折叠问题).【分析】根据矩形的性质得出CD=AB=8,∠D=90°,根据折叠性质得出CF=BC=10,根据勾股定理求出即可.【解答】解:∵四边形ABCD是矩形,∴AB=DC=8,∠D=90°,∵将矩形ABCD沿CE折叠后,点B落在AD边的F点上,∴CF=BC=10,在Rt△CDF中,由勾股定理得:DF===6,故答案为:6.【点评】本题考查了勾股定理,折叠的性质,矩形的性质的应用,解此题的关键是求出CF 和DC的长,题目比较典型,难度适中.12.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于2π.【考点】勾股定理.【专题】计算题.【分析】根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆面积.【解答】解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故答案为:2π.【点评】此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.13.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是25 .【考点】平面展开-最短路径问题.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.【点评】本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.14.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是①②③⑤(只填写序号).【考点】正方形的性质;全等三角形的判定与性质.【专题】压轴题.【分析】由已知得AB=AD,AE=AF,利用“HL”可证△ABE≌△ADF,利用全等的性质判断①②③正确,在AD上取一点G,连接FG,使AG=GF,由正方形,等边三角形的性质可知∠DAF=15°,从而得∠DGF=30°,设DF=1,则AG=GF=2,DG=,分别表示AD,CF ,EF的长,判断④⑤的正确性.【解答】解:∵AB=AD,AE=AF=EF,∴△ABE≌△ADF(HL),△AEF为等边三角形,∴BE=DF,又BC=CD,∴CE=CF,∴∠BAE=(∠BAD﹣∠EAF)=(90°﹣60°)=15°,∴∠AEB=90°﹣∠BAE=75°,∴①②③正确,在AD上取一点G,连接FG,使AG=GF,则∠DAF=∠GFA=15°,∴∠DGF=2∠DAF=30°,设DF=1,则AG=GF=2,DG=,∴AD=CD=2+,CF=CE=CD﹣DF=1+,∴EF=CF=+,而BE+DF=2,∴④错误,⑤∵S△ABE+S△ADF=2×AD×DF=2+,S△CEF=CE×CF==2+,∴⑤正确.故答案为:①②③⑤.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的运用.关键是利用全等三角形的性质,把条件集中到直角三角形中,运用勾股定理求解.三、解答题(共90分)15.计算:.【考点】实数的运算.【分析】先把二次根式化简后再计算.【解答】解:原式=4+2﹣﹣,=.【点评】本题主要考查了实数的运算,关键是二次根式的化简求值,是中学阶段的重点.16.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM 、CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB:AD= 1:2 时,四边形MENF是正方形.【考点】矩形的性质;全等三角形的判定与性质;平行四边形的判定;正方形的判定.【专题】几何图形问题.【分析】(1)根据矩形性质得出AB=DC,∠A=∠D=90°,根据全等三角形的判定推出即可;(2)求出四边形MENF是平行四边形,求出∠BMC=90°和ME=MF,根据正方形的判定推出即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵M为AD的中点,∴AM=DM,在△ABM和△DCM中∴△ABM≌△DCM(SAS).(2)解:当AB:AD=1:2时,四边形MENF是正方形,理由是:∵AB:AD=1:2,AM=DM,AB=CD,∴AB=AM=DM=DC,∵∠A=∠D=90°,∴∠ABM=∠AMB=∠DMC=∠DCM=45°,∴∠BMC=90°,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,∴∠MBC=∠MCB=45°,∴BM=CM,∵N、E、F分别是BC、BM、CM的中点,∴BE=CF,ME=MF,NF∥BM,NE∥CM,∴四边形MENF是平行四边形,∵ME=MF,∠BMC=90°,∴四边形MENF是正方形,即当AB:AD=1:2时,四边形MENF是正方形,故答案为:1:2.【点评】本题考查了矩形的性质和判定,平行四边形的判定,正方形的判定,全等三角形的性质和判定,三角形的中位线的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.17.如图,E、F、G、H分别是边AB、BC、CD、DA的中点.当BD、AC满足什么条件时,四边形EFGH是正方形.【考点】三角形中位线定理;正方形的判定.【分析】在△ABC中,E、F分别是边AB、BC中点,得到EF∥AC,且EF=AC,GH∥AC ,且GH=AC,得到四边形EFGH是平行四边形,知四边形EFGH是平行四边形,再由AC= BD,得出EH=EF,从而证得四边形EFGH是菱形.对角线相等,推知四边形EFGH是正方形【解答】解:当AC=BD且AC⊥BD时,四边形EFGH是正方形.理由如下:在△ABC中,E、F分别是边AB、BC中点,所以EF∥AC,且EF=AC,同理有GH∥AC,且GH=AC,∴EF∥GH且EF=GH,故四边形EFGH是平行四边形.EH∥BD且EH=BD,若AC=BD,则有EH=EF,又因为四边形EFGH是平行四边形,∴四边形EFGH是菱形.即:当AC=BD且AC⊥BD时,四边形EFGH是正方形.【点评】本题考查了三角形的中位线定理、菱形的判定及性质、平行四边形的判定及性质以及正方形的判定,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.18.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E 站的距离相等,则E站应建在距A站多少千米处?【考点】勾股定理的应用.【专题】应用题.【分析】关键描述语:产品收购站E,使得C、D两村到E站的距离相等,在Rt△DAE和Rt △CBE中,设出AE的长,可将DE和CE的长表示出来,列出等式进行求解即可.【解答】解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25﹣x)2,x=10.故:E点应建在距A站10千米处.【点评】本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.19.如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的判定与性质.【专题】几何综合题.【分析】(1)根据平行四边形的性质得到两角一边对应相等,利用AAS判定△ABE≌△F CE,从而得到AB=CF;(2)由已知可得四边形ABFC是平行四边形,BC=AF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠CFE,∠ABE=∠FCE,∵E为BC的中点,∴EB=EC,∴△ABE≌△FCE,∴AB=CF.(2)解:当BC=AF时,四边形ABFC是矩形.理由如下:∵AB∥CF,AB=CF,∴四边形ABFC是平行四边形,∵BC=AF,∴四边形ABFC是矩形.【点评】此题主要考查了学生对全等三角形的判定,平行四边形的性质及矩形的判定等知识点的掌握情况.20.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,即当AE为多少米时?有D C2=AE2+BC2.【考点】勾股定理;含30度角的直角三角形;正方形的性质.【专题】动点型.【分析】根据已知得出设AE=x米,可得EC=(12﹣x)米,利用勾股定理得出DC2=DE2+E C2=4+(12﹣x)2,AE2+BC2=x2+36,即可求出x的值.【解答】解:如图,连接CD,设AE=x米,∵坡角∠A=30°,∠B=90°,BC=6米,∴AC=12米,∴EC=(12﹣x)米,∵正方形DEFH的边长为2米,即DE=2米,∴DC2=DE2+EC2=4+(12﹣x)2,AE2+BC2=x2+36,∵DC2=AE2+BC2,∴4+(12﹣x)2=x2+36,解得:x=米,答:当AE为米时,有DC2=AE2+BC2.【点评】此题主要考查了勾股定理的应用以及一元二次方程的应用,根据已知表示出CE,AE的长度是解决问题的关键.21.已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP是腰长为5的等腰三角形时,求点P的坐标.【考点】矩形的性质;坐标与图形性质;等腰三角形的性质;勾股定理.【分析】根据当OP=OD时,以及当OD=PD时和当OP=PD时,分别进行讨论得出P点的坐标.【解答】解:过P作PM⊥OA于M.(1)当OP=OD时,OP=5,CO=4,∴易得CP=3,∴P(3,4);(2)当OD=PD时,PD=DO=5,PM=4,∴易得MD=3,从而CP=2或CP'=8,∴P(2,4)或(8,4);综上,满足题意的点P的坐标为(3,4)、(2,4)、(8,4),【点评】此题主要考查了矩形的性质以及坐标与图形的性质和等腰三角形的性质,根据△ODP是腰长为5的等腰三角形进行分类讨论是解决问题的关键.22.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE 、△ACF,请回答下列问题:(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?【考点】矩形的判定;全等三角形的判定与性质;平行四边形的判定.【分析】(1)四边形ADEF平行四边形.根据△ABD,△EBC都是等边三DAE角形容易得到全等条件证明△DBE≌△ABC,然后利用全等三角形的性质和平行四边形的判定可以证明四边形ADEF平行四边形.(2)若边形ADEF是矩形,则∠DAE=90°,然后根据已知可以得到∠BAC=150°.(3)当∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在.【解答】解:(1)四边形ADEF是平行四边形.理由:∵△ABD,△EBC都是等边三角形.∴AD=BD=AB,BC=BE=EC∠DBA=∠EBC=60°∴∠DBE+∠EBA=∠ABC+∠EBA.∴∠DBE=∠ABC.在△DBE和△ABC中∵BD=BA∠DBE=∠ABCBE=BC,∴△DBE≌△ABC.∴DE=AC.又∵△ACF是等边三角形,∴AC=AF.∴DE=AF.同理可证:AD=EF,∴四边形ADEF平行四边形.(2)∵四边形ADEF是矩形,∴∠FAD=90°.∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.∴∠BAC=150°时,四边形ADEF是矩形.(3)当∠BAC=60°时,以A,D,E,F为顶点的四边形不存在.理由如下:若∠BAC=60°,则∠DAF=360°﹣∠BAC﹣∠DAB﹣∠FAC=360°﹣60°﹣60°﹣60°=180°.此时,点A、D、E、F四点共线,∴以A、D、E、F为顶点的四边形不存在.【点评】此题主要用等边三角形的性质,全等三角形的性质与判定来解决平行四边形的判定问题,也探讨了矩形,平行四边形之间的关系.23.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4c m/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【考点】相似形综合题.【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)分两种情况讨论即可求解.【解答】(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).【点评】本题考查了直角三角形的性质,菱形的判定与性质,正确利用t表示DF、AD的长是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016无为县重点高中自主招生统一测试
数学试题
满分150分,时间120分钟
一、填空题(每小题6分,60分)
1.已知3
2
51,27212a
a
a
a 则的值等于;
2.一次函数,111
9,=
y kx b x
y y
kb 当-3时,对应的值为则的值;
3.如图,长方形ABCD 中,F 是CD 的中点,E 是BC 的一个三等分点,则长方形的面积是阴影部分面积的
(
)倍;
4.已知ab=1,其中2008
(322)
,a
则b=
;
5.⊙O 的直径AB 与弦EF 相交于点P ,交角为45°,若2
2
8,PE PF
AB 则;
6.满足方程23
5x x
的x 的取值范围是
;
7.已知三个非负实数a,b,c 满足:3a+2b+c=5和2a+b-3c=1,若m=3a+b-7c ,则m 的最小值
为;8.如图所示:设
M 是△ABC 的重心(即M 是中线AD 上一点,且AM=2MD ),过M 的直
线分别交边AB 、AC 于P 、Q 两点,且
11,,AP
AQ m n PB
QC
m
n
则
;
9.一辆客车,一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶。
在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了10分钟,小轿车追上了
货车;又过了5分钟,小轿车追上了客车;再过t 分钟,货车追上了客车,则t=
;
10.时钟在四点与五点之间,在时刻,时针与分针在同一条直线上?
二、选择题(40分)1.如果多项式2
2
2242008,p a
b
a b p 则的最小值是()
A 、2005
B 、2006
C 、2007
D 、2008
2.如图,图中平行四边形共有的个数是(
)
A 、40
B 、38
C 、36
D 、39
3.设2
2
2
2
1113,1
3,a a b
b a
b a
b
且,则代数式的值为()
A 、5
B 、7
C 、9
D 、11
4.化简322
642的结果是()A 、
342B 、
3
22
C 、1
D 、3
22
5.某商店经销一批衬衣,进价为每件m 元,零售价比进价高a %,后因市场的变化,该商店把零售价调整为
原来零售价的
b %出售,那么调价后每件衬衣的零售价是(
)元
A 、m(1+ a %)(1- b %)
B 、m ﹒a %(1- b %)
C 、m(1+ a %) b % D
、m(1+ a %b %)
6.甲乙两辆汽车进行千米比赛,当甲车到达终点时,乙车距终点还有a 千米(0<a <50),现将甲车起跑处从
原点后移a 千米,重新开始比赛,那么比赛的结果是()
A 、甲先到达终点
B 、乙先到达终点
C 、甲乙同时到达终点
D 、确定谁先到达与
a 值无关
7.已知四边形ABCD ,从下列条件中①AB ∥CD ②BC ∥AD ③AB=CD ④BC=AD ⑤∠A=∠C ⑥∠B=∠D ,任取其
中两个,可以得出“四边形
ABCD 是平行四边形”这一结论的情况有()
A 、4种 B
、9种 C
、13种 D
、15种
D
A
B
C
E
F
P
D
A
B
C
M
Q E
A
O
B F
P
8.已知△ABC 的三个内角为A 、B 、C 且
,,,A B C A C B 则、、中,锐角的个数最多为
()
A 、1
B 、2
C 、3
D 、0
9.如图O 为△ABC 内一点,AO 、BO 、CO 及其延长线把△ABC 分成六个小三角形,它们的面积如图所示,
则S △ABC =()A 、292
B 、315
C 、322
D 、357
10.若实数a,b 满足2
12
02
a a
b b
,则a 的取值范围是(
)
A 、a ≤-2
B 、a ≥4
C 、a ≤-2或a ≥4
D 、-2≤a ≤4
三、解答题(每小题10分,计50分,第4或第5小题二选一)
1.已知abc ≠0,且a+b+c=0,求代数式
2
2
2
a
b
c
bc ca ab
的值.
2.有一水池,池底有泉水不断涌出,要将满池的水抽干,用12台水泵需5小时,用10台水泵需7小时,若
要在2小时内抽干,至少需水泵几台?
3.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是
O (0,0)、A
(0,6)、B (4,6)、C (4,4)、D (6,4)、E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,求直线
l 的函数表达式.
4.某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润
增加2元,用同样工时,最低档次产品每天可生产60件,提高一个档次将减少
3件,如果获利润最大的产
品是第R 档次(最低档次为第一档次,档次依次随质量增加)
,那么R 等于多少?
5.设二次函数2
y
ax
bx
c 的图象开口向下,顶点落在第二象限.
(1)确定a 、b 、b 2
-4ac 的符号,简述理由。
(2)若此二次函数图象经过原点,且顶点在直线
x+y=0上,顶点与原点的距离为
32,求抛物线的解析式。
6.如图,四边形ABCD 为圆内接四边形,对角线AC 、BD 交于点E ,延长DA 、CB 交于点F ,且∠CAD=60o ,DC=DE,求证:(1)AB=AF ;(2)点A 为△BEF 的外心.
84
3530
40y x F
O
A
B
C
D
E
y x
l
1
1
F
O
B
C D
M
A
E
F
E O
C A D
B。