仪器分析(武汉大学)原子发射光谱分析法

合集下载

武汉大学第五版仪器分析仪器分析讲义

武汉大学第五版仪器分析仪器分析讲义

仪器分析讲义绪论(Introduction)仪器分析是化学类专业必修的基础课程之一。

通过本课程的学习,要求学生把握经常使用仪器分析方式的原理和仪器的简单结构;要求学生初步具有依照分析的目的,结合学到的各类仪器分析方式的特点、应用范围,选择适宜的分析方式的能力。

分析化学是研究物质的组成、状态和结构的科学。

它包括化学分析和仪器分析两大部份。

化学分析是指利用化学反映和它的计量关系来确信被测物质的组成和含量的一类分析方式。

测按时需利用化学试剂、天平和一些玻璃器皿。

它是分析化学的基础。

仪器分析是以物质的物理和物理化学性质为基础成立起来的一种分析方式,测按时,常常需要利用比较复杂的仪器。

它是分析化学的进展方向。

仪器分析与化学分析不同,具有如下特点:(1)灵敏度高,检出限量可降低。

如样品用量由化学分析的ml、mg级降低到仪器分析的µL、µg级,乃至更低。

它比较适用于微量、痕量和超痕量成份的测定。

(2)选择性好。

很多仪器分析方式能够通过选择或调整测定的条件,使共存的组分测按时,彼其间不产生干扰。

(3)操作简便、分析速度决,易于实现自动化。

(4)相对误差较大。

化学分析一样可用于常量和高含量成份的分析,准确度较高,误差小于千分之儿。

多数仪器分析相对误差较大,一样为5%,不适于常量和高含量成份的测定。

(5)需要价钱比较昂贵的专用仪器。

§1-1.仪器分析方式的内容和分类(Classification of Instrumental Analysis)分类:1.光学分析法以物质的光学性质为基础的分析方式(1) 分子光谱: 红外吸收可见和紫外分子荧光拉曼光谱(2) 原子光谱: 原子发射AES 原子吸收AAS 原子荧光AFS(3) X射线荧光: 发射吸收衍射荧光电子探针(4) 核磁共振顺磁共振2.电化学分析法溶液的电化学性质用于确信物质化学成份的方式(1)电导法:电导分析法电导确信物质的含量电导滴定法溶液的电导转变确信容量分析的滴定终点。

仪器分析第4章 原子发射光谱分析法

仪器分析第4章 原子发射光谱分析法

第四章原子发射光谱分析法光谱的产生主要由分析试样的蒸发过程(把样品首先挥发为气态原子或离子)及气体原子和离子的激发过程两部分组成。

发射光谱的分类:(一)线光谱:由物质的气态原子(或者离子)被激发而产生的具有一定波长的不连续的线条,又称为原子(或离子)光谱。

(二)带光谱:气态分子被激发而产生的,由一些波长非常相近的光带和暗区相间而组成,也叫分子光谱。

(三)连续光谱:固态或者液态物质激发后产生的连续的无法分辨出明显谱线的光谱。

比如炽热的碳电极发射的光谱极为连续光谱。

原子发射光谱的研究对象是被分析物质发出的线光谱,利用特征谱线的波长和强度来进行定量和定性分析。

1原理、特点和应用范围1.1原理把样品首先挥发为气态原子或离子,这些原子或离子受到高温激发或电激发会产生外层电子的跃迁,外层电子跃迁到高能态(激发态)。

处于激发态不稳定(寿命小于10-8s),迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出显,既得到发射光谱。

ΔE=E2-E1=hc/λ=hυ=hσch为普朗克常数(6.626×10-34J·s),c为光速(2.997925×108m·s-1)1.2光谱分析法的特点和应用范围①分析速度快,能同时测定多种元素。

②选择性好。

③灵敏度高。

④准确度较好。

⑤另外测定试样消耗少,一般只需几毫克~几十毫克,且可在基本不损坏试样的情况下进行分析。

1.3光谱分析法的局限性➢光谱分析是一种相对的分析方法,一般需要用一套已知准确含量的标准样品对照测定,而标准样品的标定却需要用化学分析方法作基础➢理论上,所有元素都有它特征的发射光谱,但对于惰性气体和一些非金属元素,如硫、硒、碲、卤素等,因很难得到他们的测量条件,这些元素的测定灵敏度很低,或根本无法测定➢对于高含量的元素,光谱分析的准确度较差(5%~10%)➢发射光谱法只能用于元素分析,而不能确定这些元素在样品中的化合物状态2光谱分析的仪器设备2.1光源➢作用:提供足够的能量使得试样蒸发、解离、原子化、激发产生光谱会使价电子脱离原子核的束缚,使得原子成为离子,这个过程为电离。

原子发射光谱分析法

原子发射光谱分析法
原子发射光谱分析法
2023-11-06
目录
• 原子发射光谱分析法概述 • 原子发射光谱仪 • 分析方法与样品处理 • 原子发射光谱法的应用 • 原子发射光谱法的优缺点 • 研究成果与应用实例
01
原子发射光谱分析法概述
定义与原理
定义
原子发射光谱分析法是一种基于原子发射光谱学的方法,通过对样品中原子 或离子的特征光谱进行分析,实现对其成分和含量的测定。
原理
当样品被加热或受到能量激发时,原子会从基态跃迁到激发态,并释放出特 征光谱。通过对这些光谱进行分析,可以确定样品中元素的种类和含量。
发展历程与重要性
发展历程
原子发射光谱分析法自19世纪末发展至今,经历了从经典光谱分析到现代光谱仪 器分析的演进过程。
重要性
原子发射光谱分析法在科学研究和工业生产中具有广泛的应用价值,为材料科学 、环境科学、生命科学等领域提供了重要的分析手段。
03
该方法广泛应用于地质、环保、生物医学等领域,用于研究复杂样品中元素的 含量、分布和化学形态。
05
原子发射光谱法的优缺点
优点
高灵敏度
原子发射光谱法可以检测到低浓度的元素 ,具有很高的灵敏度。
无需样品处理
原子发射光谱法不需要对样品进行复杂的 处理,可以直接进行分析。
快速分析
该方法可以实现多元素同时分析,大大缩 短了分析时间。
发和激发。
光谱仪的构造
包括入射狭缝、准直镜、光栅 、聚焦镜和ቤተ መጻሕፍቲ ባይዱ射狭缝。
光谱仪工作原理
样品被激发后,原子会产生不 同波长的光谱,通过光栅分光 后形成光谱,再经过聚焦镜聚 焦到出射狭缝,最后由检测器
进行检测。
光谱仪的分类与特点

(完整版)武汉大学版仪器分析知识点总结(适用考中科院的同学)

(完整版)武汉大学版仪器分析知识点总结(适用考中科院的同学)
物或形成碳化物后难以原子化元素的分析灵敏度低。
①. 自然宽度ΔυN 它与原子发生能级间路迂时激发态原子的有限寿命有关。 一般情况下约相当于 10-4 Å
②. 多普勤(Doppler)宽度ΔυD 这是由原子在空间作无规热运动所引致的。故又称热变宽。
碰撞变宽:原子核蒸气压力愈大,谱线愈宽。 同种粒子碰撞——赫尔兹马克(Holtzmank)变宽, 异种粒子碰撞——称罗论兹(Lorentz)变宽。 场致变宽:在外界电场或磁场的作用下,引起原子核外层电子能级分裂而使谱线变宽现象称 为场致变宽。由于磁场作用引起谱线变宽,称为 Zeeman (塞曼)变宽。
例如砷、锑、铋、锗、锡、铅、硒和碲等元素。 固体试样
(1). 试样直接插入进样 (2). 电弧和火花熔融法 (3). 电热蒸发进样 (4). 激光熔融法 分光仪棱镜和光栅 检测器:目视法,摄谱法,光电法 干扰:
光谱干扰: 在发射光谱中最重要的光谱干扰是背景干扰。带状光谱、连续光谱以及光学系统的
杂散光等,都会造成光谱的背景。 非光谱干扰:
与试样组成相仿的标准样品,这就限制了该分析方法的灵敏度、准确度和分析速度等的提
高。
(2)发射光谱法,一般只用于元素分析,而不能用来确定元素在样品中存在的化合物状态,
更不能用来测定有机化合物的基团;对一些非金属,如惰性气体、卤素等元素几乎无法分
析。
(3)仪器设备比较复杂、昂贵。
术语:
自吸Biblioteka 自蚀• 击穿电压:使电极间击穿而发生自持放 电的最小电压。
交流电弧 中
火花

4000~7000 较差 4000~7000 较好 瞬间 10000 好
定性分析,矿物、纯物质、 难挥发元素的定量分析
试样中低含量组分的定量分 析

(仪器分析)11.1原子发射光谱分析法

(仪器分析)11.1原子发射光谱分析法

11.1.3 原子发射光谱分析的应用
1. 元素的分析线、最后线、灵敏线
分析线:复杂元素的谱线可能多至数千条,只选择其中几 条特征谱线检验,称其为分析线; 最后线:浓度减小,谱线强度减小,最后消失的谱线; 灵敏线:最易激发的能级所产生的谱线,每种元素有一条 或几条谱线最强的线,即灵敏线。最后线也是最灵敏线; 共振线:由第一激发态回到基态所产生的谱线;通常也是 最灵敏线、最后线。
nmgmex pE(m/kT)
N
Z
2020/10/24
nmgmex pE(m/kT)
N
Z
Z 为温度 T 的函数,分析中的温度通常在2000~7000 K ,Z 变化很小,谱线强度为
I hc4g πm Z AN exE pm(/kT )
式中:Φ 是考虑在 4 球面角度上发射各向同性的常数。 Z 可视为常数,对于某待测元素,选定分析线后,T一定
2020/10/24
原子发射光谱分析法的特点:
(1) 可多元素同时检测:发射各自的特征光谱; (2) 分析速度快:试样不需处理,同时对几十种元素进行定 量分析。 (3) 选择性高 各元素具有不同的特征光谱; (4) 检出限较低:10~0.1gg-1(一般); ngg-1(ICP)。 (5) 准确度较高:5%~10% (一般光源);<1% (ICP) 。 (6) ICP-AES性能优越 线性范围4~6数量级,可测高、中 、低不同含量试样。 缺点:非金属元素不能检测或灵敏度低。
常见光源的种类和特点是什么?
2020/10/24
(1)直流电弧
电弧是指在两个电极间施加高电流密度和低燃点电压 的稳定放电。
石墨电极,试样放置凹槽内。试样量10~20mg。
两电极接触通电后,尖端被烧热,点 燃电弧,再使电极相距4 ~ 6mm。

原子发射光谱分析法主要

原子发射光谱分析法主要

0
能;k为玻耳兹曼常数;T为激发温度;
g0
发射谱线强度: Iij = Ni
Aijh ij
h为Plank常数;Aij两个能级间的跃迁几率; ij发 射谱线的频率。将Ni代入上式,得:
2024/8/28
Ii
jgg0i Aijhi
Ei
jN0e kT
01.
谱线强度
激发能 激发能越小, 谱线强度越强;
影响谱线强度的因素:
II 表示一次电离离子发射的谱线; III表示二次电离离子发射的谱线; 如Mg I 285.21 nm ;Mg II 279.55 nm; 同种元素的原子和离子所产生的原子线和离子线都是该元 素的特征谱线,习惯上统称为原子光谱。
2024/8/28
三、谱线强度 spectrum line intensity
2
2024/8/28
ICP
中阶梯光栅交叉色 散光学系统
CID电荷注入 式检测器
全谱直读
低压交流电弧
激发源(光源)
平面衍射光栅 摄谱仪
感光板
单色器
检测器
数据处理与显示
一、光源
作为光谱分析用的光源对试样都具有两个作用过程。 首先,把试样中的组分蒸发离解为气态原子,然后 使这些气态原子激发,使之产生特征光谱。因此光 源的主要作用是对试样的蒸发、解离和激发提供所 需的能量。最常用的光源有直流电弧、交流电弧、 电火花等
589.59 588.99 342.11 330.29 330.23 258.30 258.28
2024/8/28
Na (1s)2(2s)2(2p)6(3s)1
共振线与离子 的电离线
非共振线:激发态与激发态之间跃迁形成的光谱线 共振线: 激发态与基态之间的跃迁产生的光谱线 原子线:原子发射的谱线 离子线:离子发射的谱线 元素谱线表:I 表示原子发射的谱线;

原子发射光谱分析法

原子发射光谱分析法
R=Acb b=1时,R=A(cx+ci ) R=0时, cx = – ci
三、特点与应用 feature and applications
1. 特点 (1)可多元素同时检测 各元素同时发射各自的特征光谱; (2)分析速度快 试样不需处理,同时对十几种元素进行定量分析(光电直读仪); (3)选择性高 各元素具有不同的特征光谱; (4)检出限较低 10~0.1gg-1(一般光源);ngg-1(ICP) (5)准确度较高 5%~10% (一般光源); <1% (ICP) ; (6)ICP-AES性能优越 线性范围4~6数量级,可测高、中、低不同含量试样; 缺点:非金属元素不能检测或灵敏度低。
原子发射光谱分析在鉴定金属元素方面(定性分析)具有较大的优越性,不需分离、多元素同时测定、灵敏、快捷,可鉴定周期表中约70多种元素,长期在钢铁工业(炉前快速分析)、地矿等方面发挥重要作用;
在定量分析方面,原子吸收分析有着优越性;
80年代以来,全谱光电直读等离子体发射光谱仪发展迅速,已成为无机化合物分析的重要仪器。
(3)摄谱过程
摄谱顺序:碳电极(空白)、铁谱、试样; 分段暴光法:先在小电流(5A)激发光源摄取易挥发元素光谱调节光阑,改变暴光位置后,加大电流(10A),再次暴光摄取难挥发元素光谱;
采用哈特曼光阑,可多次暴而不影响谱线相对位置,便于对比。
二、 光谱定量分析 quantitative spectrometric analysis
金属或合金可以试样本身作为电极,当试样量很少时,将试样粉碎后放在电极的试样槽内; 固体试样研磨成均匀的粉末后放在电极的试样槽内; 糊状试样先蒸干,残渣研磨成均匀的粉末后放在电极的试样槽内。液体试样可采用ICP-AES直接进行分析。

分析化学 第五版 下册 (武汉大学主编 着) 高等教育出版社 课后答案 仪器分析习题答案-光谱分析部分

分析化学 第五版 下册 (武汉大学主编 着) 高等教育出版社 课后答案 仪器分析习题答案-光谱分析部分

仪器分析部分作业题参考答案第一章绪论1-21、主要区别:(1)化学分析是利用物质的化学性质进行分析;仪器分析是利用物质的物理或物理化学性质进行分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能用于组分的定量或定性分析;仪器分析还能用于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度高,适合于常量组分分析;仪器分析灵敏度高、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。

2、共同点:都是进行组分测量的手段,是分析化学的组成部分。

1-5分析仪器与仪器分析的区别:分析仪器是实现仪器分析的一种技术设备,是一种装置;仪器分析是利用仪器设备进行组分分析的一种技术手段。

分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的目的,分析仪器是仪器分析的工具。

仪器分析与分析仪器的发展相互促进。

1-7因为仪器分析直接测量的是物质的各种物理信号而不是其浓度或质量数,而信号与浓度或质量数之间只有在一定的范围内才某种确定的关系,且这种关系还受仪器、方法及样品基体等的影响。

因此要进行组分的定量分析,并消除仪器、方法及样品基体等对测量的影响,必须首先建立特定测量条件下信号与浓度或质量数之间的关系,即进行定量分析校正。

第二章光谱分析法导论2-1光谱仪的一般组成包括:光源、单色器、样品引入系统、检测器、信号处理与输出装置。

各部件的主要作用为:光源:提供能量使待测组分产生吸收包括激发到高能态;单色器:将复合光分解为单色光并采集特定波长的光入射样品或检测器;样品引入系统:将样品以合适的方式引入光路中并可以充当样品容器的作用;检测器:将光信号转化为可量化输出的信号。

信号处理与输出装置:对信号进行放大、转化、数学处理、滤除噪音,然后以合适的方式输出。

2-2:单色器的组成包括:入射狭缝、透镜、单色元件、聚焦透镜、出射狭缝。

各部件的主要作用为:入射狭缝:采集来自光源或样品池的复合光;透镜:将入射狭缝采集的复合光分解为平行光;单色元件:将复合光色散为单色光(即将光按波长排列)聚焦透镜:将单色元件色散后的具有相同波长的光在单色器的出口曲面上成像;2-7因为对于一级光谱(n=1)而言,光栅的分辨率为:36005720=×=×===光栅的刻痕密度光栅宽度N nN R 又因为:λλd R =所以,中心波长(即平均波长)在1000cm -1的两条谱线要被该光栅分开,它们相隔的最大距离为:cm -128.036001000===R d λλ2-10原子光谱是由原子外层电子在不同电子能级之间跃迁产生的,而不同电子能级之间的能量差较大,因此在不同电子能级之间跃迁产生的光谱的波长差异较大,能够被仪器分辨,所以显现线光谱;分子光谱的产生既包括分子中价电子在不同电子能级之间跃迁,也包括分子中振动能级和转动能级的跃迁,而振动能级和转动能级之间的能量差较小,在这些能级之间跃迁产生的光谱的波长非常接近,不能被仪器所分辨,所以显现为带光谱。

仪器分析 第7章 原子发射光谱分析

仪器分析 第7章 原子发射光谱分析

摄谱法原理 ⑴ 摄谱步骤
安装感光板在摄谱仪的焦面上
激发试样,产生光谱而感光
显影,定影,制成谱板 特征波长—定性分析 特征波长下的谱线强度—定量分析
⑵ 感光板 玻璃板为支持体,涂抹感光乳剂(AgBr+明胶+增感剂) 感光:
2AgX+2hυ→ Ag(形成潜影中心)+X2
OH
O
显影: 对苯二酚
乳剂特性曲线:
感光板的反衬度
以黑度S与曝光量的对数lgH作图 在正常曝光部分:
γ
S lg H lg H i lg H i
α
乳 剂 特 性 曲 线
S lg( It ) i
Hi为感光板的惰延量
谱线黑度与辐射强度的关系:
S lg( It ) i
定量分析中,更主要是采用 内标法,测量分析线对的相 对强度
磁辐射,通过测定其波长或强度进行分析的方法
不涉及能级跃迁,物质与辐射作用,使其传播方 向等物理性质发生变化,利用这些改变进行分析 的方法
光分析法
非光谱分析法
光谱分析法
圆 折 二 射 色 法 性 法
X 射 干 线 涉 衍 法 射 法
原子光谱分析法 旋 光 法
X 射 线 荧 光 光 谱
分子光谱分析法
分 子 荧 光 光 谱 法 分 子 磷 光 光 谱 法 核 磁 共 振 波 谱 法
e. 波长尽可能靠近
(3) 摄谱法中的内标法基本关系式
• 摄谱法中谱线黑度S与辐射强度、浓度、曝光时间 、感光板的乳剂性质及显影条件有关,固定其他 条件不变,则感光板上谱线的黑度仅与照射在感 光板上的辐射强度有关
i0 S lg i
i0 未曝光部分的透光强度 i 曝光部分的透光强度

武汉大学化学系仪器分析课后习题答案

武汉大学化学系仪器分析课后习题答案

光谱分析导论习题解答1、解:(1)72101067.6101050.111⨯=⨯⨯==-λσ(2)14981047.4107.670/100.3/⨯=⨯⨯==-λνc(3)303010103300/1192=⨯⨯==-σλ(4)80.1)10602.1(1095.6889100.310626.6/1910834=⨯÷⨯⨯⨯⨯===---λνhc h E2、解:由计算公式λν/hc h E ==以及各能级跃迁所处的波长范围可得能量范围分别如下:跃迁类型 波长范围 能量范围/eV 原子内层电子跃迁 10-3nm ~10nm 1.26⨯106~1.2⨯102原子外层电子跃迁 200nm ~750nm 6~1.7 分子的电子跃迁 200nm ~750nm 6~1.7 分子振动能级的跃迁 2.5μm ~50μm 0.5~0.02 分子转动能级的跃迁50μm ~100cm2⨯10-2~4⨯10-7由上表可以看出分子电子能级跃迁1~20eV 分子振动能级跃迁0.05~1eV 分子转动能级跃迁<0.05eV ,其电子光谱,振动光谱以及转动光谱所对应的波长范围分别在紫外-可见区,红外区和远红外微波区。

3、解:棱镜的分光原理是光折射。

由于不同波长的光有其不同的折射率,据此能把不同波长的光分开。

光栅的分光原理是光的衍射与干涉的总效果。

不同波长的光通过光栅作用各有相应的衍射角,据此把不同波长的光分开。

光栅光谱棱镜光谱Sin φ与波长成正比,所以光栅光谱是一个均匀排列的光谱色散率与波长有关,为非均匀排列的光谱 光的波长越短则衍射角越小,因此其谱线从紫到红排列波长越短,其偏向角越大,因此其谱线从红到紫排列复合光通过光栅后,中央条纹(或零级条纹)为白色条纹,在中央条纹两边,对称排列着一级、二级等光谱,由于谱线间距离随光谱级数的增加而增加,出现谱级重叠现象没有谱级重叠现象光栅适用的波长范围比棱镜宽4、解:v cn r i ==θθsin sin ,式中n 为折射率,i θ为入射角,r θ为折射角,c 为光速,v 为玻璃介质中的传播速度。

仪器分析 第3章 原子发射光谱分析法

仪器分析 第3章 原子发射光谱分析法

2.光电直读法:利用光电倍增管 将光强度转换成电信号来检测谱
线强度的方法。
§3—3 光谱分析方法
光谱分析可用于进行定性、 半定量、定量分析。
一.光谱定性分析: (一)基本概念
1、元素的灵敏线:灵敏线一般是指
一些强度较大的谱线 。
2、最后线:是指当样品中某元素的含 量逐渐减少时,最后仍能观察到的 几条谱线。它也是该元素的最灵敏
离子线。
二.谱线的自吸和自蚀
等离子体:宏观上是中性 的电离的气体,称为等离子
体。
自吸:由弧焰中心发射出来
的辐射光,被外围的基态原子所
吸收,从而降低了谱线的强度。
此现象叫自吸。
自蚀:自吸严重时,中心部分 的谱线 将被吸收很多,从而使
原来的一条谱线分裂成两条谱线,
这个现象叫自蚀 。
对于自吸和自蚀可用下图表示:
清晰
0.01
上述谱线增强,2663.17
和2873.32出现
0.03
上述谱线都增强
0.10
上述谱线更增强,没有出
现新谱线
0.30
2393.8, 2577.26 出现
三.光谱定量分析
(一)光谱定量分析的基本原理: 1.谱线强度与试样中被测元素浓 度的关系: I=acb
式中:I为发射光谱线的强度;a 为同谱线性质、实验条件有关的 常数;b为与谱线的自吸有关的 常数,当无自吸时,b=1,当有 自吸时,b<1。c为被测元素浓 度。
内标线:
1)激发能应尽量相近——匀称线对,不 可选一离子线和一原子线作为分析线对 (温度T对两种线的强度影响相反); 2)分析线的波长及强度接近; 3)无自吸现象且不受其它元素干扰; 4)背景应尽量小。
3.摄谱法光谱定量分析: △S= r(lgA+ b1lg c1)

武汉大学第五版仪器分析原子吸收

武汉大学第五版仪器分析原子吸收

2 原子吸收光谱的产生
当有辐射通过自由原子蒸气,且入射辐射的频率 等于原子中的电子由基态跃迁到较高能态(一般情况 下都是第一激发态)所需要的能量频率时,原子就要 从辐射场中吸收能量,产生共振吸收,电子由基态跃 迁到激发态,同时伴随着原子吸收光谱的产生。
基态第一激发态,吸收一定频率的辐射能量。
1955年Walsh发表了论文“原子吸收光谱在化学分析中的应 用”( The application of atomic absorption spectra to chemical analysis),解决了原子吸收光谱的光源问题,50年代末 PE 和 Varian公司推出了原子吸收商品仪器。Hilger, Varian Techtron 及Perkin-Elmer公司先后推出了原子吸收光谱商品仪器,发展 了瓦尔西的设计思想。到了60年代中期,原子收光谱开始进入 迅速发展的时期。
(3)压力变宽(碰撞变宽)ΔVC
(4) 场致变宽 外界电场、带电粒子、离子形成的电场及磁场 的作用使谱线变宽的现象;影响较小;
(5)自吸变宽 光源空心阴极灯发射的共振线被灯内同种基态原子 所吸收产生自吸现象。 灯电流越大,自吸现象越严重。
T [ D ( L R N ) ]
原子吸收现象的发现 在1802年,伍朗斯顿(W.H.Wollaston)在研究太 阳连续光谱时,就发现了太阳连续光谱中出现的暗线。
1817年,弗劳霍费(J.Fraunhofer)在研究太阳连 续光谱时,再次发现了这些暗线,由于当时尚不了解产 生这些暗线的原因,于是就将这些暗线称为弗劳霍费线。

0

为什么要采用锐线光源?

如果用连续光源,则吸收的光的强度只占入射 光强度的极小部分,使测定的灵敏度极差。

仪器分析—原子发射光谱分析法课件

仪器分析—原子发射光谱分析法课件

与激发态原子数成正比。
在热力学平衡时,单位体积的基态原子数N0与激发态原
子数Ni的之间的分布遵守玻耳兹曼分布定律:
Ni

gi g0
Ei
N0 e kT
gi 、g0为激发态与基态的统计权重; Ei :为激发能;k为
玻耳兹曼常数;T为激发温度;
发射谱线强度: Iij = Ni Aijhij
h为Plank常数;Aij两个能级间的跃迁几率; ij发射谱线
这里给出结果:
价电子数目
可能产生的多重性
3
双重线、四重线(quartet)
4
单重线、三重线、五重线(quintet)
5
双重线、四重线、六重线(sextet)
元素 Sc,Y…… Ti,Zr…… V,Nb……
注意:对于较重的原子,尤其是过渡元素,不能简单的用能级图描述,因这些 元素原子能级极为复杂,可发射大量谱线。如,Li-Cs(30~645条);Mg(173)Ca(662)-Ba(472);Cr(2277)-Fe(4757)-Ce(5755)。
2019/7/24
2. 能级图
元素的光谱线系常用能级 图来表示。最上面的是光谱 项符号;最下面的横线表示 基态;上面的表示激发态; 可以产生的跃迁用线连接;
线系:由各种高能级跃迁 到同一低能级时发射的一系 列光谱线;
2019/7/24
那么对于含三个或者多个价电子的原子,其谱线的多重性
(2S+1)如何计算呢?请思考。
热能、电能
基态元素M
E 特征辐射
激发态M*
2019/7/24
原子光谱
1.光谱项符号
原子外层有一个电子时,其能级可由四个量子数决定: 主量子数 n;角量子数 l;磁量子数 m;自旋量子数 s; 原子外层有多个电子时,其运动状态用总角量子数L;总 自旋量子数S;内量子数J 描述;

分析化学》下册武汉大学等编(第五版)作业参考答案

分析化学》下册武汉大学等编(第五版)作业参考答案

《仪器分析》作业参考答案第2章 光谱分析法导论2-1 光谱仪一般由几部分组成?它们的作用分别是什么? 参考答案:(1)稳定的光源系统—提供足够的能量使试样蒸发、原子化、激发,产生光谱; (2)试样引入系统(3)波长选择系统(单色器、滤光片)—将复合光分解成单色光或有一定宽度的谱带; (4)检测系统—是将光辐射信号转换为可量化输出的信号; (5)信号处理或读出系统—在显示器上显示转化信号。

2-2 单色器由几部分组成,它们的作用分别是什么? 参考答案:(1)入射狭缝—限制杂散光进入;(2)准直装置—使光束成平行光线传播,常采用透镜或反射镜; (3)色散装置—将复合光分解为单色光;(4)聚焦透镜或凹面反射镜—使单色光在单色器的出口曲面上成像; (5)出射狭缝—将额定波长范围的光射出单色器。

2-5 对下列单位进行换算:(1)150pm Z 射线的波数(cm -1) (2)Li 的670.7nm 谱线的频率(Hz )(3)3300 cm -1波数对应的波长(nm ) (4)Na 的588.995nm 谱线相应的能量(eV ) 参考答案:(1)171101067.61015011---⨯=⨯==cm cm λσ (2))(1047.4)(107.670100.314710Hz Hz c⨯=⨯⨯==-λν (3))(3030)(1003.3)(3300114nm cm cm =⨯===-νλ (4))(1.2)(10602.110995.588100.310625.6199834eV eV ch E =⨯⨯⨯⨯⨯⨯==---λ 2-6 下列种类型跃迁所涉及的能量(eV )范围各是多少?(1)原子内层电子跃迁; (4)分子振动能级跃迁; (2)原子外层电子跃迁; (5)分子转动能级跃迁; (3)分子的电子跃迁 参考答案跃迁类型 波长范围 能量范围/eV 原子内层电子跃迁 10-1 ~ 10nm 1.26×106 ~1.2×102原子外层电子跃迁 200 ~ 750nm 6~1.7 分子的电子跃迁 200 ~ 750nm 6~1.7 分子振动能级跃迁 0.75 ~ 50μm 1.7~0.02 分子转动能级跃迁50 ~ 1000μm2×10-2~4×10-7第10章 吸光光度法(上册)2、某试液用2cm 吸收池测量时,T=60%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热能、电能
基态元素M
E
激发态M*
特征辐射
2019/5/17
典型发射光谱图
2.2.2.谱线的强度
在i,j 两能级间跃迁,谱线强度可表示为:
Iij= Ni Aij hυ ij
Aij 为跃迁几率
(1)
在高温下,处于热力学平衡状态时,单位 体积的基态原子数N0与激发态原子数Ni 之间 遵守Boltzmann分布定律
2019/5/17
ICP-AES重要部件示意图
• 燃烧电压:自持放电发生后,为了维 持放电所必需的电压。
2019/5/17
共振线、灵敏线、最后线及分析线
由激发态直接跃迁至基态所辐射的 谱线称为共振线。由较低级的激发态 (第一激发态)直接跃迁至基态的谱线 称为第一共振线,一般也是元素的最灵 敏线。当该元素在被测物质里降低到一 定含量时,出现的最后一条谱线,这是 最后线,也是最灵敏线。用来测量该元 素的谱线称分析线。
2.1 概述
原子发射光谱法是根据待测元 素的激发态原子所辐射的特征谱线 的波长和强度,对元素进行定性和 定量测定的分析方法。
2019/5/17
2.1.1原子发射光谱法的分类
1.目视火焰光分析法
某些元素的原子或离子在被激发时,会辐射出各种 不同颜色的光。能用眼睛来观察与辨认试样元素被激 发时所辐射的焰光颜色及其亮度,就可粗略地估计试 样物质的主要成分及其含量的高低。这种发射光谱分 析,称为目视火焰光分析法。
此式为谱线强度公式。 Iij 正比于基态原子N0 ,也就是说 Iij ∝C,这就是定量
分析依据。
2019/5/17

例如:钠原子,核外电子组成为: (1S)2(2S)2(2P)6(3S)1
此时光谱项为: 32S1/2 表示n=3 L=0 S=1/2 M=2 J=1/2, --------为基态光谱项。
(3)仪器设备比较复杂、昂贵。
2.2 方法原理
2.2.1原子光谱的产生
原子的核外电子一般处在基态运动, 当获取足够的能量后,就会从基态 跃迁到激发态,处于激发态不稳定 (寿命小于10-8 s),迅速回到基态 时,就要释放出多余的能量,若此 能量以光的形式出显,既得到发射 光谱。
能量与光谱
ΔE=E2- E1 =h c/λ =hυ =hσc
2.火焰光度法
以火焰为光源(试液雾化后喷火火焰),以棱镜 或滤光片为单色器,以光电池或光电管为检测器(放 在屏幕位置),然后测量试样元素的辐射光强度,称 为火焰光度分析法。
2019/5/17
3.摄谱法
用照相感光板来记录元素的发射光谱图,然 后用类似幻灯机的投影仪(又称映谱仪)将发射 光谱图中记录下来的谱线放大,并辨认待测元素 特征谱线的存在与否,即可进行元素定性分析。 如果用类似光电比色计的黑度计以称测微光度计) 测量元素特征谱线的黑度,就可以进行待测元素 的定量分析。
32P3/2
n=3 L=1
32P1/2
n=3 L=1
钠谱线:5889.96 Å
5895.93 Å
S=1/2 J=3/2
S=-1/2 J=1/2 32S1/2----32P3/2 32S1/2----32P1/2
2.2.4 谱线的自吸与自蚀
1.自吸
I = I0e-ad
I0为弧焰中心发射的谱线强度,a 为吸收系数,d为弧层厚度。
4.光电直读法
元素的特征谱线通过直读光谱仪,再配有电子计 算机进行数据处理,分析结果可在几分钟内由光电 读数系统直接显示出来,因此具有快速、准确等 优点。本章主要介绍现代的ICP光电直读法。
2019/5/17
2.1.2 原子发射光谱法的特点
1.灵敏度和准确度较高
2.选择性好,分析速度快
3.试样用量少,测定元素范围广
2019/5/17
谱线强度与温度的关系
2019/5/17
Ni = N0 gi/g0 e-Ei/kT
(2)
gi,g0 为 激 发 态 和 基 态 的 统 计 权 , Ei 为 激 发 电 位 , K 为
Boltzmann常数,T为温度。
(2)代入(1)得:
Iij=gi/g0Aijhυ ijN0e-Ei/kT
2019/5/17
2.自蚀
在谱线上,常用r表示自吸,R表 示自蚀。
在共振线上,自吸严重时谱线变宽, 称为共振变宽
2019/5/17
自吸与自蚀的关系
2019/5/17
重要术语的意义
• 击穿电压:使电极间击穿而发生自持 放 电的最小电压。
• 自持放电:电极间的气体被击穿后, 即使没有外界的电离作用,仍能继续保持 电离,使放电持续。
第二章 原子发射光谱分析法
Atomic emission spectroscopy
现代直读ICP-AES仪器
2019/5/17
IRIS Intrepid全谱直读等离 子体发射光谱仪(ICP-AES) 是美国热电公司生产的原 子光谱分析仪器,该仪器 采用CID检测器和设计独 特的光学系统,具有高分 辨率、高灵敏度,可同时 测定元素周期表中的73种 元素,每个元素波长可任 意选择,最大限度地减少 了元素之间的相互干扰。 适用于金属、环境、地球 化学等领域对元素(0.00X %~X %)的高精度分析。
2019/5/17
2.3 仪器装置
2019/5/17
2019/5/17
2.3.1 光源
光源的作用: 蒸发、解离、原子化、激发、 跃迁。
光源的影响:检出限、精密度和准确度。 光源的类型:
直流电弧 交流电弧 电火花 电感耦合等离子体(ICP) (Inductively coupled plasma)
4.局限性
(1)样品的组成对分析结果的影响比较显著。因此,进行定 量分析时,常常需要配制一套与试样组成相仿的标准样品, 这就限制了该分析方法的灵敏度、准确度和分析速度等的提 高。
(2)发射光谱法,一般只用于元素分析,而不能用来确定元 素在样品中存在的化合物状态,更不能用来测定有机化合物 的基团;对一些非金属,如惰性气体、卤素等元素几乎无法 分析。
λ= h c/E2-E1 υ= c /λ σ×10-34 J.s) • c 为光速(2.997925×1010cm/s)
2019/5/17
激发电位: 从低能级到高能级需 要的能量。 共振线: 具有最低激发电位的谱线。 原子线(Ⅰ) 离子线(Ⅱ,Ⅲ) 相似谱线
相关文档
最新文档