2018年华师版七年级下期数学期中考试试卷含答案
2018年华师大七年级下册数学期中检测题有答案
七年级数学下册期中检测题及答案(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)(每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的)1.(2016A .1 B .-1 C .3 D .-32.(2016·乐山)不等式组⎩⎪⎨⎪⎧x +2>0,2x -1≤0的所有整数解是( A )A .-1,0B .-2,-1C .0,1D .-2,-1,03.(2016·益阳)不等式组⎩⎪⎨⎪⎧-x <3,2x -1≤3的解集在数轴上表示正确的是( A )4.已知⎩⎪⎨⎪⎧x =1,y =2和⎩⎪⎨⎪⎧x =2,y =5是方程ax +by =2的两组解,则( A )A .a =6,b =-2B .a =-6,b =-2C .a =6,b =2D .a =-6,b =25.若关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =3m -1,x -y =5的解满足x +y =3,则m 的值为( D )A .-2B .2C .-1D .16.(2016·南宁)超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( A )A .0.8x -10=90B .0.08x -10=90C .90-0.8x =10D .x -0.8x -10=907.(2016·雅安)已知a 2+3a =1,则代数式2a 2+6a -1的值为( B ) A .0 B .1 C .2 D .38.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥b ,2x -a <2b +1的解集是3≤x <5,则ba 的值是( A )A .-2B .-12C .-4D .-149.某公园儿童节期间举行特优读书游园活动,成人票和儿童票均有较大折扣,张凯和李利都随他们的家人参加了本次活动,王斌也想去,就去打听张凯、李利买门票花了多少钱,张凯说他家3个大人4个小孩,共花了38元钱,李利说他家4个大人2个小孩,共花了44元钱,王斌计划去3个大人和2个小孩,请你帮他计算一下,需准备买门票钱( C )A .30元B .32元C .34元D .36元 10.某种肥皂售价为每块2元,凡购买两块以上(含两块),商场推出两种优惠销售方法,第一种:“一块按原价,其余按原价的七折优惠”;第二种:“全部按原价的八折优惠”.你在购买相同数量的肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少要购买肥皂( B )A .5块B .4块C .3块D .2块 二、填空题(每小题3分,共24分)11.若方程2x -m =1和方程3x =2(x -1)的解相同,则m 的值为__-5__.12.若⎩⎪⎨⎪⎧x =1,y =2是方程组⎩⎪⎨⎪⎧ax +by =4,bx -ay =7的解,则a +b 的值为__1__.13.已知关于x 的方程x +2k =4(x +k)+1的解是负数,则k 的取值范围是__k >-12__.14.方程组⎩⎪⎨⎪⎧ax +2y =2,2x +3y =0的解是⎩⎪⎨⎪⎧x =3,y =b ,则关于x 的不等式bx +2a ≥0的非负整数解是__0,1,2__.15.(2016·襄阳)王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜__33__袋.16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则列出的方程组为__⎩⎪⎨⎪⎧x +2y =75x =3y .17.若不等式组⎩⎪⎨⎪⎧x <1,x >m -1恰有两个整数解,则m 的取值范围是__-1≤m <0__.18.如图,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2017次相遇在边__CD __上.三、解答题(共66分)19.(8分)解下列方程(组):(1)(2016·贺州)x 6-30-x4=5; (2)⎩⎪⎨⎪⎧2x +3y =1,3x +2y =4.解:x =30 解:⎩⎪⎨⎪⎧x =2y =-120.(10分)解下列不等式(组),并把解集在数轴上表示出来:(1)1-2-x 3<x +12; (2)⎩⎪⎨⎪⎧3x -7<2,2x +3≥1.解:x >-1,表示略 解:-1≤x <3,表示略21.(8分)方程组⎩⎪⎨⎪⎧3x -2y =7,5x +2y =1的解满足方程2x -ky =10,求k 的值.解:解方程组⎩⎪⎨⎪⎧3x -2y =7,5x +2y =1得⎩⎪⎨⎪⎧x =1,y =-2,代入方程2x -ky =10得2+2k =10,解得k =422.(8分)(2016·海南)世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元?解:设《汉语成语大词典》的标价为x 元,《中华上下五千年》的标价为y 元,根据题意得⎩⎪⎨⎪⎧x +y =150,50%x +60%y =80,解得⎩⎪⎨⎪⎧x =100,y =50,则《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元23.(10分)若关于x 的方程2x -m =3(x -1)的解也是不等式组⎩⎪⎨⎪⎧2x -1>3x -2,x -12-1≤x 的解,求m 的取值范围.解:解方程2x -m =3(x -1)得x =3-m ,解不等式组⎩⎪⎨⎪⎧2x -1>3x -2,x -12-1≤x 得-3≤x <1,所以-3≤3-m<1,解得2<m ≤624.(10分)某校为学生开展拓展性课程,拟在一块长比宽多6米的长方形场地内建造由两个大棚组成的植物养殖区(如图①),要求两个大棚之间有间隔4米的路,设计方案如图②,已知每个大棚的周长为44米.(1)求每个大棚的长和宽各是多少?(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?解:(1)设大棚的宽为a 米,长为b 米,根据题意可得⎩⎪⎨⎪⎧a +b =22,2a +4-b =6,解得⎩⎪⎨⎪⎧a =8,b =14,则大棚的宽为8米,长为14米 (2)大棚的面积为2×14×8=224(平方米),若按照方案一计算,大棚的造价为224×60-500=12940(元);若按照方案二计算,大棚的造价为224×70(1-20%)=12544(元),显然12544<12940,所以选择方案二更优惠25.(12分)(2016·凉山州)为了更好地保护美丽如画的邛海湿地,西昌市污水处理厂决定先购买A ,B 两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A 型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A 型污水处理设备和2台B 型污水处理设备每周可以处理污水640吨,2台A 型污水处理设备和3台B 型污水处理设备每周可以处理污水1080吨.(1)求A ,B 两型污水处理设备每周每台分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨.请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?解:(1)设A 型污水处理设备每周每台可以处理污水x 吨,B 型污水处理设备每周每台可以处理污水y 吨,根据题意得⎩⎪⎨⎪⎧x +2y =640,2x +3y =1080.解得⎩⎪⎨⎪⎧x =240,y =200,则A 型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨 (2)设购买A 型污水处理设备a 台,则购买B 型污水处理设备(20-a )台,根据题意得⎩⎪⎨⎪⎧12a +10(20-a )≤230,240a +200(20-a )≥4500,解得12.5≤a ≤15.因为a 是整数,所以a =13或14或15,则20-a =7或6或5.即有3种购买方案:第一种方案:购买A 型污水处理设备13台,购买B 型污水处理设备7台,所需资金为13×12+7×10=226(万元);第二种方案:购买A 型污水处理设备14台,购买B 型污水处理设备6台,所需资金为14×12+6×10=228(万元);第三种方案:购买A 型污水处理设备15台,购买B 型污水处理设备5台,所需资金为15×12+5×10=230(万元).答:购买A 型污水处理设备13台,购买B 型污水处理设备7台,所需资金最少,最少是226万元。
2017--2018学年度第二学期华东师大版七年级期中考试数学试卷
绝密★启用前2017--2018学年度第二学期 华东师大版七年级期中考试数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分钟,满分120分1.(本题3分)方程()1230a a x --+=是关于x 的一元一次方程,则a =( )A. 2B. -2C. 1±D. 2± 2.(本题3分)2x =是方程2132x a x a++=+的解,则a 的值是( ) A. 4 B. -4 C. 1 D. -13.(本题3分)若代数式3a 4b 2x 与0.2b 3x ﹣1a 4能合并成一项,则x 的值是( ) A.12 B. 1 C. 13D. 0 4.(本题3分)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( ) A. 1 B. 2 C. 3 D. 45.(本题3分)若方程mx +ny =6有两个解1,{1x y =-=- 2,{1x y =-=,则m ,n 的值为( )A. 4,2B. 2,4C. -4,-2D. -2,-4 6.(本题3分)已知a ,b 满足方程组516{34a b a b +=-= ,则a +b 的值为( )A. -3B. 3C. -5D. 57.(本题3分)若2310x y z ++=, 43215x y z ++=,则 x y z ++的值为( ) A.5 B.4 C.3 D. 2 8.(本题3分)若把不等式组23{12x x -≥--≥- 的解集在数轴上表示出来,则其对应的图形为( )A. 长方形B. 线段C. 射线D. 直线 9.(本题3分)不等式(a -2012)x >a -2012的解集是x <1.则a 应满足的条件是…………○※…○A. a =2012 B. a <2012 C. a >2012 D. 无法确定 10.(本题3分)某校20名同学去工厂进行暑假实践活动,每名同学每天可以加工甲种零件5个或乙种零件4个,已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元,若要使车间每天获利不低于1 800元,至少要派( )名同学加工乙种零件.A. 11B. 12C. 13D. 14 二、填空题(计32分)11.(本题4分)若a 与2a −9互为相反数,则a 的值为_________.12.(本题4分)已知方程组4{2ax by ax by -=+=的解为2{1x y ==,求23a b -的值___________.13.(本题4分)已知方程320{6320x y z x y z +-=++= ,则x :y :z=________14.(本题4分)若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________.15.(本题4分)a -b=2,a -c=12,则(b -c )3-3(b -c )+94=________. 16.(本题4分)当a ________ 时,不等式(a -1)x >1的解集是x 1a 1->17.(本题4分)若关于x 的不等式组0{ 8320x a x -≥-<的整数解仅为1,2,3,则a 的取值范围是_______________. 18.(本题4分)关于x 的不等式组213{ 1x a x +>->的解集为1<x <3,则a 的值为____.三、解答题(计58分)19.(本题8分)解下列方程(组):(1)321126x x -+-= (2)20.(本题8分)当x取何值时,代数式235x-的值比代数式23x-4的值小1?21.(本题8分)解不等式组,并把解集表示在数轴上,并写出其整数解.30 {121123xx x-≤--+>.22.(本题8分)若关于x,y的二元一次方程组5{9x y kx y k+=-=的解也是二元一次方程2x+3y=6的解,求k的值.23.(本题8分)当x取什么值时,代数式324x--2x+1的值为:(1)正数?(2)负数?(3)非负数?………订…………※※线※※内※※答※※题※※………24.(本题9分)根据图中情景信息,解答下列问题: (1)购买8根跳绳需_______元, (2)购买11根跳绳需_______元;(3)小红比小明多买2根,付款时小红反而比小明少7元,你认为有这种可能吗?请结合方程知识说明理由.25.(本题9分)某机械厂共有120名生产工人,每个工人每天可生产螺栓50个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多少名工人生产螺栓,多少名工人生产螺母,恰好能是每天生产出来的产品配成一套?参考答案1.B【解析】方程()1230a a x --+=是关于x 的一元一次方程,根据一元一次方程的定义可得|a|-1=1且a-2≠0,解得a=-2,故选B. 2.B【解析】∵x=2是方程2x a x a132++=+的解, ∴x=2满足方程2x a x a132++=+,∴4a 2a 132++=+,解得a=-4. 故选:B. 3.B【解析】∵代数式3a 4b 2x 与0.2b 3x ﹣1a 4能合并成一项, ∴代数式3a 4b 2x 与0.2b 3x ﹣1a 4是同类项, ∴231x x =-,解得: 1x =. 故选B.4.C【解析】解:截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费,设截成2米长的彩绳x 根,1米长的y 根,由题意得,2x +y =5,因为x ,y 都是正整数,所以符合条件的解为:{x =0y =5 ,{x =1y =3 ,{x =2y =1,则共有3种不同截法,故选C .5.C【解析】试题分析:把1{1x y =-=-, 2{1x y =-=代入mx +ny =6中,得: 6{26m n m n --=-+=,解得: 4{ 2m n =-=-.故选C . 6.D【解析】试题分析: 516{34a b a b -+=①=②,①+②得:4a +4b =20,∴a+b=5.故选D.7.A【解析】由题意,x+2y+3z=10①,4x+3y+2z=15②,①+②,得:5(x+y+z)=25,即x+y+z=5,故选A.8.B【解析】解不等式2-x≥-3可得x≤5;解不等式x-1≥-2得x≥-1,可得不等式的解集为-1≤x≤5,用数轴表示为:.故选:B.点睛:此题主要考查了不等式组的解集的数轴表示,利用不等式组的解集的确定:都大取大,都小取小,大小小大取中间,大大小小无解,得到不等式的解集,表示在数轴上即可. 9.B【解析】由含有a的不等式(a-2012)x>a-2012的解集为:x<1,根据不等式的基本性质3,可知a-2012<0,解得a<2012.故选:B.点睛:此题主要考查了不等式的解集,解题关键是根据不等式的解集中不等号的方向发生了改变,明确应用了不等式的基本性质3:不等式的两边同时乘以或除以同一个负数,不等号的方向改变,由此可判断.10.C【解析】设至少要派x名同学加工乙种零件,则派(20-x)名同学加工甲种零件,然后根据“车间每天获利不低于1 800元”可列不等式为:5(20-x)×16+4x×24≥1800,解得x≥12.5,所以至少要派13名同学加工乙种零件.故选:C.点睛:此题主要考查了不等式的应用,根据车间每天获利不低于1800可列不等式求解,解题关键是设出未知数,表示出每天加工甲、乙两种两件的量. 11.3【解析】∵a 与2a −9互为相反数, ∴290a a +-=, 解得: 3a =. 故答案为:3. 12.6【解析】试题分析:把2{1x y ==代入4{2ax by ax by -=+=中,得: 24{22a b a b -=+=,解得: 3{21a b -==,所以2a -3b =2×32-3×(-1)=6. 故答案为6.点睛:考查了解二元一次方程组和二元一次方程组的解的定义,所谓“方程组”的解,指的是该数值满足方程组中的每一方程. 13.﹣7:12:3 【解析】320{6320x y z x y z +-=++=①②,①×2+②得:12x+7y=0,12x=-7y ,所以x :y=-7:12,①×2-②得:y-4z=0,y=4z,所以y:z=4:1=12:3, 所以x:y:z=-7:12:3, 故答案为:-7:12:3. 14.-2【解析】本题涉及同类项的概念:所含字母相同,相同字母的指数也相同,由此可得5a =1-2b ,b +4=2a ,将两式联立组成方程组,解出a ,b 的值,分别为a =1,b =-2 , 故答案为: b =-2.15.27 8【解析】由a-b=2,a-c=12可得b-c=-32,再代入(b-c)3-3(b-c)+94=278,故答案为: 27 8.16.>1【解析】由不等式(a-1)x>1的解集是x>11a-可知a-1>0,解得a>1.故答案为:>1.17.0<a≤1【解析】解不等式x-a≥0,可得x≥a,解不等式8x-32<0,可得x<4,根据不等式组的解集的求法,可知a≤x<4,然后由不等式组的整数解仅为1、2、3,可知0<a≤1.故答案为:0<a≤1.18.4【解析】解不等式2x+1>3可得x>1,解不等式a-x>1,可得x<a-1,然后根据不等式组的解集为1<x<3,可知a-1=3,解得a=4.故答案为:4.点睛:此题主要考查了不等式组的解,解题关键是根据不等式组的解集和求出不等式的解集的特点,求解即可.19.(1)x=16;(2)133 {83 xy==【解析】试题分析:(1)去分母,去括号,移项,合并同类项,系数化为1,即可求解;(2)利用代入消元法可求解.试题解析:(1)3211 26x x-+-=去分母,得3(x-3)-(2x+1)=6去括号,得3x-9-2x-1=6移项得x=16(2)①②由①得x=2y-1 ③把③代入②可得2(2y-2+1)-y=8 解得y=83代入③可得x=133所以方程组的解为: 133{ 83x y ==20.x =332. 【解析】试题分析:根据题意列出方程,解方程即可. 试题解析:根据题意得:2321453x x -+=-, 去分母,得69151060x x -+=-, 移项合并,得466x =,解得33.2x =点睛:解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,把系数化为1. 21.2,3【解析】试题分析:分别解两个不等式,然后确定不等式组的解集,再表示在数轴上,取整数解即可.试题解析:解不等式x ﹣3≤0,得:x≤3,解不等式12x -+213x ->1,得:x > 117, ∴不等式组的解集为: 117<x≤3,将不等式解集表示在数轴上如图:则该不等式组的整数解为2,3.22.3 4【解析】试题分析:先用含k的代数式表示x、y,即解关于x,y的方程组,再代入2x+3y=-6中可得.试题解析:由方程组5{9x y kx y k+=-=得:7{2x ky k==-,∵此方程组的解也是方程2x+3y=6的解,∴2×7k+3×(﹣2k)=6,∴k=34.【点睛】本题考查的知识点是二元一次方程组的解,解题的关键是先用含k的代数式表示x,y,再代入2x+3y=6中进行求解.23.(1)x<25;(2)x>25;(3)x≤25.【解析】试题分析:根据题意,分别列出符合条件的不等式,然后解不等式即可求解.试题解析:(1)由题意得324x--2x+1>0解得x<2 5(2)由题意得324x--2x+1<0解得x>2 5(3)由非负数可知:324x--2x+1≥0解得x≤2 524.(1)280;(2)308;(3)有这种可能,理由见解析【解析】试题分析:(1)买8根不享受优惠,所以需8×35=280元;(2)买11根,享受8折优惠,所以需35×11×0.8=308元;(3)我们只要设小红购买绳子x根,则小明购买绳子(x-2)根,根据题意可列出方程35×0.8x=35(x-2)-7,解得x=11,所以有这种可能.试题解析:解:(1)280;(2)308;(3)有可能出现题中情况.理由如下:设小红购买绳子x根,小明购买绳子(x-2)根,依题意列出方程:35×0.8x=35(x-2)-7,解得:x=11.∴当小红购买11根绳子,小明购买9根绳子时,会出现小红比小明多买2根,付款时时小红反而比小明少7元的情况.点睛:本题关键在于第3问设出未知数,根据题意列出方程求解.25.每天安排20名工人生产螺栓,100名工人生产螺母,恰好能是每天生产出来的产品配成一套。
2018-2019学年华师大版七年级下学期期中测试卷(含答案)
2018-2019学年七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.不等式x﹣1>x的解集是()A.x>1B.x>﹣2C.x<D.x<﹣22.在解方程时,去分母后正确的是()A.5x=15﹣3(x﹣1)B.x=1﹣(3x﹣1)C.5x=1﹣3(x﹣1)D.5x=3﹣3(x﹣1)3.方程2x﹣1=3x+2的解为()A.x=1B.x=﹣1C.x=3D.x=﹣3 4.下列方程变形中,正确的是()A.由2x+1=3x,得2x+3x=1B.C.D.5.若(x+y﹣5)2+|x﹣3y﹣17|=0,则x、y的值分别为()A.7,7B.8,3C.8,﹣3D.7,86.利用加减消元法解方程组,下列做法正确的是()A.要消去x,可以将①×5﹣②×2B.要消去x,可以将①×3+②×5C.要消去y,可以将①×5+②×3D.要消去y,可以将①×5+②×27.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.若方程组的解互为相反数,则m的值是()A.﹣7B.10C.﹣10D.﹣129.如果是二元一次方程组的解,那么a2﹣b2的值为()A.5B.3C.1D.﹣310.如果关于x的不等式(a+2016)x>a+2016的解集为x<1,那么a的取值范围是()A.a>﹣2016B.a<﹣2016C.a>2016D.a<2016二、填空题(每小题3分,共15分)11.已知是方程2x﹣y+3k=0的解,那么k的值是.12.若不等式组有解,则实数a的取值范围是()A.a<1B.a≤1C.a<0D.a≤013.如果,那么x+y+z的值为.14.如图,点O在直线AB上,OC为射线,∠1比∠2的3倍少10°,设∠1、∠2的度数分别为x、y,则可列方程组为.15.若x=﹣3是关于x的方程x=m+1的解,则关于x的不等式2(1﹣2x)≤1+m的最小整数解为.三、解答题(8+9+9+9+9+10+10+11=75分)16.解方程:4x﹣3(5﹣x)=617.解方程组.18.解方程组.19.解不等式组.20.某中学计划用2500元购买一批名著和辞典作为奖品,其中名著每套60元,辞典每本40元,现已购买名著24套,学校最多还能买多少本辞典?21.如图,在长为10米,宽为8米的长方形空地上,沿平行于长方形边的方向分割出三个形状、大小完全一样的小长方形花圃(阴影部分),求其中一个长方形的长和宽.22.某公司以每吨600元的价格收购了100吨某种药材,若直接在市场上销售,每吨的售价是1000元,该公司决定加工后再出售,相关信息如下表所示:(注:①成品率80%指加工100吨原料能得到80吨可销售药材;②加工后的废品不产生效益)受市场影响,该公司必须在10天内将这批药材加工完毕.(1)若全部粗加工,可获利元;(2)若尽可能多的精加工,剩余的直接在市场上销售,可获利元;(3)若部分粗加工,部分精加工,恰好10天完成,求可获利多少元?23.阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2.又∵x>1,∴y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2.∴x+y的取值范围是0<x+y<2.请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,求x+y的取值范围;(2)已知y>1,x<﹣1,若x﹣y=a(a<﹣2)成立,求x+y的取值范围(结果用含a的式子表示).2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.不等式x﹣1>x的解集是()A.x>1B.x>﹣2C.x<D.x<﹣2【分析】首先移项,再合并同类项,最后把x的系数化为1即可.【解答】解:移项得:x﹣x>1,合并同类项得:﹣x>,把x的系数化为1得:x<﹣2;故选:D.【点评】此题主要考查了一元一次不等式(组)的解法,关键是掌握不等式的基本性质.2.在解方程时,去分母后正确的是()A.5x=15﹣3(x﹣1)B.x=1﹣(3x﹣1)C.5x=1﹣3(x﹣1)D.5x=3﹣3(x﹣1)【分析】方程两边都乘以分母的最小公倍数即可得解.【解答】解:方程两边都乘以15得,5x=15﹣3(x﹣1).故选:A.【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.3.方程2x﹣1=3x+2的解为()A.x=1B.x=﹣1C.x=3D.x=﹣3【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:方程2x﹣1=3x+2,移项得:2x﹣3x=2+1,合并得:﹣x=3.解得:x=﹣3,故选:D.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.4.下列方程变形中,正确的是()A.由2x+1=3x,得2x+3x=1B.C.D.【分析】根据一元一次方程的解法,对各选项分析判断后利用排除法求解.【解答】解:A、2x+1=3x,移项得3x﹣2x=1,故本选项错误;B、系数化为1得,x=×,故本选项正确;C、系数化为1得,x=×2,故本选项错误;D、去分母得,﹣x﹣1=6,故本选项错误.故选:B.【点评】本题考查了解一元一次方程的注意事项,移项要变号,系数化为1是乘以x的系数的倒数,是基础题,需要熟练掌握并灵活运用.5.若(x+y﹣5)2+|x﹣3y﹣17|=0,则x、y的值分别为()A.7,7B.8,3C.8,﹣3D.7,8【分析】首先根据(x+y﹣5)2+|x﹣3y﹣17|=0,可得:x+y﹣5=0,x﹣3y﹣17=0,然后应用加减消元法,求出x、y的值分别为多少即可.【解答】解:∵(x+y﹣5)2+|x﹣3y﹣17|=0,∴①﹣②,可得4y+12=0,解得y=﹣3,把y=﹣3代入①,解得x=8,∴x、y的值分别为8,﹣3.故选:C.【点评】此题主要考查了解二元一次方程的方法,以及绝对值、偶次方的非负性质的应用,要熟练掌握.6.利用加减消元法解方程组,下列做法正确的是()A.要消去x,可以将①×5﹣②×2B.要消去x,可以将①×3+②×5C.要消去y,可以将①×5+②×3D.要消去y,可以将①×5+②×2【分析】方程组利用加减消元法求出解即可.【解答】解:对于原方程组,若要消去x,则可以将①×5﹣②×2;若要消去y,则可以将①×3+②×5;故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:故选:D.【点评】本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.8.若方程组的解互为相反数,则m的值是()A.﹣7B.10C.﹣10D.﹣12【分析】根据解方程组的步骤,可得方程组的解,根据解方程组,可得方程组的解,根据方程组的解互为相反数,可得一元一次方程,根据解一元一次方程,可得答案.【解答】解;解得,x、y互为相反数,∴=0,m=﹣10,故选:C.【点评】本题考查了二元一次方程组,先求出方程组的解,再求出m的值.9.如果是二元一次方程组的解,那么a2﹣b2的值为()A.5B.3C.1D.﹣3【分析】将代入二元一次方程组,求出a,b的值,即可解答.【解答】解:将代入二元一次方程组,得:解得:∴a2﹣b2=(﹣1)2﹣(﹣2)2=1﹣4=﹣3.故选:D.【点评】本题考查了二元一次方程组的解,解决本题的关键是解二元一次方程组.10.如果关于x的不等式(a+2016)x>a+2016的解集为x<1,那么a的取值范围是()A.a>﹣2016B.a<﹣2016C.a>2016D.a<2016【分析】根据已知不等式的解集,确定出a+2016为负数,求出a的范围即可.【解答】解:∵关于x的不等式(a+2016)x>a+2016的解集为x<1,∴a+2016<0,解得:a<﹣2016,故选:B.【点评】此题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.二、填空题(每小题3分,共15分)11.已知是方程2x﹣y+3k=0的解,那么k的值是﹣1.【分析】根据方程的解满足方程,可得关于k的方程,根据解方程,可得答案.【解答】解:由题意,得4﹣1+3k=0,解得k=﹣1,故答案为:﹣1.【点评】本题考查了二元一次方程的解,利用方程的解满足方程得出关于k的方程是解题关键.12.若不等式组有解,则实数a的取值范围是()A.a<1B.a≤1C.a<0D.a≤0【分析】解不等式组中每个不等式得出x的范围,由不等式组有解结合“大小小大中间找”可得a的范围.【解答】解:解不等式x﹣a≥0,得:x≥a,解不等式1﹣2x≥x﹣2,得:x≤1,∵不等式组有解,∴a≤1,故选:B.【点评】本题主要考查解一元一次不等式组,熟练掌握不等式组解集的概念是解题的关键.13.如果,那么x+y+z的值为9.【分析】把三个方程相加即可.【解答】解:三个方程相加可得:2x+2y+2z=18,所以x+y+z=9,故答案为:9【点评】此题考查三元方程组的问题,关键是把三个方程相加解答.14.如图,点O在直线AB上,OC为射线,∠1比∠2的3倍少10°,设∠1、∠2的度数分别为x、y,则可列方程组为.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.15.若x=﹣3是关于x的方程x=m+1的解,则关于x的不等式2(1﹣2x)≤1+m的最小整数解为2.【分析】直接根据题意得出m的值,再利用不等式解法得出答案.【解答】解:∵x=﹣3是关于x的方程x=m+1的解,∴﹣3=m+1,解得:m=﹣4,∵2(1﹣2x)≤1+m,∴2﹣4x≤1﹣4,解得:x≥,故最小整数解为2.故答案为:2.【点评】此题主要考查了一元一次不等式的整数解,正确得出m的值是解题关键.三、解答题(8+9+9+9+9+10+10+11=75分)16.解方程:4x﹣3(5﹣x)=6【分析】本题要先去括号,再合并同类项,然后移项、合并同类项、系数化1求解.【解答】解:去括号得:4x﹣15+3x=6,移项、合并同类项得:7x=21,解得:x=3.【点评】本题考查解一元一次方程的知识,题目难度不大,但是出错率很高,是失分率很高的一类题目,同学们要在按步骤解答的基础上更加细心的解答.17.解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:由①+②,得4x=20.即x=5,把x=5代入①,得5﹣y=4.即y=1,所以这个方程组的解是【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.解方程组.【分析】根据二元一次方程组的解法即可求出答案.【解答】解:由①+②×3,得10x=20.即x=2把x=2代入①,得2﹣3y=﹣1.即y=1∴原方程组的解为【点评】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.19.解不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,由①得x≥1;由②得x<4;所以这个不等式组的解集是1≤x<4.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).20.某中学计划用2500元购买一批名著和辞典作为奖品,其中名著每套60元,辞典每本40元,现已购买名著24套,学校最多还能买多少本辞典?【分析】设学校能买x本辞典,根据单价×数量=总价结合总价不超过2500元,即可得出关于x 的一元一次不等式,解之取其中的最大整数即可得出结论.【解答】解:设学校能买x本辞典,根据题意得:40x+24×60≤2500,解得:x≤26,∵x为整数,∴x≤26.答:学校最多能买26本辞典.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.21.如图,在长为10米,宽为8米的长方形空地上,沿平行于长方形边的方向分割出三个形状、大小完全一样的小长方形花圃(阴影部分),求其中一个长方形的长和宽.【分析】由图形可看出:小矩形的2个长+一个宽=10m,小矩形的2个宽+一个长=8m,设出长和宽,列出方程组即可得答案.【解答】解:设小长方形的长为x米,宽为y米,依题意有:解此方程组得:故,小长方形的长为4米,宽为2米.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.22.某公司以每吨600元的价格收购了100吨某种药材,若直接在市场上销售,每吨的售价是1000元,该公司决定加工后再出售,相关信息如下表所示:(注:①成品率80%指加工100吨原料能得到80吨可销售药材;②加工后的废品不产生效益)受市场影响,该公司必须在10天内将这批药材加工完毕.(1)若全部粗加工,可获利42000元;(2)若尽可能多的精加工,剩余的直接在市场上销售,可获利37600元;(3)若部分粗加工,部分精加工,恰好10天完成,求可获利多少元?【分析】(1)根据利润=粗加工销售所得﹣成本求得即可;(2)根据利润=细加工销售所得﹣成本求得即可;(3)设精加工x天,粗加工y天,根据题意列出关于x和y的方程组,解方程组即可.【解答】解:(1)全部粗加工共可售得6000×80%×100=480000(元),成本为600×100=60000(元),获利为480000﹣60000=420000(元).全部粗加工可获利420000元.故答案为420000;(2)10天共可精加工10×6=60(吨),可售得60×60%×11000+40×1000=436000(元),获利为436000﹣60000=376000(元).可获利376000元,故答案为376000;(3)设精加工x天,粗加工y天,则解得,销售可得:30×60%×11000+70×80%×6000=534000(元),获利为534000﹣60000=474000(元),答:可获利474000元.【点评】本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组是解题的关键.23.阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2.又∵x>1,∴y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2.∴x+y的取值范围是0<x+y<2.请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,求x+y的取值范围;(2)已知y>1,x<﹣1,若x﹣y=a(a<﹣2)成立,求x+y的取值范围(结果用含a的式子表示).【分析】(1)先求出y的取值范围,同理得出x的取值范围,即可得出结果;(2)先求出y的取值范围,同理得出x的取值范围,即可得出结果.【解答】解:(1)∵x﹣y=3,∴x=y+3.又∵x>2,∴y+3>2∴y>﹣1.又∵y<1∴﹣1<y<1.同理得:2<x<4,由①+②得:﹣1+2<y+x<1+4.∴x+y的取值范围是:1<x+y<5.(2)∵x﹣y=a,∴x=y+a.又∵x<﹣1,∴y+a<﹣1.∴y<﹣a﹣1.又∵y>1,a<﹣2,∴1<y<﹣a﹣1.同理得:a+1<x<﹣1.由①+②得:1+a+1<y+x<﹣a﹣1+(﹣1).∴x+y的取值范围是:a+2<x+y<﹣a﹣2.【点评】本题考查了一元一次不等式组的运用、一元一次不等式的解法;熟练掌握一元一次不等式的解法,并能进行推理论证是解决问题的关键.。
华师大版七年级下册数学期中考试试题含答案
华师大版七年级下册数学期中考试试卷一、单选题1.下列四个式子中,是方程的是()A .2x =B .1a +C .23x -D .3 25+=2.下列各数中,是方程215x +=-的解的是()A .0B .2C .3-D .2-3.设,,x y c 是有理数,则下列判断错误的是()A .若x y =,则22x c y c +=+B .若x y =,则a cx a cy -=-C .若x y =,则=x yc cD .若23x y=,则32x y =4.若1x =-是关于x 的一元一次方程20ax +=的解,则a 的值是()A .-2B .-1C .1D .25.若代数式235x -和233x -的值相同,则x 的值是()A .9B .﹣32C .32D .836.若方程6323x x -=-的解与关于x 的方程6226k x -=+的解相同,则k 的值为().A .59B .59-C .95D .95-7.为减少雾霾天气对身体的伤害,班主任王老师在某网站为班上的每一位学生购买防雾霾口罩,每个防霾口罩的价格是15元,在结算时卖家说:“如果您再多买一个口罩就可以打九折,价钱会比现在便宜45元”,王老师说:“那好吧,我就再给自己买一个,谢谢.”根据两人的对话,判断王老师的班级学生人数应为()A .38B .39C .40D .418.二元一次方程3x+2y =15的正整数解的对数是()A .1对B .2对C .3对D .4对9.当1a =时,方程()10a x b -+=(其中x 是未知数,b 是已知数)()A .有且只有一个解B .无解C .有无限多个解D .无解或有无限多个解10.已知关于x ,y 的方程组25241x y ax y a +=-⎧⎨-=-⎩给出下列结论:①当1a =时,方程组的解也是21x y a +=+的解;②无论a 取何值x ,y 的值不可能是互为相反数;③x ,y 都为自然数的解有4对;④若28x y +=,则2a =.正确的有几个()A .1B .2C .3D .4二、填空题11.x 的3倍与y 的和等于5,用等式表示为_______.12.若2a -4与a +7互为相反数,则a =________.13.如果关于,x y 的二元一次方程组241x y kx y k -=⎧⎨+=+⎩的解,x y 满足3x y +=,则k 的值是__________.14.若关于x 的不等式20x m ->的负整数解为1,2,3---.则m 的取值范围是_________.15.“格子乘法”作为两个数相乘的一种计算方法最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”.如图1,计算4751⨯,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397.如图2,用“格子乘法”表示两个两位数相乘,则a 的值为____________.三、解答题16.解方程(1)3328x x +=-+(2)2151136x x +--=17.解方程组:34282151136x y x x x +=-+⎧⎪+-⎨-=⎪⎩18.不等式:()5332x x +<+,并把解集在数轴上表示出来.19.已知12x y =⎧⎨=⎩是关于,x y 的方程组14ax by bx ay -=-⎧⎨-=-⎩的一个解,求代数式()23a b a --的值.20.列方程解应用题:2021年3月28日10时,随着洛阳地铁1号线首发列车缓缓始离牡丹广场站,标志着洛阳地铁1号线正式开通运营,古都洛阳正式迈入“地铁时代”,成为中西部地区首个开通地铁的非省会城市.已知1号线采用按里程分段计价的票制,其中全程最高票价为5元,学生可享受半价.周日,七年级某班师生共36人从始发站“红山”乘地铁至终点站“杨湾”,感受“地铁速度”,其中学生均购半价票,单程共付车票费用105元.求他们购买全价票与半价票各多少张?21.要比较两个数,a b 的大小,有时可以通过比较-a b 与0的大小来解决:如果0a b ->,则a b >;如果0a b -=,则a b =;如果0a b -<,则a b <.(1)若223x a b =+,231y a b =+-,试比较,x y 的大小.(2)若224A m m =+-,232B m m =--,试比较A 与2B 的大小关系.22.为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?23.在数学课外小组活动中,老师提出了如下问题:如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>a(a>0)和|x|<a(a>0)的解集.小明同学的探究过程如下:先从特殊情况入手,求|x|>2和|x|<2的解集.确定|x|>2的解集过程如下:先根据绝对值的几何定义,在数轴上找到到原点的距离大于2的所有点所表示的数,在数轴上确定范围如下:所以,|x|>2的解集是x>2或.再来确定|x|<2的解集:同样根据绝对值的几何定义,在数轴上找到到原点的距离小于2的所有点所表示的数,在数轴上确定范围如下:所以,|x|<2的解集为:.经过大量特殊实例的实验,小明得到绝对值不等式|x|>a(a>0)的解集为,|x|<a(a>0)的解集为.请你根据小明的探究过程及得出的结论,解决下列问题:(1)请将小明的探究过程补充完整;(2)求绝对值不等式2|x+1|-3<5的解集.参考答案1.A【分析】根据方程的定义:含有未知数的等式;判断即可.【详解】x=,属于方程,符合题意;解:A、2a+,不是等式,不属于方程,不符合题意;B、1x-,不是等式,不属于方程,不符合题意;C、23+=,没有未知数,不属于方程,不符合题意;D、3 25故选:A.【点睛】本题考查了方程的定义,解题的关键是熟练运用方程的定义,本题属于基础题型.2.C【分析】方程移项合并,把x系数化为1,求出解,即可做出判断.【详解】解:方程2x+1=−5,移项合并同类项得:2x=−6,解得:x=−3.故选:C.【点睛】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.C【分析】根据等式的性质一一判断即可.【详解】解:A、若x=y,则x+2c=y+2c,故A选项不符合题意;B、若x=y,则a﹣cx=a﹣cy,故B选项不符合题意;C、c=0时,等式不成立,故C选项符合题意;D 、若23x y=,则3x =2y ,故D 选项不符合题意;故选C .【点睛】此题考查等式的性质,解题的关键在于能够熟练掌握等式的性质.4.D 【分析】将1x =-代入方程,即可得出a 的值.【详解】将1x =-代入方程,得20a -+=∴2a =故选:D.【点睛】此题主要考查利用一元一次方程的解求参数的值,熟练掌握,即可解题.5.A 【分析】根据题意列出方程,求出方程的解即可得到x 的值.【详解】根据题意得:235x -=233x-,去分母得到:6x ﹣9=10x ﹣45,移项合并得:﹣4x =﹣36,解得:x =9.故选:A .【点睛】此题考查了解一元一次方程,以及代数式求值,熟练掌握方程的解法是解本题的关键.6.B 【详解】解方程6x-3=2-3x 得x=59,再由两个方程的解相同可得,6-2k=2×59+6,解得k=59-,故选B.7.B【分析】设王老师的班级学生人数x人.则依据“如果您再多买一个口罩就可以打九折,价钱会比现在便宜45元”列方程解答即可.【详解】解:设王老师的班级学生人数x人,根据题意,得:15x-15(x+1)×90%=45,解得:x=39.故选B.【点睛】本题考查了一元一次方程的应用.8.B【分析】将x=1,2,…,分别代入3x+2y=15,求出方程的正整数解的对数是多少即可.【详解】解:当x=1时,方程变形为3+2y=15,解得y=6;当x=3时,方程变形为9+2y=15,解得y=3;∴二元一次方程3x+2y=15的正整数解的对数是2对:16xy=⎧⎨=⎩和33xy=⎧⎨=⎩.故选:B.【点睛】此题主要考查了二元一次方程组的解,要熟练掌握,注意解中x与y必须为正整数.9.D【分析】根据一元一次方程的定义即可判断求解.【详解】解:当a=1时,b≠0时,方程为b=0,与b≠0矛盾,故无解;当a=1时,b=0时,方程为b=0,当x取任意值皆可,故有无数解,故选D.【点睛】此题主要考查一元一次方程的解,解题的关键是熟知方程解得含义.10.D 【分析】①根据消元法解二元一次方程组,然后将解代入方程x +y =2a +1即可求解;②根据消元法解二元一次方程组,用含有字母的式子表示x 、y ,再根据互为相反数的两个数相加为0即可求解;③根据试值法求二元一次方程x +y =3的自然数解即可得结论;④根据整体代入的方法即可求解.【详解】解:25241x y a x y a +=-⎧⎨-=-⎩,方程组上式-下式得366y a=-22y a ∴=-,将22y a =-代人方程组下式得21x a =+,∴方程组的解为2122x a y a=+⎧⎨=-⎩当1a =时30x y =⎧⎨=⎩,3x y +=,213a +=,∴①正确;②212230x y a a +=++-=≠ ,∴②正确;③3x y += 、x ,y 为自然数,03x y =⎧∴⎨=⎩或12x y =⎧⎨=⎩或21x y =⎧⎨=⎩或30x y =⎧⎨=⎩,∴有4对,∴③正确;④()2221228x y a a +=++-=,解得2a =,∴④正确.故选:D 【点睛】本题考查二元一次方程的解,二元一次方程组的解,解二元一次方程组,解题的关键是掌握二元一次方程的解,二元一次方程组的解,解二元一次方程组.11.35x y +=.【分析】先表示出x 的3倍再与y 求和即可写出等式.【详解】解:根据题意,得35x y +=,故答案为35x y +=.【点睛】读懂题意,抓住关键词,弄清运算的先后顺序是列出等式的关键.12.-1【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】解:∵2a -4与a +7互为相反数,∴2a-4+a+7=0,解得:a=-1,故答案为:-1.【点睛】此题考查了解一元一次方程,以及相反数的性质,熟练掌握运算法则是解本题的关键.13.4【分析】把方程组的两个方程相加,再把x +y =3代入即可求解.【详解】解:241x y k x y k -=⎧⎨+=+⎩①②,①+②得:3x +3y =2k +1,即3(x +y )=2k +1,∵x +y =3,∴3×3=2k +1,解得k =4.故答案为:4.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.14.86m -≤<-【分析】首先解不等式求得解集,然后根据不等式只有负整数解为-1,-2,-3,得到关于m 的不等式,求得m 的范围.【详解】解:∵2x -m >0,∴2x >m ,∴x >2m .∵不等式的负整数解只有-1,-2,-3则432m-≤<-,解得:86m -≤<-.故答案为:86m -≤<-.【点睛】此题考查了根据不等式解集的情况求参数的取值范围,根据x 的取值范围正确确定2m的范围是解题的关键.15.3【分析】根据“格子乘法”可得10(2a -2-a )+(-a +6-1)=4a ,解方程可得.【详解】解:根据题意可得10(2a -2-a )+(-a +6-1)=4a 解得a =3故答案为:3.【点睛】根据“格子乘法”分析图示,列出方程是关键.16.(1)x=1;(2)x=-3【分析】(1)通过移项,合并同类项,未知数系数化为1,即可求解;(2)通过去分母,移项,合并同类项,未知数系数化为1,即可求解.【详解】(1)3328x x +=-+,移项得:3283x x +=-,合并同类项得:55=x ,解得:x=1;(2)2151136x x +--=,去分母得:()()221516x x +--=,去括号得:42516x x +-+=,合并,移项得:3x -=,解得:x=-3.【点睛】本题主要考查解一元一次方程,熟练掌握解一元一次方程的基本步骤,是解题的关键.17.3234x y =-⎧⎪⎨=⎪⎩【分析】将原式化简整理为54836x y x +=⎧⎨-+=⎩①②,解方程②得到的结果代入①即可得到方程组的解.【详解】解:34282151136x y x x x +=-+⎧⎪+-⎨-=⎪⎩,原式整理为:54836x y x +=⎧⎨-+=⎩①②,解方程②得:3x =-,将3x =-代入①中得:1548y -+=解得234y =,则方程组的解为3234x y =-⎧⎪⎨=⎪⎩.【点睛】此题考查了解二元一次方程组,以及一元一次方程,利用了消元的思想,消元的方法有两种:代入消元法、加减消元法.18.32x <,见解析【分析】先解一元一次不等式,然后再数轴上表示出不等式的解集即可得到答案.【详解】解:去括号得,5363x x +<+,移项得,5363x x -<-,合并同类项得,23x <,系数化为1得,32x <.在数轴上表示为:【点睛】本题主要考查了解一元一次不等式,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握相关知识进行求解.19.-6【分析】将12x y =⎧⎨=⎩代入原方程组中得2124a b b a -=-⎧⎨-=-⎩①②,然后解方程求出a 、b ,然后求代数式的值即可.【详解】解:将12x y =⎧⎨=⎩代入原方程组中得2124a b b a -=-⎧⎨-=-⎩①②将①变形为2-1a b =③代入②:-4+2-4b b =,解得2b =,代入③得3a =∴()2222333236a b a --=--=-()【点睛】本题主要考查了解二元一次方程组,代数式求解,解题的关键在于能够熟练掌握解二元一次方程组的方法.20.购买全价票6张,半价票30张.【分析】可设购买全价票x 张,半价票y 张,根据题意列二元一次方程组求解即可.【详解】解:购买全价票x 张,半价票y 张,根据题意得:36551052x y x y +=⎧⎪⎨+=⎪⎩解得:630x y =⎧⎨=⎩答:购买全价票6张,半价票30张.【点睛】本题考查了二元一次方程组的实际应用,设出变量,根据题意列出二元一次方程组是解题的关键.21.(1)x y >;(2)当 0m >时,20A B ->,所以2A B >;当0m =时,2A B =;当 0m <时,2A B<【分析】(1)用x y -,得到的结果与0比较大小即可得到答案;(2)先算出2B ,然后算出2A B -得到的结果与0比较大小即可得到答案.【详解】解:(1)∵223x a b =+,23-1y a b =+∴()222233-11x y a b a b a -=+-+=+∵20a ≥∴2110a +≥>即0x y ->.∴x y >.(2)∵232B m m =--∴22264B m m =--∵224A m m =+-∴()222242647AB m m m m m -=+----=,当0m >时,20A B ->,所以2A B >,当0m =时,20A B -=,所以2A B =,当0m <时,20A B -<,所以2A B <.【点睛】本题主要考查了利用作差法比较大小,解题的关键在于能够根据题意进行计算.22.(1)乙种树每棵200元,丙种树每棵300元(2)甲种树600棵,乙种树300棵,丙种树100棵(3)201棵【详解】解:(1)已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,∴乙种树每棵200元,丙种树每棵32×200=300(元).(2)设购买乙种树x 棵,则购买甲种树2x 棵,丙种树(1000-3x )棵.根据题意:200·2x +200x +300(1000-3x )=210000,解得x =300.∴2x =600,1000-3x =100,答:能购买甲种树600棵,乙种树300棵,丙种树100棵.(3)设购买丙种树y 棵,则甲、乙两种树共(1000-y )棵,根据题意得:200(1000-y )+300y ≤210000+10120,解得:y ≤201.2.∵y 为正整数,∴y 最大为201.答:丙种树最多可以购买201棵.(1)利用已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,即可求出乙、丙两种树每棵钱数.(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000-3x)棵,利用(1)中所求树木价格以及现计划用210000元资金购买这三种树共1000棵,得出等式方程,求出即可.(3)设购买丙种树y棵,则甲、乙两种树共(1000-y)棵,根据题意列不等式,求出即可23.29.(1)x<-2;图见解析;-2<x<2;x>a或x<-a;-a<x<a;(2)-5<x<3【分析】(1)根据题意即可得;(2)将2|x+1|的数字因数2化为1后,根据以上结论即可得.【详解】(1)①x<-2②③-2<x<2④x>a或x<-a⑤-a<x<a故答案为:x<-2,,-2<x<2,x>a或x<-a,-a<x <a(2)∵2|x+1|-3<5∴2|x+1|<8∴|x+1|<4∴-4<x+1<4∴-5<x<3∴原绝对值不等式的解集是-5<x<3【点睛】本题考查了一元一次不等式的解法、绝对值的性质;熟练掌握一元一次不等式的解法是解决问题的关键.。
华师大版河南省周口市商水县2017-2018学年七年级(下)期中数学试卷(含解析)
2017-2018学年河南省周口市商水县七年级(下)期中数学试卷一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.)1.已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()A.2B.3C.4D.52.如果不等式(m﹣2)x>m﹣2的解集为x<1,那么()A.m≠2B.m>2C.m<2D.m为任意有理数3.已知关于x的方程3x+a=0的解比关于x的方程5x﹣a=0的解小1,则a的值为()A.﹣B.C.﹣D.4.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A.B.C.D.5.若实数a,b,c在数轴上对应位置如图所示,则下列不等式成立的是()A.ab>cb B.ac>bc C.a+c>b+c D.a+b>c+b6.已知的解是方程ax﹣3y=2的一组解,则a的值是()A.﹣8B.8C.﹣2D.27.已知x=2,y=﹣1,z=﹣3是三元一次方程组的解,则m2﹣7n+3k的值为()A.125B.119C.113D.718.不等式组的解集在数轴上表示为()A.B.C.D.9.若方程组的解是,且a+b=0,则()A.k>﹣2B.k<﹣2C.k=﹣2D.k=210.若方程组的解为x,y,且2<k<4,则x﹣y的取值范围是()A.0<x﹣y<B.0<x﹣y<1C.﹣3<x﹣y<﹣1D.﹣1<x﹣y<0二、填空题(每小题3分,共15分)11.若关于x的一元一次方程(m+2)x﹣4|m|+8=0的解为0,则m的值为.12.不等式2x+9≥3(x+2)的正整数解是.13.已知关于x、y的方程组的解是则a+b=.14.已知不等式的解集为﹣1<x<1,求(a+1)(b﹣1)的值为.15.若不等式组有解,则a的取值范围是.三、解答题(本大题共8个小题,满分75分)16.(8分)解方程(组)(1)(2)17.(9分)解不等式组,并把解集在数轴上表示出来.18.(9分)在代数式ax+by中,当x=5,y=2时,它的值是7;当x=3,y=1时,它的值是4,试求x=7,y=﹣5时代数式ax﹣by的值.19.(9分)若关于x、y的方程组与的解完全相同,求m﹣n的值20.(9分)已知关于x、y的二元一次方程组的解x为非正数,y为非负数,求a的取值范围21.(10分)有一个两位数,个位上的数比十位上的数大5,如果把这个两位数的两个数字的位置对换,那么所得的新数与原数的和是143.求这个两位数.22.(10分)已知方程与关于x的方程有相同的解(m为常数).(1)试求m的值;(2)根据所求m的值,试求4m3+3m2﹣2(m﹣1)的值;(3)根据所求m的值,当|m﹣n|=2时,试求m+n的值.23.(11分)学校计划购买甲、乙两种图书作为“校园读书节”的奖品,已知甲种图书的单价比乙种图书的单价多10元,且购买3本甲种图书和2本乙种图书共需花费130元(1)甲、乙两种图书的单价分别为多少元?(2)学校计划购买这两种图书共50本,且投入总经费不超过1200元,则最多可以购买甲种图书多少本?2017-2018学年河南省周口市商水县七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.)1.已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()A.2B.3C.4D.5【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.【解答】解:①是分式方程,故①错误;②0.3x=1,即0.3x﹣1=0,符合一元一次方程的定义.故②正确;③,即9x+2=0,符合一元一次方程的定义.故③正确;④x2﹣4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误;⑤x=6,即x﹣6=0,符合一元一次方程的定义.故⑤正确;⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误.综上所述,一元一次方程的个数是3个.故选:B.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.如果不等式(m﹣2)x>m﹣2的解集为x<1,那么()A.m≠2B.m>2C.m<2D.m为任意有理数【分析】这是一个含有字母系数的不等式,仔细观察(m﹣2)x>m﹣2,要想求得解集,需把(m ﹣2)这个整体看作x的系数,然后运用不等式的性质求出,给出的解集是x<1,不等号的方向已改变,说明运用的是不等式的性质3,运用性质3的前提是两边都乘以(•或除以)同一个负数,说明m﹣2<0,从而求出m的范围.【解答】解:由不等式(m﹣2)x>m﹣2,当m≠2时,两边除以m﹣2,∵不等式(m﹣2)x>m﹣2的解集为x<1,∴m﹣2<0,m<2,故选:C.【点评】含有字母系数的不等式是近年来中考的热点问题,解题的关键是根据原不等式和给出的解集的情况确定字母系数的取值范围,•为此需熟练掌握不等式的基本性质,它是正确解一元一次不等式的基础.3.已知关于x的方程3x+a=0的解比关于x的方程5x﹣a=0的解小1,则a的值为()A.﹣B.C.﹣D.【分析】分别解出关于x的方程3x+a=0的解和方程5x﹣a=0的解,然后根据已知条件“关于x 的方程3x+a=0的解比方程5x﹣a=0的解大1”列出关于a的一元一次方程,解方程即可.【解答】解:由方程3x+a=0,得x=﹣;由方程5x﹣a=0,得x=;又∵方程3x+a=0的解比方程5x﹣a=0的解小1,∴﹣(﹣)=1,解得a=.故选:D.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.4.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A.B.C.D.【分析】根据等量关系为:两数x,y之和是10;x比y的3倍大2,列出方程组即可.【解答】解:根据题意列方程组,得:.故选:C.【点评】此题主要考查了由实际问题抽象出二元一次方程组,要注意抓住题目中的一些关键性词语“x比y的3倍大2”,找出等量关系,列出方程组是解题关键.5.若实数a,b,c在数轴上对应位置如图所示,则下列不等式成立的是()A.ab>cb B.ac>bc C.a+c>b+c D.a+b>c+b【分析】首先根据有理数a、b,c在数轴上对应点位置确定其符号和大小,然后确定三者之间的关系即可.【解答】解:由数轴可知:a<b<0<c且|a|>|b|>|c|,A、ab>bc,正确;B、ac<bc,故错误;C、a+c<b+c,故错误;D、a+b<c+b,故错误.故选:A.【点评】本题考查了数轴及有理数的加法及乘法,根据数轴上点的位置确定其符号及绝对值的大小即可得到答案.6.已知的解是方程ax﹣3y=2的一组解,则a的值是()A.﹣8B.8C.﹣2D.2【分析】先求出方程组的解,再代入方程,即可求出a.【解答】解:解方程组,得:,将代入ax﹣3y=2,得:﹣a﹣6=2,解得:a=﹣8,故选:A.【点评】本题考查了解二元一次方程组的解,解一元一次方程的应用,能得出关于a的一元一次方程是解此题的关键.7.已知x=2,y=﹣1,z=﹣3是三元一次方程组的解,则m2﹣7n+3k的值为()A.125B.119C.113D.71【分析】把x、y、z的值代入方程组,求出得出的方程组的解,最后代入求出代数式的值即可.【解答】解:∵x=2,y=﹣1,z=﹣3是三元一次方程组的解,∴代入得:,解得:k=﹣2,m=7,n=﹣10,∴m2﹣7n+3k=49+70﹣6=113,故选:C.【点评】本题考查了方程组的解、解三元一次方程组、求代数式的值等知识点,能求出m、n、k 的值是解此题的关键.8.不等式组的解集在数轴上表示为()A.B.C.D.【分析】求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解答】解:不等式组,由①得:x≤1,由②得:x<﹣3,则不等式组的解集为x<﹣3,表示在数轴上,如图所示:,故选:C.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.9.若方程组的解是,且a+b=0,则()A.k>﹣2B.k<﹣2C.k=﹣2D.k=2【分析】解关于x、y的方程组,x,y即可用k表示出来,再根据a+b=0,即可得到关于k的方程,从而求得k的值.【解答】解:,①×2﹣②×3,得:y=4﹣k,将y=4﹣k代入②,得:2x+12﹣3k=k,解得:x=2k﹣6,所以方程组的解为,由题意知a=2k﹣6、b=4﹣k,∵a+b=0,∴2k﹣6+4﹣k=0,解得:k=2,故选:D.【点评】本题主要考查二元一次方程组的解,正确解关于x,y的不等式组是解决本题的关键.10.若方程组的解为x,y,且2<k<4,则x﹣y的取值范围是()A.0<x﹣y<B.0<x﹣y<1C.﹣3<x﹣y<﹣1D.﹣1<x﹣y<0【分析】解出方程组的解,得出x﹣y,再根据2<k<4,可求出x﹣y的取值范围.【解答】解:∵,∴3x+y﹣(x+3y)=k+1﹣3,∴x﹣y=k﹣1,∵2<k<4,∴1<k<2,∴0<k﹣1<1,∴0<x﹣y<1,故选:B.【点评】本题考查了二元一次方程组的解法以及一元一次方程组的解法,是基础知识要熟练掌握.二、填空题(每小题3分,共15分)11.若关于x的一元一次方程(m+2)x﹣4|m|+8=0的解为0,则m的值为2.【分析】根据方程的解的定义把x=0代入解答即可.【解答】解:把x=0代入(m+2)x﹣4|m|+8=0,可得:﹣4|m|+8=0,且m+2≠0,解得:m=2,故答案为:2【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.12.不等式2x+9≥3(x+2)的正整数解是1,2,3.【分析】先解不等式,求出其解集,再根据解集判断其正整数解.【解答】解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.故答案为:1,2,3.【点评】本题考查了一元一次不等式的整数解,会解不等式是解题的关键.13.已知关于x、y的方程组的解是则a+b=.【分析】把方程组的解代入方程组可得到关于a、b的方程组,再利用加减法可求得答案.【解答】解:∵方程组的解是,∴,①+②可得:3a+3b=10,∴a+b=,故答案为:.【点评】本题主要考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题的关键.14.已知不等式的解集为﹣1<x<1,求(a+1)(b﹣1)的值为﹣6.【分析】解出不等式组的解集,根据不等式组的解集为﹣1<x<1,可以求出a、b的值,从而求得(a+1)(b﹣1)的值.【解答】解:由得.∵﹣1<x<1,∴=1,3+2b=﹣1,解得a=1,b=﹣2,∴(a+1)(b﹣1)=(1+1)(﹣2﹣1)=﹣6,故答案为﹣6.【点评】本题考查了解一元一次不等式组.解此类题时要先用字母a,b表示出不等式组的解集,然后再根据已知解集,对应得到相等关系,解关于字母a,b的一元一次方程求出字母a,b的值,再代入所求代数式中即可求解.15.若不等式组有解,则a的取值范围是a>﹣1.【分析】先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.【解答】解:∵由①得x≥﹣a,由②得x<1,故其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1.故答案为:a>﹣1.【点评】考查了不等式组的解集,求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出不等式组的解集并与已知解集比较,进而求得另一个未知数的取值范围.三、解答题(本大题共8个小题,满分75分)16.(8分)解方程(组)(1)(2)【分析】(1)依次去分母、去括号、移项、合并同类项、系数化为1可得;(2)利用加减消元法求解可得.【解答】解:(1)5(3x+1)﹣20=3x﹣2﹣2(2x+3),15x+5﹣20=3x﹣2﹣4x﹣6,15x﹣3x+4x=﹣2﹣6﹣5+20,16x=7,x=;(2)①×2﹣②,得:y=,解得:y=,将y=代入①,得:x+=,解得:x=,所以方程组的解为.【点评】此题考查了解二元一次方程组和一元一次方程,掌握消元的思想和消元的方法是解题的关键,消元的方法有:代入消元法与加减消元法.17.(9分)解不等式组,并把解集在数轴上表示出来.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:解不等式3(x+2)>x+8,得:x>1,解不等式≥,得:x≤4,则不等式组的解集为1<x≤4,将解集表示在数轴上如下:【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.(9分)在代数式ax+by中,当x=5,y=2时,它的值是7;当x=3,y=1时,它的值是4,试求x=7,y=﹣5时代数式ax﹣by的值.【分析】把x与y的两对值代入代数式,得到相应的值,确定出方程组,求出方程组的解得到a 与b的值,即可确定出所求.【解答】解:由题意,得,解得:,则当x=7,y=5时,原式=7×1﹣(﹣5)×1=7+5=12.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(9分)若关于x、y的方程组与的解完全相同,求m﹣n的值【分析】联立两方程中不含m,n的方程求出相同的解,把求出的解代入剩下的方程中求出m与n的值即可.【解答】解:由题意得,解得,∴,解得,∴m﹣n=×22﹣×16=﹣2=﹣.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.20.(9分)已知关于x、y的二元一次方程组的解x为非正数,y为非负数,求a的取值范围【分析】先求出方程组的解,根据已知x为非正数、y为非负数得出不等式组,求出不等式组的解集即可.【解答】解:解方程组得:,∵x为非正数,y为非负数,∴,解得:a≤﹣2,即a的取值范围是a≤﹣2.【点评】本题考查了解二元一次方程组和解一元一次不等式组,能得出关于a的不等式组是解此题的关键.21.(10分)有一个两位数,个位上的数比十位上的数大5,如果把这个两位数的两个数字的位置对换,那么所得的新数与原数的和是143.求这个两位数.【分析】设这个两位数的十位为x,个位为(x+5),根据这个两位数的两个数字的位置对换所得的新数与原数的和是143,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这个两位数的十位为x,个位为(x+5),根据题意得:10x+(x+5)+10(x+5)+x=143,解得:x=4,∴x+5=9.答:这个两位数是49.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.22.(10分)已知方程与关于x的方程有相同的解(m为常数).(1)试求m的值;(2)根据所求m的值,试求4m3+3m2﹣2(m﹣1)的值;(3)根据所求m的值,当|m﹣n|=2时,试求m+n的值.【分析】(1)解出方程,代入方程,可求出m的值;(2)将所求m的值代入可得出代数式的值;(3)根据m的值,求出n的值,继而得到m+n的值.【解答】解:(1)+=1,把x=1代入方程得:m+(1+1)=2,解得:m=﹣1;(2)当m=﹣1时,原式=4×(﹣1)3+3×(﹣1)2﹣2×(﹣1﹣1)=﹣4+3+4=3;(3)∵|m﹣n|=2,∴m﹣n=2或m﹣n=﹣2,∵m=﹣1,∴n=﹣3或n=1,当m=﹣1,n=﹣3时,m+n=﹣4;当m=﹣1,n=1时,m+n=0.【点评】本题考查了同解方程的知识,解答本题的关键是理解方程解的定义.23.(11分)学校计划购买甲、乙两种图书作为“校园读书节”的奖品,已知甲种图书的单价比乙种图书的单价多10元,且购买3本甲种图书和2本乙种图书共需花费130元(1)甲、乙两种图书的单价分别为多少元?(2)学校计划购买这两种图书共50本,且投入总经费不超过1200元,则最多可以购买甲种图书多少本?【分析】(1)根据题意可以列出相应的方程,从而可以解答本题;(2)根据题意可以列出相应的不等式,从而可以求得甲种图书最多能购买多少本.【解答】解:(1)设甲种图书的单价为x元,乙种图书的单价为y元,由题意,得,解得:,答:甲种图书单价为30元,乙种图书单价为20元;(2)设最多可购买甲种图书m本,则购乙种图书(50﹣m)本,由题意,得30m+20×(50﹣m)≤1200,∴最多可购买甲种图书20本.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和一元一次不等式.。
华师大版2017-2018学年初一 数学下册期中测试题及答案
绝密★启用前2017-2018学年度第二学期七年级数学期中测试卷考试范围:7--9章;考试时间:100分钟;题号一 二 三 总分 得分一.选择题(每题3分,共24分)1.下列变形中,正确的是( )A .若5x ﹣6=7,则5x=7﹣6B .若﹣3x=5,则x=﹣C .若+=1,则2(x ﹣1)+3(x+1)=1D .若﹣x=1,则x=﹣32.方程■25x y x -=+是二元一次方程,■是被弄污的x 的系数,请你推断■的值属于下列情况中的( )A .不可能是-1B .不可能是-2C .不可能是1D .不可能是23.小刚准备用自己节省的零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他至少有280元.设x 个月后小刚至少有280元,则可列计算月数的不等式为( )A . 30x+50>280B . 30x ﹣50≥280C . 30x ﹣50≤280D . 30x+50≥2804.用加减消元法解方程组327,23,x y x y +=⎧⎨+=-⎩①②具体解法如下:(1)①-②得2x =4;(2)所以x =2;(3)把x =2代入①得12y =;(4)所以这个方程组的解是2,1.2x y =⎧⎪⎨=⎪⎩其中错误开始于步骤( )A .(4)B .(3)C .(2)D .(1)5.不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是( )A. B.C. D.6.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A .x y 50x y 180=-⎧⎨+=⎩B .x y 50x y 180=+⎧⎨+=⎩C .x y 50x y 90=+⎧⎨+=⎩D .x y 50x y 90=-⎧⎨+=⎩7.若方程组3133x y k x y +=+⎧⎨+=⎩的解,x y 满足01x y <+<,则k 的取值范围是( )A 、40k -<<B 、10k -<<C 、08k <<D 、4k >-8.某种商品进价为140元,出售时标价为220元,由于销售情况不好,商品准备降价出售,但要保证利润率不低于10%,则至多可打( )A.6折B.7折C.8折D.9折二、填空题(每题3分,共21分)9. 用不等式表示“x 的5倍是非负数”得:。
华东师大版2018-2019学年七年级下册期中数学考试卷含答案
x 2 2 x 3②
19、( 8 分)求同时满足不等式 6x+5>5x+7 与不等式 8x+3≤ 4x+43 的整数 x 的值。
2x y k
20、( 8 分)是否存在整数 k,使方程组
的解中, x 大于 1, y 不大于 1?若存
x y1
在,求出 k 的值;若不存在,说明理由。
21、( 10 分)小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共
100 块,共花费
5600 元。已知彩色地砖的单价是 80 元 / 块,单色地砖的单价是 40 元 / 块。
( 1)两种型号的地砖各采购了多少块?
( 2)若厨房也要铺设这两种型号的地砖共 60 块,且采购地砖的费用恰为 3200 元,则彩
色地砖需采购多少块?
搭载
捆试卷。
三、解答题。 ( 8 个小题,共 75 分)
( 1) x 3 3 x 1 2
( 2) 3x-7(x-1)=3-2(x+3)
17、( 10 分)解方程组:
xy4 ( 1) x y x
1 32
y 21x
( 2)
3x 2 y 3
18、( 8 分)解不等式组:
2 x 5 x①
3
,并把它的解集在数轴上表示出来。
y1
5、下列说法中不一定成立的是(
)
A、若 a>b,则 a+c>b+C
B、若 a+c>b+c,则 a>b
C、若 a>b,则 ac2>bc2
D、若 ac2> bc2,则 a> b
6、甲仓库存煤 200t ,乙仓库存煤 70t ,若甲仓库每天运出 15t 煤,乙仓库每天运进 25t 煤,
华师大版2017-2018学年七年级数学下册期中考试试卷及答案
华师大版2017-2018学年七年级数学下册期中考试试卷及答案2017-2018学年区七年级(下册)期中数学试卷一、选择题1.方程1-3x=0的解是()A。
x=-1B。
x=1/3C。
x=-3D。
x=02.若是方程组的解,则a、b值为()A。
a=1.b=2B。
a=2.b=1C。
a=3.b=4D。
a=4.b=33.不等式2x-3<1的解集在数轴上表示为()A。
(1/2.+∞)B。
(-∞。
1/2)C。
(-∞。
5/2)D。
(5/2.+∞)4.把方程-去分母,正确的是()A。
3x-(x-1)=1B。
3x-x-1=1C。
3x-x-1=6D。
3x-(x-1)=65.下列不等式一定成立的是()A。
x+2<x+3B。
5a>4aC。
-a>-2aD。
6.把方程4y+1=x写成用含x的代数式表示y的形式,以下各式正确的是()A。
y=(x-1)/4B。
y=(x+1)/4C。
y=(x-1)/5D。
y=(x+1)/57.某小区在规划设计时,准备在两幢楼房之间,设置一块周长为120米的长方形绿地,并且长比宽多10米。
设绿地的宽为x米,根据题意,下面列出的方程正确的是()A。
2(x-10)=120B。
2[x+(x-10)]=120C。
2(x+10)=120D。
2[x+(x+10)]=1208.植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵。
设男生有x人,女生有y人,根据题意,下列方程组正确的是()A。
3x+2y=52.x+y=20B。
2x+3y=52.x+y=20C。
3x+2y=20.x+y=52D。
2x+3y=20.x+y=52二、填空题9.若关于x的方程3x-5=x+2m的解为x=2,则m的值为-1.10.方程组的解是x=1.y=2.11.不等式3x-2>x-6的最小整数解是3.12.若方程组的解适合x+y=2,则k的值为2.13.XXX销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为35元.14.某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题。
华师大版七年级下册数学期中考试试卷附答案
华师大版七年级下册数学期中考试试题一、单选题1.下列方程中,是一元一次方程的是()A .243x x -=B .0x =C .21x y +=D .11x x-=2.方程12x +﹣23x-=1去分母后正确的是()A .3(x+1)﹣2(2﹣x )=1B .2(x+1)﹣3(2﹣x )=6C .3(x+1)﹣2(2﹣x )=6D .3(x+4)﹣4﹣2x =13.下列方程组中是二元一次方程组的是()A .1325ax y x y -=⎧⎨-+=⎩B .21x y x y -=⎧⎨+=⎩C .32231x y x y -=⎧⎪⎨+=⎪⎩D .3137x y x z -=⎧⎨+=⎩4.已知325x y -=,用含y 的代数式表示x ,则正确的是().A .523y x -=B .352x y -=C .523y x +=D .532x y -=5.若2个单项式23a b x y +与42a b x y -的和仍是单项式,则ab 的值为A .8B .3C .-3D .26.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是()A .11岁B .12岁C .13岁D .14岁7.解方程组272a b a b +=⎧⎨-=⎩①②的最佳方法是()A .代入法消去,a 由②得2ab =+B .代入法消去b ,由①得72b a =-C .加减法消去,a ①-②×2得33b =D .加减法消去b ,①+②得39a =8.10位同学利用“五一国际劳动节”放假时间,为了响应国家“绿化河山,美丽中国”的号召,共植树36棵,其中男生每人植树4棵,女生每人植树3棵.设男生有x 人,女生有y 人,根据题意,列方程正确的是()A .364310x y x y +=⎧⎨+=⎩B .103436x y x y +=⎧⎨+=⎩C .363410x y x y +=⎧⎨+=⎩D .104336x y x y +=⎧⎨+=⎩9.已知2a x =+,1b x =-,且3a b >>,则x 的取值范围是()A .1x >B .4x <C .1x >或4x <D .14x <<10.不等式组2x x m >-⎧⎨≤⎩有4个不同的整数解,则m 的取值范围()A .23m ≤<B .23m <≤C .3m <D .2m<11.下列不等式的变形中,正确的结论有();①若a >b ,则a-3>b-3;②若a >b ,则-3a >-3b ;③若a >b ,则(m 2+1)a >(m 2+1)b ;④若a >b 且m≠0,则-ma <-mb A .1个B .2个C .3个D .4个12.在数轴上表示不等式x -1<0的解集,正确的是()A .B .C .D .二、填空题13.若(a ﹣2)x |a |﹣1﹣2=0是关于x 的一元一次方程,则a =_____.14.已知|2x+y ﹣6|+(x ﹣y+3)2=0,则x =_____,y =_____.15.若关于x 的不等式组13x x m >⎧⎨+>⎩的解集是x>1,则m 的取值范围是_____.16.已知方程组2728x y x y +=⎧⎨+=⎩,则x y +=_______________________.17.《九章算术》有个题目,大意是:“五只雀、六只燕,共重16两,雀重燕轻,互换其中一只,恰好一样重.”设每只雀、燕的重量分别为x 两,y 两,可得方程组是_____________.18.若定义f (x )=3x-2,如f (-2)=3×(-2)-2=-8.下列说法中:①当f (x )=1时,x=1;②对于正数x ,f (x )>f (-x )均成立;③f (x-1)+f (1-x )=0;④当且仅当a=2时,f (a-x )=a-f (x ).其中正确的是______.(填序号)三、解答题19.解下列方程(组)或不等式(组).(1)4(2x+5)﹣(3x ﹣2)=20(2)5(a ﹣2)+10>3a+12(3)()()6232 4.x y x yx y x y +-⎧+=⎪⎨⎪+--=-⎩,①②20.已知满足方程组35123x y a x y a +=+⎧⎨+=⎩①②的x ,y 值之和为4,求a 的值.21.若不等式5(x ﹣2)+8<6(x ﹣1)+7的最小整数解是方程2x ﹣ax =4的解,求a+1a的值.22.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x+y >0,求m 的取值范围.23.工厂某车间有48名工人,平均每人每天加工大齿轮10个或小齿轮15个,已知1个大齿轮与3个小齿轮配成一套,那么怎么安排工人,才能使每天加工的大小齿轮刚好配套?24.某市电力公司对全市用户采用分段计费的方式计算电费,收费标准如下表所示:月用电量不超过180度的部分超过180度但不超过280度的部分超过280度的部分收费标准0.5元/度0.6元/度0.9元/度若某用户7月份的电费是139.2元,则该用户7月份用电为多少度?25.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?26.已知关于x,y的方程满足方程组321 21 x y mx y m+=+⎧⎨+=-⎩.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣4|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.27.学校篮球比赛,初一(1)班和初一(2)班到自选超市去买某种品牌的纯净水,自选超市对某种品牌的纯净水按以下方式销售:购买不超过30瓶,按零售价每瓶3元计算;购买超过30瓶但不超过50瓶,享受零售价的八折优惠;购买超过50瓶,享受零售价的六折优惠,一班一次性购买了纯净水70瓶,二班分两天共购买了纯净水70瓶(第一天购买数量多于第二天)两班共付出了309元.(1)一班比二班少付多少元?(2)二班第一天、第二天分别购买了纯净水多少瓶?参考答案1.B【分析】只含有一个未知数(元),并且未知数的指数是1(次)的整式方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【详解】解:A、最高项的次数是2,故不是一元一次方程,选项不符合题意;B、正确,符合题意;C、含有2个未知数,故不是一元一次方程,选项不符合题意;D、不是整式方程,故不是一元一次方程,选项不符合题意;故选:B.2.C【分析】方程两边同时乘以6去分母得到结果,即可作出判断.【详解】解:方程12123x x+--=去分母后正确的是3(1)2(2)6x x+--=,故选:C.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.3.B【分析】分别根据二元一次方程组的定义对四个选项进行逐一分析即可.【详解】解:A、当a不是常数时,此方程组是三元二次方程组,故A错误;B、符合二元一次方程组的定义,故B正确;C、是分式方程组,故C错误;D、是三元一次方程组,故D错误.故选:B.4.C【分析】把等式3x-2y=5,用含y的代数式来表示x,首先要移项,然后化x的系数为1即可.【详解】解:由原方程移项,得:3x=2y+5,化x的系数为1,得:523y x+=.故选C.【点睛】本题考查了解二元一次方程.解方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其它的项移到另一边,然后合并同类项、系数化1即可.5.B【分析】根据同类项的定义列方程组求出a,b的值,再代入式子计算即可.【详解】解:依题意得:42a ba b+=⎧⎨-=⎩解得:31ab=⎧⎨=⎩∴ab=31⨯=3.故选:B.【点睛】本题考查了合并同类项的知识,解答本题的关键是熟练掌握合并同类项的法则及同类项的定义.6.B【分析】设现在孙子的年龄是x,则爷爷现在的年龄是5x.12年后爷爷的年龄是5x+12,孙子的年龄是12+x,根据题目中的相等关系列出方程求解.【详解】解:设现在孙子的年龄是x岁,根据题意得5x+12=3(12+x),解得x=12,即现在孙子的年龄是12岁.故选B.【点睛】本题考查一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.D 【分析】先观察两方程的特点,因为b 的系数互为相反数,故用加减消元法比较简单.【详解】∵两方程中b 的系数互为相反数,∴用加减消元法比较简单,由①+②得:39a =.故选D .【点睛】本题考查的是解二元一次方程的加减消元法和代入消元法,当两方程中相同的未知数的系数相等或互为相反数时用加减消元法解方程比较简单.8.D 【解析】设男生有x 人,女生有y 人,根据共植树36棵,其中男生每人植树4棵,女生每人植树3棵以及共计10名同学,分别列出方程组成方程组即可.【详解】解:设男生有x 人,女生有y 人,根据题意得:104336x y x y +=⎧⎨+=⎩.故选:D .【点睛】本题考查实际问题抽出二元一次方程组,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.9.D 【解析】【分析】根据题意可得不等式组2313x x +>⎧⎨-<⎩,再解不等式组即可.【详解】解:∵2a x =+,1b x =-,且3a b >>,∴2313x x +>⎧⎨-<⎩,解得:14x <<,故选:D.【点睛】此题主要考查了一元一次不等式组的应用,关键是根据题意列出不等式组,再正确确定不等式组的解集.10.A 【解析】【分析】根据不等式组的整数解个数得出关于m 的不等式组,解之可得.【详解】解:∵不等式组2x x m -⎧⎨≤⎩>有4个整数解,∴整数解为:-1,0,1,2,∴2≤m <3.故选A .【点睛】本题考查的是一元一次不等式组的整数解,根据不等式组的整数解的个数得出关于m 的不等式组是解题的关键.11.B 【解析】【分析】直接利用不等式的基本性质分别分析得出答案.【详解】解:①若a >b ,则a-3>b-3,正确;②若a >b ,则-3a<-3b ,错误;③若a >b ,则(m 2+1)a >(m 2+1)b ,正确;④若a >b 且m≠0,若m<0,则-ma>-mb ,错误.故选B .【点睛】此题主要考查了不等式的性质,正确把握不等式基本性质是解题关键.12.B 【解析】【详解】x -1<0的解集为x <1,它在数轴上表示如图所示,故选B .13.-2【解析】【分析】依据一元一次方程的次数为1,系数不等于零进行判断即可.【详解】解:(a ﹣2)x |a |﹣1﹣2=0是关于x 的一元一次方程,∴a ﹣2≠0,|a|﹣1=1,解得a =﹣2.故答案为:﹣2.【点睛】本题主要考查的是一元一次方程的定义,熟练掌握一元一次方程的概念是解题的关键.14.14【解析】【分析】利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值即可.【详解】解:2|26|(3)0x y x y +-+-+= ,∴263x y x y +=⎧⎨-=-⎩①②,①+②得:33x =,解得:1x =,把1x =代入①得:4y =,则1x =,4y =,故答案为:1;4.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.m≥2【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式x+m>3,得:x>3﹣m ,∵不等式组的解集为x>1,∴3﹣m≤1,解得:m≥2,故答案为:m≥2.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.5【解析】【分析】两方程相加即可求出x+y 的值.【详解】解:2728x y x y +=⎧⎨+=⎩①②①+②得:3x+3y=15,解得x+y=5,故答案为:5.【点睛】此题考查了解二元一次方程组,解题关键是将方程组中两方程相加即可求出答案.17.5616 45x yx y y x+=⎧⎨+=+⎩【解析】【分析】根据题意可得等量关系:五只雀的重量+六只燕的重量=16两;4只雀的重量+1只燕的重量=5只燕的重量+1只雀的重量,根据等量关系列出方程组即可.【详解】设每只雀、燕的重量分别为x两,y两,由题意得:561645x yx y y x+=⎧⎨+=+⎩,故答案为:561645x yx y y x+=⎧⎨+=+⎩.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.18.①②④【解析】【分析】根据新定义,逐个判断即可.【详解】解:①f(x)=3x-2=1,解得:x=1,故①正确;②对于正数x,f(x)=3x-2,f(-x)=-3x-2.∵x>0,∴3x-2>-3x-2,故②正确;③f(x-1)+f(1-x)=3(x-1)-2+3(1-x)-2=-4≠0,故③错误;④f(a-x)=3(a-x)-2=a-(3x-2),解得:a=2.故④正确.故答案为①②④.【点睛】本题是阅读理解题.考查了代数式求值,解一元一次方程等等.解题的关键是理解新定义.19.(1)x=﹣25;(2)a>6;(3)84xy=⎧⎨=-⎩【解析】【分析】(1)根据解一元一次方程的步骤求解即可;(2)根据解不等式的步骤求解即可;(3)用加减消元法解方程组即可;【详解】解:(1)去括号得,8x+20﹣3x+2=20,移项合并同类项得,5x=﹣2,系数化为1得,x=﹣2 5;(2)去括号得,5a﹣10+10>3a+12,移项合并同类项得,2a>12,系数化为1得,a>6;(3)整理得536,3 4. x yx y+=⎧⎨+=-⎩①②①﹣②×5,得﹣14y=56,解得y=﹣4,把y=﹣4代入②,得x﹣12=﹣4,解得x=8.原方程组的解为8,4. xy=⎧⎨=-⎩【点睛】本题考查的是解一元一次方程、二元一次方程组以及一元一次不等式,熟练掌握解题方法和步骤是解题的关键.20.a的值为5【解析】【分析】把a看做已知数表示出方程组的解,代入x+y=4求出a的值即可.【详解】解:①×3﹣②×5得:﹣x=3﹣2a,解得:x=2a﹣3,把x=2a﹣3代入②得:y=2﹣a,代入x+y=4得:2a﹣3+2﹣a=4,解得:a=5,则a的值为5.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.21.4.25【解析】【分析】求出不等式的解集确定出最小整数解,代入已知方程计算求出a的值,即可求出所求.【详解】解:去括号得:5x﹣10+8<6x﹣6+7,移项合并得:﹣x<3,解得:x>﹣3,∴不等式的最小整数解为x=﹣2,把x=﹣2代入方程得:﹣4+2a=4,解得:a=4,则原式=4+14=4.25.【点睛】本题考查了一元一次不等式的整数解,以及一元一次方程的解,熟练掌握不等式及方程的解法是解本题的关键.22.m>﹣2【解析】【分析】两方程相加可得x+y=m+2,根据题意得出关于m的方程,解之可得.【详解】解:将两个方程相加即可得2x+2y=2m+4,则x+y=m+2,根据题意,得:m+2>0,解得m>﹣2.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.16名工人加工大齿轮,32人加工小齿轮【解析】【分析】设需安排x名工人加工大齿轮,则(48﹣x)人加工小齿轮,由1个大齿轮与3个小齿轮配成一套可知小齿轮的个数是大齿轮个数的3倍,从而得出等量关系,就可以列出方程求出即可.【详解】解:设需安排x名工人加工大齿轮,则(48﹣x)人加工小齿轮,由题意得10x×3=15(48﹣x),解得:x=16.所以48﹣x=32.答:需安排16名工人加工大齿轮,32人加工小齿轮.【点睛】本题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.24.262度【解析】【分析】先判断出是否超过120度,然后列方程计算即可.【详解】解:因为180×0.5=90,(280﹣180)×0.6=60,90+60=150,而150>139.2,所以7月份用电是“超过180度但不超过280度”.故设7月份用电x度,由题意,得180×0.5+(x﹣180)×0.6=139.2解得x=262答:该用户7月份用电为262度.【点睛】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,根据等量关系得出方程,难度一般.25.25人加工大齿轮,60人加工小齿轮【解析】【分析】设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,根据加工大齿轮人数+加工小齿轮人数=85和加工的大齿轮总数:加工的小齿轮总数=2:3列出方程组求解即可.【详解】解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,根据题意得:8516:102:3 x yx y+=⎧⎨=⎩,解得:2560 xy=⎧⎨=⎩.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.【点睛】本题考查了二元一次方程组的实际应用—产品配套问题,解题的关键是能根据2个大齿轮和3个小齿轮配成一套找出相等关系,据此正确列出方程.26.(1)m=5;(2)1或2m﹣7;(3)s的最小值为﹣3,最大值为9.【解析】【分析】(1)把m看做已知数表示出方程组的解,得到x与y,代入x-y=2求出m的值即可;(2)根据x,y为非负数求出m的范围,判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果;(3)把表示出的x与y代入s,利用一次函数性质求出最大值与最小值即可.【详解】(1)32121x y mx y m+=+⎧⎨+=-⎩①②,①﹣②×2得:﹣x=﹣m+3,即x=m﹣3,把x=m﹣3代入②得:2m﹣6+y=m﹣1,即y=﹣m+5,把x=m﹣3,y=﹣m+5代入x﹣y=2中,得:m﹣3+m﹣5=2,即m=5;(2)由题意得:3050 mm-≥⎧⎨-+≥⎩,解得:3≤m≤5,当3≤m≤4时,m﹣3≥0,m﹣4≤0,则原式=m﹣3+4﹣m=1;当4<m≤5m﹣3≥0,m﹣4≥0,则原式=m﹣3+m﹣4=2m﹣7;(3)根据题意得:s=2m﹣6+3m﹣15+m=6m﹣21,∵3≤m≤5,∴当m=3时,s=﹣3;m=5时,s=9,则s的最小值为﹣3,最大值为9.【点睛】此题考查了二元一次方程组的解,解一元一次不等式组及一次函数的性质,熟练掌握运算法则是解本题的关键.27.(1)57元;(2)第一天买了45瓶,第二天买了25瓶【解析】【分析】(1)由题意知道一班享受六折优惠,根据总价=单价×数量,可以求出一班的花费,由两个班的总花费,则可以求出二班的花费,两者相减即可得出结论.(2)先设第一天购买了x瓶,则得出第二天购买(70-x)瓶,由第一天多于第二天,有三种可能:①两天均是超过30瓶但不超过50瓶,享受八折优惠;②第一天超过50瓶,享受六折优惠,第二天不超过30瓶,不享受优惠;③第一天超过30瓶但不超过50瓶,享受八折优惠,第二天不超过30瓶,不享受优惠.根据三种情况,总价=单价×数量,列出方程求解即可.【详解】解:(1)∵一班一次性购买了纯净水70瓶,∴享受六折优惠,即一班付出:70×3×60%=126元,∵两班共付出了309元,∴二班付出了:309-126=183元,∴一班比二班少付多:183-126=57元.答:一班比二班少付57元.(2)设第一天购买了x瓶,则得出第二天购买(70-x)瓶,①两天均是超过30瓶但不超过50瓶,享受八折优惠,列出方程得:[x+(70-x)]×3×80%=183元,此方程无解.②第一天超过50瓶,享受六折优惠,第二天不超过30瓶,不享受优惠,列出方程得:x×3×60%+(70-x)×3=183,求解得出x=22.5,不是整数,不符合题意,故舍去.③第一天超过30瓶但不超过50瓶,享受八折优惠,第二天不超过30瓶,不享受优惠,列出方程得:x×3×80%+(70-x)×3=183,解得:x=45,即70-45=25.答:第一天购买45瓶,第二天购买25瓶.【点睛】本题考查了一元一次方程的运用.要注意此题中的情况不止一种,分情况讨论.。
华师大版2017-2018学年七年级(下)期中检测数学试卷(含答案)
2017-2018学年度下学期七年级期中数学检测试卷班级__________姓名____________总分___________一、选择题1.下面不等式不一定成立的是( )A. x >-xB. 3≥-2C. x 2-1<x 2+1D. -x -2<-x2.用加减法解方程组x +y =-3(1),3x +y =6(2),由(2)-(1)消去未知数y ,所得到的一元一次方程是( )A. 2x =9B. 2x =3C. -2x =-9D. 4x =33.不等式组 215,3112x x x -<⎧⎪⎨-+≥⎪⎩ 的解集在数轴上表示正确的是( )A.B.C.D.4.若甲数为x ,乙数为y ,则“甲数的3倍比乙数的一半少2”,列成方程是( ) A. 1322x y += B. 1322x y -= C. 1322y x -= D. 1232y x += 5.当1≤x ≤3时,mx +2>0,则m 的取值范围是( ) A. m >-B. m >-2C. m >-且m ≠0 D. m >-2且m ≠06.如果单项式22m nxy +与4423m n x y --是同类项,则m 、n 的值为( )A. m =-1 , n =2.5;B. m =1 , n =1.5C. m =2 , n =1D. m =-2, n =-1 7.若关于x 的不等式组的整数解共有5个,则m 的取值范围是( )A. 7≤m ≤8B. 7≤m <8C. 7<m ≤8D. 7<m <8 8.把方程213148x x--=-去分母后,正确的结果是( ) A. 2x -1=1-(3-x ) ;B. 2(2x -1)=1-(3-x ) ;C. 2(2x -1)=8-3-x ;D. 2(2x -1)=8-3+x9.已知方程组352{ 23x y k x y k+=++=,x 与y 的值之和等于2,则k 的值为( )A. 4B. -4C. 3D. -310.一个长方形的长比宽多3 cm ,如果把它的长和宽分别增加2 cm 后,面积增加14 cm 2,设原长方形宽为x cm ,依题意列方程应为( )A. (x +3)(x +2)-x 2=14B. (x +2)(x +5)-x 2=14C. (x +2)(x +5)-x (x +3)=14D. x (x +2)=1411.若a :2=b :3=c :7,且a ﹣b +c =12,则2a ﹣3b +c 等于( ) A. 2 B. 4 C. 37D. 12 12.若关于x 的不等式0{721x m x -<-≤的整数解共有4个,则m 的取值范围是( )A. 67m <<B. 67m ≤<C. 67m ≤≤D. 67m <≤ 二、填空题13.在方程2x - 5y =1中,用含x 的代数式表示y 为________________________14.我校七年级(2)班举办了一次集邮展览,展出的邮票张数比每人4张多14张,比每人5张少26张.设这个班共有x 名学生,则可列方程为 ;15.若(x -y +1)2与27x y +-的值互为相反数,则2232x xy y -+的值为_________. 16.已知数列1121123211234321,,,,,,,,,,,,,,,1222333334444444…,记第一个数1a ,第二个数为2a ,…,第n 个数为n a ,若n a 是方程131123x x +-=+的解,则n =___________. 三、解答题 17.解下列方程 221146x x +--=18.解下列方程组(1)(2)19.若关于x,y的二元一次方程组的解是,则关于x, y的方程组的解是多少? 此题解法上的技巧是什么? 试根据两个方程组的特点加以分析并求解。
2018-2019学年华师大版七年级数学下册期中测试题及答案
2018-2019学年七年级(下)期中数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,请将正确答案的代号填入题后括号内.1.二元一次方程组的解是()A.B.C.D.2.不等式﹣>1的解是()A.x<﹣5B.x>﹣10C.x<﹣10D.x<﹣83.下列四个式子中,是一元一次方程的是()A.1+2+3+4>8B.2x﹣3C.x=1D.|1﹣0.5x|=0.5y4.下列变形中,正确的是()A.若5x﹣6=7,则5x=7﹣6B.若﹣3x=5,则x=﹣C.若+=1,则2(x﹣1)+3(x+1)=1D.若﹣x=1,则x=﹣35.由方程组可得出x与y的关系是()A.x+y=1B.x+y=﹣1C.x+y=7D.x+y=﹣76.若x、y满足方程组,则x﹣y的值等于()A.﹣1B.1C.2D.37.若x>y,则下列式子错误的是()A.1﹣2x>1﹣2y B.x+2>y+2C.﹣2x<﹣2y D.8.有加减法解方程时,最简捷的方法是()A.①×4﹣②×3,消去x B.①×4+②×3,消去xC.②×2+①,消去y D.②×2﹣①,消去y9.设□△○表示三种不同的物体,用天平比较它们质量的大小,情况如图,那么这三种物体按质量从大到小的顺序为()A.□△○B.□○△C.△○□D.△□○10.甲、乙两人按2:5的投资比例开办了一家公司,约定除去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,则甲、乙两人分别应得()A.2000元、5000元B.5000元、2000元C.4000元、10000元D.10000元、4000元二、填空题(每小题3分,共15分)11.以x=1为解的一元一次方程是(写出一个方程即可).12.甲、乙两站相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km.已知慢车先行1.5h,快车再开出,则快车开出h与慢车相遇.13.已知,则=.14.已知关于x的不等式组的解集为x>1,则a的取值范围是.15.学生问老师:“您今年多大?”教师风趣地说:“我像你这么大时,你才2岁;你到我这么大时,我已经38岁了.”教师今年岁.三、解答题(本大题共8个小题,满分64分)16.(8分)解方程(1)3x﹣2=l﹣2(x+l)(2)17.(10分)解下列二元一次方程组(1)(2)18.(10分)解下列不等式组(1)解不等式组,并把解集在数轴上表示出来.(2)求不等式组2≤3x﹣7<8的所有整数解.19.(8分)聪聪在对方程①去分母时,错误的得到了方程2(x+3)﹣mx﹣1=3(5﹣x)②,因而求得的解是x=,试求m的值,并求方程的正确解.20.(9分)已知方程组,由于甲看错了方程(1)中的a得到方程组的解为,乙看错了方程(2)中的b得到方程组的解为.若按正确的a,b计算,求原方程组的解.21.(9分)某家具店出售桌子和椅子,单价分别为300元一张和60元一把,该家具店制定了两种优惠方案:(1)买一张桌子赠送两把椅子;(2)按总价的87.5%付款,某单位需购买5张桌子和若干把椅子(不少于10把).如果已知要购买x把椅子,讨论该单位购买同样多的椅子时,选择哪一种方案更省钱?22.(10分)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一.以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二.个人所得税纳税税率如下表所示:(1)若甲、乙两人的每月工资收入额分别为4000元和6000元,请分别求出甲、乙两人的每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额应为多少?五、标题23.(11分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案:(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,请将正确答案的代号填入题后括号内.1.二元一次方程组的解是()A.B.C.D.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=9,即x=3,把x=3代入①得:y=0,则方程组的解为,故选:B.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.不等式﹣>1的解是()A.x<﹣5B.x>﹣10C.x<﹣10D.x<﹣8【分析】不等式去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去分母得:3(x﹣1)﹣(4x+1)>6,去括号得:3x﹣3﹣4x﹣1>6,移项合并得:﹣x>10,解得:x<﹣10.故选:C.【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.3.下列四个式子中,是一元一次方程的是()A.1+2+3+4>8B.2x﹣3C.x=1D.|1﹣0.5x|=0.5y【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、不是方程,故不是一元一次方程;B、不是方程,故不是一元一次方程;C、是一元一次方程;D、含有2个未知数,故不是一元一次方程.故选:C.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.下列变形中,正确的是()A.若5x﹣6=7,则5x=7﹣6B.若﹣3x=5,则x=﹣C.若+=1,则2(x﹣1)+3(x+1)=1D.若﹣x=1,则x=﹣3【分析】分别利用等式的基本性质判断得出即可.【解答】解:A、若5x﹣6=7,则5x=7+6,故此选项错误;B、若﹣3x=5,则x=﹣,故此选项错误;C、若+=1,则2(x﹣1)+3(x+1)=6,故此选项错误;D、若﹣x=1,则x=﹣3,此选项正确.故选:D.【点评】此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解题关键.5.由方程组可得出x与y的关系是()A.x+y=1B.x+y=﹣1C.x+y=7D.x+y=﹣7【分析】先把方程组化为的形式,再把两式相加即可得到关于x、y的关系式.【解答】解:原方程可化为,①+②得,x+y=7.故选:C.【点评】本题考查的是解二元一次方程组的加减消元法,比较简单.6.若x、y满足方程组,则x﹣y的值等于()A.﹣1B.1C.2D.3【分析】方程组两方程相减即可求出x﹣y的值.【解答】解:,②﹣①得:2x﹣2y=﹣2,则x﹣y=﹣1,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.若x>y,则下列式子错误的是()A.1﹣2x>1﹣2y B.x+2>y+2C.﹣2x<﹣2y D.【分析】根据不等式的性质3,不等式的性质1,可判断A,根据不等式的性质1,可判断B,根据不等式的性质3,可判断C,根据不等式的性质2,可判断D.【解答】解:A、1﹣2x<1﹣2y,故A错误;B、不等式两边都加上同一个数或整式,不等号的方向不变,故B正确;C、不等式的两边都乘或都除以同一个负数,不等号的方向改变,故C正确;D、不等式两边都乘或都除以同一正数,不等号的方向不变,故D正确;故选:A.【点评】本题考查了不等式的性质,不等式的两边都乘或都除以同一个负数,不等号的方向改变.8.有加减法解方程时,最简捷的方法是()A.①×4﹣②×3,消去x B.①×4+②×3,消去xC.②×2+①,消去y D.②×2﹣①,消去y【分析】将②中y的系数化为与①中y的系数相同,相减即可.【解答】解:由于②×2可得与①相同的y的系数,且所乘数字较小,之后﹣①即可消去y,最简单.故选:D.【点评】本题考查了解二元一次方程组,构造系数相等的量是解题的关键.9.设□△○表示三种不同的物体,用天平比较它们质量的大小,情况如图,那么这三种物体按质量从大到小的顺序为()A.□△○B.□○△C.△○□D.△□○【分析】通过一图知道□>△二图知道△=2○,进而求出三种物体质量从大到小的顺序.【解答】解:通过一图知道□>△二图知道△=2○,所以□>△>○,即□△○故选:A.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂图列出不等式关系式即可求解.10.甲、乙两人按2:5的投资比例开办了一家公司,约定除去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,则甲、乙两人分别应得()A.2000元、5000元B.5000元、2000元C.4000元、10000元D.10000元、4000元【分析】此题的等量关系是甲、乙所得利润和为14000元,解题的关键是抓住此类题目的设法,此题可设甲、乙可获得利润分别是2x元、5x元,列方程即可.【解答】解:设甲、乙可获得利润分别是2x元、5x元,2x+5x=14000,解得x=2000.即甲、乙可获得利润分别是4000元、10000元.故选:C.【点评】考查了一元一次方程的应用,此题贴近于学生生活实际,利于学生理解,但要把握好比例问题中未知数得设法,设一份为x元,则甲、乙可获得利润分别是2x元、5x元.二、填空题(每小题3分,共15分)11.以x=1为解的一元一次方程是2x﹣2=0(写出一个方程即可).【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程;它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:∵x=1,∴一元一次方程ax+b=0中a是不等于0的常数,b是任意常数;所以,可列方程如:2x﹣2=0等.故答案为:2x﹣2=0.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.12.甲、乙两站相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km.已知慢车先行1.5h,快车再开出,则快车开出2h与慢车相遇.【分析】设快车开出xh后与慢车相遇,等量关系为:慢车走的路程+快车走的路程=300km,据此列方程求解.【解答】解:设快车开出xh后与慢车相遇,由题意得,40(1.5+x)+80x=300,解得:x=2,即快车开出2h与慢车相遇.故答案为:2.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.13.已知,则=﹣3.【分析】①﹣②得:x+3y=0,代入原式计算即可求出值.【解答】解:,①﹣②得:x+3y=0,∴x=﹣3y则原式=﹣3,故答案为:﹣3【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.已知关于x的不等式组的解集为x>1,则a的取值范围是a≤1.【分析】根据不等式组的解集是同大取大,可得答案.【解答】解:由关于x的不等式组的解集为x>1,得a≤1,故答案为:a≤1.【点评】本题考查了不等式组的解集,不等式组的解集是:同大取大,同小取小,大小小大中间找,大大小小无处找.15.学生问老师:“您今年多大?”教师风趣地说:“我像你这么大时,你才2岁;你到我这么大时,我已经38岁了.”教师今年26岁.【分析】本题中明显的等量关系有两个:学生现在的年龄﹣年龄差=2;老师现在的年龄+年龄差=38,据此可以现设学生和老师现在的年龄为x、y,再列方程组求解【解答】解;设老师现在x岁,学生现在y岁,则解得:即老师现在26岁.故答案为:26.【点评】本题考查了二元一次方程组的应用,列方程组解应用题分为以下几步:(1)仔细阅读,弄清题意和题目中的数量关系;(2)根据数量关系,列出等式;(3)解答.三、解答题(本大题共8个小题,满分64分)16.(8分)解方程(1)3x﹣2=l﹣2(x+l)(2)【分析】(1)根据去括号,移项、合并同类项,系数化为1,可得答案.(2)根据去分母、去括号,移项、合并同类项,系数化为1,可得答案.【解答】解:(1)去括号,得3x﹣2=1﹣2x﹣2,移项,得3x+2x=1﹣2+2,合并同类项,得5x=1,系数化为1,得x=;(2)去分母,得2(2x+1)﹣(5x﹣1)=6去括号,得4x+2﹣5x+1=6移项,得4x﹣5x=6﹣2﹣1合并同类项,得﹣x=3系数化为1,得x=﹣3.【点评】本题考查了解一元一次方程,去分母是解题关键,不含分母的项要乘分母的最小公倍数,分子要加括号.17.(10分)解下列二元一次方程组(1)(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),①+②得:5x=10,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2),①×3+②得:10a=5,解得:a=,把a=代入①得:b=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(10分)解下列不等式组(1)解不等式组,并把解集在数轴上表示出来.(2)求不等式组2≤3x﹣7<8的所有整数解.【分析】(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.(2)将不等式整理成一般形式,分别求出每一个不等式的解集,根据大小小大中间找确定不等式组的解集,从而得出答案.【解答】解:(1)解不等式①,得:x≥1,解不等式②,得:x<4,则不等式组的解集为1≤x<4,将不等式组的解集表示在数轴上如下:(2),解不等式①,得:x≥3,解不等式②,得:x<5,所以不等式组的解集为3≤x<5,则不等式组的整数解有3、4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(8分)聪聪在对方程①去分母时,错误的得到了方程2(x+3)﹣mx﹣1=3(5﹣x)②,因而求得的解是x=,试求m的值,并求方程的正确解.【分析】将x=代入方程②,整理即可求出m的值,将m的值代入方程①即可求出正确的解.【解答】解:把x=代入方程②得:2(+3)﹣m﹣1=3(5﹣),解得:m=1,把m=1代入方程①得:﹣=,去分母得:2(x+3)﹣x+1=3(5﹣x),去括号得:2x+6﹣x+1=15﹣3x,移项合并得:4x=8,解得:x=2,则方程的正确解为x=2.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.20.(9分)已知方程组,由于甲看错了方程(1)中的a得到方程组的解为,乙看错了方程(2)中的b得到方程组的解为.若按正确的a,b计算,求原方程组的解.【分析】把甲的结果代入(2)求出b的值,把乙的结果代入(1)求出a的值,确定出方程组,求出解即可.【解答】解:把代入(2)中得:﹣12﹣b=﹣2,解得:b=﹣10,把代入(1)中得:a+20=15,解得:a=﹣5,方程组为,即,①×2+②得:7y=5,解得:y=,把y=代入①得:x=﹣,则方程组的解为.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.21.(9分)某家具店出售桌子和椅子,单价分别为300元一张和60元一把,该家具店制定了两种优惠方案:(1)买一张桌子赠送两把椅子;(2)按总价的87.5%付款,某单位需购买5张桌子和若干把椅子(不少于10把).如果已知要购买x把椅子,讨论该单位购买同样多的椅子时,选择哪一种方案更省钱?【分析】设需要购买x(x≥10)把椅子,需要花费的总钱数为y元,分别按照两种方案表示出y,判断即可.【解答】解:设需要购买x(x≥10)把椅子,需要花费的总钱数为y元,第一种方案为y1=300×5+60(x﹣10)=1500+60x﹣600=900+60x;第二种方案为y2=(300×5+60x)×87.5%=1312.5+52.5x,两种方案花的钱数相等时,则有900+60x=1312.5+52.5x,解得:x=55,则当购买55把椅子时,两种方案花的钱数相等;当购买的椅子大于55把时,选择第二种方案;当购买的椅子大于等于10把而小于55把时,选择第一种方案.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.22.(10分)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:一.以个人每月工资收入额减去3500元后的余额作为其每月应纳税所得额;二.个人所得税纳税税率如下表所示:(1)若甲、乙两人的每月工资收入额分别为4000元和6000元,请分别求出甲、乙两人的每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月的工资收入额应为多少?【分析】(1)根据月收入超过3500元起,超过部分在1500元内的部分,应按照3%的税率缴纳个人所得税,甲的月工资4000元,应缴税的部分是4000﹣3500=500元,再算出500元应缴纳的税款即可;超过部分在1500元至4500元的部分,应按照10%的税率缴纳个人所得税,乙的月工资6000元,应缴税的部分是6000﹣3500=2500元,再算出2500元应缴纳的税款即可;(2)根据个人所得税纳税税率表可知,丙每月的工资收入额应为超过4500元至9000元的部分,设丙每月的工资收入额应为x元,根据丙每月缴纳的个人所得税为95元列出方程即可求解.【解答】解:(1)(4000﹣3500)×3%=500×3%=15(元),1500×3%+(6000﹣3500﹣1500)×10%=45+1000×10%=45+100=145(元).答:甲每月应缴纳的个人所得税为15元;乙每月应缴纳的个人所得税145元.(2)设丙每月的工资收入额应为x元,则1500×3%+(x﹣3500﹣1500)×10%=95,解得x=5500.答:丙每月的工资收入额应为5500元.【点评】考查了一元一次方程的应用,解决本题关键是理解纳税的办法,找出应纳税的部分,然后根据基本的数量关系求解.五、标题23.(11分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案:(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.【分析】(1)根据2辆A型车和1辆B型车装满货物=10吨;1辆A型车和2辆B型车装满货物=11吨,列出方程组即可解决问题.(2)由题意得到3a+4b=26,根据a、b均为正整数,即可求出a、b的值.(3)求出每种方案下的租金数,经比较、分析,即可解决问题.【解答】解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货λ吨、μ吨,由题意得:,解得:λ=3,μ=4.故1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨.(2)由题意和(1)得:3a+4b=26,∵a、b均为非负整数,∴或,∴共有2种租车方案:①租A型车6辆,B型车2辆,②租A型车2辆,B型车5辆.(3)方案①的租金为:6×100+2×120=840(元),方案②的租金为:2×100+5×120=800(元),∵840>800,∴最省钱的租车方案为方案②,租车费用为800元.【点评】该题主要考查了列二元一次方程组或二元一次方程来解决现实生活中的实际应用问题;解题的关键是深入把握题意,准确找出命题中隐含的数量关系,正确列出方程或方程组来分析、推理、解答.。
【新课标】2018年最新华东师大版七年级数学下册期中测试模拟试题及答案解析
2017-2018学年(新课标)华东师大版七年级下册期中考试数学试题姓名: ,成绩: ;一、选择题(9个题,共27分)1、(2015•扬州)已知x=2是不等式(x ﹣5)(ax ﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a 的取值范围是( ) A .a >1B .a ≤2C .1<a ≤2D .1≤a ≤22、(2015绵阳)若+|2a ﹣b+1|=0,则(b ﹣a )2015=( )A .﹣1B .1C .52015D .﹣520153、(2015春哈尔滨校级月考)如果方程组的解与方程组的解相同,则a 、b 的值是( )A.B.C.D.4、(2016富顺县校级模拟)已知关于x 、y 的不等式组,若其中的未知数x 、y 满足x+y >0,则m 的取值范围是( ) A .m >﹣4 B .m >﹣3 C .m <﹣4 D .m <﹣35、(2015•永州)定义[x]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x ,下列式子中错误的是( )A .[x]=x (x 为整数)B .0≤x ﹣[x]<1C .[x+y]≤[x]+[y]D .[n+x]=n+[x](n 为整数)6、韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A 、B 两个出租车队,A 队比B 队少3辆车,若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B 队的车,每辆车坐4人,车不够,每辆车坐5人,有的车未坐满,则A 队有出租车( )A.11辆B.10辆C.9辆D.8辆7、甲乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%。
若设甲乙两种商品原来的单价分别为X 元、Y 元,则下列方程组正确的是( )⎩⎨⎧+=-++=+%)201(100%)401(%)101(100y x y x A 、⎩⎨⎧⨯=++-=+%20100%)401(%)101(100y x y x B 、 ⎩⎨⎧+=++-=+%)201(100%)401(%)101(100y x y x c 、 ⎩⎨⎧⨯=-++=+%20100%)401(%)101(100y x y x D 、 8、一批树苗按下列方法依次由各班领取:第一班取100棵和余下的101,第二班取200棵和余下的101,第三班取300棵和余下的101,……最后树苗全部被取完,且各班的树苗都相等。
华师大版七年级下册数学期中考试试题及答案
华师大版七年级下册数学期中考试试卷一、单选题1.下列方程中,解是x =4的是()A .3x +1=11B .–2x –4=0C .3x –8=4D .4x =12.下列方程的变形正确的有()①360x -=,变形为20x -=②533x x +=-,变形为42=x ③325x =,变形为310x =④42x =-,变形为2x =-A .①③B .③④C .①②④D .①②③3.一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元.若设这件羽绒服的成本是x 元,根据题意,可得到的方程是A .x(1+50%)⨯80%=x-250B .x(1+50%)⨯80%=x+250C .(1+50%x)⨯80%=x-250D .(1+50%x)⨯80%=250-x 4.对于方程5112232x x -+-=,去分母后得到的方程是()A .51212x x--=+B .()516312x x --=+C .()2(51)6312x x --=+D .()2(51)12312x x --=+5.不等式组10,{360x x -≤-<的解集在数轴上表示正确的是()A .B .C .D .6.已知方程组2{231y x m y x m -=+=+的解x 、y 满足2x+y≥0,则m 的取值范围是()A .m≥-43B .m≥43C .m≥1D .-43≤m≤17.若a>b ,且c 为有理数,则()A .ac>bc B .ac<bc C .ac 2>bc 2D .ac 2≥bc 28.如果(1)1m x m +<+的解集是1x >,那么m 的取值范围是()A .0m <B .1m <-C .1m >-D .m 是任意有理数9.若不等式组0422x a x x +≥⎧⎨->-⎩有解,则实数a 的取值范围是()A .2a ≥-B .2a <-C .2a ≤-D .2a >-10.某人要完成2.1千米的路程,并要在不超过18分钟的时间内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑()A .3分钟B .4分钟C .4.5分钟D .5分钟二、填空题11.已知方程(a ﹣4)x |a|﹣3+2=0是关于x 的一元一次方程,则a=___12.若对213+x 的值比223x -的值小1,则x 的值为___________.13.21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a -b 的值是______.14.对于实数a ,符号[a]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.如果[a]=-2,那么a 的取值范围是_____.15.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发相向而行,已知甲车速度为120千米/时,乙车速度为80千米/时,经过___小时两车相距50千米.三、解答题16.解方程:(1)2(2)3(41)9(1)x x x ---=-;(2)312143x x -+-=-.17.解方程组:(1)35821x y x y +=⎧⎨-=⎩①②;(2)23(2)622x yyx+-=⎧⎪⎨-=⎪⎩①②.18.解不等式(组),并把它们的解集在数轴上表示出来.(1)5x-12≤2(4x-3);(2)3(2)4 1213x xx x--≤⎧⎪+⎨>-⎪⎩.19.已知关于x、y的二元一次方程组26322x y mx y m+=⎧⎨-=⎩的解满足二元一次方程435x y-=,求m的值.20.某商场以每件120元的价格购进了某种品牌的衬衫600件,并以每件140元的价格销售了500件,由于天气原因,商场准备采取促销措施,问剩下的衬衫促销价格定为每件多少元时,销售完这批衬衫恰好盈利10800元?21.如图,在长为10米,宽为8米的长方形空地上,沿平行于长方形边的方向分割出三个形状、大小完全一样的小长方形花圃(阴影部分).求其中一个小长方形的长和宽.22.某市绿化提质改造工程如火如荼地进行,一施工队计划购买甲、乙两种树苗共600棵对某标段道路进行绿化改造,已知甲种树苗每棵100元,乙种树苗每棵200元.(1)若购买两种树苗的总金额为70000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?23.某商店需要购进A型、B型两种节能台灯共160盏,其进价和售价如下表所示.类型A型B型价格进价/(元/盏)1535销售价/(元/盏)2045(1)若商店计划销售完这批台灯后能获利1100元,问A型、B型两种节能台灯应分别购进多少盏(注:获利=售价-进价)?(2)若商店计划投入资金少于4300元,且销售完这批台灯后获利多于1260元,请问有哪几种进货方案?并直接写出其中获利最大的进货方案.参考答案1.C【分析】把x=4代入各方程检验即可.【详解】把x=4代入各方程检验即可.经检验,解是x=4的方程是3x–8=4.故选C.【点睛】本题考查了方程的解,方程的解就是能使方程左右两边相等的未知数的值.2.A【分析】根据等式的性质:等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式进行分析即可.【详解】解:①3x-6=0,两边都除以3变形为x-2=0,正确;②x+5=3-3x,移项、合并同类项可变形为4x=-2,错误;③325x=,两边都乘以5可变形为3x=10,正确;④4x=-2,两边都除以4可变形为x=12-,错误;故选:A.【点睛】此题主要等式的性质,关键是掌握等式的性质定理.3.B【详解】标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%,则可列方程为:(1+50%)x×80%=x+250,故选B.4.D【分析】方程的两边同时乘以各分母的最小公倍数6即可变形.【详解】解:方程的两边同时乘以6,得2(5x-1)-12=3(1+2x).故选:D.【点睛】本题考查了解一元一次方程.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.5.D试题分析:10{360xx-≤-<①②,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.6.A【详解】试题分析:2{231y x my x m-=+=+①②,②-①×2得,7x=-m+1,解得x=17m-+---③;把③代入①得,y=527m+---④;∵2x+y≥0,∴17m-+×2+527m+≥0,解得m≥-4 3.故选A.考点:1.二元一次方程组,2.一元一次不等式7.D【分析】根据不等式的性质,可得答案.【详解】A、c≤0时,ac≤bc,故A错误;B、c=0时,ac=bc,故B错误;C、c2≥0,ac2≥bc2,故C错误;D、c2≥0,ac2≥bc2,故D正确.【点睛】本题考查了不等式的性质,注意要考虑c 等于零时的情况.8.B【分析】已知()11m x m +<+的解集是1x >,根据不等式的基本性质3可得m+1<0,解不等式即可求得m 的取值范围.【详解】∵()11m x m +<+的解集是1x >,∴m+1<0,∴1m <-.故选B.【点睛】本题考查了不等式的基本性质,熟知不等式两边同乘以(或除以)同一个负数,不等号的方向改变是解决问题的关键.9.D【详解】试题解析:0422x a x x +≥⎧⎨->-⎩①②由①得:x a ≥-.由②得:224x x -->--36x ->-2x <.因不等式组有解:可画图表示为:由图可得使不等式组有解的a 的取值范围为:2a -<.∴2a >-.故选D .【分析】设这人跑了x 分钟,则走了(18-x )分钟,根据速度×时间=路程结合要在18分钟内到达,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,取其中的最小值即可得出结论.【详解】解:设这人跑了x 分钟,则走了(18-x )分钟,根据题意得:210x+90(18-x )≥2100,解得:x≥4,答:这人完成这段路程,至少要跑4分钟.故选:B .【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.11.-4【分析】根据一元一次方程的定义,得出|a|-3=1,注意a-4≠0,进而得出答案.【详解】由题意得:|a|-3=1,a-4≠0,解得:a=-4.故答案为-4.【点睛】此题主要考查了一元一次方程的定义,正确把握定义得出是解题关键.12.135-【详解】试题解析:根据题意列方程为:3122 1.23x x +-=-去分母得:3(3x +1)=2(2x −2)−6,去括号得,9x +3=4x −4−6,移项、合并得:5x=−13,系数化为1得:13.5 x=-故答案为13. 5 -13.-1【分析】由题意把21xy=⎧⎨=⎩代入方程组71ax byax by+=⎧⎨-=⎩即可得到关于a、b的方程组,即可求得a、b的值,从而可以求得结果【详解】解:由题意得2721a ba b+=⎧⎨-=⎩,解得23ab=⎧⎨=⎩,则1a b-=-.【点睛】计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.14.−2≤a<−1【详解】∵符号[a]表示不大于a的最大整数,[a]=−2,∴−2≤a<−1,故答案为−2≤a<−1.【点睛】此题考查了取整计算、解一元一次不等式组、求整数解等知识,主要考查学生的阅读能力和计算能力.解题的关键是理解新定义将方程转化为不等式组求解.15.2或2.5【分析】设经过x小时两车相距50千米,分甲、乙两车相遇前和甲、乙两车相遇后两种情况,再根据路程、时间、速度建立方程,解方程即可得.【详解】解:设经过x小时两车相距50千米,由题意,分以下两种情况:(1)在甲、乙两车相遇前,则4501208050x x --=,解得2x =;(2)在甲、乙两车相遇后,则1208045050x x +-=,解得 2.5x =;综上,经过2小时或2.5小时,两车相距50千米,故答案为:2或2.5.【点睛】本题考查了一元一次方程的实际应用,正确分两种情况讨论是解题关键.16.(1)x =﹣10;(2)x =15-.【分析】(1)先去括号、再移项、合并同类项,将系数化为1求解;(2)去分母、去括号、再移项、合并同类项,将系数化为1求解.【详解】解:(1)去括号,得:2x -4-12x +3=9-9x ,移项,合并,得:−x =10,系数化为1,得:x =−10;(2)去分母,得9x -3-4x -8=-12,移项合并,得5x =-1,解得x =15-.【点睛】此题考查解一元一次方程,掌握解一元一次方程的步骤:去分母、去括号、再移项、合并同类项,将系数化为1是解题的关键.17.(1)11x y =⎧⎨=⎩;(2)32x y =⎧⎨=⎩.【分析】(1)方程组利用加减消元法求出解即可.(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)①+②×5,得13x =13,解得x=1.把x=1代入②,得y=1,则方程组的解为11 xy=⎧⎨=⎩;(2)将方程组整理,得23121 242x yx y+=⎧⎨-=⎩,①-②,得4y=8,解得y=2,把y=2代入②,得x=3,则方程组的解为32 xy=⎧⎨=⎩;【点睛】本题考查了二元一次方程组的解法,解题的关键是能熟练运用加减消元法解二元一次方程组.18.(1)x≥-2,不等式的解集在数轴上表示见解析;(2)14x≤<,不等式组的解集在数轴上表示见解析.【分析】(1)由去括号、移项,合并同类项,系数化为1,即可求出不等式的解集,再把解集表示在数轴上即可;(2)分别求出每个不等式的解集,然后取公共部分,得到不等式组的解集,再表示在数轴上即可.【详解】解:(1)5x-12≤2(4x-3),去括号,得5x-12≤8x-6,移项,得5x-8x≤-6+12,合并同类项,得-3x≤6,系数化为1,得x≥-2;不等式的解集在数轴上表示如下:.(2)解:3(2)41213x x x x --≤⎧⎪⎨+>-⎪⎩①②,由①,得:x ≥1;由②,得:x <4;∴这个不等式组的解集是:14x ≤<;数轴如下:【点睛】本题考查的是解一元一次不等式(组),熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.m=15【详解】试题分析:首先根据题意联立成三元一次方程组,利用消元法求出y=4m-30和y=2m ,然后根据y 值相等得出m 的值.试题解析:解:由题意得三元一次方程组:,化简得,①+②-③得:,则④,②×2-①×3得:,则⑤,由④⑤得:,,∴.20.剩下的衬衫促销价格定为每件128元时,销售完这批衬衫恰好盈利10800元.【详解】试题分析:分别表示出140元时的利润以及降价后的利润,再利用销量得出利润,进而得出等式求出答案.解:设剩下的衬衫促销价格定为每件x 元时,销售完这批衬衫恰好盈利10800元,根据题意可得:(140﹣120)×500+(x ﹣120)×100=10800,解得:x=128.答:剩下的衬衫促销价格定为每件128元时,销售完这批衬衫恰好盈利10800元.考点:一元一次方程的应用.21.8【详解】【分析】设小长方形的长为x 米,宽为y 米.依题意有:210,28,x y x y +=⎧⎨+=⎩解方程组即可.【详解】解:设小长方形的长为x 米,宽为y 米.依题意有:210,28,x y x y +=⎧⎨+=⎩解此方程组得:4,2.x y =⎧⎨=⎩故,小长方形的长为4米,宽为2米.【点睛】本题考核知识点:列方程组解应用题.解题关键点:根据已知列出方程组.22.(1)购买甲种树苗500棵,则购买乙种树苗100棵;(2)至少应购买甲种树苗400棵【分析】(1)设购买甲种树苗x 棵,购买乙种树苗y 棵,根据题意列二元一次方程组解决问题;(2)设应购买甲种树苗a 棵,则购买乙种树苗()600a -棵,根据题意中的不等关系“购买甲种树苗的金额不少于购买乙种树苗的金额”列一元一次不等式解决问题.【详解】解:(1)设购买甲种树苗x 棵,购买乙种树苗y 棵由题意,得60010020070000x y x y +=⎧⎨+=⎩,解得:500100x y =⎧⎨=⎩,答:购买甲种树苗500棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a 棵,则购买乙种树苗()600a -棵,由题意,得()100200600a a ≥-,解得:400a ≥.答:至少应购买甲种树苗400棵.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,理解题意列方程组和不等式是解题的关键.23.(1)A 型台灯购进100盏,B 型台灯购进60盏;(2)有两种购货方案,方案一:A 型台灯购进66盏,B 型台灯购进94盏;方案二:A 型台灯购进67盏,B 型台灯购进93盏.其中获利最大的是方案一.【分析】(1)根据题意列二元一次方程组求解;(2)根据题意列出一元一次方程组求解.【详解】(1)设分别购进A 型、B 型台灯x 盏、y 盏,根据题意,得160,5101100.x y x y +=⎧⎨+=⎩解得:100,60.x y =⎧⎨=⎩答:A 型台灯购进100盏,B 型台灯购进60盏.(2)设购进a 盏A 型台灯,则购进(160)a -盏B 型台灯,根据题意,得1535(160)4300,510(160)1260.a a a a +-<⎧⎨+->⎩解之,得6568a <<.∵a 为非负整数,∴a 取66,67.∴160a -相应取94,93.∵当a=66时,5×66+10×94=1270(元),当a=67时,5×67+10×93=1265(元),∴方案一获利最大,答:有两种购货方案,方案一:A 型台灯购进66盏,B 型台灯购进94盏;方案二:A 型台灯购进67盏,B 型台灯购进93盏.其中获利最大的是方案一.【点睛】本题考查二元一次方程组与一元一次不等式的综合运用,在正确理解题意的基础上列出适合的二元一次方程组与一元一次不等式求解是解题关键.。
华师大版七年级下册数学期中考试试题及答案
华师大版七年级下册数学期中考试试卷一、单选题1.下列方程是一元一次方程的是()A .0x =B .23x y -=C .231x x +=D .12x=2.若a b >,则下列结论不一定成立的是()A .a c b c +>+B .22ac bc >C .22a b -<-D .a m b m->-3.把方程1136x x +-=去分母,下列变形正确的是()A .()211x x -+=B .()216x x -+=C .211x x -+=D .216x x -+=4.下列关系式中不含1x =-这个解的是()A . 211x +=-B .211x +>-C .213x -+≥D .213x --≤5.下列各组数值中,哪个是方程 26x y +=的解()A .12x y =⎧⎨=⎩B .13x y =-⎧⎨=⎩C .41x y =⎧⎨=⎩D .22x y =-⎧⎨=⎩6.关于x 的方程26kx x =+与213x -=的解相同,则k 的值为()A .3B .4C .5D .67.不等式组213113x x -<⎧⎪⎨-≤⎪⎩的整数解有()A .3个B .4个C .5个D .6个8.由方程组54a m b m +=-⎧⎨-=⎩,可得a 与b 之间的关系是()A .1a b +=B .1a b +=-C .9a b +=D .9a b +=-9.若不等式组2425x a x b +>⎧⎨-<⎩的解集是02x <<,则 a b +的值是()A .1B .2C .3D .410.如图,把一个长为26cm ,宽为14cm 的长方形分成五块,其中两个大长方形和两个大正方形分别相同,则中间小正方形的边长为()A .4B .5C .6D .7二、填空题11.已知关于x 的方程326x a +=的解是x a =-,则a 的值是___________.12.已知方程3260x y --=,用含x 的代数式表示y ,则y =________.13.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是_____.14.一个工程队原定在10天内至少要挖土3600m ,前两天一共完成了3120m ,由于工程调整工期,需要提前两天完成挖土任务,则以后的几天内每天至少要挖土__________3m .15.有一个三位数,将最左边的数字移到最右边,则它比原来的数小45,又知原来的三位数的百位上的数的9倍比十位上的数与个位上的数组成的两位数小3,则原来的数是______.三、解答题16.解方程3142125x x -+=-.17.解下列方程组:(1)3229y xx y =-⎧⎨+=-⎩(2)27838100x y x y -=⎧⎨--=⎩18.解不等式组:()()2211282x x x x ⎧+>⎪⎨-≥--⎪⎩19.已知关于x ,y 的二元一次方程组1012px my qx ny -=⎧⎨+=⎩的解是24x y =⎧⎨=⎩试求关于a ,b 的二元一次方程组()()()()1012p a b m a b q a b n a b ⎧+--=⎪⎨++-=⎪⎩的解.20.已知关于x y 、的方程组3{26x y x y a-=+=的解满足不等式3x y +<,求实数a 的取值范围.21.某货运公司要运输两批货物,需使用水陆两类交通工具.具体运输情况如下表所示:所用汽车数量/辆所用轮船数量/艘运输货物总量/吨第一批5120030第二批3240018请你根据以上信息,计算每辆汽车和每艘轮船平均各装货物多少吨.22.(1)(阅读理解)“a ”的几何意义是:数a 在数轴上对应的点到原点的距离,所以“2a ≥”可理解为:数a 在数轴上对应的点到原点的距离不小于2,则:①“2a <”可理解为;②请列举两个符号不同的整数,使不等式“||2a >”成立,列举的a 的值为和.我们定义:形如“||x m ≤,||x m ≥,||x m <,||x m >”(m 为非负数)的不等式叫做绝对值不等式,能使一个绝对值不等式成立的所有未知数的值称为绝对值不等式的解集.(2)(理解应用)根据绝对值的几何意义可以解一些绝对值不等式.由上图可以得出:绝对值不等式1x >的解集是1x <-或1x >,绝对值不等式3x ≤的解集是33x -≤≤.则:①不等式4x ≥的解集是.②不等式1||22x <的解集是.(3)(拓展应用)解不等式134x x ++->,并画图说明.23.水是生命之源,“节约用水,人人有责”.为了加强公民的节水意识,合理利用水资源,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水及阶梯计费价格表的部分信息(注:水费按月份结算,3m 表示立方米)价目表(水费按月结算)每户每月用水量(3m )自来水销售价格(元3/m )污水处理价格(元3/m )不超出36m 的部分a0.80超出36m 不超出310m 的部分b0.80超出310m 的部分7.200.80(注:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用).已知小齐家2021年一月份用水37m ,交水费23元,二月份用水39m ,交水费33元.(1)请你根据以上信息,求表中a ,b 的值;(2)若小齐家七、八月份共用水320m ,其中七月份的用水量低于八月份的用水量,共缴水费79元,则小齐家七、八月份的用水量各是多少?参考答案1.A 【分析】根据一元一次方程的定义,含有1个未知数,且未知数的次数是1的方程,据此即可判断.【详解】选项A 、该方程是一元一次方程,故本选项符合题意;选项B 、该方程中含有2个未知数,不是一元一次方程,故本选项不符合题意;选项C 、该方程未知数项的最高次数是2,不是一元一次方程,故本选项不符合题意;选项D 、该方程不是整式方程,故本选项不符合题意.故选A .【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义的内容是解此题的关键.2.B 【分析】根据不等式的性质分别进行判断,即可得出结论.【详解】解:∵a b >,A 、根据不等式的基本性质1,得a c b c +>+,故此结论成立,不符合题意;B 、当0c =时,22ac bc =,故此结论不一定成立,符合题意;C 、根据不等式的基本性质3,得22a b-<-,故此结论成立,不符合题意;D 、根据不等式的基本性质1,得a m b m ->-,故此结论成立,不符合题意.故选:B .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.3.B 【分析】方程1136x x +-=去分母时,方程两端同乘各分母的最小公倍数6即可.【详解】解:去分母得:2x -(x +1)=6,去括号得:2x-x-1=6.故选B.【点睛】本题考查了解一元一次方程,去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.4.B【分析】把x=-1代入各个代数式,满足关系式成立时,它就是该关系式的解.【详解】解:当x=-1时,2x+1=-1,-2x+1=3≥3,-2x-1=1≤3,所以x=-1满足选项A、C、D,因为-1不大于-1,所以x=-1不满足B.故选:B.【点睛】本题考查了等式、不等式的解及解的判断方法.理解“≥”“≤”是关键.5.C【分析】本题较简单,只要用代入法把x,y的值一一代入,根据解的定义判断即可.【详解】解:A、将12xy=⎧⎨=⎩代入方程 26x y+=,得:左边=1+4=5≠右边,故此选项不是方程的解,不符合题意;B、将13xy=-⎧⎨=⎩代入方程 26x y+=,得左边=-1+6=5≠右边,故此选项不是方程的解,不符合题意;C、将41xy=⎧⎨=⎩代入方程 26x y+=,得左边=4+2=6=右边,故此选项是方程的解,符合题意;D、将22xy=-⎧⎨=⎩代入方程 26x y+=,得左边=−2+4=2≠右边,故此选项不是方程的解,不符合题意.故选:C .【点睛】此题考查了二元一次方程的解,解题关键掌握二元一次方程的解的定义及判断方法.6.C 【分析】先解方程213x -=,再把解代入26kx x =+,再次解方程可得.【详解】解:解方程213x -=得,x=2,把x=2代入方程26kx x =+得,2k=4+6,解得:k=5.故选:C .【点睛】理解方程的解和解一元一次方程是关键.7.C 【分析】先根据一元一次不等式组的解法求出x 的取值范围,然后找出整数解的个数.【详解】解:213113x x -<⎧⎪⎨-≤⎪⎩①②解①得:x <2,解②x ≥-3,则不等式组的解集为:-3≤x <2,整数解为:-3,-2,-1,0,1,共5个.故选:C .【点睛】此题考查了是一元一次不等式组的整数解,解答本题的关键是根据x 的取值范围,得出x 的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.B 【分析】把原方程组化为54a m b m +=-⎧⎨-=⎩①②,由①+②即可求解.【详解】由54a m b m +=-⎧⎨-=⎩可得54a m b m +=-⎧⎨-=⎩①②,①+②得,1a b +=-.故选B .【点睛】本题考查了二元一次方程组的解法,利用整体思想是解决问题的关键.9.A 【分析】先分别用a 、b 表示出各不等式的解集,然后根据题中已知的解集,进行比对,从而得出两个方程,解答即可求出a 、b ,由此即可求解.【详解】24{25x a x b +->①<②,∵由①得,x >4-2a ;由②得,x <52b+,∵不等式组24{25x a x b +-><的解是0<x <2,∴此不等式组的解集为:4-2a <x <52b+,∴4-2a =0,52b+=2,解得a =2,b =-1,∴a +b =1.故选A .【点睛】本题考查了根据不等式组的解集的情况求参数,熟练掌握不等式组的解法是解题的关键.10.C 【分析】可以设大正方形的边长为x cm ,设小正方形的边长为y cm ,根据大长方形的长为26cm ,宽为14cm 可以得到一个方程组,解得y ,即可得小正方形的边长.【详解】解:设大正方形的边长为x cm ,设小正方形的边长为y cm ,根据题意得:()22614x y x x y +=⎧⎨+-=⎩,解得:106x y =⎧⎨=⎩,故小正方形的边长为6cm .故选:C .【点睛】本题考查了二元一次方程组的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.11.-6【分析】根据方程的解的概念将x a =-代入原方程,然后求解.【详解】解:∵关于x 的方程326x a +=的解是x a =-,∴326a a -+=,解得:6a =-故答案为:-6.【点睛】本题考查方程的解及解一元一次方程,掌握概念准确代入计算是解题关键.12.362x -【分析】把含y 的项放到方程左边,移项,化系数为1,求y 即可【详解】解:3260x y --=263y x -=-632xy -=-,即362x y -=故答案为:362x -【点睛】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含y 的式子表示x 的形式.13.a ≤2.【分析】分别求解两个不等式,当不等式“大大小小”时不等式组无解,【详解】解:21322x a x a >+⋯⋯=⎧⎨<-⋯⋯=⎩①②∴不等式组的解集是a 2x 3a 2+<<-∵不等式组无解,即a 23a 2+≥-,解得:a 2≤【点睛】本题考查了求不等式组的解集和不等式组无解的情况,属于简单题,熟悉无解的含义是解题关键.14.80【分析】设以后几天内,平均每天要挖掘xm 3土方,根据题意可知原定在10天,已经干了两天,还要求提前2天,即为要6天至少挖掘(600-120)m 3的土方,根据题意可得不等式,解不等式即可.【详解】设平均每天挖土xm 3,由题意得:(10﹣2﹣2)x ≥600﹣120,解得:x ≥80.答:平均每天至少挖土80m 3.故答案为:80.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出不等关系,正确列出不等式,注意本题中提前两天完成任务,故实际挖土时间只有8天.15.439【分析】设原来数的百位数为x ,十位数与个位数组成的两位数为y .由题意得可得方程组100451093x y y x x y +-=+⎧⎨+=⎩①②,解方程组求得x =4,y =39,由此即可得原来的三位数为439.【详解】设原来数的百位数为x ,十位数与个位数组成的两位数为y .由题意得:100451093x y y x x y +-=+⎧⎨+=⎩①②把②代入①可得:100x +9x +3-45=10+x109x -42=90x +30+x18x =72x =4把x =4代入②可得:y =39即:原来的三位数为439.故答案为:439.【点睛】本题考查了二元一次方程组的应用,正确列出方程组100451093x y y x x y +-=+⎧⎨+=⎩①②是解决问题的关键.16.x =﹣17.【分析】解一元一次方程,先去分母,然后去括号,移项,合并同类项,最后系数化1.【详解】解:去分母得:5(3x ﹣1)=2(4x +2)﹣10去括号得:15x ﹣5=8x +4﹣10移项得:15x ﹣8x =4﹣10+5合并同类项得:7x =﹣1系数化为得:x =﹣17.【点睛】本题考查解一元一次方程,掌握计算步骤,正确计算是解题关键.17.(1)57x y =⎧⎨=-⎩;(2) 1.20.8x y =⎧⎨=-⎩【分析】(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组即可.【详解】解:()13229y x x y =-⎧⎨+=-⎩①②把①代入②得,()2329x x +-=-,解得,5x =③.把③代入①得,7y =-,所以原方程组的解为57x y =⎧⎨=-⎩;()227838100x y x y -=⎧⎨--=⎩①②由①3⨯-②2⨯,得54y -=,解得,0.8y =-,把0.8y =-代入①得, 1.2x =,所以原方程组的解是 1.20.8x y =⎧⎨=-⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.42x -<≤-【分析】分别求出两个一元一次不等式的解集,即可确定不等式组的解集.【详解】()()22,1128,2x x x x ⎧+>⎪⎨-≥--⎪⎩①②解不等式①得,4x >-,解不等式②得,2x -≤.把不等式①和②的解集在数轴上表示为:所以原不等式组的解集为42x -<≤-.【点睛】本题考查了一元一次不等式组的解法,先求出每个不等式的解,然后求出共同的解,即为不等式组的解.19.31a b =⎧⎨=-⎩【分析】根据二元一次方程组的解的定义可设a b x +=,a b y -=,则可得出24a b a b +=⎧⎨-=⎩,解此方程组后即可求解.【详解】解:设a b x +=,a b y -=,则由1012px my qx ny -=⎧⎨+=⎩的解是24x y =⎧⎨=⎩可知,24a b a b +=⎧⎨-=⎩,解得31a b =⎧⎨=-⎩.所以原方程组的解为31a b =⎧⎨=-⎩.【点睛】本题考查了二元一次方程组的解的定义及解二元一次方程组,熟练掌握解二元一次方程组的方法是解题的关键.20.1a <【详解】解:两式相加得,363x a =+解得21x a =+将21x a =+代入,求得:22y a =-∵3x y +<∴21223a a ++-<即44a <,∴1a <21.每辆汽车和每艘轮船平均各装货物 6吨和 20000吨【分析】设每辆汽车平均装货物 x 吨,每艘轮船平均装货物 y 吨,根据“5辆汽车和1艘轮船的运输货物总量为20030吨及3辆汽车和2艘轮船的运输货物总量为40018吨”列出方程组,解方程组即可求解.【详解】设每辆汽车平均装货物 x 吨,每艘轮船平均装货物 y 吨,根据题意得:520030,3240018,x y x y +=⎧⎨+=⎩解得:6,20000.x y =⎧⎨=⎩答:每辆汽车和每艘轮船平均各装货物 6吨和 20000吨.【点睛】本题考查了二元一次方程组是应用,根据题意正确列出二元一次方程组是解决问题的关键.22.(1)①数a 在数轴上对应的点到原点的距离小于2;②-3;3;(2)①4x ≤-或4x ≥;②44x -<<;(3)1x <-或3x >,见解析【分析】(1)①类比题目所给的信息即可解答;②写出符合题意的两个整数即可(答案不唯一);(2)①类比题目中的解题方法即可解答;②类比题目中的解题方法即可解答;(3)根据绝对值的几何意义可知,不等式134x x ++->的解集,就是数轴上表示数x 的点到表示1-与3的点的距离之大于4的所有x 的值,由此即可确定不等式134x x ++->的解集.【详解】()1①由题意可得,“2a <”可理解为数a 在数轴上对应的点到原点的距离小于2.故答案为:数a 在数轴上对应的点到原点的距离小于2.②使不等式“||2a >”成立的整数为3-,3(答案不唯一,合理即可).故答案为:3-,3.()2①不等式4x ≥的解集是4x ≤-或4x ≥.故答案为:4x ≤-或4x ≥.②不等式1||22x <的解集是44x -<<.故答案为:44x -<<.()3根据绝对值的几何意义可知,不等式134x x ++->的解集就是数轴上表示数x 的点,到表示1-与3的点的距离之和大于4的所有x 的值,如下图所示,可知不等式134x x ++->的解集是1x <-或3x >.【点睛】本题考查了绝对值的几何意义,利用数形结合是解决本题的关键.23.(1) 2.204.20a b =⎧⎨=⎩;(2)小齐家七月份的用水量为39m ,八月份的用水量为311m 【分析】(1)根据“一月份用水37m ,交水费23元,二月份用水39m ,交水费33元”列出关于a 、b 的方程组求解即可得出答案;(2)设小齐家七月份的用水量为3m x ,则八月份的用水量为()320m x -,根据题意先得出x 的范围,再分06x <≤,610x <<两种情况根据“水费=自来水费用+污水处理费用”即可求出答案.【详解】解:()1由题意得,()()()()60.800.8023,60.8030.8033,a b a b ⎧+++=⎪⎨+++=⎪⎩解得 2.20,4.20.a b =⎧⎨=⎩()2设小齐家七月份的用水量为3m x ,则八月份的用水量为()320m x -.因为20x x <-,所以 10x <,即七月份的用水量低于310m .①当06x <≤时,缴费总量为:()2.206 2.204 4.2020107.20200.8079x x +⨯+⨯+--⨯+⨯=,解得,3965x =>不合题意,舍去.②当610x <<时,缴费总量为:()()6 2.206 4.206 2.204 4.2020107.20200.8079x x +-⨯+⨯+⨯+-⨯-⨯+⨯=解得,9x =,此时2011x -=,符合题意.答:小齐家七月份的用水量为39m ,八月份的用水量为311m .【点睛】本题考查了二元一次方程组的应用,读懂题意找到等量关系式是解题的关键.。
【华东师大版】2017-2018学年七年级下期中数学考试卷及答案-精选
YC2017-2018学年度第二学期期中考试卷七年级数学一、选择题(每小题3分,共30分)1、下列各式:①x-1;②x ≤0;③a-b=0;④x-2>1.其中不等式有( )A 、1个B 、2个C 、3个D 、4个2、二元一次方程x-2y=1有无数个解,则下列四组值中,不是该方程的解的是( )A 、⎩⎨⎧==11y xB 、⎪⎩⎪⎨⎧-==210y xC 、⎩⎨⎧==01y xD 、⎩⎨⎧-=-=11y x3、“x 的3倍与x 的相反数的差不小于1”,用不等式表示为( )A 、2x-x ≥1B 、2x-(-x) ≥1C 、2x-x>1D 、2x-(-x)>14、若关于x 的一元一次方程12332=---kx k x 的解是x=-1,则k 的值是( )A 、72B 、1C 、113-D 、05、下列说法中不一定成立的是( ) A 、若a>b ,则a+c>b+C B 、若a+c>b+c ,则a>bC 、若a>b ,则ac ²>bc ²D 、若ac ²>bc ²,则a >b6、甲仓库存煤200t ,乙仓库存煤70t ,若甲仓库每天运出15t 煤,乙仓库每天运进25t 煤,几天后乙仓库存煤比甲仓库多1倍?设x 天后乙仓库比甲仓库多1倍,则有( ) A 、2×15x=25x B 、70+25x-15x=200×2C 、2(200-15x)=70+25xD 、200-15x=2(70-25x)7、关于x 的不等式x-b>0,恰有两个负整数解,则b 的取值范围是( )A 、-3<b<-2B 、-3<b ≤-2C 、-3≤b ≤-2D 、-3≤b<-28、为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费了35元。
已知毽子单价3元,跳绳单价5元,且购买的毽子个数比跳绳的个数多1,则购买毽子和跳绳的个数分别为( )A 、4,5B 、5,4C 、9,10D 、10,99、若x<y ,则下列不等式中不一定成立的是( )A 、x+1>y+1B 、2x>2yC 、22yx > D 、x ²>y ²10、若不等式组⎩⎨⎧>+<-ax x 1112恰有两个整数解,则a 的取值范围是( )A 、-1≤a<0B 、-1<a ≤0C 、-1≤a ≤0D 、-1<a<0二、填空题。
2018-2019学年华师大版七年级数学下册期中测试卷(含答案)
2018-2019学年七年级(下)期中数学试卷一、选择题(每小题2分,共20分)下列各小题均有四个答案,其中只有一个是正确的1.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1B.3x﹣x﹣1=1C.3x﹣x﹣1=6D.3x﹣(x﹣1)=62.方程kx+3y=5有一组解是,则k的相反数是()A.1B.﹣1C.0D.23.下列方程中,不是一元一次方程的是()A.2x﹣3=5B.3a﹣6=4a﹣8C.x=0D.+1=04.方程3x+1=m+4的解是x=2,则m的值是()A.4B.5C.6D.75.若单项式2a x﹣2b与﹣3a3b3﹣y是同类项,则x、y分别是()A.5和3B.5和2C.4和3D.4和26.若a<b,则下面可能错误的变形是()A.6a<6b B.a+3<b+4C.ac+3<bc+3D.﹣7.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有()A.6个B.5个C.3个D.无数个8.某班学生分组,若每组7人,则有2人分不到组里;若每组8人,则最后一组差4人,若设计划分x组,则可列方程为()A.7x+2=8x﹣4B.7x﹣2y=8x+4C.7x+2=8x+4D.7x﹣2y=8x﹣49.如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A.3元,3.5元B.3.5元,3元C.4元,4.5元D.4.5元,4元10.在如图的2018年4月的月历表中任意框出表中竖上的三个相邻的数和横排中三个相邻的数.这六个数的和可能是()A.98B.99C.100D.101二、填空题(每小题3分,共24分)11.若代数式4x+13的值不小于代数式2x﹣1的值,则x的取值范围是.12.在2x+3y=3中,若用y表示x,则x=.13.不等式5x+14≥0的负整数解是.14.方程mx+ny=10有两组解和,则2m﹣n2=.15.若方程组的解也是x+y=1的一个解,则a=.16.如图所示,8个相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的周长是.17.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身可以和两个盒底可制成一个罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒,根据题意,可列方程组.18.已知方程组和方程组有相同的解,则a2﹣b2的值为.三、解答题(本大题共8小题满分56分)19.(6分)解方程:.20.(6分)解不等式3(x﹣1)<4(x﹣)﹣3,并把它的解集在数轴上表示出来.21.(6分)某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?22.(6分)解方程组:.23.(7分)满足方程组的x和y的值之和是2,求k的值.24.(8分)若不等式5(x﹣2)+8≤6(x﹣1)+7的最小整数解是方程3x﹣ax=﹣3的解,求﹣|10﹣a2|的值.25.(8分)去年,某学校积极组织捐款支援地震灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染看不清楚,请你用所学方程的知识求出捐款2元和5元的人数.26.(9分)合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)下列各小题均有四个答案,其中只有一个是正确的1.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1B.3x﹣x﹣1=1C.3x﹣x﹣1=6D.3x﹣(x﹣1)=6【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数6,在去分母的过程中注意分数线起到括号的作用,以及去分母时不能漏乘没有分母的项.【解答】解:方程两边同时乘以6得:3x﹣(x﹣1)=6.故选:D.【点评】在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项.2.方程kx+3y=5有一组解是,则k的相反数是()A.1B.﹣1C.0D.2【分析】将x=2、y=1代入kx+3y=5求出k的值,从而得出答案.【解答】解:将x=2、y=1代入kx+3y=5,得:2k+3=5,解得:k=1,所以k的相反数为﹣1,故选:B.【点评】本题主要考查二元一次方程的解,解题的关键是掌握使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.3.下列方程中,不是一元一次方程的是()A.2x﹣3=5B.3a﹣6=4a﹣8C.x=0D.+1=0【分析】根据一元一次方程的定义判断即可;【解答】解:A、该方程符合一元一次方程的定义,故本选项正确;B、该方程化简后符合一元一次方程的定义,故本选项正确;C、该方程符合一元一次方程的定义,故本选项正确;D、该方程为分式方程,故本选项错误;故选:D.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1.4.方程3x+1=m+4的解是x=2,则m的值是()A.4B.5C.6D.7【分析】由x=2为方程的解,将x=2代入方程即可求出m的值.【解答】解:将x=2代入方程得:6+1=m+4,解得:m=6.故选:C.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.若单项式2a x﹣2b与﹣3a3b3﹣y是同类项,则x、y分别是()A.5和3B.5和2C.4和3D.4和2【分析】根据同类项的定义建立方程求解即可得出结论.【解答】解:∵单项式2a x﹣2b与﹣3a3b3﹣y是同类项,∴x﹣2=3,3﹣y=1,∴x=5,y=2,故选:B.【点评】此题主要考查了同类项的意义,解简单的一次方程,建立方程求解是解本题的关键.6.若a<b,则下面可能错误的变形是()A.6a<6b B.a+3<b+4C.ac+3<bc+3D.﹣【分析】根据不等式的基本性质对各选项分析后利用排除法求解.【解答】解:A、不等号的方向不变,故本选项正确;B、不等式小的一边加上3,大的一边加上4,不等号方向改变,故本选项正确;C、对不等式两边都乘以c,再加上3,不等式不一定还成立,故本选项错误;D、不等式两边都除以﹣2,不等号方向改变,故本选项正确.故选:C.【点评】主要考查不等式的基本性质,需要熟练掌握并灵活运用.7.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有()A.6个B.5个C.3个D.无数个【分析】可以设两位数的个位数为x,十位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.【解答】解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选:A.【点评】本题考查了二元一次方程的应用,解题的关键在于根据未知数的整数性质讨论未知数的具体值,注意不要漏掉两位数的个位数可以为0的情况.8.某班学生分组,若每组7人,则有2人分不到组里;若每组8人,则最后一组差4人,若设计划分x组,则可列方程为()A.7x+2=8x﹣4B.7x﹣2y=8x+4C.7x+2=8x+4D.7x﹣2y=8x﹣4【分析】等量关系为:7×组数+2=8×组数﹣4,把相关数值代入即可.【解答】解:若每组有7人,实际人数为7x+2;若每组有8人,实际人数为8x﹣4,∴可列方程为7x+2=8x﹣4.故选:A.【点评】考查列一元一次方程;根据学生的实际人数得到等量关系是解决本题的关键.9.如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A.3元,3.5元B.3.5元,3元C.4元,4.5元D.4.5元,4元【分析】设1听果奶为x元,1听可乐y元,由题意可得等量关系:①1听果奶的费用+4听可乐的费用=17元,②1听可乐的费用﹣1听果奶的费用=0.5元,根据等量关系列出方程组,再解即可.【解答】解:设1听果奶为x元,1听可乐y元,由题意得:,解得:,故选:A.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.10.在如图的2018年4月的月历表中任意框出表中竖上的三个相邻的数和横排中三个相邻的数.这六个数的和可能是()A.98B.99C.100D.101【分析】设竖上的三个相邻的数分别为x﹣7,x,x+7,横排中三个相邻的数分别为y﹣1,y,y+1,则这六个数的和为3x+3y,然后对各选项进行判断.【解答】解:设竖上的三个相邻的数分别为x﹣7,x,x+7,横排中三个相邻的数分别为y﹣1,y,y+1,则这六个数的和为3x+3y,即3(x+y),99为3的整数倍,而98,100,101不是,故选:B.【点评】本题考查了一次方程(组)的应用:利用表中数据的排列规律合理设未知数是解决问题的关键.二、填空题(每小题3分,共24分)11.若代数式4x+13的值不小于代数式2x﹣1的值,则x的取值范围是x≥﹣7.【分析】先根据题意列出关于x的不等式,移项,合并同类项,把x的系数化为1即可.【解答】解:∵代数式4x+13的值不小于代数式2x﹣1的值,∴4x+13≥2x﹣1,移项得,4x﹣2x≥﹣1﹣13,合并同类项得,2x≥﹣14,把x的系数化为1得,x≥﹣7.故答案为:x≥﹣7.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.12.在2x+3y=3中,若用y表示x,则x=.【分析】根据移项、系数化为1,可得答案.【解答】解:2x+3y=3,移项,得2x=3﹣3y,系数化为1,得x=.故答案为:.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含y的式子表示x 的形式.13.不等式5x+14≥0的负整数解是﹣2,﹣1.【分析】先求出不等式的解集,再求出符合条件的负整数解即可.【解答】解:移项得,5x≥﹣14,系数化为1得,x≥﹣,在数轴上表示为:由数轴上x的取值范围可知,不等式5x+14≥0的负整数解是﹣2,﹣1共两个.【点评】此题比较简单,解答此题的关键是正确求出不等式的解集,借助于数轴便可直观解答.14.方程mx+ny=10有两组解和,则2m﹣n2=﹣80.【分析】把x与y的两对值代入方程得到关于m与n的方程组,求出方程组的解得到m与n的值,代入原式计算即可.【解答】解:根据题意得:,解得:,则2m﹣n2=20﹣100=﹣80.故答案为:﹣80.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.若方程组的解也是x+y=1的一个解,则a=﹣.【分析】利用二元一次方程组的解的定义得到方程组的解也是方程组的解,然后解方程组后把x、y的值代入9﹣2a=10中可求出a的值,【解答】解:∵方程组的解也是x+y=1的一个解,∴方程组的解也是方程组的解,解方程组得,把x=3,y=﹣2代入3x+ay=10得9﹣2a=10,解得a=﹣.故答案为﹣.【点评】本题考查了解二元一次方程组:熟练掌握代入消元法和加减消元法解二元一次方程组.16.如图所示,8个相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的周长是72cm.【分析】设小长方形的长为xcm,宽为ycm,由图形可列方程组,可求出x,y的值,即可求每块小长方形地砖的周长.【解答】解:设小长方形的长为xcm,宽为ycm根据题意可得:解得:∴小长方形地砖的周长=2(27+9)=72cm故答案为:72cm【点评】本题考查了二元一次方程组的应用,根据题意列出正确的方程组是本题的关键.17.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身可以和两个盒底可制成一个罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒,根据题意,可列方程组.【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.18.已知方程组和方程组有相同的解,则a2﹣b2的值为﹣5.【分析】根据方程组同解得出,解之求得x、y的值,代入另外两个方程得出a+b、a ﹣b的值,代入计算可得.【解答】解:根据题意,得:,解得:,则,∴a2﹣b2=(a+b)(a﹣b)=1×(﹣5)=﹣5,故答案为:﹣5.【点评】此题考查了二元一次方程组的解,二元一次方程组的两个方程的公共解叫做二元一次方程组的解.二元一次方程组的解必须同时满足方程组中的两个方程.三、解答题(本大题共8小题满分56分)19.(6分)解方程:.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:3(1﹣3x)=2﹣6x,去括号得:3﹣9x=2﹣6x,移项合并得:﹣3x=﹣1,系数化为1得:得x=.【点评】本题考查了解带分母的一元一次方程.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.20.(6分)解不等式3(x﹣1)<4(x﹣)﹣3,并把它的解集在数轴上表示出来.【分析】去括号、移项、合并同类项,化系数为1,依此求解不等式,再把它的解集在数轴上表示出来即可.【解答】解:3(x﹣1)<4(x﹣)﹣3,去括号:3x﹣3<4x﹣2﹣3,移项得:3x﹣4x<﹣2﹣3+3,合并同类项得﹣x<﹣2,未知数的系数化为1:x>2,所以原不等式的解是:x>2,在数轴上表示为:【点评】考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的性质解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.21.(6分)某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?【分析】设这种书包的进价是x元,其标价是(1+60%)x元,根据“按标价8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元”,列出关于x的一元一次方程,解之即可.【解答】解:设这种书包的进价是x元,其标价是(1+60%)x元,由题意得:(1+60%)x•80%﹣x=14,解得:x=50,答:这种书包的进价是50元.【点评】本题考查一元一次方程的应用,正确找出等量关系,列出一元一次方程是解题的关键.22.(6分)解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,②﹣①得:3y=﹣3,即y=﹣1,把y=﹣1代入②得:x=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(7分)满足方程组的x和y的值之和是2,求k的值.【分析】方程组消去k表示出x+y,代入x+y=2中计算即可求出k的值.【解答】解:,②×2﹣①得:x+y=5﹣5k,代入x+y=2得:5﹣5k=2,解得:k=.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.(8分)若不等式5(x﹣2)+8≤6(x﹣1)+7的最小整数解是方程3x﹣ax=﹣3的解,求﹣|10﹣a2|的值.【分析】解不等式求出x的范围,从而得出不等式的最小整数解,代入方程求得a的值,最后代入代数式求值即可.【解答】解:去括号,得:5x﹣10+8≤6x﹣6+7,移项,得:5x﹣6x≤﹣6+7+10﹣8,合并同类项,得:﹣x≤3,系数化为1,得:x≥﹣3,则该不等式的最小整数解为x=﹣3,根据题意,将x=﹣3代入方程3x﹣ax=﹣3,得:﹣9+3a=﹣3,解得:a=2,则原式=﹣|10﹣4|=﹣6.【点评】本题考查的是解一元一次不等式和一元一次方程及代数式的求值,正确求出每一个不等式解集是基础得出a的值是解答此题的关键.25.(8分)去年,某学校积极组织捐款支援地震灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染看不清楚,请你用所学方程的知识求出捐款2元和5元的人数.【分析】设捐款2元和5元的学生人数分别为x人、y人,根据总人数是55人,捐款数是274元,列出方程组,求出方程组的解即可.【解答】解:设捐款2元和5元的学生人数分别为x人、y人,依题意得:,,解方程组,得,答:捐款2元的有4人,捐款5元的有38人.【点评】此题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组,本题的等量关系是总人数=1元的人数+2元的人数+5元的人数+10元的人数,总钱数=捐1元的总数+捐2元的总数+捐5元的总数+捐10元的总数.26.(9分)合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?【分析】设人数为x,则可得10≤x≤25,从而可得甲旅行社需要花费:200x×0.75,乙旅行社:200(x﹣1)×0.8,让两式相等可求出人数x为何值时两家相等,从而据此讨论x取其他值的情况.【解答】解:设该单位有x人外出旅游,则选择甲旅行社的总费用为0.75×200x=150x(元),选择乙旅行社的总费用为0.8×200(x﹣1)=(160x﹣160)(元).①当150x<160x﹣160时,解得x>16,即当人数在17~25人时,选择甲旅行社总费用较少;②当150x=160x﹣160时,解得x=16,即当人数为16人时,选择甲、乙旅行社总费用相同;③当150x>160x﹣160时,解得x<16,即当人数为10~15人时,选择乙旅行社总费用较少.【点评】本题考查一元一次不等式的应用,与实际结合得比较紧密,解答本题需要先了解两家花费一样的人数的值,这是关键.。
【华东师大版】2017-2018学年七年级下期中数学考试卷及答案(必备优质)
YC2017-2018学年度第二学期期中考试卷七年级数学一、选择题(每小题3分,共30分)1、下列各式:①x-1;②x ≤0;③a-b=0;④x-2>1.其中不等式有( )A 、1个B 、2个C 、3个D 、4个2、二元一次方程x-2y=1有无数个解,则下列四组值中,不是该方程的解的是( )A 、⎩⎨⎧==11y xB 、⎪⎩⎪⎨⎧-==210y xC 、⎩⎨⎧==01y xD 、⎩⎨⎧-=-=11y x3、“x 的3倍与x 的相反数的差不小于1”,用不等式表示为( )A 、2x-x ≥1B 、2x-(-x) ≥1C 、2x-x>1D、2x-(-x)>14、若关于x 的一元一次方程12332=---kx k x 的解是x=-1,则k 的值是( ) A 、72B 、1C 、113-D 、05、下列说法中不一定成立的是( ) A 、若a>b ,则a+c>b+C B 、若a+c>b+c ,则a>bC 、若a>b ,则ac ²>bc ²D 、若ac ²>bc ²,则a >b6、甲仓库存煤200t ,乙仓库存煤70t ,若甲仓库每天运出15t 煤,乙仓库每天运进25t 煤,几天后乙仓库存煤比甲仓库多1倍?设x 天后乙仓库比甲仓库多1倍,则有( ) A 、2×15x=25xB 、70+25x-15x=200×2C 、2(200-15x)=70+25xD 、200-15x=2(70-25x)7、关于x 的不等式x-b>0,恰有两个负整数解,则b 的取值范围是( )A 、-3<b<-2B 、-3<b ≤-2C 、-3≤b ≤-2D 、-3≤b<-28、为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费了35元。
已知毽子单价3元,跳绳单价5元,且购买的毽子个数比跳绳的个数多1,则购买毽子和跳绳的个数分别为( )A 、4,5B 、5,4C 、9,10D 、10,99、若x<y ,则下列不等式中不一定成立的是( )A 、x+1>y+1B 、2x>2yC 、22y x > D 、x ²>y ²10、若不等式组⎩⎨⎧>+<-ax x 1112恰有两个整数解,则a 的取值范围是( )A 、-1≤a<0B 、-1<a ≤0C 、-1≤a ≤0D 、-1<a<0二、填空题。
华师大版七年级下册数学期中考试试卷含答案
华师大版七年级下册数学期中考试试题一、单选题1.下面给出的5个式子:①3>0;②4x+y<2;③2x=3;④x-1;⑤x-2≥3.其中不等式有()A .2个B .3个C .4个D .5个2.下列解方程过程中,变形正确的是()A .由5x ﹣1=3,得5x =3﹣1B .由x 4+1=310.1x ++12,得x4+1=3101x ++12C .由3﹣12x -=0,得6﹣x+1=0D .由32xx -=1,得2x ﹣3x =13.已知单项式312xy 与43a xy +-是同类项,那么a 的值是()A .-1B .0C .1D .24.利用代入消元法解方程组236532x y x y +=⎧⎨-=⎩①②,下列做法正确的是()A .由①得x =632y+B .由①得y =623x -C .由②得y =235x -+D .由②得y =523x +5.若方程组()43713x y kx k y +=⎧⎨+-=⎩的解x ,y 相等,则k 的值为()A .1B .0C .2D .﹣26.已知a b 、满足方程组2426a b a b -=⎧⎨+=⎩,则3a b +的值为()A .10B .8C .6D .﹣27.在等式y kx b =+中,当2x =时,4y =-;当2x =-时,8y =,则这个等式是()A .32y x =+B .32y x =-+C .32y x =-D .32y x =--8.方程23132x x ---= 中有一个数字被墨水盖住了,查后面的答案,知道这个方程的解是x=-1,那么墨水盖住的数字是()A .17B .2C .1D .09.复兴中学七年级(1)班学生参加植树活动,一部分学生抬土,另一部分学生担土.已知全班共用土筐59个,扁担36个,求抬土、担土的学生各多少人?如果设抬土的学生x 人,担土的学生y 人,则可得方程组()A .2()592362y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩B .2592362xy x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .2592236xy x y ⎧+=⎪⎨⎪+=⎩D .259236x y x y +=⎧⎨+=⎩10.若a:2=b:3=c:7,且a ﹣b+c=12,则2a ﹣3b+c 等于()A .2B .4C .37D .1211.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是()A .7.5秒B .6秒C .5秒D .4秒12.关于x 的方程为(x-4)m=x-4且m≠1,则代数式2222(32)6x x x x ---+的值是()A .36B .40C .56D .68二、填空题13.已知3602x +=,则x =_____.14.用不等式表示:“2与x 的和的3倍是负数”为_________________.15.若关于x 、y 的方程x |k|﹣1+(k ﹣2)y =6是二元一次方程,则k =_____.16.若x ay b =⎧⎨=⎩是方程22x y -=的一个解,则631a b -+=_______17.关于x 的方程243x m -=和21x +=有相同的解,那么m =_________.18.如果|x ﹣2y+1|+|x+y ﹣5|=0,那么xy =_____.19.方程组32823154x y y z x y z -=⎧⎪+=⎨⎪+-=-⎩的解为____________.20.我们知道,无限循环小数都可以转化为分数.例如,将.0.3转化为分数时,可设0.3x = ,则10 3.330.3x ==+ ,所以10x=3+x ,解得x=13,即.10.33=.仿此方法,将..0.45化为分数是____.三、解答题21.解方程(组)(1)11x ﹣3=x+2;(2)22(3)6363x x x -+-=-;(3)237342x y x y +=⎧⎨-=⎩;(4)6()7()212()5()1x y x y x y x y --+=⎧⎨--+=-⎩.22.当x 取何值时,代数式3x ﹣5与﹣4x+6的值互为相反数.23.当整数a 为何值时,关于x 的方程221145ax x +--=的解是正整数.24.已知()2120a ab -+-=,求关于x 的方程()()()()()()2016112220152015x x x xab a b a b a b ++++=++++++ 的解.25.李老师让全班同学们解关于x 、y 的方程组217x ay bx y +=⎧⎨-=⎩①②(其中a 和b 代表确定的数),甲、乙两人解错了,甲看错了方程①中的a ,解得14x y =⎧⎨=-⎩,乙看错了②中的b ,解得11x y =-⎧⎨=⎩,请你求出这个方程组的正确解.26.机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?27.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?28.仔细阅读下面解方程组的方法,然后解决有关问题:解方程组191817171615x yx y+=⎧⎨+=⎩①②时,如果直接消元,那将会很繁琐,若采用下面的解法,则会简单很多.解:①-②,得:2x+2y=2,即x+y=1③③×16,得:16x+16y=16④②-④,得:x=-1将x=-1代入③得:y=2∴原方程组的解为:12 xy=-⎧⎨=⎩(1)请你采用上述方法解方程组:201620112012 201020052000x yx y+=⎧⎨+=⎩(2)请你采用上述方法解关于x,y的方程组()()()()3232m x m y mn x n y n⎧+++=⎪⎨+++=⎪⎩,其中m n≠.参考答案1.B 【分析】根据不等式的定义解答即可.【详解】解:①3>0是不等式、②4x+y<2是不等式、③2x=3是等式、④x-1是代数式、⑤x-2≥3是不等式,共有3个不等式.故答案为B .【点睛】本题考查了不等式的定义,即用不等号把两个式子连接起来所形成的式子叫不等式.2.C 【分析】各方程变形得到结果,即可作出判断.【详解】解:A 、由5x ﹣1=3,得到5x =3+1,不符合题意;B 、由x 4+1=310.1x ++12,得x 4+1=30101x ++12,不符合题意;C 、由3﹣12x -=0,得6﹣x+1=0,符合题意;D 、由32x x-=1,得2x ﹣3x =6,不符合题意,故选C .3.A 【分析】根据同类项的定义,同类项中所含的字母及对应字母的指数都相同即可解答.【详解】因为312xy 和43a xy +-是同类项所以3=4+a 所以a=-1故本题答案为A .【点睛】本题考查了同类项的定义,掌握相关知识点事解答本题关键.4.B 【解析】【详解】由①得,2x=6-3y ,∴632yx +=;3y=6-2x ,∴623xy -=;由②得,5x=2+3y ,∴2+35yx =;3y=5x-2,∴523x y -=.故选B .5.C 【解析】【分析】根据方程组的解x ,y 的值相等,可求出x 和y ,可得关于k 的方程,再解方程,可得出答案.【详解】解:由()43713x y kx k y +=⎧⎨+-=⎩的解x ,y 相等,得4x+3x =7,解得x =1,x =y =1,由方程的解满足方程,得k+(k ﹣1)=3,解得k =2,故选:C .【点睛】本题考查了二元一次方程(组)的解,得出关于k 的一元一次方程是解题的关键.6.A 【解析】【分析】先解方程组求出a b 、的值,再代入求出3a b +的值;本题还可以用加减消元法直接求出.【详解】解:2426a b a b -=⎧⎨+=⎩①②由①×2+②得,514a =,解得:145a =把145a =代入①得,85b =,当145a =,85b =时,3148=3+55=10a b+⨯另外方法:由①+②得,310a b +=故选:A 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.本题还可以用加减消元法直接求出.7.B 【解析】【分析】分别把当2x =时,4y =-;当2x =-时,8y =代入等式y kx b =+,得到关于k 、b 的二元一次方程组,求出k 、b 的值即可.【详解】解:分别把当2x =时,4y =-;当2x =-时,8y =代入等式y kx b =+,得4282k b k b -=+⎧⎨=-+⎩①②,①+②,得2b=4,解得b=2,把b=2代入①,得-4=2k+2,解得k=-3,把k=-3,b=2代入等式y kx b =+,得32y x =-+.故选:B.【点睛】本题主要考查了二元一次方程组的解法,理解题意,熟练解法是解题的关键.8.C 【解析】【分析】墨水盖住的部分用a 表示,把x=-1代入方程,即可得到一个关于a 的方程,即可求解.【详解】解:墨水盖住的部分用a 表示,把x=-1代入方程得:213132a -----=,解得:a=1.故选:C .【点睛】本题考查了一元一次方程的解的定义,理解定义是关键.9.B 【解析】【分析】根据“班共用土筐59个,扁担36个”可以列出相应的方程组,本题得以解决.【详解】解:由题意可得,2592362xy x y ⎧+=⎪⎪⎨⎪+=⎪⎩,故选B.【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.10.B 【解析】【分析】由a:2=b:3=c:7,可设a=2k ,b=3k ,c=7k ,代入计算求得k ,然后分别求得a,b,c,代入所求代数式计算即可.【详解】解:设a:2=b:3=c:7=k ,则a=2k ,b=3k ,c=7k ,代入方程a−b+c=12得:2k−3k+7k=12,解得:k=2,即a=4,b=6,c=14,则2a−3b+c=2×4−3×6+14=4.故选:B.【点睛】本题考查比例的性质,代数式的求值,牢记相关的知识点并能灵活应用是解题关键.11.D 【解析】【详解】设坐在普通列车上的旅客看见高速列车驶过窗口的时间是x 秒,则100÷5×x=80,解得x=4,故选D .12.D【解析】【分析】先由(x-4)m=x-4且m≠1得到x=4,然后代入化简后的代数式计算即可.【详解】解:∵(x-4)m=x-4,∴(4)(1)0x m --=又∵m≠1,∴40x -=,即x=4,∵2222222(32)626+2+4+644x x x x x x x x x ---+=-=+,当x=4时,原式=244x +=2444⨯+=68故选择:D 【点睛】本题考查了解一元一次方程,代数式的求值,正确对条件式及所求得代数式进行变形化简是解题的关键.13.-4【解析】【分析】方程移项,把x 系数化为1,即可求出解.【详解】解:方程移项得:32x=-6,解得:x=-4,故答案为:x=-4.【点睛】此题考查解一元一次方程,熟练掌握运算法则是解题的关键.14.3(2+x)<0【解析】【分析】2与x 的和的3倍是负数,那么前面所得的结果小于0.【详解】解:2与x 的和为2+x ,2与x 的和的3倍为3(2+x),∵积是负数,∴3(2+x)<0,故答案为:3(2+x)<0.【点睛】此题考查由实际问题抽象出一元一次不等式,解题的关键是理解负数用数学符号表示是“<0”.15.-2【解析】【分析】根据二元一次方程的定义即可求解.【详解】依题意可得|k|﹣1=1,k-2≠0解得k=-2故答案为:-2.【点睛】此题主要考查二元一次方程的定义,解题的关键是熟知二元一次方程的特点.16.7【解析】【分析】把x a y b=⎧⎨=⎩代入方程后,方程两边在乘3后整体代入即可解答.【详解】解:把x a y b =⎧⎨=⎩代入方程,得2a-b=2,方程两边同时乘3得,6a-3b=6,则631a b -+=6+1=7,故答案为:7.【点睛】本题考查了等量代换和整体思想,解题的关键是掌握相关知识点.17.-2【解析】【分析】先由21x +=求得x ,然后将x 代入243x m -=即可求得m 的值.【详解】解:由x+2=1解得x=-1,将x=-1代入243x m -=,得-2-4=3m ,即m=-2故答案为:-2.【点睛】本题考查了同解方程,利用同解方程列出关于m 的方程并求解是解答本题关键.18.6【解析】【分析】根据两个非负数之和为0,则这两个数都为0,建立关于x 、y 的方程组,解方程组求出x 、y 的值,然后代入代数式求值即可.【详解】解:∵2150x y x y -+++-=∴21050x y x y -+=⎧⎨+-=⎩解之:32x y =⎧⎨=⎩∴xy=3×2=6故答案为:6.【点睛】本题考查的是绝对值非负数的性质、解二元一次方程组,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.19.211 xyz=⎧⎪=-⎨⎪=⎩【解析】【分析】根据加减消元法即可求解.【详解】解328 23154 x yy zx y z-=⎧⎪+=⎨⎪+-=-⎩①②③③×3得3x+15y-3z=-12④②+④得3x+17y=-11⑤⑤-①得19y=-19解得y=-1把y=-1代入①得3x+2=8解得x=2把y=-1代入②得-2+3z=1解得z=1故原方程组的解为211 xyz=⎧⎪=-⎨⎪=⎩故答案为:211xyz=⎧⎪=-⎨⎪=⎩.【点睛】此题主要考查三元一次方程组的求解,解题的关键是熟知加减消元法的运用.20.5 11【解析】【分析】设x=..0.45,则x=0.4545…①,根据等式性质得:100x=45.4545…②,再由②−①得方程100x−x =45,解方程即可.【详解】设x =..0.45,则x =0.4545…①,根据等式性质得:100x =45.4545…②,由②−①得:100x−x =45.4545…−0.4545…,即:100x−x =45,99x =45解方程得:x =4599=511.故答案为:511.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.21.(1)12x =;(2)103x =;(3)21x y =⎧⎨=⎩;(4)52x y =⎧⎨=-⎩.【解析】【分析】(1)根据解一元一次方程的步骤:移项、合并同类项、系数化1进行求解即可;(2)先去分母,根据解一元一次方程的步骤求解即可;(3)用加减消元法①×3-②×2即可求出y ,把y 的值代入原方程就可求出方程组的解;(4)先去括号化简方程组,再利用加减法解方程组即可.【详解】(1)11x ﹣3=x+2移项得:11x ﹣x =3+2,合并同类项得:10x =5,系数化为1得:x =12.(2)22(3)6363x x x -+-=-去分母,方程的两边同时乘以6得:36(2)184(3)x x x --=-+,去括号得:36218412x x x -+=--,合并同类项得:381412x x -=-,移项得:1550x =,系数化为1得:103x=;(3)237 342 x yx y+=⎧⎨-=⎩①②①×3-②×2得:17y=17,解得:y=1,把y=1代入①得:237x+=,解得:x=2,∴方程组的解为:21xy=⎧⎨=⎩.(4)6()7()21 2()5()1x y x yx y x y--+=⎧⎨--+=-⎩整理得:371 33963 x yx y+=⎧⎨+=-⎩①②②﹣①得:32y=﹣64,y=﹣2,把y=﹣2代入①得:x=5,∴方程组的解为:52xy=⎧⎨=-⎩.【点睛】本题考查了解一元一次方程,二元一次方程组,解题的关键是把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.22.1.【解析】【分析】先根据相反数的性质列出关于x的方程,再根据解一元一次方程的步骤依次计算可得.【详解】解:根据题意,得:3x﹣5+(﹣4x+6)=0,去括号,得:3x﹣5﹣4x+6=0,移项,得:3x ﹣4x =5﹣6,合并同类项,得:﹣x =﹣1,系数化为1,得:x =1.【点睛】本题主要考查了解一元一次方程和相反数的性质,解题的关键是掌握相反数的两数的和为0及解一元一次方程的步骤.23.a =2.【解析】【分析】解关于x 的方程221145ax x +--=可得x =658a -,要使方程的解为正整数,即必须使658a -为正整数,(5a ﹣8)应是6的正约数,分析可得:a =2.【详解】解:关于x 的方程221145ax x +--=,解为x =658a -,要使方程的解为正整数,即必须使658a -为正整数,则(5a ﹣8)应是6的正约数,则5a ﹣8=1,2,3,6,且a 是整数,则a =2.【点睛】本题考查解一元一次方程的整数解问题,先解方程,把方程的解用未知数表示出来,分析其为整数的情况,可得出答案.24.2017x =【解析】【分析】先根据非负数的性质,得到,a b 的值,把,a b 的值代入方程,利用列项相消的方法合并同类项,再解方程即可.【详解】解:()2120a ab -+-= ,,20ab ∴⎨-=⎩解得:1,2a b =⎧⎨=⎩原方程化为:2016,12233420162017x x x x +++∙∙∙+=⨯⨯⨯⨯111111111(12016,223342015201620162017x ∴-+-+-+∙∙∙+-+-=1(12016,2017x ∴-=20162016,2017x ∴=∴2017x =.【点睛】本题考查了两个非负数之和为0的性质,以及列项相消合并同类项,一元一次方程的解法,掌握以上知识是解题的关键.25.21x y =⎧⎨=-⎩【解析】【分析】把甲的解代入方程②求出b 的值,把乙的解代入①求出a 的值,确定出方程组,求出正确的解即可.【详解】解:由题意可知,把14x y =⎧⎨=-⎩代入方程②中,得b+4=7,解得b=3;把11x y =-⎧⎨=⎩代入方程①中,得-2+a=1,解得a=3;把3b ⎨=⎩代入方程组,可得2311372x y x y +=⎧⎨-=⎩,解得:21x y =⎧⎨=-⎩,∴原方程组的解应为21x y =⎧⎨=-⎩.【点睛】此题考查了二元一次方程组的解,解题的关键是掌握方程组的解即为能使方程组中两方程都成立的未知数的值.26.安排12名工人加工大齿轮,安排15名工人加工小齿轮.【解析】【分析】设生产大齿轮的人数为x ,则生产小齿轮的人数为(27﹣x ),再由两个大齿轮与三个小齿轮配成一套列出比例式,求出x 的值即可.【详解】设需安排x 名工人加工大齿轮,安排(27﹣x )名工人加工小齿轮,依题意得:12272103x x ⨯⨯=⨯(﹣)解得x=12,则27-x=15.答:安排12名工人加工大齿轮,安排15名工人加工小齿轮.【点睛】本题考查的知识点是简单的工程问题,解题关键是根据所给条件列出关于x 的关系式,求出未知数的值.27.(1)该店有客房8间,房客63人;(2)诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.【解析】【分析】(1)设该店有客房x 间,房客y 人;根据题意得出方程组,解方程组即可;(2)根据题意计算:若每间客房住4人,则63名客人至少需客房16间,求出所需付费;若一次性定客房18间,求出所需付费,进行比较,即可得出结论.【详解】解:(1)设该店有客房x 间,房客y 人;根据题意得:()7791x y x y +=⎧⎨-=⎩,解得:863x y =⎧⎨=⎩.答:该店有客房8间,房客63人;(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱若一次性定客房18间,则需付费20×18×0.8=288钱<320钱;答:诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.“点睛”本题考查了二元一次方程组的应用;根据题意得出方程组是解决问题的关键.28.(1)402404x y =-⎧⎨=⎩;(2)23x y =-⎧⎨=⎩【解析】【分析】(1)先把两式相减得出x+y 的值,再把x+y 的值与2010相乘,再用加减消元法求出x 的值,用代入消元法求出y 的值即可;(2)先把两式相减得出(m-n)x+(m-n)y=m-n 的值,再用加减消元法求出x 的值,用代入消元法求出y 的值即可.【详解】解:(1)201620112012201020052000x y x y +=⎧⎨+=⎩①②,①-②,得:6x+6y=12,即x+y=2③,③×2010,得:2010x+2010y=4020④,④-②,得:y=404,将y=404代入③得:x=-402,∴方程组的解为:402404x y =-⎧⎨=⎩;(2)()()()()3232m x m y m n x n y n ⎧+++=⎪⎨+++=⎪⎩①②,①-②,得:(m-n)x+(m-n)y=m-n,∵m≠n,∴x+y=1③,③×(n+3),得:(n+3)x+(n+3)y=n+3④,④-②,得:y=3,将y=3代入③得:x=-2,∴方程组的解为23xy=-⎧⎨=⎩.【点睛】此题考查解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解题的关键.。
华师大版七年级下册数学期中考试试题含答案
华师大版七年级下册数学期中考试试卷一、单选题1.方程38x +=解为()A .5B .10C .12D .152.利用加减消元法解方程组3416,5614.x y x y +=⎧⎨-=⎩①②下列做法正确的是()A .要消去y ,可以将23①②⨯+⨯B .要消去x ,可以将()35⨯+⨯-①②C .要消去y ,可以将53⨯+⨯①②D .要消去x ,可以将()53⨯-+⨯①②3.不等式3x+2≥5的解集是()A .x≥1B .x≥73C .x≤1D .x≤﹣14.下列过程中,变形正确的是()A .由23x =得23x =B .由11132x x---=得()()21131x x --=-C .由12x -=得21x =-D .由()312x -+=得332x --=5.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是()A .3201036x y x y -=⎧⎨+=⎩B .3201036x y x y +=⎧⎨+=⎩C .3201036y x x y -=⎧⎨+=⎩D .3102036x y x y +=⎧⎨+=⎩6.若x=-3是方程2()6x m -=的解,则m 的值是()A .6B .-6C .12D .-127.不等式x+1≥2x ﹣1的解集在数轴上表示为()A .B .C .D .8.关于y 的方程ay -2=4与2y -5=-1的解相同,则a 的值为()A .2B .3C .4D .2-9.若m >n ,则下列不等式正确的是()A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n10.小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x 、y 分钟,则列出的二元一次方程组是()A .1x y {3200x 70y 3350+=+=B .x y 20{70x 200y 3350+=+=C .1x y {370x 200y 3350+=+=D .x y 20{200x 70y 3350+=+=二、填空题11.不等式812x ->的解集是______.12.已知x ,y 满足方程组2524x y x y +=⎧⎨+=⎩,则x ﹣y 的值=__________.13.有一个密码系统,其原理如下面的框图所示:当输出为10时,则输入的x =___________.14.小刚解出了方程组332x y x y -=⎧⎨+=∆⎩的解为4x y =⎧⎨=⎩.因不小心滴上了两滴墨水,刚好盖住了方程组和解中的两个数,则∆、W 分别为___________.15.若不等式211133x ax +-+>的解集是53x <,则a 的值为___________.16.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为26,请写出符合条件的所有x 的值_____.三、解答题17.(1)32126x x---=(2)0.10.30.020.0110.20.03x x -+-=.18.解方程组:(1)10216x y x y +=⎧⎨+=⎩(2)33814x y x y -=⎧⎨-=⎩19.(1)求不等式126x -<的所有负整数解;(2)解不等式:()()13211223x x --≥,并在数轴上把解集表示出来.20.已知42x y =⎧⎨=⎩与13x y =-⎧⎨=-⎩都满足等式y kx b =+.(1)求k 与b 的值;(2)求当5x =时,y 的值.21.如图,在数轴上,点A 、B 分别表示数1、23x -+.(1)求x 的取值范围;(2)试比较2x -+与23x -+的大小.22.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?23.已知关于x 、y 的二元一次方程组3x my 52x ny 6-=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,求关于a 、b 的二元一次方程组3()()52()()6a b m a b a b n a b +--=⎧⎨++-=⎩的解.24.某公司用火车和汽车运输两批物资,具体运输情况如下表所示:所用火车车皮数量(节)所用汽车数量(辆)运输物资总量(吨)第一批25130第二批43218试问每节火车车皮和每辆汽车平均各装物资多少吨?参考答案1.A【分析】直接进行移项解方程即可得到答案.【详解】解:∵38x+=∴83x=-解得5x=故选A.【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握基本知识进行求解. 2.D【分析】利用加减消元法判断即可.【详解】解:利用加减消元法解方程组34165614x yx y+=⎧⎨-=⎩①②,要消元y,可以将①×3+②×2;要消去x,可以将①×(-5)+②×3,故选D.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.A【详解】分析:根据一元一次不等式的解法即可求出答案.详解:3x+2≥5,3x≥3,∴x≥1.故选A.点睛:本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.4.D【分析】根据等式的性质进行计算并作出正确的选择即可.【详解】A、在等式2x=3的两边同时除以2得到:x=32,故本选项错误;B、在等式x11x132---=的两边同时乘以6得到:2(x-1)-6=3(1-x),故本选项错误;C、在等式x-1=2的两边同时加上1得到x=3,故本选项错误;D、由-3(x+1)=2得到:-3x-3=2,故本选项正确;故选D.【点睛】本题考查了等式的性质.性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.5.B【详解】分析:根据等量关系“一本练习本和一支水笔的单价合计为3元”,“20本练习本的总价+10支水笔的总价=36”,列方程组求解即可.详解:设练习本每本为x元,水笔每支为y元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:3 201036 x yx y+⎧⎨+⎩==,故选B.点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.6.B【分析】把x=-3,代入方程得到一个关于m的方程,即可求解.【详解】解:把x=-3代入方程得:2(-3-m)=6,解得:m=-6.故选:B.【点睛】本题考查了方程的解的定义,理解定义是关键.7.B【分析】先求出不等式的解集,再根据不等式解集的表示方法,可得答案.【详解】移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:.故选B.【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.B【分析】求出第二个方程的解得到y的值,代入第一个方程即可求出a的值.【详解】解:由2y-5=-1,得到y=2,将y=2代入ay-2=4中,得:2a-2=4,解得:a=3.故选B.【点睛】此题考查了同解方程,同解方程即为两方程的解相同.9.B【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【详解】A、将m>n两边都减2得:m﹣2>n﹣2,此选项错误;B、将m>n两边都除以4得:m n44>,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以﹣8,得:﹣8m<﹣8n,此选项错误,故选B.【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10.D【详解】解:由他骑自行车和步行的时间分别为x、y分钟,根据关键语句“到学校共用时20分钟”可得方程:x+y=20,根据关键语句“骑自行车的平均速度是200米/分,步行的平均速度是70米/分.他家离学校的距离是3350米”可得方程:200x+70y=3350,两个方程组合可得方程组:x y20{200x70y3350+=+=.故选D.11.10x>【分析】按照去分母、移项、合并同类项的步骤求解即可.【详解】解:原不等式去分母得82x ->,移项得82x >+,合并同类项得10x >.故答案为:10x >.【点睛】题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.12.-1【分析】根据加减消元法,直接可求出x-y 的值.【详解】解:2524x y x y +=⎧⎨+=⎩①②②-①得:x-y=-1.故答案为-1.【点睛】此题主要考查了二元一次方程组的解法的应用,合理选择加减消元法求解即可,比较简单.13.2【分析】根据框图得出方程2x +6=10,解方程.即可【详解】解:由题意得:2x +6=10,解得:x =2,∴当输出为10时,则输入的x =2.故答案为:2.【点睛】本题考查一元一次方程的应用,读懂框图,正确列出方程是解答的关键.14.17,9【分析】把4x =代入33x y -=中求出y ,再把x ,y 代入另外一个不等式计算即可;【详解】将4x =代入33x y -=,∴123y -=,∴9y =,将4x =,9y =代入2x y +=△中,∴8917=+=V ;故答案是:17,9.【点睛】本题主要考查了二元一次方程组的求解,准确计算是解题的关键.15.5【分析】本题不等式211133x ax +-+>的解集是53x <,求得x 的解集,再根据解集即可求得a 的值.【详解】解:211133x ax +-+>,2131x ax ++>-,25x ax ->-,(2)5a x ->-∵不等式211133x ax +-+>的解集是53x <,∴20a -<,∴23a -=-,解得:5a =,故答案为:5.【点睛】此题考查了解一元一次不等式,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.16.2,8【解析】试题分析:根据输出结果,由运算程序求出所有x 的值即可.解:根据题意得:3x+2=26,解得:x=8;根据题意得:3x+2=8,解得:x=2,则所有正数x 的值为2,8.故答案为2,8.考点:有理数的混合运算.17.(1)174x =;(2)17x =-【分析】(1)先去分母,再解一元一次方程;(2)先把分母化成整数,在解一元一次方程;【详解】(1)32126x x---=,()3326x x --+=,3926x x --+=,417x =,174x =;(2)0.10.30.020.0110.20.03x x -+-=,321123x x -+-=,()()336221x x --=+,39642x x --=+,17x =-;【点睛】本题主要考查了一元一次方程的求解,准确计算是解题的关键.18.(1)64x y =⎧⎨=⎩;(2)21x y =⎧⎨=-⎩.【分析】(1)利用加减消元法,②-①即可求解;(2)利用加减消元法,由①×3-②求解即可.【详解】解:(1)10216x y x y +=⎧⎨+=⎩①②,②-①得:6x =,把6x =代入①得:4y =,方程缉的解为64x y =⎧⎨=⎩(2)33814x y x y -=⎧⎨-=⎩①②,①×3-②得:55y =-,即1y =-,将1y =-,①得:2x =,方程组的解为21x y =⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组,解二元一次方程组要利用消元的思想,消元的方法有:代入消元和加减消元.19.(1)2-、1-;(2)12x ≤,图见解析【分析】(1)先移项,合并同类项,把x 的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x 的系数化为1即可.【详解】解:(1)移项,得261x -<-,合并同类,得25x -<,系数化为1,得52x >-,故其所有负整数解为2-、1-;(2)去分母,得()()212921x x -≥-,去括号,得24189x x -≥-,移项,得41892x x --≥--,含并同类项,得2211x -≥-,系数化为1,得12x ≤,数轴如图:.【点睛】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.20.(1)1k =,2b =-;(2)3y =【分析】(1)将42x y =⎧⎨=⎩和13x y =-⎧⎨=-⎩分别代入y kx b =+,得到关于k 、b 的二元一次方程组,求解即可;(2)由(1)得2y x =-,将5x =代入,即可求得y 得值.【详解】解:(1)将42x y =⎧⎨=⎩和13x y =-⎧⎨=-⎩分别代入y kx b =+,得243k b k b =+⎧⎨-=-+⎩①②解得1k =,2b =-.(2)由(1)和2y x =-.将5x =代入2y x =-,得3y =.【点睛】本题考查了二元一次方程组的解法,以及求代数式的值,是基础知识要熟练掌握.21.(1)1x <;(2)223x x -+-+<【分析】(1)根据数轴上的点表示的数右边的总比左边的大,可得不等式,根据解不等式,可得答案;(2)根据作差法,即2(23)1x x x -+--+=-,根据(1)中x 得取值范围判断差的正负即可.【详解】解:(1)由数轴上的点表示的数右边的总比左边的大,得231x -+>,解得1x <;(2)2(23)1x x x -+--+=-,由1x <,得10x -<,∴2(23)0x x -+--+<∴223x x -+-+<.【点睛】本题考查了一元一次不等式,解题的关键运用作差法比较代数式的大小.22.(1)该店5月份购进甲种水果100千克,购进乙种水果50千克.(2)需要支付这两种水果的货款最少应是1500元.【分析】(1)设该店5月份购进甲种水果x 千克,购进乙种水果y 千克,根据总价=单价×购进数量,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a 千克,需要支付的货款为w 元,则购进乙种水果(120﹣a )千克,根据总价=单价×购进数量,即可得出w 关于a 的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再利用一次函数的性质即可解决最值问题【详解】(1)设该店5月份购进甲种水果x 千克,购进乙种水果y 千克,根据题意得:818170010201700300x y x y +=⎧⎨+=+⎩,解得:10050x y =⎧⎨=⎩,答:该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a 千克,需要支付的货款为w 元,则购进乙种水果(120﹣a )千克,根据题意得:w=10a+20(120﹣a )=﹣10a+2400,∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a ),解得:a≤90,∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500,∴月份该店需要支付这两种水果的货款最少应是1500元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,弄清题意,找准等量关系列出方程组,找出各数量间的关系列出函数解析式是解题的关键.23.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【分析】对比两个方程组,可得a+b就是第一个方程组中的x,即a+b=1,同理:a﹣b=2,可得方程组解出即可.【详解】∵关于x、y的二元一次方程组3x my52x ny6-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩满足12a ba b+=⎧⎨-=⎩,解得:3212 ab⎧=⎪⎪⎨⎪=-⎪⎩.∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩的解是3212ab⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查解二元一次方程组,通过对比得出以a、b为未知数的方程组是解题关键. 24.每节火车车皮装物资50吨,每辆汽车装物资6吨.【分析】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得25130 43218x yx y+=⎧⎨+=⎩,求解即可;【详解】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得25130 43218 x yx y+=⎧⎨+=⎩,∴506xy=⎧⎨=⎩,∴每节火车车皮装物资50吨,每辆汽车装物资6吨.【点睛】本题考查二元一次方程组的应用,能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年七年级下期数学期中考试试卷
(问卷部分)
考生注意:1.本学科试卷共四道大题,满分120分。
2.本试卷的所有......作答一律答.....在答卷部分.....,在问卷部分作答而答卷部分无作答则无.................
效.,不计分数....。
一、选择题(本大题共10个小题,每小题3分,共30分.)
1.若关于x 的方程1
(2)39a a x
--+=是一元一次方程,则该方程的解为( ). A.0 B.-3 C.2 D.3
2.已知一元一次不等式组213
5(1)43
x x x x +≤+⎧⎨
-≥-⎩,下列说法正确的是( ).
A.有无数个解
B.无解
C.2x ≠
D.有唯一解2x =
3.方程
12123
x x
+--=去分母后正确的是( ). A.3(1)2(2)1x x +--= B.2(1)3(2)6x x +--= C.3(1)2(2)6x x +--= D.3(1)421x x +--=
4.若2个单项式23a b x y +与42a b
x y -的和仍是单项式,则ab 的值为( ).
A.8
B.3
C.-3
D.2
5.把不等式3(1)123x x +-≤+的解集在数轴上表示出来,正确的是( ).
A.
B.
C.
D.
6.解方程组272a b a b +=⎧⎨-=⎩,①
,②
的最佳方法是( ).
A.代入法消去a ,由②得2a b =+
B.代入法消去b ,由①得72b a =-
C.加减法消去a ,①-②×2得33b =
D.加减法消去b ,①+②得39a =
7.10位同学利用“五一国际劳动节”放假时间,为了响应国家“绿化河山,美丽中国”的号召,共植树36棵,其中男生每人植树4棵,女生每人植树3棵.设男生有x 人,女生有y 人,根据题意,列方程正确的是( ).
A.364310x y x y +=⎧⎨
+=⎩ B.103436x y x y +=⎧⎨+=⎩ C.36
3410
x y x y +=⎧⎨+=⎩ D.104336x y x y +=⎧⎨+=⎩
8.当2x =时,3ax +的值是9,当3x =时,代数式3ax -的值是( ).
A.-5
B.1
C.6
D.2 9.若x y >,则下列式子中错误的是( ).
A.22x y ->-
B.2
2
a x a y >
C.22
x y
-
<- D.3131x y +>+ 10.若2个整式21k +与1
3()2
k +互为相反数,则k 的值是( ).
A.12-
B.1
C.1
2
D.0
二、填空题(本大题共8个小题,每小题3分,共24分.)
11.若关于x 的不等式(1)2n x +>的解集是2
1
x n <
+,则n 的取值范围是____________. 12.已知2
26(3)0x y x y +-+-+=,则x =________,y =________. 13.已知关于x 的方程238x a +=的解是1x =,则a 的值是________.
14.若关于x 的不等式组1
3x x m >⎧⎨+>⎩的解集是1x >,则m 的取值范围是____________.
15.实数x y 、满足方程组27
28x y x y +=⎧⎨+=⎩
,则x y +=________.
16.服装店销售某款上衣,标价为200元,六折销售后仍可获利20%,则这款上衣每件的进价为____元.
17.如果
1143
x y
+=+,那么3x =________. 18.一个矩形的长比宽多3cm ,它的周长是18cm ,那么这个矩形的面积是________2
cm .
三、解答题(本大题共4个小题,满分38分.)
19.解下列方程(组)或不等式(组)(共4道小题,每题5分,共20分.)
(1).4(25)3(32)20x x +--=; (2).5(2)10312a a -+>+;
(3).6232()()4x y x y
x y x y +-⎧+=⎪
⎨⎪+--=-⎩
,①,②; (4).253(1)1318k k k +≤+⎧⎨
+≤⎩,①,②.
20(6分).解不等式组21141x x ->-⎧⎨-≥⎩,①,②
,并将它的解集在数轴上表示出来,并指出它所有的整数解.
21(6分).已知满足方程组35123x y a x y a +=+⎧⎨+=⎩
,①
,②的x ,y 值之和为4,求a 的值.
22(6分).若不等式5(2)86(1)7x x -+<-+的最小整数解是方程24x ax -=的解,求1
a a
+
的值.
四、用方程(组)或不等式(组)解答以下实际问题(本大题共3个小题,满分28分.)
23(8分).工厂某车间有48名工人,平均每人每天加工大齿轮10个或小齿轮15个,已知1个大齿轮与3个小齿轮配成一套,那么怎么安排工人,才能使每天加工的大小齿轮刚好配套?
24(8分).一条河流上下游分别坐落A 、B 两个港口,一艘游轮从A 港用了3小时到达B 港,然后按原路返回至A 港用了4小时,已知游轮在静水中的航速为28千米/小时,求水流速度和A 、B 两个港口的距离.
25(12分).某文具店中,购买8支圆珠笔和5支钢笔共需花费49元,购买10支圆珠笔和7支钢笔共需花费65元.
(1) 求圆珠笔和钢笔的单价;
(2)期中考试后,王老师花费了不超过150元的钱共购买了这两种笔40支来奖励优秀学生和进步学生,已知圆珠笔的支数不多于钢笔支数的2倍,那么王老师共有几种购买方案?最低购买费用是多少?
2018年七年级下期数学期中考试试卷
(答卷部分)
19.解下列方程(组)或不等式(组)(共4道小题,每题5分,共20分.)
(1).4(25)3(32)20x x +--=; (2).5(2)10312a a -+>+;
(3).6232()()4x y x y
x y x y +-⎧+=⎪
⎨⎪+--=-⎩
,①,②; (4).253(1)1318k k k +≤+⎧⎨
+≤⎩,①,②.
20(6分).
∴该不等式组的整数解是:
把该不等式组的解集在数轴上表示如下:
∴该不等式组的解集为:
解:
四、用方程(组)或不等式(组)解答以下实际问题(本大题共3个小题,满分28分.)
23(8分).工厂某车间有48名工人,平均每人每天加工大齿轮10个或小齿轮15个,已知1个大齿轮与3个小齿轮配成一套,那么怎么安排工人,才能使每天加工的大小齿轮刚好配套?
24(8分).一条河流上下游分别坐落A 、B 两个港口,一艘游轮从A 港用了3小时到达B 港,然后按原路返回至A 港用了4小时,已知游轮在静水中的航速为28千米/小时,求水流速度和A 、B 两个港口的距离.
25(12分).某文具店中,购买8支圆珠笔和5支钢笔共需花费49元,购买10支圆珠笔和7支钢笔共需花费65元.
(2) 求圆珠笔和钢笔的单价;
(2)期中考试后,王老师花费了不超过150元的钱共购买了这两种笔40支来奖励优秀学生和进步学生,已知圆珠笔的支数不多于钢笔支数的2倍,那么王老师共有几种购买方案?最低购买费用是多少?
22(6分).
21(6分).
2018年七年级下期数学期中考试试卷参考答案
19.解下列方程(组)或不等式(组)(共4道小题,每题5分,共20分.) (1)6; (2)a >6; (3)x =8,y =-4; (4)2≤k ≤5.
20(6分).0<x ≤3,数轴略,整数解为:1,2,3.
21(6分).解:②×2-①得,x +y =a-1,又∵4x y += ,∴14a -=,∴a =5.
22(6分).解:解不等式得,x >-3,∴它的最小整数解为x =-2,当x =-2时,原方程为:-4+2a =4, ∴a =4,∴当11744
a a a =+
=时, .
四、用方程(组)或不等式(组)解答以下实际问题(本大题共3个小题,满分28分.) 23(8分).16人加工大齿轮,32人加工小齿轮.
24(8分).水流速度:4千米/小时,两个港口距离:96千米.
25(12分)(1)(5分).圆珠笔3元/支,钢笔5元/支;
(2)(7分).设王老师购买圆珠笔a 支,钢笔(40-a )支,依题意得,
35(40)1502(40).a a a a +-≤⎧⎨
≤-⎩
,
解得,2
25263
a ≤≤,
∵a 为整数,
∴a 的值为25,26,
∴共有2种方案, ∴当购买圆珠笔26支,钢笔14支时,最低购买方案费用为:26×3+14×5=148(元).。