定积分的证明题44题
9.8章定积分考研专题(共141张)
解:n x | sin x | dx n (1)k1 k x sin xdx
0
(k 1)
k 1
n
(1)k1 (sin
x
x
c os x)
|k
(k 1)
k 1
n
(2k 1) n2。
k 1
第20页,共141页。
例7 定积分的计算
设F( y)
1
|
x
yx2
|
dx,
I
0
1
1 sin 2
x
dx
[
1 arctan( 2
2 tan x)]0
0
上述解法是错误的。理由在于题目所给导数关系
在x 处不成立,故不能直接利用N L公式。
2
第27页,共141页。
例8 定积分的计算
已知[ 1 arctan( 2
2
tan
x)]'
1
1 sin2
x
,
求积分I
1 0 1 sin2 x dx
(x
ln
|
sin
x
c os x
|)
C
所以: / 2 sin x dx 0 sin x cos x
1 2
(x
ln
|
sin
x
c os x
|)
|0
/2
/
4
第6页,共141页。
法三: / 2 sin x dx 0 sin x cosx
/ 2
x /2t
cost
/2
dt
c os x
dx
第7页,共141页。
注:
法一利用三角函数有理式的不定积分一般步骤,
定积分习题
一、单项选择题 1、定积分⎰badx x f )(是( ).(A)f(x)的一个原函数 (B) f(x)的全体原函数 (C)确定常数 (D) 任意常数 2、设函数2()ln(2)x f x t dt =+⎰,则)(x f '的零点个数是( ).[2008年考研数学一] (A)0 (B) 1 (C) 2 (D)3 3、设f(x)为[a,b]上连续函数,则变上限函数⎰xadt t f )((a ≤x ≤b )是( ).(A))(x f '的一个原函数 (B) f(x)的一个原函数 (C) )(x f '的全体原函数 (D) f(x)的全体原函数 4、设f(x)为[a,b]上连续函数,F(x),g(x)为可导函数,下列等式中不正确的是( ).(A)).()(x f dtt f dx d b a =⎥⎦⎤⎢⎣⎡⎰ (B) ).()(x f dt t f dx d x a =⎥⎦⎤⎢⎣⎡⎰ (C) ).()(x F dt t F dx d x a '=⎥⎦⎤⎢⎣⎡'⎰ (D) ).())(()()(x g x g f dt t f dx d x g a '=⎥⎦⎤⎢⎣⎡⎰ 5、=⎥⎦⎤⎢⎣⎡+⎰x dt t dx d 12)1ln(( ). (A))1ln(2t + (B) )1ln(22t t + (C) )1ln(22x x + (D) )1ln(2x + 6、设⎰='=1)()(xt x F dt te x F ,则( ).(A)xxe - (B) xxe (C) xxe - (D) xxe--7、设15sin 00sin (),()(1)xx t tx dt x t dt tαβ==+⎰⎰,则当0x →时,()x α是()x β的( ).[99年考研数学一](A)高阶无穷小 (B) 低阶无穷小 (C) 同阶但不等价无穷小 (D) 等价无穷小8、=⎰⎰→x xx tdtdtt 0sin lim( ).(A) -1 (B) 0 (C) 1 (D)不存在 9、设函数⎰-=xdt t x f 0)1()(,则f(x)有( ).(A)极小值21 (B) 极小值21- (C) 极大值21 (D) 极大值21- 10、由抛物线y 2=x 及直线2,x y x y ==所围平面图形的面积为( ).(A)⎰⎪⎭⎫ ⎝⎛-402dx x x (B) ()⎰-40dx x x (C) ⎰⎪⎭⎫ ⎝⎛-402dx x x (D) dx x x dx x x ⎰⎰⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-41102211、()f x 在闭区间[a,b]上连续是()f x 在[a,b]上可积的( ).(A)充分且必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 即非充分又非必要条件 12、设()f x 在[a,c]上连续,a b c <<,则()baf x dx ≠⎰( ).(A)()()cc abf x dx f x dx +⎰⎰(B) ()()c cabf x dx f x dx -⎰⎰ (C) ()()cbacf x dx f x dx +⎰⎰ (D) [()()]abccf x dx f x dx --⎰⎰13、设()f x 在[a,b]上连续,则[a,b]上至少有一点ξ,使()f ξ=( ).(A)()abf x dx ⎰(B)1()a b f x dx b a -⎰ (C) 1()ba f x dxb a-⎰ (D) ()b a f x dx ⎰ 14、设4742542226222sin cos ,(sin cos ),(sin cos )1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰,则( ). (A)N P M << (B) M P N << (C) N M P << (D) P M N << 15、设()f x 连续,则220()x d tf x t dt dx-=⎰( ).[1998年考研数学一] (A) 2()xf x (B) 2()xf x - (C) 22()xf x (D) 22()xf x -16、20sin()xd x t dt dx -⎰=( ). (A)0 (B) 1 (C) 2 (D) 2sin x 17、设1()2()f x x f x dx =+⎰,则()f x =( ).(A) x (B) 1x + (C) 1x - (D) 1x - 18、反常积分11pdx x +∞⎰,( ). (A)1p ≥时收敛,1p <时发散 (B) 1p ≤时收敛,1p >时发散 (C) 1p >时收敛,1p ≤时发散 (D) 1p <时收敛,1p ≥时发散 19、下列积分中为广义积分的是( ). (A)11(1)dx x x -+⎰ (B) 11sin x dx x -⎰ (C) 111arctan dx x -⎰ (D) 111sin dx x -⎰ 20、下列广义积分收敛的是( ). (A)ln exdx x +∞⎰(B) ln e dx x x+∞⎰ (C) 2(ln )e dx x x +∞⎰(D) e +∞⎰ 二、填空题21、函数()[,]f x a b 在上有界是f(x)在[a,b]是可积的_________条件,而f(x)在[a,b]上连续是f(x)在[a,b]是可积的_________条件.22、63sin _____.x xdx ππ-=⎰ 23、83_____.=⎰24、无穷积分30______.xedx +∞-=⎰ 25、瑕积分1ln ______.xdx =⎰26、设连续函数f(x)满足112()3(),()_____.f x x x f x dx f x dx =-=⎰⎰则27、已知f(x)的一个原函数为21()ln ,_____.ef x x x dx x=⎰则28、曲线(1)(2)y x x x x =--与轴所围成的平面图形的面积用定积分可表示为_________________.29、反常积分1+∞=⎰______.[04年考研数学二] 30、1=⎰_________________.31、反常积分2ln edx x x+∞=⎰______.[02年考研数学一] 32、240tan xdx π=⎰_________________. 33、反常积分2+∞=⎰______.[00年考研数学二] 34、10=⎰_________________.35、11ln exdx x +=⎰_________________. 36、2121sinydy y ππ=⎰_________________.37、设2(),()xt F x te dt F x -'=⎰则=________. 38、20cos limxx tdt x→=⎰_________________.39、22sin 2cos xdx x ππ-=+⎰_________________. 40、广义积分211A dx A x +∞-∞=+⎰,则=____. 三、计算题 41、1⎰. 42、1-⎰.43、2cos x xdx π⎰. 44、01(1)(2)dx x x +∞++⎰.45、1e⎰. 46、120ln(1)(2)x dx x +-⎰.47、π⎰. 48、4⎰.49、21dxx +∞-∞+⎰. 50、00)a a >⎰. 四、应用题51、求由抛物线42x y =与直线0423=--y x 所围成的平面图形的面积.52、求由曲线,xxy e y e -==及直线1x =所围成的平面图形的面积.53、求抛物线2x y =和x y =所围成的图形绕y 轴旋转所得旋转体的体积.54、求星形线222333x y a +=的全长.55、过曲线2(0)y x x =≥上某点A 作切线,使之与曲线及x 轴围成图形面积为112.求(1)切点A 的坐标;(2)过切点A 的切线方程;(3)由上述图形绕x 轴旋转成的旋转体体积V . 五、证明题 56、.)(21)(223⎰⎰=a adx x xf dx x f x57、设(),()f x g x 在区间[a,b]上均连续,证明:()222()()()()bbbaaaf xg x dxf x dxg x dx ≤⋅⎰⎰⎰.58、证明:11221(0)11xx dx dx x x x =>++⎰⎰. 59、设()f x 具有连续导数,证明()()()()xa d x t f t dt f x f a dx'-=-⎰. 60、设()g x 在区间[-a,a](a>0)上为偶函数,且()f x 满足()()f x f x A +-=(A 为常数).证明()()()aaaf xg x dx A g x dx -=⎰⎰.(注:文档可能无法思考全面,请浏览后下载,供参考。
定积分练习题含答案
5
6.设 f ( x) ,( x) 在点 x 0 的某邻域内连续,且当 x 0 时,
x
f ( x) 是( x) 的高阶无穷小,则当 x 0 时, f (t)sintdt 0
是 x t(t)dt 的 ( ). 0
( A ) 低阶无穷小
( B ) 高阶无穷小
( C ) 同阶但非等价无穷小
( D ) 等价无穷小
1
(
x10e
x
)dx
=
0
答案: e .
因为
1
(
x 10e
x
)dx
x10e x
1
e
0
0
4. lim 1 [ 1 cos 1 cos 2 1 cos n ] =
n n
n
n
n
答案: 2 2 .
因为 原式 1 1 cosxdx 1 2 cos x dx
0
0
2
( 2 2 sin x ) 1 2 2
x)
dx ,则有
(
).
2
(A) N PM
(B) MPN
(C ) N M P
(D) P M N
答案: D.
因为根据奇偶函数的性质有:
M
2 2
sinx 1 x2
cos4
xdx
0
,
N
2
(sin3
xcos4
x)dx
2cos4ຫໍສະໝຸດ xdx0,22
P
2
( x2 sin3
x
cos4
x)dx
2
26
三、计算题
1. 设函数 y f ( x) 在 (0, ) 内可导,
且 f ( x) 1 1
定积分习题
y
x
确定 y 是 x 的函数 , 求f(x)。 解:方程两端对 x 求导, 得
f ( x y ) ⋅ ( y + x y′) = ∫ f (t ) d t + x ⋅ f ( y ) ⋅ y′
1
y
令 x = 1, 得
f ( y ) y = ∫ f (t ) d t + y f (1)
1
y
+ y ′ ∫ f (t ) d t + y ⋅ f ( x)
例12. 求 lim
x →0
= cot t 。
4
∫ ⎢∫ ⎣
0
x2 0
x ⎡ u2 0
⎤ arctan(1 + t ) dt ⎥ du ⎦ = lim x →0 x ⋅ (1 − cos x )
∫
x
0
⎡ u arctan 1 + t dt ⎤ du ( ) ⎥ ⎢ ∫0 ⎣ ⎦ x2 x⋅ 2
2
⎛0⎞ ⎜ ⎟ ⎝0⎠
解: 等式两边对 x 求导, 得 不妨设 f (x)≠0, 则
sin x 1 ) 2 f (x) f ′(x) = f (x⋅ 2 2 + cos x
∴ f ( x) = ∫ 1 sin x dx f ′( x) dx = ∫ 2 2 + cos x
1 = − ln (2 + cos x ) + C 2
习题课
定积分及其相关问题
一、与定积分概念有关的问题的解法 二、有关定积分计算和证明的方法
曲边梯形的面积 曲边梯形的面积
问题1: 问题1:
变速直线运动的路程 变速直线运动的路程
问题2: 问题2:
定积分 定积分 的的 定定 性性 积积 质质 分分 定定 计计 积 算算 分积 法法 的分 的
(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(答案解析)
一、选择题1.给出下列函数:①()()2ln 1f x x x =+-;②()3cos f x x x =;③()xf x e x =+.0a ∃>使得()0aaf x dx -=⎰的函数是( )A .①②B .①③C .②③D .①②③2.已知71()x x +展开式中,5x 的系数为a ,则62axdx =⎰( )A .10B .11C .12D .133.如图,由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .1B .23C .43D .24.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是( ) A .12m ≥B .12m < C .1m ≥ D .1m < 5.3侧面与底面所成的角是45︒,则该正四棱锥的体积是( ) A .23B .43C .23D .236.22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰若 ,则s 1,s 2,s 3的大小关系为( )A .s 1<s 2<s 3B .s 2<s 1<s 3C .s 2<s 3<s 1D .s 3<s 2<s 17.曲线3y x =在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .438.已知1(1)1x f x x e ++=-+,则函数()f x 在点(0,(0))f 处的切线l 与坐标轴围成的三角形的面积为 A .14 B .12C .1D .29.一物体在力(单位:N)的作用下沿与力相同的方向,从x=0处运动到(单位:)处,则力做的功为( ).A .44B .46C .48D .50 10.已知10(31)()0ax x b dx ,,a b ∈R ,则⋅a b 的取值范围为( )A .1,9B .1,1,9C .1,[1,)9D .()1,+∞11.定义{},,min ,,,a ab a b b a b ≤⎧=⎨>⎩设31()min ,f x x x ⎧⎫=⎨⎬⎩⎭,则由函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积( ) A .12ln 26+ B .12ln 24+ C .1ln 24+ D .1ln 26+ 12.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .23二、填空题13.若112lim 22n nn n n t t +-→+∞-=+ ,则实数t 的取值范围是_____________.14.曲线,,0x y e y e x ===围成的图形的面积S =______15.曲线()sin 0πy x x =≤≤与x 轴围成的封闭区域的面积为__________. 16.已知函数()323232t f x x x x t =-++在区间()0,∞+上既有极大值又有极小值,则实数t 的取值范围是__________. 17.定积分()12xx e dx +=⎰__________.18.曲线2y x =与直线230x y --=所围成的平面图形的面积为________.19.二项式33()6a x -的展开式的第二项的系数为,则的值为______.20.若,则的值是__________.三、解答题21.已知二次函数()f x 满足(0)0f =,且对任意x 恒有(1)()22f x f x x +-=+. (1)求()f x 的解析式;(2)设函数()()'()g x f x f x λ=-,其中'()f x 为()f x 的导函数.若对任意[0,1]x ∈,函数()y g x =的图象恒在x 轴上方,求实数λ的取值范围.22.为了降低能源消耗,某冷库内部要建造可供使用20年的隔热层,每厘米厚的隔热层建造成本为4万元,又知该冷库每年的能源消耗费用c (单位:万元)与隔热层厚度x (单位:cm )满足关系()(010)25kc x x x =≤≤+,若不建隔热层,每年能源消耗为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小?并求最小值. 23.已知函数()32f x x ax =+图像上一点()1,P b 的切线斜率为3-,()()()3261302t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[]1,4x ∈-时,求()f x 的值域;(Ⅲ)当[]1,4x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围. 24.计算曲线223y x x =-+与直线3y x所围图形的面积.25.在(332x x11的展开式中任取一项,设所取项为有理项的概率为α,求1x α⎰d x26.已知()ln f x x x mx =+,2()3g x x ax =-+-(1)若函数()f x 在(1,)+∞上为单调函数,求实数m 的取值范围;(2)若当0m =时,对任意(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【分析】利用定义判断①②中的函数为奇函数,根据奇函数和定积分的性质,判断①②;利用反证法,结合定积分的性质,判断③. 【详解】对①,()f x 的定义域为R1())))()f x x x x f x --===-=-即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对②,()f x 的定义域为R33()cos()cos ()f x x x x x f x -=--=-=-,即函数()f x 为奇函数,则0a ∃>使得()0aaf x dx -=⎰对③,若0a ∃>,使得()0aaf x dx -=⎰成立则()2102aax x a aa a e x dx e x e e ---⎛⎫+=+- ⎪⎝==⎭⎰,解得0a =,与0a >矛盾,则③不满足 故选:A 【点睛】本题主要考查了定积分的性质以运用,属于中档题.2.D解析:D 【分析】利用二项式的通项公式求得7a =,从而求得762xdx ⎰的值.【详解】在71()x x +展开式中,得二项式的通项公式7721771rr r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令725r -=,解得1r =,所以5x 的系数为177C =,即7a =.所以7267662213axdx xdx x ===⎰⎰.故选:D 【点睛】本题主要考查二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,求定积分的值,属于中档题.3.D解析:D 【解析】由曲线21y x =-直线0,2x x ==和x 轴围成的封闭图形的面积是122201(1)(1)S x dx x dx =---⎰⎰31320111281()|()|2133333x x x x -+-=+--+ 4.B解析:B【解析】求导函数,可得()1'220f x mx x x=+->,,函数()2ln 2f x mx x x =+-在定义域内是增函数,所以()'0f x < 成立,即1220(0)mx x x+-<>恒成立,所以21211m x ⎛⎫->-- ⎪⎝⎭,所以21m ->-,所以12m < 时,函数()f x 在定义域内是增函数.故选B .5.B解析:B 【解析】设底面边长为a ,依据题设可得棱锥的高2ah =,底面中心到顶点的距离2d =,由勾股定理可得2221()()22a a +=,解之得2a =,所以正四棱锥的体积21242323V =⨯⨯=,故应选答案B .6.B解析:B 【解析】3221321322217ln |ln 2||,.11133x S x S x S e e e S S S ==<==<==-∴<<选B.考点:此题主要考查定积分、比较大小,考查逻辑推理能力.7.A解析:A 【解析】 试题分析:()'323x x=,所以切线方程为13(1),32y x y x -=-=-,所以切线与x 轴、直线2x =所围成的三角形的面积()2238323S x dx =-=⎰.考点:1、切线方程;2、定积分.【易错点晴】本题易错点有三个,一个是切线方程,错解为看成过()1,1的切线方程;第二个错误是看成与y 轴围成的面积,()()22320328103232333S x dx x dx =--+-=+=⎰⎰;第三个是没有将切线与x 轴的交点求出来,导致没有办法解决题目.切线的常见问题有两种,一种是已知切点求切线方程;另一种是已知切线过一点求切线方程,两种题目都需要我们认真掌握.8.A解析:A 【解析】试题分析:由1(1)1x f x x e ++=-+知()2x f x x e =-+,则()1(0)2x f x e f ''=+⇒=,而(0)1f =-,即切点坐标为()0,1-,切线斜率(0=2k f '=),则切线()():12021l y x y x --=-⇒=-,切线l 与坐标轴的交点分别为1,02⎛⎫⎪⎝⎭和()0,1-,则切线l 与坐标轴围成的三角形的面积为1111224S =⋅⋅-= 考点:函数在某点处的切线9.B解析:B 【解析】由定积分的物理意义,得,即力做的功为46.考点:定积分的物理意义.10.C解析:C 【分析】本题可以先根据定积分的运算法则建立a 与b 的等量关系,然后设abt ,则312t a b,再然后根据构造法得出a 、b 为方程23102t xx t 的根,最后根据判别式即可得出结果. 【详解】112(31)()(33)ax x b dx ax abx x b dx 1223331()02222abx x ab ax bx a b =+++=+++=,即3210ab a b,设ab t ,则312t a b,a 、b 为方程23102t xx t 的根,有231402t t ,解得19t 或1t ≥, 所以1,[1,)9a b ,故选C .【点睛】本题考查定积分的运算法则以及构造法,能否根据被积函数的解析式得出原函数的解析式是解决本题的关键,考查韦达定理的使用,是中档题.11.B解析:B 【解析】由31x x=,得1x =±,则图象的交点为(1,1)--,(1,1) ∵()31min ,f x x x ⎧⎫=⎨⎬⎩⎭∴根据对称性可得函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积为143401141111|ln |ln 42ln 201444x dx dx x x x +=+=+=+⎰⎰ 故选B12.D解析:D 【分析】根据三视图可得到该几何体的直观图,进而可求出该几何体的体积. 【详解】根据三视图可知该几何体为四棱锥E ABCD -,四边形ABCD 是边长为1的正方形,BE ⊥平面ABCD ,2BE =,则四棱锥E ABCD -的体积为1233ABCD V S BE =⋅=. 故选D.【点睛】本题考查了三视图,考查了四锥体的体积的计算,考查了学生的空间想象能力,属于基础题.二、填空题13.【分析】利用数列的极限的运算法则转化求解即可【详解】解:当|t|≥2时可得可得t =﹣2当|t|<2时可得:综上可得:实数t 的取值范围是:﹣22)故答案为﹣22)【点睛】本题考查数列的极限的运算法则的 解析:[)2,2-【分析】利用数列的极限的运算法则,转化求解即可. 【详解】解:当|t |≥2时,n+1nn n-1n 2-t lim =22+t→∞,可得2n 22()11t lim 2121n t t t→∞⨯--==⎛⎫+ ⎪⎝⎭ ,可得t =﹣2. 当|t |<2时,n+1nn n-1n 2-t lim =22+t→∞可得: 22()2lim 211?()2n n tt t →∞+=+ , 综上可得:实数t 的取值范围是:[﹣2,2). 故答案为[﹣2,2). 【点睛】本题考查数列的极限的运算法则的应用,考查计算能力.14.【解析】【分析】先求出两曲线的交点再由面积与定积分的关系利用定积分即可求解【详解】由题意令解得交点坐标为所以曲线围成的图形的面积【点睛】本题主要考查了利用定积分求解曲边形的面积其中解答中根据题设中的 解析:1【解析】 【分析】先求出两曲线,x y e y e ==的交点,再由面积与定积分的关系,利用定积分即可求解. 【详解】由题意,令x y ey e=⎧⎨=⎩,解得交点坐标为(1,)e , 所以曲线,,0xy e y e x ===围成的图形的面积110()()|1x xS e e dx ex e =-=-=⎰.【点睛】本题主要考查了利用定积分求解曲边形的面积,其中解答中根据题设中的条件建立面积的积分表达式,利用定积分的计算准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.15.2【解析】与轴所围成的封闭区域的面积故答案为2解析:2 【解析】sin (0π)y x x =≤≤与x 轴所围成的封闭区域的面积ππsin d cos cos πcos020S x x x==-=-+=⎰,故答案为2.16.【解析】由题意可得在有两个不等根即在有两个不等根所以解得填解析:90,8⎛⎫⎪⎝⎭【解析】2()32f x tx x -'=+,由题意可得()0f x '=在()0,+∞有两个不等根,即2320tx x -+=在()0,+∞有两个不等根,所以302980tt ⎧>⎪⎨⎪∆=->⎩,解得908t <<,填90,8⎛⎫⎪⎝⎭ 17.e 【解析】点睛:1求曲边图形面积的方法与步骤(1)画图并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围从而确定积分的上下限;(3)确定被积函数;(4)求出各曲边梯形的面积和即各积分解析:e 【解析】1212120(2)()|(1)(0)x x x e dx x e e e e +=+=+-+=⎰. 点睛:1.求曲边图形面积的方法与步骤 (1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限; (3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.2.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.18.【解析】试题分析:联立交点所以围成的图形为直线的左上方和曲线所围成的区域面积为考点:1定积分的应用---求曲边梯形的面积;2微积分基本定理【方法点晴】求曲边梯形的步骤:①画出草图在直角坐标系中画出直 解析:323【解析】 试题分析:联立2{230y x x y =--=,交点(1,1)A -,(9,3)B ,所以围成的图形为直线的左上方和曲线所围成的区域,面积为322332111132(23)(3)|(399)(13)333S y y dy y y y --=+-=+-=+---+=⎰.考点:1.定积分的应用---求曲边梯形的面积;2.微积分基本定理.【方法点晴】求曲边梯形的步骤:①画出草图,在直角坐标系中画出直线或曲线的大致图象;②联立方程,求出交点坐标,确定积分的上、下限;③把曲边梯形的面积表示为若干个定积分的和;④计算定积分,写出答案.由于本题中,若对x 进行定积分,2,y x y x ==±,有些麻烦,这里就转化为对y 进行定积分,要容易很多.19.或【解析】试题分析:展开后第二项系数为时时考点:1定积分;2二项式定理解析:3或73【解析】试题分析:展开后第二项系数为233122a a -=-∴=±,1a =时3121|33x -==,1a =-时 31217|33x --== 考点:1.定积分;2.二项式定理20.2【解析】试题分析:∵易得故答案为考点:定积分的计算解析:2 【解析】 试题分析:∵,易得,故答案为.考点:定积分的计算.三、解答题21.(1)()2f x x x =+;(2){|0}λλ<【解析】分析:(1)设2()f x ax bx c =++,代入已知,由恒等式知识可求得,,a b c ; (2)由(1)得()g x ,题意说明()0<g x 在[0,1]x ∈上恒成立,由分离参数法得221x x x λ+<+,问题转化为求22([0,1])21x x x x +∈+的最小值. 详解:(1)设()()20f x ax bx c a =++≠,()00f =,0c ∴=. 于是()()()()22111f x f x a x b x ax bx +-=+++--222ax a b x =++=+.解得1a =,1b =.所以()2f x x x =+. (2)由已知得()()221g x x x x λ=+-+ 0>在[]0,1x ∈上恒成立. 即221x x x λ+<+在[]0,1x ∈上恒成立. 令()221x x h x x +=+,[]0,1x ∈ 可得()()()()()22222212221'02121x x x x x h x x x +-+++==>++. ∴函数()h x 在[]0,1单调递增,∴ ()()min 00h x h ==.∴ λ的取值范围是{|0}λλ<.点睛:本题考查用导数研究不等式恒成立问题,不等式恒成立问题通常伴随着考查转化与化归思想,例如常用分离参数法化为()()g h x λ≤,这样只要求得()h x 的最小值min ()h x ,然后再解min ()()g h x λ≤,即得λ范围.22.(1)800()4(010)25f x x x x =+≤≤+;(2)当隔热层修建7.5cm 厚时,总费用最小,最小费用70万元.【解析】试题分析:(I )根据c (0)=8计算k ,从而得出f (x )的解析式;(II )利用基本不等式得出f (x )的最小值及等号成立的条件.试题(1)当0x =时,()085k c ==,∴40k =. 由题意知,()4020425f x x x ⨯=++,即()()800401025f x x x x =+≤≤+. (2)∵()()800401025f x x x x =+≤≤+∴()()21600'425f x x -=++,令()'0f x =,即()242516000x +-=, ∴7.5x =. 当[)0,7.5x ∈时,()'0f x <,当(]7.5,10x ∈时,()'0f x >,当7.5x =时,()f x 取得最小值. ()min 80047.57027.55f x =⨯+=⨯+. 所以,当隔热层修建7.5cm 厚时,总费用最小,最小费用70万元. 23.(Ⅰ)3a=-,2b =-;(Ⅱ)[]4,16-;(Ⅲ)124t ≤≤ 【解析】试题分析:(Ⅰ)由导函数研究原函数切线的方法得到关于实数a,b 的方程组,求解方程组可得3a =-,2b =-;(Ⅱ)将不等式恒成立的问题分类讨论可得实数t的取值范围是124t ≤≤+ 试题(Ⅰ)()232f x x ax '=+ ∴()1323f a =+=-' ∴3a =- ∴()323f x x x =-因为()113f b =-= ∴2b =- (Ⅱ)由(Ⅰ)得()323f x x x =- ∴()236f x x x '=- 令()0f x '= 解得120,2x x ==()()()()14,00,24,416f f f f -=-==-=∴()f x 的值域是[]4,16- (Ⅲ)因为[]1,4x ∈时,不等式()()f x g x ≤恒成立∴()22160tx t x -++≥在[]1,4上恒成立,令()()2216h x tx t x =-++ 对称轴为1t x t +=因为0t >∴11t x t+=> ∴()21441240t t t t +⎧<⎪⎨⎪∆=+-≤⎩或()()144168160t t h t t +⎧≥⎪⎨⎪=-++≥⎩ 解得:t的取值范围为124t ≤≤+ 24.92. 【解析】【详解】试题分析:利用定积分计算曲线所围成面积,先画出图象,再找到图象交点的横坐标,然后写出定积分式子,注意被积函数为上方的图象对应的函数减图象在下方的函数. 试题由23{23y x y x x =+=-+解得03x x ==及.从而所求图形的面积332200[(3)(23)](3)S x x x dx x x dx =+--+=-+⎰⎰3230139=|322x x ⎛⎫-+= ⎪⎝⎭. 考点:定积分. 25.67 【分析】 先求()332x x -11展开式的通项公式,其中有2项有理项,确定概率1α6=,根据定积分的计算法则,先求出被积函数x α的原函数,再分别将积分上下限代入求差,即可求出结果.【详解】解:T r +1=11r C ·(3x )11-r ·()32x -r =11r C ·311-r ·(-2)r ·,r =0,1,…,11,共12项其中只有第4项和第10项是有理项,故所求概率为21α126==. 111716600066=|=77x dx x dx x α∴=⎰⎰ 【点睛】本题考查利用二项展开式的通项公式解决二项式展开式的特定项问题、考查古典概型的概率公式,考查定积分的计算.解题关键是熟练应用二项式展开式的通项公式,找出符合条件的项数.26.(1)1m ≤-;(2)4a ≤.【解析】试题分析:(1)求导,利用导数对t 的范围进行分类讨论求最值.(2)本小题实质是22ln 3x x x ax ≥-+-在()0,x ∈+∞上恒成立,进一步转化为3 2ln a x x x ≤++在()0,x ∈+∞上恒成立,然后构造函数()32ln (0)h x x x x x=++>利用导数研究h(x)的最小值即可.注意不要忽略x>0的条件,导致求导数的方程时产生增根. 试题(1)()f x 定义域为()0,+∞,()()ln 1f x x m '=++,因为()f x 在()1,+∞上为单调函数,则方程()ln 10x m ++=在()1,+∞上无实根. 故10m +≥,则1m ≤-.(2)22ln 3x x x ax ≥-+-,则32ln a x x x ≤++,对一切()0,x ∈+∞恒成立. 设()32ln (0)h x x x x x =++>,则()()()231'x x h x x +-=, 当()()()0,1,'0,x h x h x ∈<单调递减,当()()()1,,'0,x h x h x ∈+∞>单调递增.()h x 在()0,+∞上,有唯一极小值()1h ,即为最小值.所以()()min 14h x h ==,因为对任意()()()0,,2x f x g x ∈+∞≥恒成成立,故4a ≤.点睛:利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f(x)≥a 恒成立,只需f(x)min≥a 即可;f(x)≤a 恒成立,只需f(x)max≤a 即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.。
定积分典型例题
定积分典型例题例1 求3321lim)n n n →∞+.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n∆=,然后把2111n n n =⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即3321lim)n n n →∞+=31lim )n n n n →∞+=34=⎰.例2 0⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 例18 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界.例19 计算220max{,}x x dx ⎰.分析 被积函数在积分区间上实际是分段函数212()01x x f x x x ⎧<≤=⎨≤≤⎩.解 23212221201011717max{,}[][]23236x x x x dx xdx x dx =+=+=+=⎰⎰⎰例20 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =. 分析 本题只需要注意到定积分()ba f x dx ⎰是常数(,ab 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a+=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例21 设23, 01()52,12x x f x x x ⎧≤<=⎨-≤≤⎩,0()()x F x f t dt =⎰,02x ≤≤,求()F x , 并讨论()F x 的连续性.分析 由于()f x 是分段函数, 故对()F x 也要分段讨论. 解 (1)求()F x 的表达式.()F x 的定义域为[0,2].当[0,1]x ∈时,[0,][0,1]x ⊂, 因此23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当(1,2]x ∈时,[0,][0,1][1,]x x =, 因此, 则1201()3(52)xF x t dt t dt =+-⎰⎰=31201[][5]x t t t +-=235x x -+-,故32, 01()35,12x x F x x x x ⎧≤<⎪=⎨-+-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(35)1x x F x x x ++→→=-+-=, 311lim ()lim 1x x F x x --→→==, (1)1F =. 因此, ()F x 在1x =处连续, 从而()F x 在[0,2]上连xu例22 计算21-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 21-⎰=211--+⎰⎰2是偶函数,而是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx -⎰⎰由定积分的几何意义可知4π=⎰, 故2114444dx ππ-=-⋅=-⎰⎰.例23 计算3412e e⎰.分析 被积函数中含有1x及ln x ,考虑凑微分.解3412e e ⎰=34e 3412e e⎰=⎰=3412e e =6π. 例24 计算4sin 1sin xdx xπ+⎰.解40sin 1sin x dx x π+⎰=420sin (1sin )1sin x x dx xπ--⎰=244200sin tan cos x dx xdx x ππ-⎰⎰ =244200cos (sec 1)cos d x x dx x ππ---⎰⎰=44001[][tan ]cos x x x ππ--=24π-+例26 计算0a ⎰,其中0a >.解法1 令sin x a t =,则a⎰2cos sin cos tdt t tπ=+⎰201(sin cos )(cos sin )2sin cos t t t t dt t t π++-=+⎰ 201(sin cos )[1]2sin cos t t dt t tπ'+=++⎰[]201ln |sin cos |2t t t π=++=4π. 注 如果先计算不定积分,再利用牛顿-莱布尼兹公式求解,则比较复杂,由此可看出定积分与不定积分的差别之一.例27 计算ln 0⎰.分析 被积函数中含有根式,不易直接求原函数,考虑作适当变换去掉根式.解 设u =2ln(1)x u =+,221udx du u =+,则ln 0⎰=22220(1)241u u u du u u +⋅=++⎰22222200442244u u du du u u +-=++⎰⎰22201284du du u =-=+⎰⎰4π-.例29 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30sin x xdx π⎰30(cos )xd x π=-⎰330[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=-. 例30 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-. 例31 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于20sin x e xdx π⎰20sin xxde π=⎰2200[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰2cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例32 计算10arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21142π=-⎰. (1) 令sin x t =,则21⎰20sin t π=⎰220sin cos cos ttdt tπ=⋅⎰220sin tdt π=⎰ 201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例33 设()f x 在[0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰0()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-.,例35(00研) 设函数()f x 在[0,]π上连续,且()0f x dx π=⎰,0()cos 0f x xdx π=⎰.试证在(0,)π内至少存在两个不同的点12,ξξ使得12()()0f f ξξ==.分析 本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt =⎰,找出()F x的三个零点,由已知条件易知(0)()0F F π==,0x =,x π=为()F x 的两个零点,第三个零点的存在性是本题的难点.另一种方法是利用函数的单调性,用反证法证明()f x 在(0,)π之间存在两个零点.证法1 令0()(),0xF x f t dt x π=≤≤⎰,则有(0)0,()0F F π==.又00()cos cos ()[cos ()]()sin f x xdx xdF x xF x F x xdx ππππ==+⎰⎰⎰()sin 0F x xdx π==⎰,由积分中值定理知,必有(0,)ξπ∈,使得()sin F x xdx π⎰=()sin (0)F ξξπ⋅-.故()sin 0F ξξ=.又当(0,),sin 0ξπξ∈≠,故必有()0F ξ=.于是在区间[0,],[,]ξξπ上对()F x 分别应用罗尔定理,知至少存在1(0,)ξξ∈,2(,)ξξπ∈,使得12()()0F F ξξ''==,即12()()0f f ξξ==.例36 计算2043dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算.解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32. 例37计算3+∞⎰.解3+∞⎰2233sec tan sec tan d ππθθθθθ+∞=⎰⎰23cos 1d ππθθ==-⎰. 例38计算42⎰.分析 该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32⎰和43⎰均收敛时,原反常积分才是收敛的.解 由于32⎰32lim aa +→⎰=32lim aa +→⎰=32lim[arcsin(3)]a a x +→-=2π.43⎰=34lim bb -→⎰=34lim bb -→⎰=34lim[arcsin(3)]bb x -→-=2π. 所以42⎰22πππ=+=.例39计算0+∞⎰.分析 此题为混合型反常积分,积分上限为+∞,下限0为被积函数的瑕点. 解t ,则有+∞⎰=50222(1)tdt t t +∞+⎰=50222(1)dt t +∞+⎰,再令tan t θ=,于是可得5022(1)dt t +∞+⎰=25022tan (tan 1)d πθθ+⎰=2250sec sec d πθθθ⎰=230sec d πθθ⎰ =32cos d πθθ⎰=220(1sin )cos d πθθθ-⎰=220(1sin )sin d πθθ-⎰=3/21[sin sin ]3πθθ-=23. 例40计算21⎰. 解 由于221112111()d x x x +-==⎰⎰⎰,可令1t x x=-,则当x =t =;当0x -→时,t →+∞;当0x +→时,t →-∞;当1x =时,0t =;故有21010211()()12()d x d x x x x x--=++-⎰⎰⎰022dtt +∞-∞=++⎰⎰1arctan )2π+ . 注 有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.例41 求由曲线12y x =,3y x =,2y =,1y =所围成的图形的面积.分析 若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.下面选取以y 为积分变量.解 选取y 为积分变量,其变化范围为[1,2]y ∈,则面积元素为dA =1|2|3y y dy -=1(2)3y y dy -.于是所求面积为211(2)3A y y dy =-⎰=52.例42 抛物线22y x =把圆228x y +=分成两部分,求这两部分面积之比.解 抛物线22y x =与圆228x y +=的交点分别为(2,2)与(2,2)-,如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有图5-21S =2222(8)2y y dy ---⎰=24488cos 3d ππθθ--⎰=423π+,218S A π=-=463π-,于是12S S =423463ππ+-=3292ππ+-. 例43 求心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积.分析 心形线1cos ρθ=+与圆3cos ρθ=的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可.解 求得心形线1cos ρθ=+与圆3cos ρθ=的交点为(,)ρθ=3(,)23π±,由图形的对称性得心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积为图5-3A =223203112[(1cos )(3cos )]22d d πππθθθθ++⎰⎰=54π. 3πθ=3cos ρθ=3211-xoy121-2A 1A 12(2,2)-oxy22y x=228x y +=2-1-121-2-2x y =1y =3y x =o 1-3-321211-2-xy2y =图5-1342-1cos ρθ=+例44 求曲线ln y x =在区间(2,6)内的一条切线,使得该切线与直线2x =,6x =和曲线ln y x =所围成平面图形的面积最小(如图5-4所示).分析 要求平面图形的面积的最小值,必须先求出面积的表达式.解 设所求切线与曲线ln y x =相切于点(,ln )c c ,则切线方程为1ln ()y c x c c-=-.又切线与直线2x =,6x =和曲线ln y x =所围成的平面图形的面积为图5-4A =621[()ln ln ]x c c x dx c -+-⎰=44(1)4ln 46ln 62ln 2c c-++-+.由于dA dc =2164c c -+=24(4)c c--, 令0dA dc =,解得驻点4c =.当4c <时0dAdc<,而当4c >时0dA dc >.故当4c =时,A 取得极小值.由于驻点唯一.故当4c =时,A 取得最小值.此时切线方程为:11ln 44y x =-+. 例45 求圆域222()x y b a +-≤(其中b a >)绕x 轴旋转而成的立体的体积.解 如图5-5所示,选取x 为积分变量,得上半圆周的方程为222y b a x =+-,下半圆周的方程为221y b a x =--.图5-5则体积元素为dV =2221()y y dx ππ-=224b a x dx π-.于是所求旋转体的体积为 V =224aab a x dx π--⎰=228ab a x dx π-⎰=284a b ππ⋅=222a b π.注 可考虑选取y 为积分变量,请读者自行完成. 例46 过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D .(1)求D 的面积A ;图5-6计算,如图5-6所示.ln y x=ln y x=y xo12311y xe=(0,)b o()(0)x y b a b a +-=>>xy1xo y23121-45673ln y x=2x =6x =(,ln )c c解 (1)设切点横坐标为0x ,则曲线ln y x =在点00(,ln )x x 处的切线方程是0001ln ()y x x x x =+-. 由该切线过原点知0ln 10x -=,从而0x e =,所以该切线的方程是1y x e=.从而D 的面积10()12y eA e ey dy =-=-⎰. 例47 有一立体以抛物线22y x =与直线2x =所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.解 选x 为积分变量且[0,2]x ∈.过x 轴上坐标为x 的点作垂直于x 轴的平面,与立体相截的截面为等边三角形,其底边长为得等边三角形的面积为图5-7()A x 2=. 于是所求体积为 V =2()A x dx ⎰=2⎰=。
高三数学积分试题
高三数学积分试题1..【答案】【解析】=.考点:定积分2.定积分的值为()A.B.C.D.【答案】C【解析】,故选C.【考点】定积分.3.直线在第一象限内围成的封闭图形的面积为()A.B.C.D.4【答案】D【解析】由已知得,,故选D.【考点】定积分的应用.4. [2014·汕头模拟]设f(x)=,则等于()A.B.C.D.不存在【答案】C【解析】本题画图求解,更为清晰,如图,=+=x3+(2x-x2)=+(4-2-2+)=.5.直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于() A.B.2C.D.【答案】C【解析】由C:x2=4y,知焦点P(0,1).直线l的方程为y=1.所求面积S===.6.已知二次函数的图象如图所示,则它与轴所围图形的面积为()A.B.C.D.【答案】B【解析】根据图像可得:,再由定积分的几何意义,可求得面积为.7.设函数的图象与直线轴所围成的图形的面积称为在上的面积,则函数上的面积为.【答案】【解析】用积分表示面积.【考点】定积分8.设,若曲线与直线,,所围成封闭图形的面积为2,则()A.2B.e C.2e D.【答案】D【解析】,∴.【考点】定积分.9.已知t>0,若(2x-1)dx=6,则t的值等于()A.2B.3C.6D.8【答案】B【解析】(2x-1)dx=2xdx-1·dx=x2-x=t2-t,由t2-t=6得t=3或t=-2(舍去).【方法技巧】定积分的计算方法(1)利用定积分的几何意义,转化为求规则图形(三角形、矩形、圆或其一部分等)的面积.(2)应用微积分基本定理:求定积分f(x)dx时,可按以下两步进行,第一步:求使F'(x)=f(x)成立的F(x);第二步:计算F(b)-F(a).10.已知函数f(x)=-x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点处相切,且x轴与函数图象所围区域(图中阴影部分)的面积为,则a的值为.【答案】-1【解析】f'(x)=-3x2+2ax+b,∵f'(0)=0,∴b=0,∴f(x)=-x3+ax2,令f(x)=0,得x=0或x=a(a<0).=-(-x3+ax2)dx=a4=,∴a=-1.S阴影11.________.【答案】1【解析】.【考点】定积分的应用.12.dx + .【答案】+1【解析】,,所以的图像是半圆,由定积分的几何意义可知,所以。
定积分习题及讲解
定积分习题及讲解第四部分 定积分[选择题]容易题1—36,中等题37—86,难题87—117。
1.积分中值定理⎰-=ba ab f dx x f ))(()(ξ,其中( )。
(A ) ξ是],[b a 内任一点;(B )。
ξ是],[b a 内必定存在的某一点; (C ). ξ是],[b a 内唯一的某一点;(D )。
ξ是],[b a 的中点.答B2.⎪⎪⎩⎪⎪⎨⎧=≠⎰=0,0,)()(2x cx x dt t tf x F x,其中)(x f 在0=x 处连续,且0)0(=f 若)(x F 在 0=x 处连续,则=c ( )。
(A).0=c ; (B)。
1=c ; (C ).c 不存在; (D)。
1-=c . 答A3.a dx x x I an nn (,1sin lim ⎰=+∞→为常数)由积分中值定理得⎰=+a n n a dx xx ξξ1sin 1sin ,则=I ( )。
(A )aa a a an 1sin1sinlim 1sinlim 2==→∞→ξξξξξ;定积分习题及讲解(B )。
01sinlim 0=→ξξa ;(C)。
a a =∞→ξξξ1sinlim ;(D ).∞=∞→ξξξ1sinlim a .答C4.设)(x f 在],[b a 连续,⎰=x a dt t f x )()(ϕ,则( )。
(A).)(x ϕ是)(x f 在],[b a 上的一个原函数; (B)。
)(x f 是)(x ϕ的一个原函数; (C). )(x ϕ是)(x f 在],[b a 上唯一的原函数; (D)。
)(x f 是)(x ϕ在],[b a 上唯一的原函数.答A5.设0)(=⎰b a dx x f 且)(x f 在],[b a 连续,则( ).(A).0)(≡x f ;(B )。
必存在x 使0)(=x f ;(C).存在唯一的一点x 使0)(=x f ; (D )。
不一定存在点x 使 0)(=x f 。
(完整word版)定积分的证明题44题(word文档良心出品)
题目1证明题容易d x证明(x -t) f (t)dt = f (x) - f (a) dx」a题目2证明题容易JI利用积分中值定理证明:lim 4 sin n xdx ^0 b=0题目3证明题一般b设函数f(x)在[a,b]内可导,且f(a) =0, a 证明:在[a,b]内至少存在一点•使f ()f (x)dx = 0 =0。
题目4证明题一般设f (x) = f (x +a),na证明:当n为正整数时° f (x)dxan 0f (x)dx。
题目5证明题一般1 1 证明:oX m (1-x)n dxx n (1-x)m dx o 题目6证明题 一般设f (x)在[a,b ]上有定义,且对[a,b ]上任意两点x, y,有 f (x) — f (y) _ x — y.则f (x)在[a,b ]上可积,且1题目7证明题一般 设f (x)在[a,b ]上的连续,在(a,b)内可导,且f(a) = f (b) =0.b 2 证明:4 | f (x)dx 兰 M (b —a),其中 M = sup f "(x)。
a *x :bb[f (x)dx —(b —a) f (a)兰一(b —a)题目8证明题一般设f(x)在[a,b]上正值,连续,则在(a,b)内至少存在一点t ,b 1 b使f(x)dx = f(x)dx f(x)dx 。
■ a ' 2 ■ a题目9证明题一般jc 丑证明:0:::2sin n1xdx ::刁sin n xdx。
题目10证明题一般11 dx 二求证2°4-x2 x3 6题目11证明题一般设f(x)在区间(a,b)上连续,且在(a,b)内任一闭区间上积分为零,证明f(x)在(a,b)内恒等于零。
题目12证明题一般若函数f (x)在[0,1]上连续,a 3 2 1 a2证明:o x f(x )dx xf (x)dx (a 0)。
题目13证明题一般设函数f(x)和g(x)在[a,b]上连续,b 2 b 2 b 2证明:[f(x)g(x)dx]2乞f2(x)dx g2(x)dxa a a题目14证明题一般设f (x)在[0,1]上连续,证明:02f (sin2 Jcos「d = 04f(sin2 J(cos「sin「)d「题目15证明题一般设f (x)在[a,b]上可导,且 f (x)玄M, f(a) =0,b Me证明:a f(x)dx^3(b—a)2。
定积分复习
e
(10)ò -
1022)(1xmdx ;(11)ò
p
lnx dx ;(12)ò 20x cos xdx .
1
e
1
11.已知.. f(0) = 1, f (2) = 3, f ¢(2) = 5 ,试计算ò0
xf ¢
¢¢(2x)dx .
35 6
b
1
15
1
(5) -ln |1+ 3 cos x | +C; (6) -(3 -2x) + C; (7) -3 -2x + C; (8) -ln |1 -10 x | +C;
3 cosxx +
(9) -ln |1 -3e | +C; (10) ln | x -5x + 7| +C; (11) -e + C; (12) 2eC;
211
(arcsin x2)
dx ;(2)ò-
332423sinxx dx .
21-xx + 2x +1
7.计算下列定积分:
(1)ò
p
xdx;(2)ò xdx;(3)òp
2 12 sin
1
dx ;(4)ò
p
-322cos1pxdx;
203cossinx1022(x +1)1 xx
12.设.. f(x) 在区间[a, b] 上具有二阶连续导数,且.. f(a) = f (b) = 0 ,证明:..
1
f ¢¢(x)(x -a)(x -b)dx
ò 2 ò=
babaxdxf()
定积分典型例题
定积分典型例题例1 求3321lim)n n n →∞+.分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解 将区间[0,1]n 等分,则每个小区间长为1i x n∆=,然后把2111n n n =⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即3321lim)n n n →∞+=31lim )n n n n →∞+=34=⎰.例2 0⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则⎰=22tdt ππ-⎰=2tdt =2202cos tdt π⎰=2π 例3 比较12x e dx ⎰,212x e dx ⎰,12(1)x dx +⎰.分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小.解法1 在[1,2]上,有2x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又1221()()f x dx f x dx =-⎰⎰,从而有2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.解法2 在[1,2]上,有2xx e e ≤.由泰勒中值定理212!xe e x x ξ=++得1x e x >+.注意到1221()()f x dx f x dx =-⎰⎰.因此2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.例4 估计定积分22xxe dx -⎰的值.分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.解 设 2()xxf x e -=, 因为 2()(21)xxf x e x -'=-, 令()0f x '=,求得驻点12x =, 而 0(0)1f e ==, 2(2)f e =, 141()2f e -=,故124(),[0,2]ef x e x -≤≤∈,从而2122422xxee dx e --≤≤⎰,所以21024222x xe edx e ---≤≤-⎰.例5 设()f x ,()g x 在[,]a b 上连续,且()0g x ≥,()0f x >.求lim (ban g x →∞⎰.解 由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x >知0M >,0m >.又()0g x ≥,则()b ag x dx (b ag x ≤⎰()bag x dx ≤.由于1n n ==,故lim (b an g x →∞⎰=()bag x dx ⎰.例6求sin lim n pnn xdx x+→∞⎰, ,p n 为自然数. 分析 这类问题如果先求积分然后再求极限往往很困难,解决此类问题的常用方法是利用积分中值定理与夹逼准则.解法1 利用积分中值定理 设 sin ()xf x x=, 显然()f x 在[,]n n p +上连续, 由积分中值定理得 sin sin n p n x dx p x ξξ+=⋅⎰, [,]n n p ξ∈+, 当n →∞时, ξ→∞, 而sin 1ξ≤, 故sin sin lim lim 0n pnn x dx p xξξξ+→∞→∞=⋅=⎰.解法2 利用积分不等式 因为sin sin 1lnn pn p n p nn n x x n pdx dx dx x x x n++++≤≤=⎰⎰⎰, 而limln0n n pn→∞+=,所以sin lim 0n pnn xdx x+→∞=⎰. 例7 求10lim 1nn x dx x→∞+⎰.解法1 由积分中值定理()()()()bbaaf xg x dx f g x dx ξ=⎰⎰可知101n x dx x +⎰=111n x dx ξ+⎰,01ξ≤≤.又11lim lim01n n n x dx n →∞→∞==+⎰且11121ξ≤≤+, 故10lim 01n n x dx x→∞=+⎰. 解法2 因为01x ≤≤,故有01nn x x x≤≤+. 于是可得110001nn x dx x dx x ≤≤+⎰⎰.又由于110()1n x dx n n =→→∞+⎰. 因此10lim 1nn x dx x→∞+⎰=0. 例8 设函数()f x 在[0,1]上连续,在(0,1)内可导,且3414()(0)f x dx f =⎰.证明在(0,1)内存在一点c ,使()0f c '=.分析 由条件和结论容易想到应用罗尔定理,只需再找出条件()(0)f f ξ=即可. 证明 由题设()f x 在[0,1]上连续,由积分中值定理,可得3413(0)4()4()(1)()4f f x dx f f ξξ==-=⎰,其中3[,1][0,1]4ξ∈⊂.于是由罗尔定理,存在(0,)(0,1)c ξ∈⊂,使得()0f c '=.证毕.例9 (1)若22()x t xf x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.分析 这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx''=-⎰. 解 (1)()f x '=422x x xe e ---;(2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例10 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例11函数1()(3(0)x F x dt x =>⎰的单调递减开区间为_________.解()3F x '=()0F x '<3>,解之得109x <<,即1(0,)9为所求.例12 求0()(1)arctan xf x t tdt =-⎰的极值点.解 由题意先求驻点.于是()f x '=(1)arctan x x -.令()f x '=0,得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例13 已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.分析 两曲线()y f x =与()y g x =在点(0,0)处的切线相同,隐含条件(0)(0)f g =,(0)(0)f g ''=.解 由已知条件得2(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知(0)(0)1f g =''===.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n→∞→∞-'=⋅==-. 例14 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;分析 该极限属于型未定式,可用洛必达法则. 解 22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x→-⋅-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例15 试求正数a 与b,使等式201lim1sin x x x b x →=-⎰成立. 分析 易见该极限属于型的未定式,可用洛必达法则. 解2001lim sin x x x b x →-⎰=20x →=20lim 1cos x x x b x →→-2011cos x x b x →==-,由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2011cos x x x →==-, 得4a =.即4a =,1b =为所求.例16 设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1 由于 22300()sin(sin )cos lim lim()34x x f x x xg x x x →→⋅=+ 2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342x f x t t dt x x =-+=-+⎰,则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x→→→-+-+===++. 例17 证明:若函数()f x 在区间[,]a b 上连续且单调增加,则有()baxf x dx ⎰()2baa b f x dx +≥⎰.证法1 令()F x =()()2xxa aa x tf t dt f t dt +-⎰⎰,当[,]t a x ∈时,()()f t f x ≤,则 ()F x '=1()()()22x a a x xf x f t dt f x +--⎰=1()()22xax a f x f t dt --⎰≥1()()22x a x a f x f x dt --⎰=()()22x a x a f x f x ---0=.故()F x 单调增加.即 ()()F x F a ≥,又()0F a =,所以()0F x ≥,其中[,]x a b ∈. 从而()F b =()()2bba aa b xf x dx f x dx +-⎰⎰0≥.证毕. 证法2 由于()f x 单调增加,有()[()()]22a b a bx f x f ++--0≥,从而 ()[()()]22baa b a bx f x f dx ++--⎰0≥. 即()()2baa b x f x dx +-⎰()()22b a a b a b x f dx ++≥-⎰=()()22b a a b a bf x dx ++-⎰=0.故()baxf x dx ⎰()2baa b f x dx +≥⎰. 例18 计算21||x dx -⎰.分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解 21||x dx -⎰=0210()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x在0x =处间断且在被积区间内无界.例19 计算220max{,}x x dx ⎰.分析 被积函数在积分区间上实际是分段函数212()01x x f x x x ⎧<≤=⎨≤≤⎩.解 23212221201011717max{,}[][]23236x x x x dx xdx x dx =+=+=+=⎰⎰⎰例20 设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =. 分析 本题只需要注意到定积分()ba f x dx ⎰是常数(,ab 为常数).解 因()f x 连续,()f x 必可积,从而10()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a +=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例21 设23, 01()52,12x x f x x x ⎧≤<=⎨-≤≤⎩,0()()x F x f t dt =⎰,02x ≤≤,求()F x , 并讨论()F x 的连续性.分析 由于()f x 是分段函数, 故对()F x 也要分段讨论. 解 (1)求()F x 的表达式.()F x 的定义域为[0,2].当[0,1]x ∈时,[0,][0,1]x ⊂, 因此23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当(1,2]x ∈时,[0,][0,1][1,]x x =, 因此, 则1201()3(52)xF x t dt t dt =+-⎰⎰=31201[][5]x t t t +-=235x x -+-,故32, 01()35,12x x F x x x x ⎧≤<⎪=⎨-+-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(35)1x x F x x x ++→→=-+-=, 311lim ()lim 1x x F x x --→→==, (1)1F =. 因此, ()F x 在1x =处连续, 从而()F x 在[0,2]上连续.错误解答 (1)求()F x 的表达式, 当[0,1)x ∈时,23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当[1,2]x ∈时,有()()xF x f t dt ==⎰0(52)xt dt -⎰=25x x -.故由上可知32, 01()5,12x x F x x x x ⎧≤<⎪=⎨-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(5)4x x F x x x ++→→=-=, 311lim ()lim 1x x F x x --→→==, (1)1F =. 因此, ()F x 在1x =处不连续, 从而()F x 在[0,2]上不连续.错解分析 上述解法虽然注意到了()f x 是分段函数,但(1)中的解法是错误的,因 为当[1,2]x ∈时,0()()xF x f t dt =⎰中的积分变量t 的取值范围是[0,2],()f t 是分段函数,101()()()()x xF x f t dt f t dt f t dt ==+⎰⎰⎰才正确.例22 计算21-⎰.分析 由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性. 解 21-⎰=211--+⎰⎰2是偶函数,而是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx -⎰⎰由定积分的几何意义可知4π=⎰, 故2114444dx ππ-=-⋅=-⎰⎰.例23 计算3412e e⎰.分析 被积函数中含有1x及ln x ,考虑凑微分.解3412e e ⎰=34e 3412e e⎰=⎰=3412e e =6π. 例24 计算4sin 1sin xdx xπ+⎰.解 40s i n 1s i n x dx x π+⎰=420sin (1sin )1sin x x dx xπ--⎰=244200sin tan cos xdx xdx x ππ-⎰⎰=244200cos (sec 1)cos d x x dx x ππ---⎰⎰=44001[][tan ]cos x x x ππ--=24π-+ 注 此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试.例25 计算20a⎰,其中0a >.解20a⎰=20a⎰,令sin x a a t -=,则2a⎰=3222(1sin )cosat tdt ππ-+⎰=3222cos 0atdt π+⎰=32a π.注 ,一般令sin x a t =或cos x a t =. 例26 计算a⎰,其中0a >.解法1 令sin x a t =,则a⎰2cos sin cos tdt t tπ=+⎰201(sin cos )(cos sin )2sin cos t t t t dt t t π++-=+⎰ 201(sin cos )[1]2sin cos t t dt t tπ'+=++⎰[]201ln |sin cos |2t t t π=++=4π. 解法2 令sin x a t =,则a⎰=2cos sin cos tdt t tπ+⎰.又令2t u π=-,则有20cos sin cos t dt t t π+⎰=20sin sin cos udu u uπ+⎰.所以,a⎰=22001sin cos []2sin cos sin cos t t dt dt t tt t ππ+++⎰⎰=2012dt π⎰=4π.注 如果先计算不定积分,再利用牛顿-莱布尼兹公式求解,则比较复杂,由此可看出定积分与不定积分的差别之一.例27 计算ln 0⎰.分析 被积函数中含有根式,不易直接求原函数,考虑作适当变换去掉根式.解 设u =2ln(1)x u =+,221udx du u =+,则ln 0⎰=22220(1)241u u u du u u +⋅=++⎰22222200442244u u du du u u +-=++⎰⎰22201284du du u =-=+⎰⎰4π-. 例28 计算220()xd tf x t dt dx -⎰,其中()f x 连续. 分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解 由于220()xtf x t dt -⎰=22201()2xf x t dt -⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()x tf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰,故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x ⋅=2()xf x . 错误解答220()x d tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析 这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例29 计算30sin x xdx π⎰.分析 被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解30sin x xdx π⎰30(cos )xd x π=-⎰330[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=-. 例30 计算120ln(1)(3)x dx x +-⎰.分析 被积函数中出现对数函数的情形,可考虑采用分部积分法.解120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x +-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x-++-⎰11ln 2ln324=-. 例31 计算20sin x e xdx π⎰.分析 被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解 由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1)而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2)将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例32 计算10arcsin x xdx ⎰.分析 被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解 10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰21142π=-⎰. (1) 令sin x t =,则21⎰20sin t π=⎰220sin cos cos ttdt tπ=⋅⎰220sin tdt π=⎰ 201cos22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例33 设()f x 在[0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '.分析 被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解. 解 由于0[()()]cos f x f x xdx π''+⎰0()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例34(97研) 设函数()f x 连续,1()()x f xt dt ϕ=⎰,且0()limx f x A x→=(A 为常数), 求()x ϕ'并讨论()x ϕ'在0x =处的连续性.分析 求()x ϕ'不能直接求,因为10()f xt dt ⎰中含有()x ϕ的自变量x ,需要通过换元将x从被积函数中分离出来,然后利用积分上限函数的求导法则,求出()x ϕ',最后用函数连续的定义来判定()x ϕ'在0x =处的连续性.解 由0()limx f x A x→=知0lim ()0x f x →=,而()f x 连续,所以(0)0f =,(0)0ϕ=.当0x ≠时,令u xt =,0t =,0u =;1t =,u x =.1dt du x=,则()()xf u du x xϕ=⎰,从而2()()()(0)xxf x f u dux x xϕ-'=≠⎰.又因为02()()(0)()limlimlim22xx x x f u du x f x A x x x ϕϕ→→→-===-⎰,即(0)ϕ'=2A.所以 ()x ϕ'=02()(),0,02x xf x f u du x x Ax ⎧-⎪≠⎪⎨⎪=⎪⎩⎰. 由于02200()()()()lim ()limlimlim xxx x x x xf x f u duf u du f x x xx x ϕ→→→→-'==-⎰⎰=(0)2A ϕ'=.从而知()x ϕ'在0x =处连续.注 这是一道综合考查定积分换元法、对积分上限函数求导、按定义求导数、讨论函数在一点的连续性等知识点的综合题.而有些读者在做题过程中常会犯如下两种错误:(1)直接求出02()()()xxf x f u dux xϕ-'=⎰,而没有利用定义去求(0)ϕ',就得到结论(0)ϕ'不存在或(0)ϕ'无定义,从而得出()x ϕ'在0x =处不连续的结论.(2)在求0lim ()x x ϕ→'时,不是去拆成两项求极限,而是立即用洛必达法则,从而导致()()()1lim ()lim ().22x x xf x f x f x x f x x ϕ→→'+-''==又由0()limx f x A x→=用洛必达法则得到0lim ()x f x →'=A ,出现该错误的原因是由于使用洛必达法则需要有条件:()f x 在0x =的邻域内可导.但题设中仅有()f x 连续的条件,因此上面出现的0lim ()x f x →'是否存在是不能确定的.例35(00研) 设函数()f x 在[0,]π上连续,且()0f x dx π=⎰,0()cos 0f x xdx π=⎰.试证在(0,)π内至少存在两个不同的点12,ξξ使得12()()0f f ξξ==.分析 本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt =⎰,找出()F x的三个零点,由已知条件易知(0)()0F F π==,0x =,x π=为()F x 的两个零点,第三个零点的存在性是本题的难点.另一种方法是利用函数的单调性,用反证法证明()f x 在(0,)π之间存在两个零点.证法1 令0()(),0xF x f t dt x π=≤≤⎰,则有(0)0,()0F F π==.又00()cos cos ()[cos ()]()sin f x xdx xdF x xF x F x xdx ππππ==+⎰⎰⎰()sin 0F x xdx π==⎰,由积分中值定理知,必有(0,)ξπ∈,使得()sin F x xdx π⎰=()sin (0)F ξξπ⋅-.故()sin 0F ξξ=.又当(0,),sin 0ξπξ∈≠,故必有()0F ξ=.于是在区间[0,],[,]ξξπ上对()F x 分别应用罗尔定理,知至少存在1(0,)ξξ∈,2(,)ξξπ∈,使得12()()0F F ξξ''==,即12()()0f f ξξ==.证法2 由已知条件0()0f x dx π=⎰及积分中值定理知必有10()()(0)0f x dx f πξπ=-=⎰,1(0,)ξπ∈,则有1()0f ξ=.若在(0,)π内,()0f x =仅有一个根1x ξ=,由0()0f x dx π=⎰知()f x 在1(0,)ξ与1(,)ξπ内异号,不妨设在1(0,)ξ内()0f x >,在1(,)ξπ内()0f x <,由()cos 0f x xdx π=⎰,0()0f x dx π=⎰,以及cos x 在[0,]π内单调减,可知:100()(cos cos )f x x dx πξ=-⎰=11110()(cos cos )()(cos cos )f x x dx f x x dx ξπξξξ-+-⎰⎰0>.由此得出矛盾.故()0f x =至少还有另一个实根2ξ,12ξξ≠且2(0,)ξπ∈使得12()()0.f f ξξ==例36 计算243dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算. 解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32. 例37计算3+∞⎰.解3+∞⎰2233sec tan sec tan d ππθθθθθ+∞=⎰⎰23cos 1d ππθθ==⎰. 例38计算42⎰.分析 该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32)⎰43⎰均收敛时,原反常积分才是收敛的.解 由于32⎰32lim aa +→⎰=32lim aa +→⎰=32lim[arcsin(3)]a a x +→-=2π.43⎰=34lim bb -→⎰=34lim bb -→⎰=34lim[arcsin(3)]bb x -→-=2π. 所以42⎰22πππ=+=.例39计算0+∞⎰.分析 此题为混合型反常积分,积分上限为+∞,下限0为被积函数的瑕点. 解t =,则有+∞⎰=50222(1)tdt t t +∞+⎰=50222(1)dt t +∞+⎰,再令tan t θ=,于是可得5022(1)dt t +∞+⎰=25022tan (tan 1)d πθθ+⎰=2250sec sec d πθθθ⎰=230sec d πθθ⎰ =32cos d πθθ⎰=220(1sin )cos d πθθθ-⎰=220(1sin )sin d πθθ-⎰=3/21[sin sin ]3πθθ-=23. 例40计算21⎰. 解 由于221112111()d x x x +-==⎰⎰⎰,可令1t x x=-,则当x =t =;当0x -→时,t →+∞;当0x +→时,t →-∞;当1x =时,0t =;故有21010211()()12()d x d x x x x x--=++-⎰⎰⎰022dtt +∞-∞=++⎰⎰1arctan )22π=+ . 注 有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.例41 求由曲线12y x =,3y x =,2y =,1y =所围成的图形的面积.分析 若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.下面选取以y 为积分变量.解 选取y 为积分变量,其变化范围为[1,2]y ∈,则面积元素为dA =1|2|3y y dy -=1(2)3y y dy -.于是所求面积为211(2)3A y y dy =-⎰=52.例42 抛物线22y x =把圆228x y +=分成两部分,求这两部分面积之比.解 抛物线22y x =与圆228x y +=的交点分别为(2,2)与(2,2)-,如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有图5-21S =222)2y dy -⎰=24488cos 3d ππθθ--⎰=423π+,218S A π=-=463π-,于是12S S =423463ππ+-=3292ππ+-.例43 求心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积.分析 心形线1cos ρθ=+与圆3cos ρθ=的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可.解 求得心形线1cos ρθ=+与圆3cos ρθ=的交点为(,)ρθ=3(,)23π±,由图形的对称性得心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积为图5-3A =223203112[(1cos )(3cos )]22d d πππθθθθ++⎰⎰=54π.例44 求曲线ln y x =在区间(2,6)内的一条切线,使得该切线与直线2x =,6x =和曲线ln y x =所围成平面图形的面积最小(如图5-4所示).分析 要求平面图形的面积的最小值,必须先求出面积的表达式.解 设所求切线与曲线ln y x =相切于点(,ln )c c ,则切线方程为1ln ()y c x c c-=-.又切线与直线2x =,6x =和曲线ln y x =所围成的平面图形的面积为图5-4A =621[()ln ln ]x c c x dx c -+-⎰=44(1)4ln 46ln 62ln 2c c-++-+.由于dA dc =2164c c-+=24(4)c c --, 令0dA dc =,解得驻点4c =.当4c <时0dA dc <,而当4c >时0dAdc>.故当4c =时,A 取得极小值.由于驻点唯一.故当4c =时,A 取得最小值.此时切线方程为:11ln 44y x =-+. 例45 求圆域222()x y b a +-≤(其中b a >)绕x 轴旋转而成的立体的体积.解 如图5-5所示,选取x 为积分变量,得上半圆周的方程为2y b =+下半圆周的方程为1y b =图5-5则体积元素为3πθ=3cos ρθ=3211-o11-cos ρθ+dV =2221()y y dx ππ-=4π.于是所求旋转体的体积为 V=4ab π-⎰=08b π⎰=284a b ππ⋅=222a b π.注 可考虑选取y 为积分变量,请读者自行完成.例46(03研) 过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D .(1)求D 的面积A ;(2)求D 绕直线x e =旋转一周所得旋转体的体积V . 分析 先求出切点坐标及切线方程,再用定积分求面积A ,旋转体积可用大的立体体积减去小的立体体积进行图5-6计算,如图5-6所示.解 (1)设切点横坐标为0x ,则曲线ln y x =在点00(,ln )x x 处的切线方程是0001ln ()y x x x x =+-. 由该切线过原点知0ln 10x -=,从而0x e =,所以该切线的方程是1y x e=.从而D 的面积10()12y eA e ey dy =-=-⎰. (2)切线1y x e =与x 轴及直线x e =围成的三角形绕直线x e =旋转所得的旋转体积为2113V e π=,曲线ln y x =与x 轴及直线x e =围成的图形绕直线x e =旋转所得的旋转体积为1222011()(2)22y V e e dy e e ππ=-=-+-⎰.因此,所求体积为212(5123)6V V V e e π=-=-+.例47 有一立体以抛物线22y x =与直线2x =所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.解 选x 为积分变量且[0,2]x ∈.过x 轴上坐标为x 的点作垂直于x 轴的平面,与立体相截的截面为等边三角形,其底边长为得等边三角形的面积为图5-7()A x 2=. 于是所求体积为 V =2()A x dx ⎰=2⎰=例48(03研) 某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而作功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k ,0k >),汽锤第一次击打进地下a (m ),根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r (01r <<).问:(1)汽锤打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m 表示长度单位米) 分析 本题属于变力作功问题,可用定积分来求.解 (1)设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为n W (1n =,2,).由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以 12211022x k k W kxdx x a ===⎰,2122222211()()22x x k kW kxdx x x x a ==-=-⎰.由21W rW =得22221x x ra -=,即 222(1)x r a =+,3222223323()[(1)]22x x k kW kxdx x x x r a ==-=-+⎰.由2321W rW r W == 得22223(1)x r a r a -+=,即 2223(1)x r r a =++.从而汽锤击打3次后,可将桩打进地下3x =(m ).(2)问题是要求lim n n x →∞,为此先用归纳法证明:1n x +=假设n x =,则12211()2n nx n n n x k W kxdx x x +++==-⎰2121[(1...)]2n n kx r r a -+=-+++. 由2111...n n n n W rW r W r W +-====,得21221(1...)n n n x r r a r a -+-+++=.从而1n x +=.于是1lim n n n x +→∞==.()m.例49有一等腰梯形水闸.上底为6米,下底为2米,高为10米.试求当水面与上底相接时闸门所受的水压力.解建立如图5-8所示的坐标系,选取x为积分变量.则过点(0,3)A,(10,1)B的直线方程为135y x=-+.于是闸门上对应小区间[,]x x dx+的窄条所承受的水压力为2dF xy gdxρ=.故闸门所受水压力为F=1012(3)5g x x dxρ-+⎰=5003gρ,其中ρ为水密度,g为重力加速度.图5-8。
习题课十一 定积分的计算(解答)
1 2
1 2
1 sin3 3
x
1
2 1
2
1
2
1 1 (椭圆的一半面积) 2
2 sin3 3
1
24
4.
设
f
(
x)
1, x1
1 ex 1,
x0
,求
2
f ( x 1)dx .
0
x0
解:2 f ( x 1)dx令x 1 t 0
1
f (t)dt
1
01
1
et
dt 1
11 dt
0 t1
令x tan t
6
sec2 tdt
0 (2 tan2 t 1)sec t
6
costdt
0 2sin2t cos2t
6
dsint
0 1sin2t
arctan(sint
)
6
arctan1
0
2
7
3.
1 2
[cos
x(ln 1
x
sin2
x)
1 4x2 ]dx
1 2
1 x
1
1
2 cos x sin2 xdx 2 1 4x2 dx (对称区间奇函数性质)
t
ln(1 et )
0 1
+ln(1+t )
1 0
1
ln(1
e1 )+ln2
8
三、解答题
1.设 f ( x)
x2 et2 dt ,求
1
xf ( x)dx.
1
0
2. 已知 f (0) 1, f (2) 3, f (2) 5,求 1 xf (2 x)dx 。 0
定积分练习题及答案
第五章 定积分(A 层次)1.⎰203cos sin πxdx x ; 2.⎰-adx x a x222; 3.⎰+31221xxdx ;4.⎰--1145x xdx ; 5.⎰+411x dx ; 6.⎰--14311x dx ;7.⎰+21ln 1e xx dx; 8.⎰-++02222x x dx; 9.dx x ⎰+π02cos 1;10.dx x x ⎰-ππsin 4; 11.dx x ⎰-224cos 4ππ; 12.⎰-++55242312sin dx x x xx ;13.⎰342sin ππdx x x; 14.⎰41ln dx x x ; 15.⎰10xarctgxdx ; 16.⎰202cos πxdx e x ; 17.()dx x x ⎰π2sin ; 18.()dx x e⎰1ln sin ;19.⎰--243cos cos ππdx x x ; 20.⎰+4sin 1sin πdx xx ; 21.dx x xx ⎰+π02cos 1sin ;22.⎰-+2111ln dx xxx ; 23.⎰∞+∞-++dx x x 4211; 24.⎰20sin ln πxdx ; 25.()()⎰∞+++0211dx x x dxα()0≥α。
(B 层次)1.求由0cos 0=+⎰⎰xyttdt dt e 所决定的隐函数y 对x 的导数dxdy 。
2.当x 为何值时,函数()⎰-=xt dt te x I 02有极值?3.()⎰x x dt t dxd cos sin 2cos π。
4.设()⎪⎩⎪⎨⎧>≤+=1,211,12x x x x x f ,求()⎰20dx x f 。
5.()1lim22+⎰+∞→x dt arctgt xx 。
6.设()⎪⎩⎪⎨⎧≤≤=其它,00,sin 21πx x x f ,求()()⎰=x dt t f x 0ϕ。
7.设()⎪⎪⎩⎪⎪⎨⎧<+≥+=时当时当0,110,11x e x xx f x,求()⎰-21dx x f 。
定积分应用题附答案
定积分应⽤题附答案填空:1曲线y In x, y In a, y In b (0 ab )及y 轴所围成的平⾯图形的⾯积ln b为 A = e y dy =b-aIn a J2.曲线yx 2和y 代所围成的平⾯图形的⾯积是—1—计算题:1. 求由抛物线y 2 = 2x 与直线2x + y -2 = 0 所围成的图形的⾯积。
解:(1确定积分变量为y ,解⽅程组y 2 2x xi1/2x 22得,y 2x 2y i 1y ?21⼀即抛物线与直线的交点为(,1)和(2,- 2 ). 故所求图形在直线y = 1和2y = - 2 之间,即积分区间为[—2, 1 ]。
(2)在区间[—2, 1]上,任取⼀⼩区间为]y , y + dy ],对应的窄条⾯积1 12 近似于⾼为](1 — — y ) - —y 2],底为dy 的矩形⾯积,从⽽得到⾯积元素 22和(3, 0)处的切线所围成的图形的⾯积。
解:由 y = - x 2 + 4x -3 得 y' 2x 4, y'(0) 4, y'(3) 2。
抛物线在点(0, - 3)处的切线⽅程为y = 4x -3 ;在点(3, 0)处的切线⽅程为 y = - 2x + 6 ;两切线的交点坐标为(-,3 )dA = [( 1 — 1y)-22y ]dy(3)所求图形⾯积A =/ 1 、 1 2[(1- 2y )-2y]dy = [y -3] 1 6' 24y 2 -右3] 4 62 故⾯积A =l[(4x 3) (x 2 4x 3)]dx:[( 2x26) (x 24x3)] dx 93?求由摆线x = a (t—sint) , y = a( 1- cost)的⼀拱( t 2 )与横轴所围成的图形的⾯积解:A y(x)dx2 a(1 cost) a(1cost)dt(12cost cos2t⼩2「t 3a4.求由下列曲线所围成的图形的公共部分的⾯积: r = 3 cos r = 1 + cos解:两曲线的交点由 3cos1 cos21 3(3cos 2 )2d 03(1 2cos1 cos22)d 9⾏1cos2 )d545.计算由摆线 x = a (t -sint) , y = a ( 1- cost)的⼀拱(0 t 2 ),直线y = 0所围成的图形分别绕X 轴、丫轴旋转⽽成的旋转体的体积。
定积分-1
n
被 积 函 数
被 积 表 达 式
积 分 变 量
积 分 和
定积分仅与被积函数及积分区间有关 , 而与积分 变量用什么字母表示无关 , 即
a f ( x) dx a f (t) d t a f (u)du
b
b
b
根据定积分的定义 曲边梯形的面积为 A a f ( x)dx
思考:证明可积函数一定有界;有界未必可积(举例)
3.定积分的几何意义:
f( x ) 0 , f( x ) d x A 曲边梯形面积 a
b
f( x ) 0 , f( x ) d x A 曲边梯形面积的负值
a
b
y
A1 a
b
A3
A2 A4
A5
b x
f ( x ) d x A A A A A 1 2 3 4 5 a
3 求和 n
i 1
A f ( ) x i i i
Af ( x i) i.
分法越细,越接近精确值
o
a x1 x2
x i 1 i x i
x n 1 b
x
4 取极限
n
令分法无限变细
x A = lim f (i ) i
0 i 1
.
(2).变速直线运动的路程 已知物体直线运动的速度vv(t)是时间 t 的连续函数, 且v(t)0, 计算物体在时间段[T1, T2]内所经过的路程S. (1)分割: T1t0<t1<t2< <tn1<tnT2, tititi1;
2 近似: 以直代曲 (以常代变)
3 求和 n
i 1
A f ( ) x i i i
定积分习题课
slim 0i1v(i)ti
方法:分割、近似、求和、取极限.
4
3、存在定理 可积的两个充分条件:
定理1 当 函 数 f ( x ) 在 区 间 [ a , b ] 上 连 续 时 ,
称 f( x ) 在 区 间 [ a ,b ] 上 可 积 .
定理2 设 函 数 f(x ) 在 区 间 [ a ,b ]上 有 界 ,
解: 令 txc,则
b(xc)co9(9 sxc)dx bctco9s9tdt
a
ac
因为被积函数为奇函数 , 故选择 c 使
ac (bc)
即
c ab
2
可使原式为 0 .
33
例12 求2min1{,x2}dx.
2
x
x2, x1 解 min1x{,x2}1x, x1 是偶函数,
原式 22min1,{x2}dx
不对 ! 因为 依赖于 n,且 01.
2) 此类问题放大或缩小时一般应保留含参数的项 .
如, P265 题4
1xp 1
1 x
p
1
1
x
p
x
p
1
(0x1)
20
例2. 求Iln i m snin n 1snin 2n 12snin nn n 1 (考研98 )
解:将数列适当放大和缩小,以简化成积分和:
证: 令 f(x)ex2x,则 f(x)(2x1)ex2x
令 f(x)0,得 x 1 ,
2
f(0)1,
f
(12)
1 4e
,
f(2)e2
mifn(x)1 , mafx(x)e2
[0,2]
4e
[0,2]
故
2 2ex2xdx2e2
练习题积分
练习题积分一、基础概念理解2. 什么是积分的基本性质?3. 请简述牛顿莱布尼茨公式。
4. 如何判断一个函数是否可积?5. 请说明积分的线性性质。
二、不定积分计算∫(3x^2 2x + 1)dx∫(e^x / x)dx∫(sin x / cos x)dx∫(x^3 / (x^2 + 1))dx∫(ln x)dx∫(x^4 + 3x^2 2)dx∫(tan x)dx∫(sec^2 x)dx∫(csc x cot x)dx∫(1 / (1 + e^x))dx三、定积分计算∫[0, π] (sin x)dx∫[0, 1] (x^2 + 1)dx∫[1, e] (ln x)dx∫[0, π/2] (cos x)dx∫[0, 2π] (sin^2 x)dx∫[0, π] (cos^2 x)dx∫[0, 1] (x^3 x)dx∫[0, 1] (e^x)dx∫[0, π/4] (tan x)dx∫[0, 2π] (sin x + cos x)dx四、积分应用10. 计算曲线 y = x^3 在区间 [0, 2] 上的弧长。
11. 计算由曲线 y = x^2 和直线 y = 4x 在 x = 0 和 x = 4 之间围成的区域的面积。
12. 计算旋转曲线 y = x^2 绕 x 轴旋转一周所形成的体积。
13. 计算旋转曲线 y = sin x 在区间[0, π] 绕 x 轴旋转一周所形成的体积。
14. 计算曲线 y = e^x 在区间 [0, 1] 上的质心。
五、积分技巧∫(x e^x)dx∫(x^2 sin x)dx∫(x^3 cos x)dx∫(ln x)dx∫(e^x sin x)dx∫(x / √(1 + x^2))dx∫(1 / √(1 x^2))dx∫(x^2 / (1 + x^4))dx∫(sin^3 x)dx∫(cos^3 x)dx六、综合应用题17. 设函数 f(x) = x^3 3x + 1,求 f(x) 在区间 [0, 3] 上的不定积分和定积分。
(必考题)高中数学高中数学选修2-2第四章《定积分》测试题(包含答案解析)
一、选择题1.一物体作变速直线运动,其v t -曲线如图所示,则该物体在1s~6s 2间的运动路程为( )m .A .1B .43C .494D .22.已知是i 虚数单位,复数()1a i z a R i -=∈-,若01||(sin )z x dx ππ=-⎰,则a =( )A .±1B .1C .1-D .12±3.曲线x y e =在点(0,1)处的切线与坐标轴所围三角形的面积为( ) A .12B .1C .2D .3 4.如图,设D 是途中边长分别为1和2的矩形区域,E 是D 内位于函数1(0)y x x=>图象下方的阴影部分区域,则阴影部分E 的面积为( )A .ln 2B .1ln 2-C .2ln 2-D .1ln 2+ 5.一物体在力(单位:N)的作用下沿与力相同的方向,从x=0处运动到(单位:)处,则力做的功为( ).A .44B .46C .48D .50 6.若在R 上可导,,则( )A .B .C .D .7.图中阴影部分的面积用定积分表示为( )A .12d xx ⎰B .()121d xx -⎰C .()1021d xx +⎰D .()112d xx -⎰8.已知幂函数a y x =图像的一部分如下图,且过点(2,4)P ,则图中阴影部分的面积等于( )A .163B .83C .43D .239.一物体在力F (x )=3x 2-2x +5(力单位:N ,位移单位:m)作用力下,沿与力F (x )相同的方向由x =5 m 直线运动到x =10 m 处做的功是( ). A .925 JB .850 JC .825 JD .800 J10.某几何体的三视图如图所示,则该几何体的体积为( )A .4B .2C .43D .2311.定积分()22xex dx +⎰的值为( )A .1B .2eC .23e +D .24e +12.若函数f (x )=cos x +2xf ′π()6,则f π()3-与f π()3的大小关系是( ) A .f π()3-=f π()3B .f π()3->f π()3 C .f π()3-<f π()3D .不确定二、填空题13.232319x x dx -⎛⎫-+= ⎪ ⎪⎝⎭⎰____________________. 14.已知曲线与直线所围图形的面积______.15.定积分211dx x⎰的值等于________. 16.由曲线2y x=,直线y =2x ,x =2所围成的封闭的图形面积为______. 17.由曲线x y e x =+与直线0,1,0x x y ===所围成图形的面积等于________. 18.曲线2yx 与直线2y x =所围成的封闭图形的面积为_______________.19.函数3y x x =-的图象与x 轴所围成的封闭图形的面积等于_______.20.从如图所示的正方形OABC 区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为__.三、解答题21.求曲线y x =2y x =-及y 轴围成的封闭图形的面积.22.已知函数()221y f x x x ==-++和()1y g x x ==-,求:由()y f x =和()y g x =围成区域的面积.23.已知曲线C :322321y x x x =--+,点1(,0)2P ,求过P 的切线l 与C 围成的图形的面积.24.设()y f x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+. (1)求()y f x =的表达式;(2)若直线(01)x t t =-<<把()y f x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.25.在曲线2(0)y x x =≥上某一点A 处作一切线与曲线及坐标轴所围成图形的面积为112, 试求:(1)点A 的坐标; (2)过切点A 的切线方程. 26.计算由直线4,y x =-曲线y =x 轴所围图形的面积S 。
定积分与微积分基本定理练习题与答案
-----定积分与微积分基本定理练习题及答案1.4所围成图形的面积,其中正确的是x y=1.(2011 宁·夏银川一中月考)求曲线y=x2 与)(x2)dx 1(x-A.S=1(x2-x)dxB .S=00y)dy-C.S=1(y2-y)dyD .S=1(y00]答案[B][分析根据定积分的几何意义,确定积分上、下限和被积函数.[0,1][解读](0,0) ,(1,1),故积分上限是1,下限是0,由于在两函数图象的交点坐标是x2)dx.-=(x与y=x 所围成图形的面积S1 x2,故函数y=x2上,x≥的大小关系、c ,则=sinxdx a、b=2.(2010 山·东日照模考)a xdx ,b=exdx,c222000(是)a<b<cA .a<c<bB.c<a<b..c<b<aD C][答案D1cosx|02,b=2exdx=ex|02=e2-1>2,c=2sinxdx [解读]a==-2=x2|02=2xdx2000(1,2) ,=1-cos2∈c<a<b.∴)( x3 围成的封闭图形面积为,.3 (2010 山·东理,7)由曲线y=x2 y=11 1 7C.B. A.412] A[D.答案123x2y=]解读[.(1,1)由得交点为(0,0) ,x3y=11=x3)dx (x2 -11 .=∴=01 S x3 x4-12340]点评[图形是由两条曲线围成的时,其面积是上方曲线对应函数表达式减去下方曲线对应函数表达式的积分,请再做下题:A(2,4)y P )(2010 ·南师大附中湖设点在曲线=x2 上从原点到,移动,如果把由直线OP如图所示,当=及直线=直线y x2 x 2 1S所围成的面积分别记作,S2.的坐S1=时,点S2 P)(标是1/13--------4 164 16,,A. B. 5399 415413,,C. D. 5377 [答案]At3=S2;=x2)dx tx,∴S1=(tx-直线]设P(t,t2)(0≤t ,≤则2) OP:y=[解读(x2t26t0t384416,∴P ,2ttx)dx =-+,若S1=S2,则t =-. 36339()4.由三条直线x=0、x=2、y=0 和曲线y=x3 所围成的图形的面积为4186 D.B.C. 53A .4[答案]Ax4x3dx S==]02=4.[解读240) -1(sinx+1)dx 的值为()1湖·南省考试院调研.(2010 5A.0B.2C.2+2cos1D .2-2cos1[答案]B-][解读1)=-cos(-(-2.cos11(sinx++1)dx-=1)(-+cosx1)x)|(--11=1()6.曲线y=cosx(0≤x≤2与π)直线y=1 所围成的图形面积是A .2πB.3ππ3C. D .π2[答案]A][解读如右图,S=∫02π-(1cosx)dx=(x-sinx)|02 =π2π.[ 点评]此题可利用余弦函数的对称性①②③④面积相等解决,但若把积分区间改为π,,则对称性就无能为力了.π67.函数F(x) =xt(t -4)dt 在[-1,5] 上()0,无最小值0A .有最大值32320 和最小值-B.有最大值3C.有最小值-,无最大值2/13--------D.既无最大值也无最小值[答案]B[解读],,x2=4 (x)=0,得x1=0F′(x)=x(x -4),令F′73225∵F(-1) =-,F(0)=0,F(4)=-,F(5)=- . 33332∴最大值为0,最小值为-.[点评]一般地,F(x) =xφ(t)dt的导数F′(x)=φ(x).01dt,若f(x)<a3 ,则n,函数f(x) =x 的8.已知等差数列{an} 的前n 项和Sn=2n2+x t1取值范围是()3,+∞B .A.(0,e21)6D .(0 ,e11)C.(e-11,e)[答案]D1f(x) =dt=lnt|1x =lnx ,a3=S3-S2=][解读21-10=11,由lnx<11 得,0<x<e11.x t19.(2010 福·建厦门一中)如图所示,在一个长为π,宽为 2 的矩形OABC内,曲线y=sinx(0 ≤x≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形()OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是π31 2 A. B. C. D.πππ4][答案AS=π[解读]由图可知阴影部分是曲边图形,考虑用定积分求出其面积.由题意得sinxdx =-cosx|0=π-(cos π-cos0) =2 ,再根据几何概型的算法易知所求概率P =S21= .=S矩形2ππOABCx+2 -2≤x<0S轴所围成的图形面积的图象与x=函数.10(2010 吉·林质检) f(x) π2cos0≤x≤2为()3/13--------31A.B.2D. 21 C.4[答案]Cππ2)dx-解读] 2(x +[ 4.+2=∫-面积S=2f(x)dx =+∫02cosxdx =222011.(2010 ·沈阳二十中)设函数f(x) =x-[x] ,其中[x] 表示不超过x 的最大整数,如[ -1.2]x,f(x) 在区间(0,2)上零点的个数记为3m,f(x) =-与g(x)=-2,[1.2] =1,[1] =1.又函数g(x)(,则的值是n的图象交点的个数记为)n g(x)dxm45.-A .-B3275 DC.-.-64[答案]A由题意可得,当0<x<1时,[x] =0,f(x) =x[解读],当1≤x<2时,[x] =1,f(x) =x-1,所以当x∈(0,2)时,函数f(x) 有一个零点,由函数f(x) 与g(x) 的图象可知两个函数有4 个交x5 x2. =14=-=-dx 点,所以m=1,n=4,则g(x)dx 4n-2361m11.(2010 江·苏盐城调研)甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]b,乙从区间[0,1]c(b、上随机等可能地抽取一个实数记为上随机等可能地抽取一个实数记为c 可以相等),若关于x 的方程x2 +2bx+c=0 有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为()1 2 13A. B. C.D.4332[答案]A方程x2+2bx+c=0有实根的充要条件为[解读]=4b2-4c≥0,即b2≥c,1b2db01=由题意知,每场比赛中甲获胜的概率为p.=1×1312.(2010 ·林省调研吉)已知正方形四个顶点分别为O(0,0) ,A(1,0) ,B(1,1) ,C(0,1),曲线y=x2( x≥0)与x 轴,直线x=1 构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是()11A. B. 4212C.D. 53[答案] C4/13--------1p,故所求概率=1x2dx =x3|011[解读],区域M 的面积为S=如图,正方形面积13301= .32.如图,阴影部分面积等于()A.2 3B.2-33235C.D. 33]答案[C[解读]图中阴影部分面积为1321S= .=x2)|1--2x)dx =(3x -x3 3-(3-x233-33. 24-x2dx =()A .4πB.2ππC.π D.2[答案] C令解读[ ]y=4-x2,则x2+y2=4(y ≥,0)由定积分的几何意义知所求积分为图中阴影部分的面积,1S=∴×π×=22π.45/13--------4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的t0 和t1,下列判断中一定正确速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的的是()A .在t1 时刻,甲车在乙车前面B.在t1 时刻,甲车在乙车后面C.在t0 时刻,两车的位置相同D.t0 时刻后,乙车在甲车前面[答案]A[解读]判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t0,t1 时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时v(t) 的图象与间段内速度函数的定积分,即速度函数t 轴以及时间段围成区域的面积.从图v 乙的图象与象知:在t0 时刻,v 甲的图象与t 轴和t=0,t=t0 围成区域的面积大于轴和tt=0,t =t0 围成区域的面积,因此,在t0 时刻,甲车在乙车的前面,而且此时乙车的速度刚刚赶上甲车的速度,所以选项C,D 错误;同样,在t1 时刻,v 甲的图象与t 轴和t=t1 围成区域的面积,仍然大于v 乙的图象与t 轴和t=t1 围成区域的面积,所以,可以断定:6/13--------在t1 时刻,甲车还是在乙车的前面.所以选A.ππ内随机投掷一点,该≤1} 0≤y,≤≤x5.(2012 山·东日照模拟)向平面区域Ω={(x ,y)|-44(=cos2x 下方的概率是点落在曲线y)1πB. A. 24π D.21C. -π2][答案Dπ,在这个区平面区域Ω是矩形区域,其面积是2]解读[6.(sinx-cosx)dx 的值是()πB. 4C.2D.-2A .0]答案[D[解读](sinx-cosx)dx =(-cosx-sinx)=-2. 7.(2010 惠·州模拟)2(2-|1-x|)dx =________. 0[答案]31+x0≤x≤1]解读[∵y=,3-x 1<x ≤2(2-|1-x|)dx =(1+x)dx +(3-x)dx∴21003113 3.==+x2)|21=(3x (x+x2)|10+-2222-1f(x)dx =2f(a) 成立,则1a 1+,若=2x 3x2 f(x) 已知函数芜·湖十二中.8 (2010 )=+________.7/13--------1或[答案]1 -3-1f(x)dx =-1(3x2 +2x+1)dx =(x3 +x2+x)|1-1=4,-1f(x)dx =111 ]解读[∵2f(a) ,∴6a2+4a+2=4,1∴a=-1 或 .31π的展开式中含)6 x-x2 项的系数是9.已知(a,则二项式=a ∫0(sinx +cosx)dx2x________.[答案]-192ππππ-[解读]cos0)由已知得(sin0 cos )-+cosx)dx=(-cosx+sinx)|=(sin -0a=∫0(sinx2222=2,1x-)6 的展开式中第r+1 项是Tr +1=(-1)r ×Cr6×26(2-r ×x3-r,令3-r=2 得,r x=1,故其系数为(-1)1 ×C16×25=-192.10.有一条直线与抛物线y=x2 相交于 A 、B 两点,线段AB 与抛物线所围成图形的面4积恒等于,求线段AB 的中点P 的轨迹方程.[解读]设直线与抛物线的两个交点分别为A(a ,a2),B(b ,b2),不妨设a<b,a2b2-则直线AB 的方程为y-a2=(x-a),ab-即y=(a+b)x-ab.a+b b[(a+b)x -ab-x2]dx =AB 与抛物线围成图形的面积为S=(x2-abx-则直线2ax31)|ba=(b-a)3,6341∴(b-a)3=,36解得b-a=2.设线段AB 的中点坐标为P(x,y),a+b,x=a+1,x=2将b-a=2 代入得其中a2+b2y=a2+2a+2.=y.2消去 a 得y=x2+1.y=x2+P ∴线段AB 的中点的轨迹方程为1.能力拓展提升8/13--------11.(2012 郑·州二测)等比数列{an} 中,a3=6,前三项和S3=34xdx,则公比q 的值为()1.-B2 1A .11C.1 或-D.-1 或-22[答案]C66,化简得18 6=++,解18,所以0 1=2q2-q[解读]-34xdx因为S3==2x2|30=q2q01C.或 1 q=-,故选得q=212.(2012 ·原模拟太)已知(xlnx) =′lnx +1,则elnxdx =()11-.1 B.e C.eA 1+D .e[答案]A lnxdx ,于是lnx1)-1=-1,联想到(xlnx x)=′(lnx+[解读]由(xlnx)=′lnx+=e(xlnx1-x)|e1=(elne -e)-(1 ×ln1 -1) =1.13.抛物线y2=2x与直线y=4-x 围成的平面图形的面积为________.][答案18y2,2xy2==x作为积分变量y ,选A(2,2) 、B(8[解读],-4)、解得两交点由方程组,x 4y=-2x=4-y,y2y2y3-)|2-4=18.-=]dy y) [(4 S∴=--(4y 2226-49/13--------14.已知函数f(x) =ex-1,直线l1:x=1,l2:y=et-1(t 为常数,且0≤t ≤.1)直线l1 ,l2与函数f(x) 的图象围成的封闭图形如图中区域Ⅱ所示,其面积用S2 表示.直线l2,y 轴与S1 表示.当t 变化时,阴影函数f(x) 的图象围成的封闭图形如图中区域Ⅰ所示,其面积用部分的面积的最小值为________.[答案] (e-1)2[解读]由题意得S1+S2=t (et-1-ex+1)dx +1(ex -1-et+1)dx =t (et-ex)dx0t0+1(ex-et)dx=(xet-ex)|t0+(ex-xet)|1=(2t-3)et +e+1,令g(t) =(2t-3)et+e+1(0 ≤t≤,1) t11,,∴当t∈[0′g(t)=0,得t=-3)et=(2t -1)et,令是+(2tg(t) g′(t)<0,)时,g则′(t)=2et22111( eg(t)的最小值为=时,g′(t)>0,g(t) 是增函数,因此,1]减函数,当g( 2e) 1-=et ∈(+222-1)2.故阴影部分的面积的最小值为(e-1)2..求下列定积分.15x-(1);。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目1证明题 容易。
证明)()()()(a f x f dt t f t x dx d xa -='-⎰题目2证明题 容易。
利用积分中值定理证明 0sin lim :400=⎰→dx x n n π题目3证明题 一般。
使内至少存在一点证明:在,内可导,且在设函数0) (f ],[0)(0)(],[)(='==⎰ξξb a dx x f a f b a x f ba题目4证明题 一般。
为正整数时证明:当,设⎰⎰=+=anadx x f n dx x f n a x f x f 0 0)()( )()(题目5证明题 一般。
证明: )1()1(10 10 ⎰⎰-=-dx x x dx x x m n nm题目6证明题 一般。
且上可积在则有上任意两点且对上有定义在设2)(21)()()(,],[)( .)()(,,],[,],[)(a b a f a b dx x f b a x f y x y f x f y x b a b a x f ba-≤---≤-⎰题目7证明题 一般。
其中证明且内可导在上的连续在设 )(sup ,)()(4 :.0)()(,),(,],[)( 2x f M a b M dx x f b f a f b a b a x f bx a ba'=-≤==<<⎰题目8证明题 一般。
使,内至少存在一点上正值,连续,则在在设⎰⎰⎰==bb dx x f dx x f dx x f b a b a x f a a )(21)()( ),( ],[ )(ξξξ题目9证明题 一般。
证明: sin sin0 20201⎰⎰<<+ππxdx xdx n n题目10证明题 一般。
求证:⎰<+-<1032 6421πx x dx题目11证明题 一般内恒等于零。
在区间上积分为零,证明内任一闭上连续,且在在区间设),()(),(),()(b a x f b a b a x f题目12证明题 一般。
证明上连续在若函数0)(a )(21)(:,]1,0[ )( 2 0 0 23>=⎰⎰a a dx x xf dx x f x x f题目13证明题 一般。
证明上连续在和设函数⎰⎰⎰⋅≤ba ba ba dx x g dx x f dx x g x fb a x g x f )()(])()([ :,],[)()(222题目14证明题 一般⎰⎰+=42)d sin )(cos 2(sin d cos )2(sin ]1,0[ )( ππϕϕϕϕϕϕϕ。
证明:上连续,在设f f x f题目15证明题 一般。
证明且上可导在设2)(2)(:,0)(,)(,],[)(a b Mdx x f a f M x f b a x f b a -≤=≤'⎰。
证明:上连续,,在设⎰⎰-+=>aa dx x a f x f dx x f a a x f 02 0)]2()([)( )0( ]2,0[ )(题目17证明题 一般。
;为正整数,证明:设 sin )2( cos )1( 2 2ππππππ==⎰⎰--kxdx kxdx k题目18证明题 一般。
试证且上有一阶连续导数在设1)]([:.1)0()1(.]1,0[)(21≥'=-⎰dx x f f f x f题目19证明题 一般。
证明:为正整数,若⎰⎰=⋅20 20 cos 21sin cos ππxdx xdx x m m m mm题目20证明题 一般。
则上连续,在区间若函数 ])([)()( ],[ )( ⎰⎰-+-=bab adx x a b a f a b dx x f b a x f题目21证明题 一般。
证明:上连续在设函数⎰⎰=ππ2 0 2)cos (41)cos (,]1,0[ )( dx x f dx x f x f题目22证明题 一般。
,则连续,且在若函数 0)()()()( ≡=⎰x f dt t f x f R x f xa题目23证明题 一般。
证明:为周期的连续函数,是以设 )()2()()(sin )( 02 0⎰⎰+=+ππππdx x f x dx x f x x x f题目24证明题 一般成立。
都有不等式对于任何试证明上连续且单调递减在设⎰⎰≥∈1)()(],1,0[:,]1,0[ )(dx x f q dx x f q x f q题目25证明题 一般。
证明且上单调增加在设2)()()()()()(:.0)(.],[)( b f a f a b dx x f a f a b x f b a x f ba+-<<->''⎰题目26证明题 一般。
上单调增在证明:,,上连续且单调递增。
,在设函数.],[)()()( )( )(1)( ][)(b a x F a f a F b x a dt t f a x x F b a x f x a =≤<-=⎰题目27证明题 一般。
证明上二阶可导且在设 )2()()( :,0)(],[)(ba f ab dx x f x f b a x f ba+-≤<''⎰题目28证明题 一般。
内满足在,证明函数可导,且上连续,在在设 0)( ),( )()(0)( ],[ ],[ )( ≤'-=<'⎰x F b a dta x t f x F x fb a b a x f xa题目29证明题 一般。
,则,使同时至少存在一点,上连续,且对于一切在试证:如果 0)(0) f(b][a, 0)(],[],[)(b>>∈≥∈⎰adx x f x f b a x b a x f ξξ题目30证明题 一般。
试证 )()( ⎰⎰--=-ac bc b adx x f dx x c f题目31证明题 一般。
,使内至少存在一点试证在上可微,且满足等式:在设函数 )f(-) (f )1,0(0)(2)1( ]1,0[)(210ξξξξ='=-⎰dx x xf f x f题目32证明题 一般。
证明都有上的连续函数并且对于每一个在上连续在设b)x (a 0)( :0)()().(],[,],[)(≤≤==⎰x f dx x f x g x g b a b a x f ba题目33证明题 难,,且上有连续导数在设函数ab a f x f b a x f bb2'0)( ( ],[)(⎰⎰-'='题目34证明题 难。
,使存在一个,则在该区间上必上二阶连续可微,其中在设 ) ()(!31 )]()([!21)()()( 0],[)(03322baξξf a b a f a b f b a af b bf dx x f b a b a x f ''-+'-'--=<<⎰题目35证明题 难。
则,对称,且关于若 )()(2)( )(2 ⎰⎰⎰-+=<<=bT ab Tb adx x f dx x f dx x f b T a T x x f题目36证明题 难。
试证 22111 0 420 4π=+=+=⎰⎰∞+∞+dx x x dx x I题目37证明题 难为奇函数。
偶函数的原函数中有一数皆为偶函数,证明奇函数的一切原函题目38证明题 难内有且仅有一个实根。
在证明:,又上连续,且在设 ],[ 0)()(1 )()(0)(],[)( b a x F dt t f dt t f x F x f b a x f x bxa =+=>⎰⎰题目39证明题 难。
有时当证明 1)(1)(, 1 : 1 2 1222⎰⎰+=+>a adx x x a x f dx x x a x f a题目40证明题 难。
则:,连续,且在若函数A dt t f xA x f x f xx x ==+∞⎰+∞→+∞→0)(1lim )(lim ],0[)(题目41证明题 难。
则若证明b][a,x 0)(0)(:2∈==⎰x f dx x f ba题目42证明题 难。
证明:上连续,在设函数b)x (a )()()]()([1lim ],[ )( 0<<-=-+⎰→a f x f dt t f h t f h b a x f xan题目43证明题 难。
证明为任一连续函数又且处处二阶可导设0)(a ])(1[)]([1:,)(0)(,)(00>≥≥''⎰⎰dt t u a f dt t u f a t u x f x f aa题目44证明题 难。
收敛,则且无穷积分一致连续,在证明:若函数 0)(lim )(),0[)( 0=+∞+∞→∞+⎰x f dx x f x f x。