一阶与二阶常系数线性微分方程及其解法

合集下载

1 3 二阶常系数线性齐次微分方程

1 3 二阶常系数线性齐次微分方程
因此原方程的通解为,
y C1 e x C2 e3x
微分方程
例2. 求方程 y " 2 y ' y 0 的通解.
解: 特征方程 r2 2 r 1 0
有重根:
r1 r2 1
因此原方程的通解为,
y (C1 C2 x ) e x
微分方程
例3. 求方程 y " 2 y ' 5y 0 的通解.
y x2 1
微分方程
例2:自由落体运动
根据Newton第二定律:
F

mg

m
d2x dt 2
所以,
g

d2x dt 2

两次积分得到:x


1 2
gt 2

c1t

c2
微分方程
例3:简谐振动
胡克定律:F kx
由牛顿第二定律:
kx

m
d2x dt 2
d2x k
dt 2
x0 m
如何求解?
微分方程
微分方程的基本概念
含未知函数及其导数的方程叫做微分方程 方程中所含未知函数导数的最高阶数叫做微分方程的阶
通解—解中所含独立的任意常数的个数与方程的阶数相同
.
特解—不含任意常数的解
微分方程
二阶微分方程
y P(x) y Q(x) y f (x), 二阶线性微分方程
酒也。节奏划分思考“山行/六七里”为什么不能划分为“山/行六七里”?
会员免费下载 明确:“山行”意指“沿着山路走”,“山行”是个状中短语,不能将其割裂。“望之/蔚然而深秀者”为什么不能划分为“望之蔚然/而深秀者”?明确:“蔚然而深秀”是两个并列的词,不宜割裂,“望之”是总起词语,故应从其后断句。【教学提示】引导学生在反复朗读的过程中划分朗读节奏,在划分节奏的过程中感知文意。对于部分结构复杂的句子,教师可做适

二阶齐次常系数线性微分方程

二阶齐次常系数线性微分方程

二阶齐次常系数线性微分方程
二阶齐次常系数线性微分方程是一种常见的微分方程,它可以用来描述物理系
统中的动力学过程。

它的一般形式为:
$$ay''+by'+cy=0$$
其中a,b,c是常数,y是未知函数,y'和y''分别表示y的一阶和二阶导数。

二阶齐次常系数线性微分方程的解可以用欧拉法求得,即:
$$y=e^{-\frac{b}{2a}x}(C_1\cos\frac{\sqrt{b^2-
4ac}}{2a}x+C_2\sin\frac{\sqrt{b^2-4ac}}{2a}x)$$
其中C1和C2是任意常数。

二阶齐次常系数线性微分方程在物理学中有着广泛的应用,例如,它可以用来
描述振动系统中的动力学过程,如弹簧-质量系统,摆系统等。

它还可以用来描述
电路中的电流和电压的变化,以及电磁学中的磁场和电场的变化。

此外,二阶齐次常系数线性微分方程还可以用来描述热传导过程,如汽车发动
机冷却系统中的温度变化,以及水力学中的流体流动过程。

总之,二阶齐次常系数线性微分方程是一种重要的微分方程,它在物理学、电
路学、电磁学、热传导和水力学等领域都有着广泛的应用。

二阶常系数微分方程

二阶常系数微分方程

一、二阶常系数齐次线性微分方程
由上面分析可知,要求二阶常系数齐次线性微分方程的通解,关 键是寻找它的两个线性无关的特解.为此,首先找一个函数y,使 y″+py′+qy=0(p,q为常数).而指数函数erx(r为常数)就具备这种性质, 因为erx的一阶、二阶导数都是erx的常数倍,也就是说,只要适当选取 r,就可以使erx满足方程y″+py′+qy=0.于是,设y=erx (r为待定常数) 为方程y″+py′+qy=0的特解,将y=erx,y′=rerx,y″=r2erx代入方程中得 erx(r2+pr+q)=0.
一、二阶常系数齐次线性微分方程
定理6 如果y*是非齐次方程(12-20)的一个特解,而Y是其对应齐 次方程的通解,则y=Y+y*是非齐次方程(12-20)的通解.
证 因y*是非齐次方程(12-20)的一个特解,所以 y*″+py*′+qy*=f(x).又因Y是其对应齐次方程的通解,所以 Y″+pY′+qY=0.于是,对y=y*+Y有
y″+py′+qy=(Y+y*)″+p(Y+y*)′+q(Y+y*) =Y″+pY′+qY+y*″+py*′+qy* =0+f(x)=f(x) 所以,y=Y+y是非齐次方程(12-20)的解.又因为Y中含有两个任意常数, 从而,y=Y+y中也含有两个任意常数,所以y=Y+y是非齐次方程(1220)的通解.
定理5
如果y1与y2是齐次方程y″+py′+qy=0的两个特解,而且y1/y2不等 于常数,则y=C1y1+C2y2是齐次方程的通解,其中C1,C2为任意常数.

文学研究一二阶线性微分方程解的结构课件

文学研究一二阶线性微分方程解的结构课件
y* + p(x)y* + q(x)y* = f (x),
Y + p(x)Y + q(x)Y = 0 .
又因为 y = Y + y*, y = Y + y*,所以 y + p(x)y + q(x)y
= (Y + y* ) + p(x)(Y + y* ) + q(x)(Y + y*) = (Y + p(x) Y + q(x)Y) + ( y* + p(x) y*+ q(x)y*) = f (x).
例 1 求方程 y - 2y - 3y = 0 的通解.
解 该方程的特征方程为 r2 - 2r – 3 = 0, 它有两 个不等的实根 r1 = - 1, r2 = 3, 其对应的两个线性无 关的特解为 y1 = e- x 与 y2 = e3x, 所 以 方 程 的 通 解 为
y C1e x C2e3 x .
例 2 求方程 y - 4y + 4y = 0 的满足初始条件 y(0) = 1, y(0) = 4 的特解.
解 该方程的特征方程为 r2 - 4r + 4 = 0,它 有
重根 r = 2. 其对应的两个线性无关的特解为 y1 = e2x 与 y2 = xe2x,所以通解为
求得
y (C1 C2 x)e2x ,
由于erx 0,因此,只要 r 满足方程
r2 + pr + q = 0,

即 r 是上述一元二次方程的根时,y = erx 就是 ④式的解. 方程⑤称为方程④的特征方程. 特征方
程根称为特征根.
1 特征方程具有两个不相等的实根 r1 与 r2, 即

二阶微分方程

二阶微分方程

是线性非齐次方程的解, 这说明函数 y = Y + y* 是线性非齐次方程的解, 是二阶线性齐次方程的通解, 又 Y 是二阶线性齐次方程的通解,它含有两个任意常 数,故 y = Y + y* 中含有两个任意常数 即 y = Y + y* 中含有两个任意常数. 的通解. 是线性非齐次方程 y″ + p(x)y′ + q(x)y = f (x) 的通解 ″ ′ 求二阶线性非齐次方程通解的一般步骤为: 求二阶线性非齐次方程通解的一般步骤为: (1) 求线性齐次方程 y″ + p(x)y′ + q(x)y = 0 的线性 ) ″ ′ 无关的两个特解 y1 与 y2, 得该方程的通解 Y=C1 y1 + C2 y2. (2) 求线性非齐次方程 y″ + p(x)y′ + q(x)y = f (x) 的 ) ″ ′ 一个特解 y*. 那么,线性非齐次方程的通解为 y = Y + y*. 那么,
1.二阶常系数线性齐次方程的解法 .
④ 考虑到左边 p,q 均为常数, 我们可以猜想该方程 , 均为常数, ′ 形式的解, 为待定常数. 具有 y = erx 形式的解,其中 r 为待定常数 将 y′ = 代入上式, rerx, y″ = r2erx 及 y = erx 代入上式,得 ″ erx (r2 + pr + q) = 0 . ⑤ rx 是上述一元二次方程的根时, 即 r 是上述一元二次方程的根时, y = e 就是 式的解. 方程⑤称为方程④ 特征方程. ④式的解 方程⑤称为方程④的特征方程 特征方 程的根称为特征根 特征根. 程的根称为特征根 由于e 由于 rx ≠ 0,因此,只要 r 满足方程 ,因此, r2 + pr + q = 0, , 设二阶常系数线性齐次方程为 y″ + py′ + qy = 0 . ″ ′

二阶常系数线性微分方程的解法

二阶常系数线性微分方程的解法
1
二阶常系数齐次线性方程解的性质 回顾
一阶齐次线性方程 y P( x) y 0 (1)
1、方程(1)的任意两个解的和仍是(1)的解; 2、方程(1)的任意一个解的常数倍仍是(1)的解;
2
二阶常系数齐次线性方程解的性质 y ay by 0 (2)
1、方程(2)的任意两个解的和仍是(2)的解; 2、方程(2)的任意一个解的常数倍仍是(2)的解;
Q( x) Qm ( x) , 即 y Qm ( x) erx 情形2 若 r 是特征方程的单根, 即 r2 ar b 0 ,
而 2r a 0 , 则令 Q( x) xQm ( x) , 即
y xQm ( x)erx
14
Q (2r a)Q (r 2 ar b)Q Pm ( x) (*) 情形3 若 r 是特征方程的二重根, 即 r2 ar b 0 ,
2
2
此时原方程的通解为
y
(C1
C 2 x)e2x
1 2
x 2e2x

Q( x) Ax2 , Q Pm ( x) , 2 A 1
21
y 4 yAe x ,
代入原方程,得
A
(
1 2)2
,
即特解为
y
(
1 2)2
e
x
,
此时原方程的通解为
于是 y x( 1 x 1)e2x ,
2
2
原方程通解为
y
C1e x
C 2e2 x
x(1 2
x
1) e2 x
.
18
例6 求微分方程 y 6 y 9 y x e3x 的通解.
解 特征方程 2 6 9 0 , 特征根 1,2 3 ,
对应齐次方程通解 Y (C1 C2 x)e3x . 因为 r 3 是二重特征根,

2.2二阶常系数线性微分方程的解法

2.2二阶常系数线性微分方程的解法

= Pm ( x)e αx ( 其中 pm ( x )是 x 的 m 次多项式 ) 1. f ( x)
这时方程② 这时方程②为 ay ′′ + by ′ + cy = Pm ( x )eαx 方程
可以设 y ∗ = Q( x )eαx ( 其中 Q( x ) 是多项式 ) 。

将 y = Q( x )e , y
10
2.2
二阶常系数线性微分方程的解法
特征方程的根
方程的通解中对应的项
给出一项 Ce
rx
单实根 r
k 重实根 r
一对单复根
r1, 2 = α ± iβ
给出 k 项 e rx (C 1 + C 2 x + L + C k x k −1 )
给出两项 eαx (C1 cos βx + C 2 sin βx )
ay′′ + by′ + cy = 0 ,

猜想方程① 形式的解, 猜想方程① 具有 y = e rx 形式的解, 其中 r 为待定常数 ,
′ = re rx , y′′ = r 2 e rx , y = e rx 代入方程①, 代入方程① 将y
e rx ≠ 0 , 故有 得 e (ar + br + c ) = 0 , 但
y


αx


= e α x [ Q ′ ( x ) + α Q ( x )] ,

= eαx [Q′′( x ) + 2αQ′( x ) + α 2Q( x )] ,
代入③ 代入③后并 约去 eαx , 得:
aQ′′( x ) + ( 2aα + b)Q′( x ) + (aα 2 + bα + c )Q( x ) = Pm ( x )

一阶与二阶常系数线性微分方程及其解法

一阶与二阶常系数线性微分方程及其解法

公式解法
公式法
通过求解特征方程p^2 - 4q = 0,得到通解y = C*exp(rx),其中C和r是常数,exp(rx)是自然指数函数。
初始条件
在给定初始条件y(x0) = y0时,可以通过公式法求得特解。
初始条件与特解
初始条件的重要性
初始条件决定了微分方程的特解,对于一阶常系数线性微分方程来说,初始条件通常是指 y(x0) = y0。
一阶与二阶常系数线性微分 方程及其解法
目录
• 一阶常系数线性微分方程 • 二阶常系数线性微分方程 • 对比与联系 • 扩展与应用
01
一阶常系数线性微分方程
定义与公式
定义
一阶常系数线性微分方程是形如y' + P(x)y = Q(x)的方程,其中P(x)和Q(x) 是已知函数。
公式
一阶常系数线性微分方程的标准形式 是y' + py = q,其中p和q是常数。
初始条件与特解
初始条件
给定初始条件y(x₀) = y₀和y'(x₀) = y'₀,可以求解微分方程得到特解。
特解
满足初始条件的解称为特解。通过代入初始条件,可以得到特解的具体形式。
03
对比与联系
一阶与二阶方程的异同
一阶方程
y' = f(x)
二阶方程
y'' = f(x, y', y'')
相同点
两者都是描述函数y与自变量x之间的导数关系。
实际应用场景与案例
一阶方程应用场景
01
描述物体运动、化学反应速率等。
二阶方程应用场景
02
描述波动现象、弹簧振动等。
案例

10.5二阶常系数线性微分方程

10.5二阶常系数线性微分方程

因此原方程的通解为
目录
上页
下页
返回
结束
y 12 y 36 y 0,
解: 特征方程 r 2 12r 36 0, 特征根: r1 r2 6 因此原方程的通解为
目录
上页
下页
返回
结束
y py qy 0
有一对共轭复根
e cos x i sin x
e B[( λ pλ q) x 2( p 2 λ) x 2] A e
λx 2 2
λx
A B 2 A 2 λx * y x e 2
目录 上页 下页 返回 结束yຫໍສະໝຸດ py qy Aex
A x e 2 p q , 不是特征方程的根 A * x y xe 是特征方程的单根 , 2 p A 2 x xe 是特征方程的重根 2
ln y C1e x C 2 e x .
目录
上页
下页
返回
结束
3. 求作一个二阶常系数齐次线性微分方程,使 1 , e x , 2e x , e x 3 都是它的解 .
(提示:
1, e x 为两个 线性无关的解)
y y 0
目录
上页
下页
返回
结束
二、二阶常系数非齐次线性方程解法
ix
( 0)
特征根为
r1 i , r2 i , ( i ) x ( i ) x y1 e , y2 e ,
y1 e
( α iβ ) x ( α iβ ) x
e e
αx αx
iβx
e (cos βx i sin βx)
αx

一阶与二阶常系数线性微分方程及其解法

一阶与二阶常系数线性微分方程及其解法

返回
退出
*例2-2 求一阶非线性微分方程
的通解。 解
dy
y2
dx xy x2
dy
y2
dx xy x2 ,
( xy x2 )dy y2dx ;
xydy y2dx x2dy ,
可见,
x2 xdy ydx dy ;
y
xdy ydx dy
x2ቤተ መጻሕፍቲ ባይዱ
; y
d( y ) d(ln | y |) ; x
在极理想的情况下,原方程有可能被 重组成因变量与自变量全都各居一侧的形式,
人们常称其为已分离变量的形式。 这种方程的解几乎显而易见:
若 f ( x)dx g( y)dy,
则 d
x
f (t)dt d
y
g(t )dt ,
0
0
通解即
x
f (t)dt
y
g(t )dt C .
0
0
解微分方程的过程,本质上是
x2 d( ) dy ;
y x2 d( y) 0 . y
故原方程的通解为
x2 yC

y
x2 y2 Cy .
非线性方程的通解(包括特解)
往往用隐函数的形式书写比较简洁。
有些非线性方程偶尔可经变元代换化 成线性方程再求解(有兴趣者可参阅教材 P236之例4与例5),但转换过程琐碎,明 显不如凑微分法来得直接和明快。
(1) y 1 y 0 x
*(2) y 2 y 0
dy 2 ydx 0 , dy yd(2x) 0 ,
解 (1)
y 1 y 0 x
xy y 0 ,
xdy ydx 0 ,
d( xy) 0 ;
故原方程的通解为 xy C 或者

二阶常微分方程解

二阶常微分方程解

第七节 二阶常系数线性微分方程的解法在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解.本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法.先讨论二阶常系数线性齐次方程的求解方法.§ 二阶常系数线性齐次方程及其求解方法设给定一常系数二阶线性齐次方程为22dx y d +p dxdy +qy =0 其中p 、q 是常数,由上节定理二知,要求方程的通解,只要求出其任意两个线性无关的特解y 1,y 2就可以了,下面讨论这样两个特解的求法.我们先分析方程可能具有什么形式的特解,从方程的形式上来看,它的特点是22dx y d ,dx dy,y 各乘以常数因子后相加等于零,如果能找到一个函数y,其22dx y d ,dxdy ,y 之间只相差一个常数因子,这样的函数有可能是方程的特解,在初等函数中,指数函数e rx,符合上述要求,于是我们令y =e rx其中r 为待定常数来试解将y =e rx,dxdy=re rx,22dx y d =r 2e rx代入方程得 r 2e rx +pre rx +qe rx=0或 e rxr 2+pr +q =0因为e rx≠0,故得r 2+pr +q =0由此可见,若r 是二次方程r 2+pr +q =0的根,那么e rx 就是方程的特解,于是方程的求解问题,就转化为求代数方程的根问题.称式为微分方程的特征方程.特征方程是一个以r 为未知函数的一元二次代数方程.特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论.1若特证方程有两个不相等的实根r 1,r 2,此时e r 1x ,e r2x 是方程的两个特解.因为 x r xr 21e e =e x)r r (21-≠常数所以e r1x ,e r2x 为线性无关函数,由解的结构定理知,方程的通解为y =C 1e r1x +C 2e r2x2若特征方程有两个相等的实根r 1=r 2,此时p 2-4q =0,即有r 1=r 2=2p-,这样只能得到方程的一个特解y 1=e r 1x,因此,我们还要设法找出另一个满足12y y ≠常数,的特解y 2,故12y y 应是x 的某个函数,设12y y =u,其中u =ux 为待定函数,即 y 2=uy 1=ue r 1x对y 2求一阶,二阶导数得dx dy 2=dxdu e r1x+r 1ue r1x=dx du +r 1uer1x 222dx y d =r 21u +2r 1dx du +22dx ud e r1x将它们代入方程得r 21u +2r 1dx du +22dxu d e r1x+p dxdu +r 1uer1x+que r1x =0或22dx u d +2r 1+p dxdu+r 21+pr 1+que r1x =0因为e r1x ≠0,且因r 1是特征方程的根,故有r 21+pr 1+q =0,又因r 1=-2p故有2r 1+p =0,于是上式成为 22dxu d =0 显然满足22dxud =0的函数很多,我们取其中最简单的一个 ux =x则y 2=xe rx 是方程的另一个特解,且y 1,y 2是两个线性无关的函数,所以方程的通解是y =C 1e r1x +C 2xe r1x =C 1+C 2xe r1x3若特征方程有一对共轭复根 r 1=α+i β,r 2=α-i β此时方程有两个特解y 1=eα+i βxy 2=eα-i βx则通解为y =C 1e α+i βx +C 2e α-i βx其中C 1,C 2为任意常数,但是这种复数形式的解,在应用上不方便.在实际问题中,常常需要实数形式的通解,为此利用欧拉公式e ix =cosx +isinx,e -ix =cosx -isinx有 21e ix+e -ix=cosxi 21e ix-e -ix=sinx21 y 1+y 2=21e αxe i βx+e -i βx=e αxcos βxi 21 y 1-y 2=i21e αxe i βx-e -i βx=e αxsin βx由上节定理一知,21 y 1+y 2,i21y 1-y 2是方程的两个特解,也即eαxcosβx,e αx sin βx 是方程的两个特解:且它们线性无关,由上节定理二知,方程的通解为y =C 1e αx cos βx +C 2e αx sin βx或 y =e αx C 1cos βx +C 2sin βx其中C 1,C 2为任意常数,至此我们已找到了实数形式的通解,其中α,β分别是特征方程复数根的实部和虚部.综上所述,求二阶常系数线性齐次方程的通解,只须先求出其特征方程的根,再根据他的三种情况确定其通解,现列表如下特征方程r 2+pr +q =0的根微分方程22dx y d +p dx dy+qy =0的通解有二个不相等的实根r 1,r 2y =C 1e r1x+C 2e r2x有二重根r 1=r 2y =C 1+C 2xe r1x有一对共轭复根β-α=β+α=i r i r 21y =e αx C 1cos βx +C 2sin βx例1. 求下列二阶常系数线性齐次方程的通解1 22dx y d +3dx dy-10y =0 2 22dx y d -4dx dy +4y =0 3 22dx y d +4dxdy +7y =0 解 1特征方程r 2+3r -10=0有两个不相等的实根r 1=-5,r 2=2所求方程的通解 y =C 1e -5r+C 2e 2x2特征方程r 2-4r +4=0,有两重根 r 1=r 2=2所求方程的通解y =C 1+C 2xe 2x3特征方程r 2+4r +7=0有一对共轭复根r 1=-2+3i r 2=-2-3i所求方程的通解 y =e -2x C 1cos3x +C 2sin 3x§ 二阶常系数线性非齐次方程的解法由上节线性微分方程的结构定理可知,求二阶常系数线性非齐次方程22dx y d +p dxdy +qy =fx 的通解,只要先求出其对应的齐次方程的通解,再求出其一个特解,而后相加就得到非齐次方程的通解,而且对应的齐次方程的通解的解法,前面已经解决,因此下面要解决的问题是求方程的一个特解.方程的特解形式,与方程右边的fx 有关,这里只就fx 的两种常见的形式进行讨论.一、fx =p n xe αx ,其中p n x 是n 次多项式,我们先讨论当α=0时,即当fx =p n x 时方程22dx y d +p dx dy +qy =p nx 的一个特解.1如果q ≠0,我们总可以求得一n 次多项式满足此方程,事实上,可设特解~y =Q nx =a 0x n+a 1xn -1+…+a n,其中a 0,a 1,…a n 是待定常数,将~y 及其导数代入方程,得方程左右两边都是n 次多项式,比较两边x 的同次幂系数,就可确定常数a 0,a 1,…a n .例1. 求22dx y d +dxdy+2y =x 2-3的一个特解. 解 自由项fx =x 2-3是一个二次多项式,又q =2≠0,则可设方程的特解为~y =a 0x 2+a 1x +a 2求导数~'y =2a 0x +a1~"y =2a代入方程有2a 0x 2+2a 0+2a 1x +2a 0+a 1+2a 2=x 2-3比较同次幂系数⎪⎩⎪⎨⎧-=++=+=3a 2a a 20a 2a 21a 2210100 解得 47a 21a 21a 210-=-==所以特解~y =21x 2-21x -472如果q =0,而p ≠0,由于多项式求导一次,其次数要降低一次,此时~y =Q n x 不能满足方程,但它可以被一个n +1次多项式所满足,此时我们可设~y =xQ n x =a 0x n +1+a 1x n +…+a n x代入方程,比较两边系数,就可确定常数a 0,a 1,…a n .例2. 求方程22dx y d +4dxdy=3x 2+2的一个特解. 解 自由项 fx =3x 2+2是一个二次多项式,又q =0,p =4≠0,故设特解~y =a 0x 3+a 1x 2+a 2x求导数~'y =3a 0x 2+2a 1x +a2~"y =6a 0x +2a1代入方程得12a 0x 2+8a 1+6a 0x +2a 1+4a 2=3x 2+2,比较两边同次幂的系数⎪⎩⎪⎨⎧=+=+=2a 4a 20a 6a 83a 1221010 解得 3219a 163a 41a 210=-==所求方程的特解 ~y =41x 3-163x 2+3219x3如果p =0,q =0,则方程变为22dxyd =p nx,此时特解是一个n +2次多项式,可设~y =x 2Q nx,代入方程求得,也可直接通过两次积分求得.下面讨论当α≠0时,即当fx =p n xe αx 时方程22dx y d +p dxdy +qy =p nxe αx的一个特解的求法,方程与方程相比,只是其自由项中多了一个指数函数因子e αx ,如果能通过变量代换将因子e αx 去掉,使得化成式的形式,问题即可解决,为此设y =ue αx ,其中u =ux 是待定函数,对y =ue αx ,求导得dx dy =e αxdxdu+αue αx 求二阶导数 22dx y d =e αx22dx u d +2αe αxdxdu+α2ue αx代入方程得e αx22dx u d +2αdx du +α2u +pe αxdx du +αu +que αx=p n xeαx消去e αx得22dx u d +2α+p dxdu +α2+p α+qu =p nx 由于式与形式一致,于是按的结论有:1如果α2+p α+q ≠0,即α不是特征方程r 2+pr +q =0的根,则可设的特解u =Qn x,从而可设的特解为~y =Q n xe αx2如果α2+p α+q =0,而2α+p ≠0,即α是特征方程r 2+pr +q =0的单根,则可设的特解u =xQ n x,从而可设的特解为~y =xQ n xe αx3如果r 2+p α+q =0,且2α+p =0,此时α是特征方程r 2+pr +q =0的重根,则可设的特解u =x 2Q n x,从而可设的特解为~y =x 2Q n xe αx例3. 求下列方程具有什么样形式的特解122dx y d +5dx dy +6y =e 3x 2 22dx y d +5dx dy +6y =3xe -2x 3 22dx y d +αdxdy +y =-3x 2+1e -x解 1因α=3不是特征方程r 2+5r +6=0的根,故方程具有形如~y =a 0e3x 的特解.2因α=-2是特征方程r 2+5r +6=0的单根,故方程具有形如~y =xa 0x +a 1e -2x的特解.3因α=-1是特征方程r 2+2r +1=0的二重根,所以方程具有形如~y =x 2a 0x 2+a 1x +a 2e -x的特解.例4. 求方程22dxyd +y =x -2e 3x的通解.解 特征方程 r 2+1=0特征根 r =±i 得,对应的齐次方程22dxyd +y =0的通解为 Y =C 1cos x +C 2sin x由于α=3不是特征方程的根,又p n x =x -2为一次多项式,令原方程的特解为~y =a 0x +a 1e 3x此时u =a 0x +a 1,α=3,p =0,q =1,求ux 的导数dxdu =a 0,22dx u d =0,代入22dx u d +2α+p dxdu+α2+αp +qu =x -2得: 10a 0x +10a 1+6a 0=x -2比较两边x 的同次幂的系数有⎩⎨⎧-=+=2a 6a 101a 10010 解得 a 0=101,a 1=-5013于是,得到原方程的一个特解为~y =101x -5013e3x所以原方程的通解是y =Y +~y =C 1cosx +C 2sinx +101x -5013e 3x例5. 求方程22dx y d -2dxdy-3y =x 2+1e -x的通解. 解 特征方程 r 2-2r -3=0特征根 r 1=-1,r 2=3所以原方程对应的齐次方程22dx y d -2dxdy-3y =0的通解Y =C 1e -x +C 2e 3x ,由于α=-1是特征方程的单根,又p n x =x 2+1为二次多项式,令原方程的特解~y =xa 0x 2+a 1x +a 2e -x此时 u =a 0x 3+a 1x 2+a 2x,α=-1,p =-2,q =-3对ux 求导dx du=3a 0x 2+2a 1x +a 222dx ud =6a 0x +2a 1代入22dx u d +2α+p dxdu +α2+pr +qu =x 2+1,得-12a 0x 2+6a 0-8ax +2a 1-4a 2=x 2+1比较x 的同次幂的系数有⎪⎪⎩⎪⎪⎨⎧=--==-0a 8a 6121a 1a 121000 解得 329a 0a 4a 2161a 2011-==--=故所求的非齐次方程的一个特解为~y =-4x 3x 2+4x +89e-x二、fx =p n xe αx cos βx 或p n xe αx sin βx,即求形如22dx y d +p dx dy +qy =p nxe αx cos βx 22dx y d +p dx dy+qy =p nxe αx sin βx 这两种方程的特解.由欧拉公式知道,p n xe αx cos βx,p n xe αx sin x 分别是函数p n xe α+i βx 的实部和虚部.我们先考虑方程22dx y d +p dxdy +qy =p nxe α+i βx方程与方程类型相同,而方程的特解的求法已在前面讨论.由上节定理五知道,方程的特解的实部就是方程的特解,方程的特解的虚部就是方程的特解.因此,只要先求出方程的一个特解,然而取其实部或虚部即可得方程或的一个特解.注意到方程的指数函数e α+i βx 中的α+i ββ≠0是复数,而特征方程是实系数的二次方程,所以α+i β最多只能是它的单根.因此方程的特解形为Q n xeα+i βx或x Qn xeα+i βx.例6. 求方程22dxyd -y =e xcos2x 的通解. 解 特征方程 r 2-1=0特征根 r 1=1,r 2=-1于是原方程对应的齐次方程的通解为Y =C 1e x +C 2e -x为求原方程的一个特解~y .先求方程22dxyd -y =e 1+2ix的一个特解,由于1+2i 不是特征方程的根,且p n x 为零次多项式,故可设u =a 0,此时α=1+2i,p =0,q =-1代入方程22dx u d +2α+p dxdu+α2+αp +qu =1 得1+2i 2-1a 0=1 ,即4i -4a 0=1,得a 0=)1i (41 =-81i +1这样得到22dx y d -y =e 1+2ix的一个特解y =-81i +1e 1+2ix由欧拉公式y =-81i +1e 1+2ix=-81i +1e xcos 2x +isin2x=-81e xcos2x -sin2x +icos2x +sin2x取其实部得原方程的一个特解~y =-81e xcos 2x -sin2x故原方程的通解为y =Y +~y =C 1e x+C 2e-x-81e x cos2x -sin2x 例7. 求方程22dxyd +y =x -2e 3x+xsinx 的通解.解 由上节定理三,定理四,本题的通解只要分别求22dxyd +y =0的特解Y,22dxy d +y =x -2e 3x的一个特解~1y , 22dxy d +y =x sin x 的一个特解~2y 然而相加即可得原方程的通解,由本节例4有Y =C 1cosx +C 2sinx,~1y =101x -5013e3x下面求~2y ,为求~2y 先求方程22dxy d +y =xe ix由于i是特征方程的单根,且pn x=x为一次式,故可设u=xax+a1=a0x2+a1x,此时α=i,p=0,q=1,对u 求导dxdu=2ax+a1,22dxud=2a代入方程22dxud+2α+pdxdu+α2+pα+qu=x得 2a0+2i2ax+a1+0=x即 4iax+2ia1+2a=x比较x的同次幂的系数有:⎩⎨⎧=+=a2ia21ia41得41a41i41a1=-==即方程22dxyd+y=xe ix的一个特解~y=-4ix2+41xe ix=-4ix2+41cosx+isinx=41x2sinx+41xcosx+i-41x2cosx+41xsinx取其虚部,得~2y=-41x2cos x+41x sin x 所以,所求方程的通解y =Y+~1y+~2y=C 1cosx +C 2sinx +101-513e3x-41x 2cosx +41xsinx综上所述,对于二阶常系数线性非齐次方程22dx y d +p dxdy +qy =fx 当自由项fx 为上述所列三种特殊形式时,其特解~y 可用待定系数法求得,其特解形式列表如下:自由项fx 形式特解形式fx =p n x当q ≠0时~y =Q n x当q =0,p ≠0时~y =Q n x当q =0,p =0时~y =x 2Q n xfx =p n xeαx当α不是特征方程根时~y =Q nxeαx当α是特征方程单根时~y =xQ n xe αx当α是特征方程重根时~y =x 2Q n xe αxfx =p n xe αx cos βx 或fx =p n xe αx sin βx利用欧拉公式e i βx =cos βx +isin βx,化为fx =p n xe α+i βx 的形式求特解,再分别取其实部或虚部以上求二阶常系数线性非齐次方程的特解的方法,当然可以用于一阶,也可以推广到高阶的情况.例8. 求y+3y ″+3y ′+y =e x 的通解解 对应的齐次方程的特征方程为r 3+3r 2+3r +1=0 r 1=r 2=r 3=-1所求齐次方程的通解Y =C 1+C 2x +C 3x 2e -x由于α=1不是特征方程的根因此方程的特解~y =a 0e x代入方程可解得a 0=81故所求方程的通解为y =Y +~y =C 1+C 2x +C 3x 2e -x+81e x.§ 欧拉方程下述n 阶线性微分方程a 0xnn n ax y d +a 1x n -11n 1n dxyd --+…+a n -1x dxdy+a ny =fx 称为欧拉方程,其中a 0,a 1,…a n 都是常数,fx 是已知函数.欧拉方程可通过变量替换化为常系数线性方程.下面以二阶为例说明.对于二阶欧拉方程a 0x 222dx y d +a 1x dxdy +a 2y =fx 作变量替换令x =e t,即t =ln x引入新变量t,于是有dx dy =dt dy dx dt =dt dy x 1=x 1dtdy22dx y d =dx d x 1dt dy =x 1dx d dt dy +dt dy dx d x 1 =x 122dt y d dx dt -2x 1dt dy =2x 122dt y d -2x 1dt dy 代入方程得a 022dt y d -dt dy +a 2dtdy+a 1y =fe t即 22dty d +002a a a dt dy +01a a y =0a 1fe t它是yt 的常系数线性微分方程.例9. 求x 222dx y d +x dx dy =6lnx -x1的通解. 解 所求方程是二阶欧拉方程作变换替换,令x =e t ,则dx dy =x 1dxdy22dx y d =2x 122dt y d -2x 1dt dy 代入原方程,可得 22dty d =6t -e -t两次积分,可求得其通解为 y =C 1+C 2t +t 3-e -t代回原来变量,得原方程的通解y =C 1+C 2lnx +lnx3-x1第八节 常系数线性方程组前面讨论的微分方程所含的未知函数及方程的个数都只有一个,但在实际问题中常遇到含有一个自变量的两个或多个未知函数的常微分方程组.本节只讨论常系数线性方程组,并且用代数的方法将其化为常系数线性方程的求解问题.下面以例说明.例1. 求方程组⎪⎩⎪⎨⎧=--=--)2(0y 3x 4dtdy)1(e y 2x dtdx t的通解.解 与解二元线性代数方程组中的消元法相类似,我们设法消去一个未知函数,由1得y =21 dtdx -x -e t3将其代入2得 21 22dt x d -dt dx -e t-4x -23 dtdx -x -e t=0 化简得22dt x d -4dtdx -5x =-2e t它是一个二阶常系数非齐次方程它的通解为 x =C 1e 5t+C 2e -t+41e t代入3得 y =2C 1e 5t-C 2e -t-21e t即所求方程组的通解为⎪⎪⎩⎪⎪⎨⎧--=++=--t t 2t 51t t2t 51e 21e C e C 2y e 41e C e C x例2. 求解方程组⎪⎩⎪⎨⎧++=+-=+)2(t 2y x dtdy dt dx )1(yt dt dydt dx 2的通解解 为消去y,先消去dtdy,为此将1-2得dtdx +x +2y +t =0即有 y =-21 dtdx+x +t 3代入2得dt dx -21dt d dt dx +x +t -x +21 dtdx +x +t -2t =0 即 22dt x d -2dtdx+x =3t -1 这是一个二阶常系数线性非齐次方程,解得x =C 1e t +C 2te t -3t -7代入3得 y =-C 1e t-C 221+te t+t +5 所以原方程组的通解为⎪⎩⎪⎨⎧+++--=--+=5t e )t 21(C e C y 7t 3te C e C x t2t 1t 2t 1。

一阶微分方程的解法及应用

一阶微分方程的解法及应用

x
由初始条件 y(0) 0, y(0) 3 , 得
2
C1 1, C2 1
故所求初值问题的解为
y ex ex 1 sin x 2
二、微分方程的应用
1 . 建立数学模型 — 列微分方程问题 利用物理规律
建立微分方程 ( 共性 ) 利用几何关系 初始条件
确定定解条件 ( 个性 ) 边界条件 可能还要衔接条件
v0 2R g 2 63105 9.81 11.2 103 (m s)
这说明第二宇宙速度为 11.2 km s
例5. 已知一质量为 m 的质点作直线运动, 作用在质点
提示: 设每分钟应输入
t 时刻车间空气中含
则在 [t , t t ]内车间内 的改变量为
x
k
0.04 t 100
k
x t 5400
两端除以 t , 并令 t 0
得微分方程
初始条件
解定解问题
dx k x k d t 5400 2500 x t 0 0.12 54

k= ?
t = 30 时 x 0.06 5400 0.06 54 100
2
x
,
x
2
例2.
且满足方程
x
f ( x) sin x 0 ( x t) f (t)dt
求 f (x) .
提示: f (x) sin x x 0x f (t) dt 0xt f (t) dt, 则
f
(x)
cos
x
x
0
f
(t)dt
x
f
(x)
x
f
(x)
f (x) sin x f (x)
解: (1) F(x) f (x)g(x) f (x)g(x) g2(x) f 2(x) [g(x) f (x)]2 2 f (x)g(x) (2ex )2 2F(x)

(整理)二阶常系数线性微分方程的解法版.

(整理)二阶常系数线性微分方程的解法版.

第八章 8.4讲第四节 二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+'' (1)的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 (1)变成0=+'+''qy y p y (2)我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数.证明 因为1y 与2y 是方程(2)的解,所以有0111=+'+''qy y p y 0222=+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得)()()(221122112211y C y C q y C y C p y C y C ++'+'+''+'' =0)()(22221111=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解.2.线性相关、线性无关的概念设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为0sin cos 122≡--x x又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关.3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数)是方程式(2)的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+=( 21,C C 是任意常数)是方程0=+''y y 的通解.由于指数函数rxe y =(r 为常数)和它的各阶导数都只差一个常数因子,根据指数函数的这个特点,我们用rxe y =来试着看能否选取适当的常数r ,使rx e y =满足方程(2).将rx e y =求导,得 rx rx e r y re y 2,=''='把y y y ''',,代入方程(2),得0)(2=++rx eq pr r 因为0≠rx e , 所以只有 02=++q pr r (3)只要r 满足方程式(3),rx e y =就是方程式(2)的解.我们把方程式(3)叫做方程式(2)的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程(2)y y y ,,'''的系数. 特征方程(3)的两个根为 2422,1q p p r -±-=, 因此方程式(2)的通解有下列三种不同的情形. (1) 当042>-q p 时,21,r r 是两个不相等的实根. 2421q p p r -+-=,2422q p p r ---= x r x r e y e y 2121,==是方程(2)的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程(2)的通解为 x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根. 221p r r -==,这时只能得到方程(2)的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 )(12x u e y x r =)2(),(21121211u r u r u e y u r u e y x r x r +'+''=''+'='. 将222,,y y y '''代入方程(2), 得 []0)()2(12111=++'++'+''qu u r u p u r u r u e x r 整理,得0])()2([12111=+++'++''u q pr r u p r u e x r由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 因为1r 是特征方程(3)的二重根, 所以02,01121=+=++p r q pr r从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程(2)的另一个解 x r xe y 12=.那么,方程(2)的通解为x r x r xe C e C y 1121+=即 xr e x C C y 1)(21+=.(3) 当042<-q p 时,特征方程(3)有一对共轭复根 βαβαi r i r -=+=21, (0≠β)于是 x i x i e y ey )(2)(1,βαβα-+== 利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为)sin (cos )(1x i x e e e e y x x i x x i ββαβαβα+=⋅==+)sin (cos )(2x i x e e e e y x x i x xi ββαβαβα-=⋅==-- 21,y y 之间成共轭关系,取-1y =x e y y x βαcos )(2121=+, x e y y i y x βαsin )(2121_2=-= 方程(2)的解具有叠加性,所以-1y ,-2y 还是方程(2)的解,并且≠==--x x e x e y y x x βββααt a n c o s s i n 12常数,所以方程(2)的通解为 )sin cos (21x C x C e y x ββα+=综上所述,求二阶常系数线性齐次方程通解的步骤如下:(1)写出方程(2)的特征方程02=++q pr r(2)求特征方程的两个根21,r r(3)根据21,r r 的不同情形,按下表写出方程(2)的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为0122=++r r121-==r r通解为 te t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是 t e t C S -+=)4(2,对其求导得te t C C S ---=')4(22 将初始条件20-='=t S 代入上式,得 22=C所求特解为te t S -+=)24(例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程(1)的一个特解,Y 是式(1)所对应的齐次方程式(2)的通解,则*+=y Y y 是方程式(1)的通解.证明 把*+=y Y y 代入方程(1)的左端:)()()(*++*'+'+*''+''y Y q y Y p y Y=)()(*+*'+*''++'+''qy py y qY Y p Y=)()(0x f x f =+*+=y Y y 使方程(1)的两端恒等,所以*+=y Y y 是方程(1)的解. 定理4 设二阶非齐次线性方程(1)的右端)(x f 是几个函数之和,如 )()(21x f x f qy y p y +=+'+'' (4) 而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程(4)的特解, 非齐次线性方程(1)的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法 )()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式. 方程(1)的右端)(x f 是多项式)(x P m 与指数函数xe λ乘积的导数仍为同一类型函数,因此方程(1)的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*x e x Q x Q y λλ)]()(['+=*'x e x Q x Q x Q y λλλ)]()(2)([2''+'+=*''代入方程(1)并消去xe λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ (5) 以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:(1) 若λ不是方程式(2)的特征方程02=++q pr r 的根, 即02≠++q p λλ,要使式(5)的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :m m m x b x b x b b x Q ++++= 2210)(代入(5)式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10 的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i =.从而得到所求方程的特解为x m e x Q y λ)(=*(2) 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式(5)成立, 则)(x Q '必须要是m 次多项式函数,于是令)()(x xQ x Q m =用同样的方法来确定)(x Q m 的系数),,1,0(m i b i =.(3) 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使(5)式成立,则)(x Q ''必须是一个m 次多项式,可令)()(2x Q x x Q m =用同样的方法来确定)(x Q m 的系数.综上所述,若方程式(1)中的x m e x P x f λ)()(=,则式(1)的特解为x m k e x Q x y λ)(=*其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r . λ=-2是特征方程的单根, 令x e xb y 20-=*,代入原方程解得230-=b 故所求特解为 x xe y 223--=* . 例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解.特征方程为 0122=+-r r , 121==r r齐次方程的通解为 x e x C C Y )(21+=.再求所给方程的特解1)(,1-==x x P m λ由于1=λ是特征方程的二重根,所以x e b ax x y )(2+=*把它代入所给方程,并约去xe 得 126-=+x b ax比较系数,得61=a 21-=b 于是 x e x x y )216(2-=* 所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=* 3.x B x A x f ϖϖsin cos )(+=型的解法,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数.此时,方程式(1)成为x B x A q y p y ωωsin cos +=+'+'' (7)这种类型的三角函数的导数,仍属同一类型,因此方程式(7)的特解*y 也应属同一类型,可以证明式(7)的特解形式为)sin cos (x b x a x y k ωω+=*其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0;当ω±i 不是特征方程02=++q pr r 的根, k 取1;例6 求方程x y y y sin 432=-'+''的一个特解.解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为x b x a y sin cos +=* 于是 x b x a y cos sin +-=*'x b x a y sin cos --=*''将*''*'*y y y ,,代入原方程,得⎩⎨⎧=--=+-442024b a b a解得 54,52-=-=b a原方程的特解为: x x y sin 54cos 52--=*例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为 0322=--r r3,121=-=r rx x e C e C Y 321+=-再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则 **+=*21y y y 是原方程的一个特解.由于1=λ,ω±i i ±=均不是特征方程的根,故特解为)sin cos (21x c x b ae y y y x ++=+=***代入原方程,得x e x c b x c b ae x x sin sin )42(cos )24(4=-++--比较系数,得14=-a 024=+c b 142=-c b解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为 x x e y x s i n 51c o s 10141-+-=* 所以所求方程的通解为x x e e C e C y Y y x x x sin 51cos 10141321-+-+=+=-*.。

二阶常系数线性微分方程

二阶常系数线性微分方程
E-mail: xuxin@
§6 二阶常系数线性微分方程
高阶线性微分方程在实际问题中应用比较多, 本节以讨论二阶线性微分方程为主,所得的结果 可以推广到二阶以上的线性微分方程。 定义 形如
d2y dy P( x) Q( x) y f ( x) 2 dx dx 的方程,称为二阶线性微分方程。
E-mail: xuxin@
(ii) 当 是单实根, 即2 + p1 + p2 = 0 , 但2 + p2 0. Q(x)是 m+1次多项式, 取常数项为零. Q(x) = x Qm(x)
y* xe Qm ( x)
x
E-mail: xuxin@
y (C1 C 2 x)e x .
因=1是特征方程的重根,Pm(x)=x+1,故特解形 式为: 2 x y* x e (ax b).
E-mail: xuxin@
代入原方程中得
6ax 2b x 1.
所以 从而有一特解为
1 1 a ,b . 6 2 1 1 y* x e ( x ). 6 2
上述结论可推广到n阶常系数非齐次线性微分方程.
E-mail: xuxin@
例6 求方程 y''+y=xcos2x 的通解. 解: 特征方程为 r2+1=0, 其根为r1,2= i, 所以对应齐次线性方程的通解为 y = C1cosx + C2sinx. 因 i =2i不是特征方程的根, P1(x)=x, Qn(x)0, 故可设特解为 y* = (ax+b)cos2x+(cx+d)sin2x y*'' = (–4ax+4c–4b)cos2x+(–4cx–4a–4d)sin2x

(整理)微分方程的例题分析与解法

(整理)微分方程的例题分析与解法

微分方程的例题分析及解法本单元的基本内容是常微分方程的概念,一阶常微分方程的解法,二阶常微分方程的解法,微分方程的应用。

一、常微分方程的概念本单元介绍了微分方程、常微分方程、微分方程的阶、解、通解、特解、初始条件等基本概念,要正确理解这些概念;要学会判别微分方程的类型,理解线性微分方程解的结构定理。

二、一阶常微分方程的解法本单元介绍了三种类型的一阶微分方程的求解方法:变量可分离型,齐次型,线性方程。

对于一阶微分方程,首先要看是否可以经过恒等变形将它的变量分离;对于一阶线性微分方程,先用分离变量法求解其相应的齐次方程,再用常数变易法求解非齐次方程;当然也可直接代下列通解公式:pxdxq(x)e pxdxye dxC齐次型微分方程yyf()y x令u u与自变量x的变量可分离的微分方程。

,则方程化为关于未知数x三、二阶微分方程的解法1.特殊类型的二阶常微分方程本章介绍了三种特殊类型的二阶方程的求解方法:(1)y f(x),直接积分;(2)y f(x,y),令y p,(3)y f(y,y),令y p,则y dp pdy这三种方法都是为了“降价”,即降成一阶方程。

2.二阶线性常系数微分方程二阶线性常系数微分方程求解的关键是:(1)特征方程对于相应的齐次方程,利用特征方程2p q0求通解:(2)对于非齐次方程,根据下列形式自由项的特点f(x)e x P m(x)和f(x)e axP l(~xx)cosxp n(x)sin设置特解y的形式,然后使用待定系数法。

四、微分方程的应用求解应用问题时,首先需要列微分方程,这可根据有关科学知识,分析所研究的变量应该遵循的规律,找出各量之间的等量关系,列出微分方程,然后根据微分方程的类型的用相应的方法求解,还应注意,有的应用问题还含有初始条件。

一、疑难解析(一)一阶微分方程1.关于可分离变量的微分方程可分离变量的微分方程是一阶微分方程中的一种最简单的方程,形如f1(x)g1(y)dxf2(x)g2(y)dy0(1)的微分方程称为变量可分离的微分方程,或称可分离变量的微分方程,若f2(x)g1(y) 0,则方程(1)可化为变量已分离的方程g2(y)dy f1(x)dxg1(y)f2(x)两端积分,即得(1)的通解:G(y)F(x)C(2)(2)式是方程(1)的通解(含有一个任意常数),但不是全部解,用分离变量法可求出其通解为y sin(x c),但显然y1也是该方程的解,却未包含在通解中,从这个例子也可以理解通解并不是微分方程的全部解,本课程不要求求全部解。

一级注册结构工程师——基础资料总结(原创)

一级注册结构工程师——基础资料总结(原创)

常微分方程一、可分离变量方程一阶可分离变量方程:()()dy f x dx g y =,可分离变量,方程通解为: ()()G y f x C =+二、一阶线性微分方程一阶线性微分方程:()()y p x y Q x '+=,通解如下: 当()0Q x =时,上式称为线性齐次方程,通解为In y C =-或()p x dxy Ce -⎰= 当()0Q x ≠时,上式称为线性非齐次方程,通解为()()[()]p x dx p x dxy e Q x e dx C -⎰⎰=+⎰三、可降阶微分方程1、()()n y f x =对此类微分方程,多次直接积分即可求得通解。

2、(,)y f x y '''=——不显含y 的二阶微分方程,令y p '=,则y p '''=,代入得(,)p f x p '=,该一阶微分方程可求解,从而求得()y f x =。

3、(,)y f y y '''=——不显含x 的二阶微分方程,令y p '=,则dpy pdy''=,代入得(,)dppf y p dy=,该一阶微分方程可求解,再经分离变量可求得()y f x =。

四、二阶常系数线性微分方程1、二阶常系数齐次线性微分方程0y py qy '''++=,其中p 、q 为常数它的特征方程为20r pr q ++=,其中r 为特征根。

根据r 的情况,二阶常系数齐次微分方程的通解如下:(1)1r 、2r 为两个不等实根时,方程的通解为1212r x r x y C e C e =+;(2)1r 、2r 为两个相等实根时(12r r r ==),方程的通解为12()rx y C C x e =+; (3)1r 、2r 为一对共轭复根i αβ±时,方程的通解为12(cos sin )x y e C x C x αββ=+; 2、二阶常系数齐次线性微分方程 设*()y y x =是非齐次线方程()y py qy f x '''++=,其中p 、q 为常数的一个特解,()y y x =是对应的齐次方程0y py qy '''++=的通解,则该二阶线性非齐次微分方程的通解为*()()y y x y x =+。

2.2二阶常系数线性微分方程的解法

2.2二阶常系数线性微分方程的解法
当自由项 f (x) 为两种特殊类型函数时方程②特解的求 法—待定系数法。
13
2.2 二阶常系数线性微分方程的解法
1. f (x) Pm(x)ex ( 其中 pm ( x)是 x 的 m 次多项式 )
这时方程②为 ay by cy Pm ( x)ex

可以设 y Q( x)ex ( 其中Q( x) 是多项式 ) 。
例 1.求方程 y 5 y 6 y 2x 3 的特解。
解: f ( x) 2x 3 (2x 3)e0x ,
属 f ( x) Pm ( x)e x 型( m 1, 0 ),
特征方程为 r2 5r 6 0 , r1 2 , r2 3 ,
∵ 0 不是特征根,
∴设特解为 y Q1( x)e0x Aox A1 ,
得 erx (ar 2 br c) 0 ,但 erx 0 ,故有
ar 2 br c 0 ,

2
2.2 二阶常系数线性微分方程的解法
ar 2 br c 0 ,

若 r 是一元二次方程②的一个根,则 y erx 就是 方程①的一个特解。
方程②叫做方程①的特征方程。
按特征方程的两个根 r1, r2 的三种可能情况: 1. r1 r2 是两个不相等的实根; 2. r1 r2 是两个相等的实根;
9
2.2 二阶常系数线性微分方程的解法
高阶常系数线性齐次方程的解法 n 阶常系数线性齐次方程为
a0 y(n) a1 y(n1) an1 y an y 0 , ③
其特征方程为 a0r n a1r n1 an1r an 0 . ④
方程②是一个一元 n 次方程, 有 n 个根。类似二阶常系
Q( x) 应为 m 次多项式 , Q( x) 应为 m 1 次多项式 ,

一、二阶常系数线性非齐次微分方程解的概念与结构.

一、二阶常系数线性非齐次微分方程解的概念与结构.

比较两端 x 同次幂的系数,有
A 1, 4 A B 0, 2 A 2 B C 0.
解得
A = 1,B = 4,C = 6.
故所求特解为
y* x 2 4 x 6.
例6
求方程 y + y = x3 – x + 1 的一个特解.
解 因为自由项 f (x) = x3 – x + 1 是一个 x 的三 次多项式, 且 y 的系数 q = 0, p = 1 0,取 k = 1.
是两个不相等的实根. 所以方程的通解为
x C1e
( n n 2 w 2 ) t
C 2e
( n n 2 w 2 ) t
.
2 临界阻尼情形,即 n = w.
这时,特征根 r1 = r2 = - n,所以方程的通解为
x (C1 C2 t )e
nt
.
3 小阻尼情形,即 n < w . 这时,特征根为共轭复数 n w 2 n2i , 所以方程的通解为
一二阶常系数线性非齐次微分方程解的结构一二阶常系数线性非齐次微分方程解的结构形如的方程称为二阶常系数线性非齐次微分方程二阶常系数线性非齐次方程的解的结构二阶常系数线性非齐次方程的解的结构因为方程中pq均为常数且多项式的导数仍为多项式所以可设式的特解为其中qbxax所以设特解为比较两端xcxbxaxcxbxaxbxax所以设方程的特解为比较两端x同次幂的系数
称为振动的微分方程, 是一个二阶常系数线性齐次 方程, 它的特征方程为 r2 + 2nr + w2 = 0, 其根为
r1, 2 n n 2 w 2 .
由题意列出初始条件
x |t 0 x 0 , dx 0 , dt t 0

一阶常系数线性微分方程通解

一阶常系数线性微分方程通解

一阶常系数线性微分方程通解
一阶线性微分方程可以写成y’+p(x)y=g(x)。

形如y’+p(x)y=q(x)的微分方程称为一阶线性微分方程,q(x)称为自由项。

一阶,指的是方程中关于y的导数是一阶导数。

线性,指的是方程简化后的每一项关于y、y’的次数为0或1。

对于一阶齐次线性微分方程:
其吉龙德形式为:
其中c为常数,由函数的初始条件决定。

对于一阶非齐次线性微分方程:
其应齐次方程解为:
令c=u(x),得
带入原方程得:
对u’(x)分数得u(x)并带进得其吉龙德形式为:
其中c为常数,由函数的初始条件决定。

注意到,上式右端第一项就是对应的齐次线性方程式(式2)的吉龙德,第二项不为齐次线性方程式(式1)的一个直和。

由此可知,一阶非齐次线性方程的吉龙德等同于对应的齐次线性方程的吉龙德与非齐次线性方程的一个直和之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2x C 2y
2 xy Cy 2 y2
2 xy x2 y2 2y2
2 xy x2 y2
例外)。不被通解囊括的以及通解中的 任意常数取特定值后所得出的对应解称 为方程的特解。
可见,给定的表达式是给定方程的解;
由于表达式中仅含一个任意常数,个数
明显与方程的阶数(一阶)相等,故此
解是方程的通解。
(6) y 3xy 3x
全为一次的方程称为线性方程,否则称 为非线性方程。易见,简例唯有 (2) 是 非线性方程,剩下的都是线性方程。
返回
退出
3. 常微方程的特解与通解 任何含自变量与因变量的表达式,若 能由之恒等地推出给定的常微方程时, 都称为该常微方程的解;解若含有任意
例1-1
验证方程
dy dx
e2xdy yd (e2x ) 0 ,
d ( ye2x ) 0 ,
故原方程的通解为
ye2x C 或者 y Ce2x . 12 y 15 y 0 的通解是?
5 x
Ans. y Ce 4 .
返回
退出
例2-5 求一阶线性微分方程 y 1 y e x 满足初始条件 y(1) e xx
(2) y y tan x 0, dy y tan xdx 0, cos xdy y sin xdx 0; cos xdy yd(cos x) 0;
cos
xdy yd(cos cos2 x
x)
dx,
y
d( x) 0;
cos x
故方程的通解为
y xC cos x
即 y x cos x C cos x.
Q( x)dx
;
x
u
x
u
d( yea P(t)dt ) d(
x
e a
P(t
)dt
Q(u)du)
;
d ( yea P(t )dt
x
e a
P (t )dt
Q(u)du)
0
;
a
a
故方程的通解为
x
u
yea P(t )dt
x
e a
P(t
)dt
Q(u)du
C
.
a
x
u
y
e a
P(t )dt
[
x ea P(t)dtQ(u)du C ] . 参考课本P237公式(6)
x2 d( ) dy ;
y x2 d( y) 0 . y
故原方程的通解为
x2 yC

y
x2 y2 Cy .
非线性方程的通解(包括特解)
往往用隐函数的形式书写比较简洁。
有些非线性方程偶尔可经变元代换化 成线性方程再求解(有兴趣者可参阅教材 P236之例4与例5),但转换过程琐碎,明 显不如凑微分法来得直接和明快。
历经曲折求原函数的过程。因此,被
求出的特解和通解又常常被分别称做 微分方程的积分曲线和积分曲线族(
我们知道,同时含有因变量和自变量 的等式在解析几何中表示平面曲线)
返回
退出
线性方程中不含未知函数及其导函数的项称为非齐次项。非齐次项为零的方程称为线性齐次方程
例2-4 解下列一阶线性齐次方程
(2) y 2 y 0,
ye x2 e x2 C 或者 y Cex2 1.
返回
退出
*例2-7 求一阶线性微分方程 y y tan x cos x与 y y tan x 0 的通解。
解 (1) y y tan x cos x, dy y tan xdx cos xdx, cos xdy y sin xdx cos2 xdx; cos xdy yd(cos x) cos2 xdx;
返回
退出
*例2-2 求一阶非线性微分方程
的通解。 解
dy
y2
dx xy x2
dy
y2
dx xy x2 ,
( xy x2 )dy y2dx ;
xydy y2dx x2dy ,
可见,
x2 xdy ydx dy ;
y
xdy ydx dy
x2
; y
d( y ) d(ln | y |) ; x
2 xy x2 y2
的通解
是 x2 y2 Cy .

x2 y2 Cy ,
2xdx 2 ydy Cdy ,
常数、且不能合并的任意常数的个数恰
(C 2 y)dy 2xdx ,
好等于方程的阶数时称为方程的通解。
常微方程的通解多数都能囊括方程的 所有可能存在的解(仅非线性方程鲜有
dy dx
Wisdom denotes the pursuing of the best ends by the best means.(智慧意味着以最佳手法获得最佳结果)
------ Francis Hutcheson(哈奇森)
退出
一 二 三


专题
退出
1. 何谓常微分方程
2. 常微方程分类命名法
含一元未知函数的导函数或因变量 常微方程按其内所含未知函数的最高
在一切理论成就中,未必有什么像十七世纪下 半叶微积分的发明那样,能被看做人类精神的卓 越胜利了。如果在某个地方我们有人类精神的、 纯粹和专有的功绩,那就正在这里。
─F. 恩格斯
英国数学家Newton 德国数学家 Leibniz
微积分学创始人
The one real object of education is to have a man in the condition of continually asking questions. (教育的真正目 的是使人处于不断发问的状态)
在极理想的情况下,原方程有可能被 重组成因变量与自变量全都各居一侧的形式,
人们常称其为已分离变量的形式。 这种方程的解几乎显而易见:
若 f ( x)dx g( y)dy,
则 d
x
f (t)dt d
y
g(t )dt ,
0
0
通解即
x
f (t)dt
y
g(t )dt C .
0
0
解微分方程的过程,本质上是
的特解。

y 1 y ex ,
xx
xy y e x ,
xdy ydx e xdx; d ( xy) d (e x ),
d( xy e x ) 0 ;
又 y(1) e, 亦即 e y(1) e C, C0,
故欲求的特解为 xy e x 0 或者 y 1 e x . x
cos
xdy yd(cos cos2 x
x)
0,
y
d( ) 0;
cos x
故方程的通解为 y C
cos x

y C cos x.
返回
退出
**例2-8 求一阶线性微分方程 y P( x) y Q( x) 的通解,其中P,Q 都是
x 的连续函数。

y P( x) y Q( x) , dy p( x) ydx Q( x)dx ,
积函数的某个原函数而非全体原函数。
显然,使用变积分上限的函数表示某指定函数的原函数,较之上述
采取将全体原函数声明混用于单个原函数的过于简单的做法要严谨。
返回
退出
**例2-9 求一阶线性微分方程
( y x)dy ( x y)dx 0 的通解。
解 ( y x)dy ( x y)dx 0 ,
的微分以及自变量的微分的等式称为 阶数来分类并命名。最高阶数是几,方
常微分方程;含多元未知函数的偏导 程就被称为几阶方程。
数或因变量的微分及其多个自变量的 显然,简例中阶数最高的方程是 (5),
的微分的等式称为偏微分方程。 为三阶方程;其次是(4),为二阶方程(
本章只讨论常微方程。简例如下: 它们统称为高阶方程)。剩下的方程全
------ Mandell Creighton(克莱顿)
Brevity is the soul of wit. (简洁是智慧的灵魂) ------ William Shakespeare(莎士比亚)
Wisdom denotes the pursuing of the best ends by the best means.(智慧意味着以最佳手法获得最佳结果)
(1) y 1 y 0 x
*(2) y 2 y 0
dy 2 ydx 0 , dy yd(2x) 0 ,
解 (1)
y 1 y 0 x
xy y 0 ,
xdy ydx 0 ,
d( xy) 0 ;
故原方程的通解为 xy C 或者
yC. x
方程两边同乘以 e2x得 e2xdy ye2xd (2x) 0 ,
(本例即教材P236之例4)
返回
退出
例2-3 求一阶线性微分方程
的通解。 解
1
x2dy e x dx
1
x2dy e x dx,
dy
1 x2
1
e x dx
e
1 x
d
(
1)
d
(e
1 x
),
x
1
d( y e x ) 0,

1
1
y e x C, y e x C.
凑微分法解一阶微分方程时, 只要可能,应坚持因变量按因变量凑, 自变量按自变量凑;然后再合并归总得通解。
e x2 dy yd(e x2 ) e x2d( x2 ); d( yex2 ) d(ex2 ), d( ye x2 e x2 ) 0;
又 y |x0 0, 即 0 y(0) C 1, C 1 , 故原方程欲求的特解为 ye x2 e x2 1 或者 y ex2 1.
故方程的通解为
故方程的通解为 xy e x C 亦即
相关文档
最新文档