扭转练习题答案.doc.
材料力学 扭转2 习题及参考答案
扭转 第二次 作业1. 已知图示实心圆轴的直径d = 100mm 。
材料的剪切弹性模量G = 80GPa 。
(1)求1-1横截面上A 、B 、C 三点的切应力;(2)求1-1横截面上A 点的切应变;(3)整个圆轴上最大的切应力。
2kN·m6kN·m10kN·m2kN·m1-1截面2kN·m4kN·m10kN·m解:由圆轴的扭矩图可知,1-1截面的扭矩T 1 = 4kN·m ,最大扭矩T max = 10kN·m圆截面的极惯性矩 4464π 3.140.19.8110m 3232P d I -⨯===⨯扭矩截面系数 3343π 3.140.1 1.9610m 1616P d W -⨯===⨯(1) 3714410 2.0410Pa 20.4MPa 1.9610A B P T W ττ-⨯====⨯=⨯ 1110.2MPa 2C A P T I ρττ=== (2)由剪切胡克定律 Gτγ=得63920.4100.255108010AA G τγ-⨯===⨯⨯ (3)对于等截面圆轴,最大切应力出现在扭矩最大截面的最外缘37max max41010 5.1010Pa 51.0MPa 1.9610P T W τ-⨯===⨯=⨯ 2. 阶梯状圆轴如图所示,AE 段为空心,外直径D = 140mm ,内直径d = 100mm ;BC 段为实心,直径d = 100mm 。
外力偶矩M A = 18kN·m ,M B = 32kN·m ,M C = 14kN·m 。
已知许用切应力[τ ] = 80MPa 。
试校核该轴的强度。
18kN·m14kN·m解:由扭矩图可知T AB = 18kN·m , |T BC | =14kN·mAE 段()4334431π 3.140.1410011 3.9810m 1616140P D W α-⎛⎫⨯⎛⎫=-=-=⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭[]36max41181045.210Pa 45.2MPa<3.9810AB P T W ττ-⨯===⨯=⨯ BC 段33432π 3.140.1 1.9610m 1616P d W -⨯===⨯ []36max 42141071.410Pa 71.4MPa<1.9610BC P T W ττ-⨯===⨯=⨯ 故,该轴安全。
材料力学扭转练习题
材料力学扭转练习题基本概念题一、选择题1. 图示传动轴,主动轮A的输入功率为PA =0 kW,从动轮B,C,D,E的输出功率分别为PB =0 kW,PC = kW,PD = 10 kW,PE = 1kW。
则轴上最大扭矩T。
A.BA段 B.AC段 C.CD段 D.DE段max出现在题1图2. 图示单元体的应力状态中属正确的纯剪切状态的是。
题2图3. 上题图示单元体的应力状态中属正确的是。
4. 下列关于剪应力互等定理的论述中正确的是。
A.剪应力互等定理是由平衡B.剪应力互等定理仅适用于纯剪切的情况C.剪应力互等定理适用于各种受力杆件D.剪应力互等定理仅适用于弹性范围E.剪应力互等定理与材料的性能无关5. 图示受扭圆轴,其横截面上的剪应力分布图正确的是。
-12-题5图6. 实心圆轴,两端受扭转外力偶作用。
直径为D时,设轴内的最大剪应力为?,若轴的直径改为D2,其它条件不变,则轴内的最大剪应力变为。
A.8? B.?C.16? D.?7. 受扭空心圆轴,在横截面积相等的条件下,下列承载能力最大的轴是。
A.??0 B.??0.5C.??0. D.??0.88. 扭转应力公式T?的适用范围是。
IpA.各种等截面直杆 B.实心或空心圆截面直杆C.矩形截面直杆 D.弹性变形 E.弹性非弹性范围 9. 直径为D的实心圆轴,最大的容许扭矩为T,若将轴的横截面积增加一倍,则其最大容许扭矩为。
A.2TB.2T C.22TD.4T10. 材料相同的两根圆轴,一根为实心,直径为D1;另一根为空心,内径为d2,外径为D2d2D??。
若两轴横截面上的扭矩T,和最大剪应力?max均相同,则两轴外径之比1 D2D2为。
A.1??B.1?? C.343D.411. 阶梯圆轴及其受力如图所示,其中AB段的最大剪应力?max1与BC段的最大剪应力?max2的关系是。
A.?max1??max2B.?max1?313?max2C.?max1??max2D.?ma x1??max248-13-题12图题13图12. 在图示的圆轴中,AB段的相对扭转角?1和BC段的相对扭转角?2的关系是。
扭转习题
第三章 扭转习题一、单项选择题1、横截面都为圆的两个杆,直径分别为d 和D ,并且d=。
两杆横截面上扭矩相等两杆横截面上的最大切应力之比maxDmaxdττ为A 、2倍,B 、4倍,C 、8倍,D 、16倍。
二、1、扭转变形时,公式pTlGI τ=中的 表示单位长度的扭转角,公式中的T 表示横截面上的 ;G 表示杆材料的 弹性模量;I P 表示杆横截面对形心的 ;GI P 表示杆的抗扭 。
2、截面为圆的杆扭转变形时,所受外力偶的作用面与杆的轴线 .3、实心圆轴扭转时,横截面上的切应力分布是否均匀,横截面上离圆心愈远的点处切应力 ,圆心处的切应力为 ,圆周上切应力4、两根实心圆轴的直径d 和长度L 都相同,而材料不同,在相同扭矩作用下,它们横截面上的最大切应力是否相同 ,单位长度的扭转角是否相同 。
5、剪切虎克定律的表达式 G τγ=,式中的G 表示材料的 模量,式中的γ称为 。
6、根据切应力互等定理,单元体两互相垂直截面上在其相交处的切应力成对存在, 且 相等,而 现反。
三、 1、如图所示圆轴,一端固定。
圆轴横截面的直径D=100mm ,所受的外力偶矩M 1=6kN•m,M 2=4kN•m。
试求圆轴横截面上的最大扭矩和最大切应力。
答:圆轴横截面上的最大扭矩为 kN•m;圆轴横截面上的最大切应力为 Mpa 。
2、如图所示阶梯形圆轴,一端固定。
圆轴横截面的直径分别为外力偶矩M C =1200 N•m,M B =1800 N•m。
试求BC 段横截面上的扭矩和该阶梯轴的最 大切应力。
答:BC 段横截面上的扭矩为 N•m;该阶梯轴的最大切应力为 Mpa 。
3、如图所示圆轴,一端固定。
圆轴横截面的直径d=100mm ,所受的外力偶矩M 1=7000 N•mM 2=5000 N•m。
试求圆轴横截面上的最大扭矩和最大切应力。
答:最大扭矩为 N •m 。
最大切应力为 Mpa 。
4、某传动轴为实心圆轴,轴内的最大扭矩=1.5kN m T g,许用切应力[]=50MPa τ,试确定该轴的横截面直径。
3扭转 答案
第三章 圆轴的扭转一、填空题:1、扭矩,T2、G τγ=3、弹性范围内的等直圆杆4、33.33Mpa 。
5、2G d lϕ 二、选择题:B三、作图题1.分别画出图示三种截面上剪应力沿半径各点的分布规律。
(a )圆截面 (b )空心圆截面 (c )薄壁圆截面2.将下列杆件的扭矩图画出。
m 122kN m 1kN m T T =-⋅=⋅四、计算题:1.一钻探机的功率为10kW ,转速n=180r/min 。
钻杆钻入土层的深度L=40m 。
如土壤对m,并作钻杆的扭矩图。
530.5N m =⋅ 530.5N m13.26N m /m 40m eM m l ⋅===⋅2、实心圆轴的直径d =100mm ,长l =1m ,其两端所受外力偶矩14kN m M =⋅作用,试求:图示截面上A ,B ,C 三点处剪应力的数值及方向。
解:6331410N m m 71.30M P a 100m m 16A B P T W ττπ⨯⋅====⨯ 136.65M P a 2C A ττ==3、图示等直圆杆,已知外力偶矩M A =2.99kN·m, M B =7.20kN·m, M C =4.21kN·m,许用剪应力[τ]=70MPa,许可单位长度扭转角[ϕ’]=1°/m,切变模量G =80GPa 。
试确定该轴的直径d 。
解: 2.99kN m AB A T M =-=-⋅4.21kN m BC C T M ==⋅max 4.21kN m BC T T ==⋅对于BC 段按强度条件设计直径m ax m ax m ax 3p []π16T T dW ττ==≤67mm d ≥===按刚度条件设计直径max max max 4p 180180[]πππ32T T d GI G ϕϕ''=⨯=⨯≤ D ⇒≥74m m ==。
材料力学_陈振中_习题第三章扭转
第三章 扭转3.1 作图示各杆的扭矩图。
(a )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1+m+m=0得T 1= -2m , 所以其实际为负。
2)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2 +m=0得T 2= -m , 所以其实际为负。
(b )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1+m =0得T 1= -m , 所以其实际为负。
2)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2+m-3m=0 得T 2= 2m , 所以其实际为正 (c )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1-10-15-20+30=0得T 1= 15KN.m , 所以其实际为正。
T 1T 2(a2(b )mTT 12)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2-15-20+30=0得T 2= 5KN.m , 所以其实际为正。
3)求 3-3截面上的扭矩 假设T 3为正,方向如上图所示。
由 ∑m=0 T 3-20+30=0得T 3= -10KN.m , 所以其实际为负。
4)求 4-4截面上的扭矩假设T 4为正,方向如上图所示。
由 ∑m=0 T 4 +30=0得T 4= -30KN.m , 所以其实际为负。
3.2 T 为圆杆横截面上的扭矩,试画出截面上与T 对应的剪应力分布图。
解:3.5 D=50mm 直径的圆轴,受到扭矩T=2.15KN .m 的作用。
试求在距离轴心10mm 处的剪应力,并求轴横截面上的最大剪应力。
T 230kN.m T 3T 4(题3.2图(a ) (b )解:求距离轴心10mm 处的剪应力, 由 I P =πD 4/32=π×0.054/32=6.13×10-7 m 4 W t = I P /R=6.13×10-7/0.025=2.454×10-5 m 3τρ=Tρ/ I P =2.15×103×10×10-3/(6.13 ×10-7 ) =35MPa求轴横截面上的最大剪应力τmax =T/ W t =2.15×103/(2.454 ×10-5 ) =87.6MPa3.8 阶梯形圆轴直径分别为d 1=40mm ,d 2=70mm ,轴上装有三个皮带轮,如图所示。
材料力学习题册答案-第3章 扭转
第三章扭转一、是非判断题1.圆杆受扭时,杆内各点处于纯剪切状态。
(×)2.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。
(×)3.薄壁圆管和空心圆管的扭转切应力公式完全一样。
(×)For personal use only in study and research; not for commercial use4.圆杆扭转变形实质上是剪切变形。
(×)5.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。
(√)6.材料相同的圆杆,他们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。
(×)7.切应力互等定理仅适用于纯剪切情况。
(×)8.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。
(√)9.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。
(√)10.受扭圆轴的最大切应力只出现在横截面上。
(×)11.受扭圆轴内最大拉应力的值和最大切应力的值相等。
(√)12.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭距达到某一极限值时,圆杆将沿轴线方向出现裂纹。
( × )二、选择题1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内边缘的切应力为 ( B )A τ;B ατ;C 零;D (1- 4α)τ 2.实心圆轴扭转时,不发生屈服的极限扭矩为T ,若将其横截面面积增加一倍,则极限扭矩为( C )0 B 20T 0 D 40T 3.两根受扭圆轴的直径和长度均相同,但材料C 不同,在扭矩相同的情况下,它们的最大切应力τ、τ和扭转角ψ、ψ之间的关系为( B )A 1τ=τ2, φ1=φ2B 1τ=τ2, φ1≠φ2C 1τ≠τ2, φ1=φ2D 1τ≠τ2, φ1≠φ2 4.阶梯圆轴的最大切应力发生在( D ) A 扭矩最大的截面; B 直径最小的截面; C 单位长度扭转角最大的截面; D 不能确定。
《材料力学》扭转习题解
第三章扭转习题解[习题3-1] 一传动轴作匀速转动, 转速n = 200r/min ,轴上装有五个轮子,主动轮 II 输入 的功率为60 kW ,从动轮,I ,山,IV ,V 依次输出18 kW ,12 kW ,22 kW 和8kW 。
试 作轴的扭图。
解:(1)计算各轮的力偶矩(外力偶矩)T e = 9.55 血n外力偶矩计算(kW 换算成kN.m )题目编号 轮子编号轮子作用功率(kW )转速r/mi nTe (kN.m ) 习题3-1I 从动轮 18 200 0.859II主动轮 60 200 2.865III从动轮 12 200 0.573IV从动轮 22 200 1.051V从动轮82000.382(2)作扭矩图。
用 595[习题3-2] —钻探机的功率为l0kW ,转速n = 180r/min 。
钻杆钻入土层的深度I = 40m 。
如土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度 图。
资料个人收集整理,勿做商业用途 解:(1)求分布力偶的集度= 9.549x® =0.5305(kN m)180M e 0.5305 m = --- = ------l 40= 0.0133(kN /m)设钻杆轴为x 轴, 则:Z M x =0ml =Me1 4325A1 2 0055 1m 3.5 mLSC.3SZm ,并作钻杆的扭矩M e =9.549 丛n L7S mT 图(kN.m)(2)作钻杆的扭矩图T(x) = —mx =—牛X =-0.0133x 。
x<^[0,40] T(0) =0 ;T(40) = M e = —0.5 305kN m) 扭矩图如图所示。
[习题3-3]圆轴的直径d =50mm ,转速为120r/min 。
若该轴横截面上的最大切应力等于 60 MPa ,试问所传递的功率为多大? 资料个人收集整理,勿做商业用途 解:(1)计算圆形截面的抗扭截面模量: 1 3 W p =—血3 P16(2 )计算扭矩1 3 3 = 16®4159 倔=24544(mm ) 2= 60N / mm23T =60N/mm x 24544mm =1472640N ・mm = 1.473(kN ・m)(3)计算所传递的功率T = M e =9.549山=1.473(kN -m)n N k =1.473x120/9.549 =18.5(kW)[习题3-4]空心钢轴的外径 D = 100mm ,内径d =50mm 。
材料力学专项习题练习扭转
扭 转1. 一直径为1D 的实心轴,另一内径为d , 外径为D , 内外径之比为22d D α=的空心轴,若两轴横截面上的扭矩和最大切应力均分别相等,则两轴的横截面面积之比12/A A 有四种答案:(A) 21α-; (B)(C); (D)。
2. 圆轴扭转时满足平衡条件,但切应力超过比例极限,有下述四种结论: (A) (B) (C) (D) 切应力互等定理: 成立 不成立 不成立 成立 剪切胡克定律: 成立 不成立 成立 不成立3. 一内外径之比为/d D α=的空心圆轴,当两端承受扭转力偶时,若横截面上的最大切应力为τ,则内圆周处的切应力有四种答案:(A) τ ; (B) ατ; (C) 3(1)ατ-; (D) 4(1)ατ-。
4. 长为l 、半径为r 、扭转刚度为p GI 的实心圆轴如图所示。
扭转时,表面的纵向线倾斜了γ角,在小变形情况下,此轴横截面上的扭矩T 及两端截面的相对扭转角ϕ有四种答案:7. 图示圆轴料的切变模量(A) 43π128d G a ϕ(C) 43π32d G a ϕ8. 一直径为D重量比21W W 9. 想弹塑性材料, 等直圆轴的极限扭矩是刚开始出现塑性变形时扭矩的 倍。
10. 矩形截面杆扭转变形的主要特征是 。
1-10题答案:1. D 2. D 3. B 4. C 5. B 6. C 7. B 8. 0.479. 横截面上的切应力都达到屈服极限时圆轴所能承担的扭矩;4/3 10. 横截面翘曲11. 已知一理想弹塑性材料的圆轴半径为R ,扭转加载到整个截面全部屈服,将扭矩卸掉所产生的残余应力如图所示,试证明图示残余应力所构成的扭矩为零。
证:截面切应力 4103s R R ρρττρ⎛⎫=-≤≤ ⎪⎝⎭截面扭矩 04d 12πd 03Rs s A T A R ρρτρτρρ⎛⎫==-⋅= ⎪⎝⎭⎰⎰ 证毕。
12. 图示直径为d 的实心圆轴,两端受扭转力偶e M 用1/m C τγ=表示,式中C ,m 为由实验测定的已知常数,试证明该轴的扭转切应力计算公式为:1/e (31)/2π()23m 1mm mM m d ρρτ+=+s /3证:几何方面 d d xρϕγρ= 物理方面 1/1/d d mmC C x ρϕτγρ⎛⎫== ⎪⎝⎭静力方面 1//21/e 0d d 2πd d md mAM T A C x ρϕρτρρρρ⎛⎫==⋅⋅=⋅⋅ ⎪⎝⎭⎰⎰1//221/0d 2πd d m d mC x ϕρρ+⎛⎫= ⎪⎝⎭⎰(31)/1/()d 22π(31)d m mmd C m x mϕ+⎛⎫= ⎪+⎝⎭1/e (31)/(31)d d 2π()2mm m M m d x Cm ϕ++⋅⎛⎫=⎪⎝⎭⋅ 所以 1/e (31)/2π()23m 1mm mM m d ρρτ+=+ 证毕。
材料力学习题参考答案2011年7月-第19章扭转
19-1 19-2 19-3 19-5 19-4、19-8 19-1019-1 绘制图示各杆的扭矩图。
参考答案略19-2 直径为D =5cm 的圆轴,受到扭矩n M =2.15kN ·m 的作用,试求在距离轴心1cm 处的剪应力,并求轴截面上的最大剪应力。
参考答案:由圆轴扭转横截面上任意一点剪应力计算公式可知,距轴心1cm 处的剪应力为MPa I M pn 353250101015.246=⨯⨯⨯==πρτρ截面上的最大剪应力:MPa W M tn 6.8716501015.236max =⨯⨯==πτ 19-3 已知作用在变截面钢轴上的外力偶矩1m =1.8kN ·m ,2m =1.2kN ·m 。
试求最大剪应力和最大相对转角。
材料的G =80GPa 。
参考答案:直径为75mm 段的扭矩为m KN m m T .3)(211-=+-=; 直径为50mm 段的扭矩为KNm m T 2.122-=-=。
最大剪应力计算:MPa W T t 2.3616751033611max 1=⨯⨯==πτ;MPa W T t 9.481650102.13622max 2=⨯⨯==πτ则最大剪应力MPa 9.48max =τ最大相对转角计算:22.10212773.0102231.121005416.932501080500102.13275108075010333436436222111max 2max 1max ==⨯+⨯=⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=+=+=--rad rad rad GI lT GI l T P P ππϕϕϕ 19-4 已知圆轴的转速n =300r /min ,传递功率330.75kW ,材料的][τ=60MPa ,G =82GPa 。
要求在2m 长度内的相对扭转角不超过1º,试求该轴的直径。
参考答案:计算外力偶矩(即扭矩):m N n N Me T ⋅=⨯===875.1052830075.33095509550按强度条件设计轴的直径:[]MPa d W T t601610875.1052833max =≤⨯==τπτ mm d 32.966010875.105281633=⨯⨯≥π按刚度条件设计轴的直径:118032108210210875.105281804333max ≤⨯⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯=⨯=πππϕd GI Tl p 得 mm d 64.110108232180********.1052842333=⨯⨯⨯⨯⨯⨯⨯≥π故该轴的直径mm d 64.110≥19-5 图示一圆截面直径为80cm 的传动轴,上面作用的外力偶矩为1m =1000N ·m ,2m =600N ·m ,3m =200N ·m ,4m =200N ·m ,(1)试作出此轴的扭矩图,(2)试计算各段轴内的最大剪应力及此轴的总扭转角(已知材料的剪切弹性模量G =79GPa );(3)若将外力偶矩1m 和2m 的作用位置互换一下,问圆轴的直径是否可以减少?注意:此题传动轴直径应为80mm 。
工程力学:圆轴扭转强度与刚度 习题与答案
一、单选题1、扭转切应力τ=Tρ/Ip公式仅适用于()杆件。
A.任意截面B.线弹性材料的圆截面C.任意材料的圆截面D.任意实心截面正确答案:B2、杆件受扭时,其单位长度的扭转角与()有关。
A.长度、材料B.长度、截面形状C.扭矩、材料、截面形状D.长度、扭矩、材料正确答案:C3、一圆轴分别由实心钢轴和铝套管牢固地结合而成。
扭转变形时,则关于圆轴横截面上任意一点的切应力分布描述正确的是()。
A.该点切应力大小与其离圆心的距离、所处位置的材料有关B.该点切应力大小只与其离圆心的距离有关C.该点切应力大小与其所处位置的材料无关D.该点切应力大小只与其所处位置的材料有关正确答案:A4、对于受扭圆轴有如下说法,①由平面假设,各横截面如同刚性圆片仅绕轴线做相对转动;②最大切应力只存在于横截面上;③在横截面和包含杆件轴线的纵向截面上均无正应力。
则正确的是()。
A.①②B.②③C.①③D.①②③正确答案:C5、当传动轴传递的功率不变时,若此时转速降为原来的一半,则传动轴输出的扭矩变为原来的()。
A.两倍B.不变C.四倍D.一半正确答案:A6、一传动轴上有A、B、C三个齿轮,传动轴转速n=25r/min,此轴上轮功率从齿轮C输入,从A、B输出,输入功率为P=15kW,轮A、B的输出功率分别为5kW、10kW,若要使轴受扭情况最好,则齿轮排布方式(从左到右)为()。
A.A-C-BB.C-B-AC.A-B-CD.B-A-C正确答案:A7、等截面圆轴,左半部分为铝,右半部分为钢,两端承受扭矩后,左右两端()。
A.最大切应力τmax不同、单位长度的扭转角相同B.最大切应力τmax相同、单位长度的扭转角不同C.最大切应力τmax、单位长度的扭转角均相同D.最大切应力τmax、单位长度的扭转角均不同正确答案:B8、有两根长度相等、材料一样的圆轴A、B,圆轴A与B的直径分别为DA与DB,两者关系为DA=2DB,受相同的力矩M后,圆轴A与B最大扭转角之比φA:φB为()。
圆轴的扭转习题+答案
13、一空心圆轴在产生扭转变形时,其危险截面外缘处具有全轴的最大剪应力,而危险截面内缘处的剪应力为零。 ( )
14、粗细和长短相同的二圆轴,一为钢轴,另一为铝轴,当受到相同的外力偶作用产生弹性扭转变形时,其横截面上最大剪应力是相同的。 ( )
5、圆轴扭转时,横截面上任意点的剪应变与该点到圆心的距离成___________。
6、试观察圆轴的扭转变形,位于同一截面上不同点的变形大小与到圆轴轴线的距离有关,显然截面边缘上各点的变形为最_______,而圆心的变形为__________。
7、圆轴扭转时,在横截面上距圆心等距离的各点其剪应变必然_________。
13、横截面面积相等的实心轴和空心轴相比,虽材料相同,但_________轴的抗扭承载能力要强些。
16、直径和长度均相等的两根轴,其横截面扭矩也相等,而材料不同,因此它们的最大剪应力是________同的,扭转角是_______同的。
17、产生扭转变形的实心圆轴,若使直径增大一倍,而其他条件不改变,则扭转角将变为原来的_________。
17、内外径比值d/D=的空心圆轴受扭转,若将内外径都减小到原尺寸的一半,同时将轴的长度增加一倍,则圆轴的抗扭刚度会变成原来的( )。
A、1/2 B、1/4 C、1/8 D、1/16
18、等截面圆轴扭转时的单位长度扭转角为θ,若圆轴的直径增大一倍,则单位长度扭转角将变为( )。
A、θ/16 B、θ/8 C、θ/4 D、θ/2
5、扭矩就是受扭杆件某一横截面在、右两部分在该横截面上相互作用的分布内力系合力偶矩。 ( )
7、扭矩的正负号可按如下方法来规定:运用右手螺旋法则,四指表示扭矩的转向,当拇指指向与截面外法线方向相同时规定扭矩为正;反之,规定扭矩为负。 ( )
实心轴扭转力矩例题
实心轴扭转力矩例题
以下是一个实心轴扭转力矩的例题:
已知一个长度为 L 的实心轴,其材料的剪切弹性模量 G 为 80 GPa。
轴的直径为 d = 10 cm,轴端的扭转力矩为 5000 N*m。
求轴上任意一点的扭转角。
解析:首先,我们需要计算轴的截面积 A。
轴的直径为 10 cm,因此轴的半径为 5 cm,即 r = 0.05 m。
轴的截面积可以通过以
下公式计算:
A = π * r^2 = π * (0.05 m)^2 ≈ 0.00785 m^2
接下来,我们可以使用以下公式计算扭转角:
θ = (T * L) / (G * A)
其中,T 是轴端的扭转力矩,L 是轴的长度,G 是剪切弹性模量,A 是轴的截面积。
代入已知值,得到:
θ = (5000 N*m * L) / (80 GPa * 0.00785 m^2)
要注意单位的转换,将 GPa 转换为 Pa,并且将长度 L 转换为米。
假设 L = 1 m,我们可以进一步计算:
θ = (5000 N*m * 1 m) / (80 * 10^9 Pa * 0.00785 m^2)
θ ≈ 0.079 radians
因此,轴上任意一点的扭转角为约 0.079 弧度。
任务十三传动轴的扭转强度计算与变形验算
任务十三传动轴的扭转强度计算与变形验算任务十三传动轴的扭转强度计算与变形验算一、填空题1.根据平面假设,圆轴扭转变形后,横截面(仍保持为平面),其形状、大小与横截面间的距离(均不改变),而且半径(仍为直线)。
2.圆轴扭转时,根据(切应力互等定理),其纵截面上也存在切应力。
45螺旋面)。
3.铸铁圆轴受扭转破坏时,其断口形状为(与轴线约成0d D=的4. 一直径为1D的实心轴,另一内径为2d,外径为2D,内外径之比为220.8空心轴,若两轴的长度、材料、所受扭矩和单位长度扭转角均分别相同,则空心轴与W W=( 0.47 )。
实心轴的重量比215. 圆轴的极限扭矩是指(横截面上的切应力都达到屈服极限时圆轴所能承担的)扭矩。
对于理想弹塑性材料,等直圆轴的极限扭矩是刚开始出现塑性变形时扭矩的(4/3)倍。
6. 矩形截面杆扭转变形的主要特征是(横截面翘曲)。
二、选择题1.圆轴扭转时,若已知轴的直径为d,所受扭矩为T,试问轴内的最大剪应力τmax 和最大正应力σmax各为多大?( A )A.τmax=16T/πd3,σmax=0 B.τmax=32T/πd3,σmax=0C.τmax=16T/πd3,σmax=32T/πd3 D.τmax=16T/πd3,σmax=16T/πd32.扭转变形时,园轴横截面上的剪应力( B )分布。
A.均匀B.线性C.假设均匀D.抛物线3.扭转的受力特点是在杆两端垂直于杆轴的平面内,作用一对( B )。
A.等值、反向的力B.等值、反向的力偶C.等值、同向的力偶4.圆轴扭转时,最大的剪应力( A )。
A.在圆周处B.在圆心处C.在任意位置5.圆轴扭转时,( B )剪应力为零。
A.在圆周处B. 在圆心处C.在任意位置6.等截面空心园轴扭转时,园轴横截面上产生扭转最小剪应力发生在( D )处。
A.外园周边 B.园心 C.截面任意点 D.内园周边7.扭转切应力公式ρτρPI T =适用于( D )A.任意截面B.任意实心截面C.任意材料的圆截面D.线弹性材料的圆截面8.单位长度扭转角θ与( A )无关。
扭转强度校核例题
扭转强度校核例题
1.静载强度校核(1)
根据GB50010-2010《建筑构件承载能力计算规范》第5.5.5节,对
桁架承受静载进行校核,如下(单位:kN/m)
A.水平弯矩Fx:
Fx=4.0
B.垂直弯矩Fy:
Fy=1.0
C.剪力Fz:
Fz=2.0
解:根据GB50010-2010《建筑构件承载能力计算规范》第 5.5.5节,计算桁架的构件承载力,如下:
1.水平弯矩Fx:
Fx=4.0kN/m
A.桁架轴向剪力Nx:
Nx=Fx/L=4.0/1.0=4.0kN
B.桁架纵向弯矩My:
My=Fx×M(M为桁架长度)=4.0×1.0=4.0kN·m
2.垂直弯矩Fy:
Fy=1.0kN/m
A.桁架轴向剪力Ny:
Ny=Fy/L=1.0/1.0=1.0kN
B.桁架横向弯矩Mx:
Mx=Fy×M(M为桁架长度)=1.0×1.0=1.0kN·m 3.剪力Fz:
Fz=2.0kN/m
A.桁架轴向剪力Nz:
Nz=Fz/L=2.0/1.0=2.0kN
综上,桁架的构件承载力如下:
A.桁架轴向剪力Nx:4.0kN
B.桁架纵向弯矩My:4.0kN·m
C.桁架轴向剪力Ny:1.0kN
D.桁架横向弯矩Mx:1.0kN·m
E.桁架轴向剪力Nz:2.0kN。
扭转
第三部分 扭转4.1预备知识一、基本概念1、扭转变形扭转变形是杆件的基本变形之一,扭转变形的受力特点是:杆件受力偶系的作用,这些力偶的作用面都垂直于杆轴。
此时,截面B 相对于截面A 转了一个角度ϕ,称为扭转角。
同时,杆件表面的纵向直线也转了一个角度γ变为螺旋线,γ称为剪切角。
2、外力偶杆件所受外力偶的大小一般不是直接给出时,应经过适当的换算。
若己知轴传递的功率P(kW)和转速n(r/min),则轴所受的外力偶矩)(9549Nm nPT =。
3、扭矩和扭矩图圆轴扭转时,截面上的内力矩称为扭矩,用T 表示。
扭矩的正负号,按右手螺旋法则判定。
如扭矩矢量与截面外向法线一致,为正扭矩,反之为负;求扭矩时仍采用截面法。
扭矩图是扭矩沿轴线变化图形,与轴力图的画法是相似4、纯剪切 切应力互等定理单元体的左右两个侧面上只有切应力而无正应力,此种单元体发生的变形称为纯剪切。
在相互垂直的两个平面上,切应力必然成对存在且数值相等,两者都垂直于两个平面的交线、方向到共同指向或共同背离积这一交线,这就是切应力互等定理。
5、切应变 剪切虎克定律 对于纯剪切的单元体,其变形是相对两侧面发生的微小错动,以γ来度量错动变形程度,即称切应变。
当切应力不超过材料的剪切比例极限时,切应力τ和切应变γ成正比,即τ=G γG 称材料的剪切弹性模量,常用单位是GPa 。
6、圆杆扭转时的应力和强度计算(1) 圆杆扭转时,横截面上的切应力垂直于半径,并沿半径线性分布,距圆心为ρ处的切应力为ρτρpI T =图式中T 为横截面的扭矩,I p 为截面的极惯性矩。
(2) 圆形截面极惯性矩和抗扭截面系数实心圆截面324D I p π=, 163D W p π=(D 为直径) 空心圆截面)1(3244a D I p -=π, )1(1643απ-=D W p (D 为外径,d 为内径,D d /=α)(3)圆杆扭转时横截面上的最大切应力发生在外表面处tW T =max τ 式中W t =I p /R ,称为圆杆抗扭截面系数(或抗抟截面模量)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M e 2 2 M e 1 160N m
max
Me1 T 80 [ ] 3 d Wt Wt 16
3
80 N m
16 80 d m 21.7 mm 6 40 10
d 22 mm
0.2F M e 2
80 N m
M e 1 9549
P1 14 (9549 )N m 668N m n 200
P1 30 14 M e 2 9549 (9549 )N m 764 N m n 200
M e 1 668N m M e 2 764N m M e 3 1432 N m
水轮机主轴的强度
15000 T 9549 N m 573kN m 250 横截面上最大切应力为
T T max W p D3 (1 4 ) 16 573000 Pa 19.2 MPa 3 0.55 d 4 [1 ( ) ] 16 D 主轴满足强度要求。
T 2.15 10 0.02 32 70( MPa) 4 IP 0.05
T 2.15 10 3 16 87.6( MPa) 3 Wt 0.05
3.3 发电量为15000kW的水轮机轴如图所示。 D=560mm, d=300mm,正常转速n=250 r/min。 材料的许用应力[τ]=50MPa。试校核该轴的强度。 解:
各段均满足强度、刚m
3.6 图示绞车同时由两人操作,若每人加在手柄上 的力都是F=200N,已知轴的许用切应力 [τ]=40MPa,试按扭转条件初步估算AB轴的直径, 并确定最大起重量W。 解:
M e 1 0.4F (0.4 200)N m 80 N m
3.4 图示AB轴的转速n=120r/min,从B轮输入功 率P=44.13 kW,功率的一半通过锥形齿轮传给垂 直轴II,另一半有水平轴I输出。已知D1=600mm, D2=240mm, d1=100mm, d2=80mm , d3=60mm, [τ]=20MPa。试对各轴进行强度校核。 解:
第三章 扭转
CHAPTER 3 TORSION Tuesday, September 04, 2018
3.1 作图示各杆的扭矩图。
T
x
2M M
O
2M
O
x
M
15 kN m 5 kN m
T
O
x
10 kN m
30 kN m
3.2 直径D=50 mm的圆轴,某横截面上的扭矩 T=2.15 kN·m。试求该横截面上距轴心20mm 处 的切应力及最大切应力。 解: 3
P 5.5 T 9549 (9549 )N m n 200 263 N m
max
16T d 3 [ ]
T 16T [ ] 3 Wt d
d 33mm
3
16 263 m 32.2mm 6 40 10
3.8 图示实心轴和空心轴通过牙嵌离合器连接在一 起。已知轴的转速n=100 r/min,传递的功率为 P=7.5kW,材料的许用切应力为[τ]=40 Mpa。试 选择实心圆轴的直径D1和内外径比值为0.5的空心 轴外径D2。 解:
各轴均满足强度要求
3.5 阶梯形圆轴的直径分别为d1=40mm, d2=70mm,轴上装有三个带轮,如图所示。已知 由轮3输入的功率为P3=30kW,轮1输出的功率为 P1=14kW。轴作匀速转动,转速n=200r/min。材 料的剪切许用应力[τ]=60MPa,G=80GPa,许用 扭转角[φ’]=2(0)/m 。试校核轴的强度和刚度。 解:
刚度条件
AC
TAC GI PAC
TDB GI PDB
668 80 10 9
0.04 4
32
180
1.9( 0 ) / m [ '] 2( 0 ) / m
DB
1432 0.07 4 9 80 10 32
180
0.435( 0 ) / m [ '] 2( 0 ) / m
II轴
nB D2 240 120 nII D1 600 nC
nII 300r /min
P2 22.1 TII 9549 (9549 )N m nII 300 703 kN m
TII 703 16 II Pa 16.6 MPa [ ] 20 MPa 3 Wt 0.06
强度条件
TAC 668 16 AC Pa 3 WtAC 0.04 53.2 MPa [ ] 60 MPa
DB
TDB 1433 16 Pa 3 WtDB 0.07 21.3 MPa [ ] 60 MPa
668N m 1432 N m
TAB 9549 P 44.13 (9549 )N m n 120 3512 kN m
AB max
TAB 3512 16 Pa 17.9 MPa [ ] 20 MPa 3 Wt 0.1
I轴
I max
TAB 2 1756 16 Pa 17.5 MPa [ ] 20 MPa 3 Wt 0.08
设齿轮间的切向力为F,则由平衡条件
0.25W 0.35F
F 800 N
Wmax 1120N
3.7 机床变速箱第II轴如图所示,轴所传递的功率 为P=5.5kW,转速n=200r/min,材料为45钢, [τ]=40MPa。试按扭转的强度条件初步设计轴的 直径。 解:
II轴所传递的扭矩