因动点产生的等腰三角形答案
动点产生的等腰三角形(含答案)
动点产生的等腰三角形难度一:1.已知,如图,在正方形ABCD中,AB=2,P是BC边上一点,ACPE⊥,垂足为E,连接DE并延长,交边BC于点F,连接AP.(1)判断PAC∠的大小,并证明你的结论;∠与CDF(2)设xBP=,yPF=,试求y关于x的函数解析式,并写出定义域;(3)当CEF∆是等腰三角形时,求BP的值.2.如图,等腰梯形ABC D 中,A D B C ∥,5,AB DC ==AD =2,B C =8,M E N B ∠=∠.M E N ∠的顶点E 在边BC 上移动,一条边始终经过点A ,另一边与CD 交于点F ,联接AF .(1)设y DF x BE ==,,试建立y 关于x 的函数关系式,并写出函数定义域; (2)若A E F △为等腰三角形,求出BE 的长.N M DFECBADCBA备用图3.已知在△ABC 中,∠A =45°,AB =7,34tan B ,动点P 、D 分别在射线AB 、AC 上,且∠DPA =∠ACB ,设AP =x ,△PCD 的面积为y .(1)求△ABC 的面积;(2)如图,当动点P 、D 分别在边AB 、AC 上时,求y 关于x 的函数解析式,并写出函数的定义域;(3)如果△PCD 是以PD 为腰的等腰三角形,求线段AP 的长.CAPBDGFEDCBA4.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG . (1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长;(3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.解:(1)12=∆ABC S .(2)令此时正方形的边长为a ,则446a a -=,解得512=a .(3)当20≤x 时, 22253656x x y =⎪⎭⎫⎝⎛=,当52 x 时, ()2252452455456x x x x y -=-⋅=.(4)720,1125,73125=AD .难度二:5.(2010宝山二模)如图,矩形ABCD 中,2AB =,点E 是BC 边上的一个动点,联结AE ,过点D 作D F AE ⊥,垂足为点F .(1)设BE x =,AD F ∠的余切值为y ,求y 关于x 的函数解析式;(2)若存在点E ,使得∆ABE 、∆ADF 与四边形CDFE 的面积比是3:4:5,试求矩形ABCD 的面积;(3)对(2)中求出的矩形ABCD ,联结CF ,当BE 的长为多少时,∆CDF 是等腰三角形?解:(1)△ABE ∽△DF A ,xy 2= ……………………………(3分)(2)∵∆ABE :∆ADF :四边形CDFE 的面积比是3:4:5 ∴ABCD 41矩形S S ABE =∆∴BC 21E =B ………………………… (1分)设x B =E ,则BC=2x∵△ABE ∽△DF A ,且∆ABE :∆ADF =3:4 ∴3422=AEAD ∴342422=+x x………………………(2分)解得 x =1……(1分) ∴ BC =2,22ABCD =矩形S ………(1分)(备用图)DCBA E FD CBA E FD CB A E F(3) ⅰ)CF=CD 时,过点C 作CM ⊥DF ,垂足为点M 则 CM ∥AEMF DM =………………………(1分)延长CM 交AD 于点G∴1==GD AG∴1=CE∴当BE=1时,∆CDF 是等腰三角形……………(1分) ⅱ)DF=DC 时,则DC=DF=2∵DF ⊥AE AD=2 ∴∠DAE =45°………(1分) 则BE=2∴当BE=2时,∆CDF 是等腰三角形………(1分)ⅲ)FD=FC 时,则F 为AE 中点 ∵△ADF ∽△EAB∴EBAF AEAD =∴xx x 2212222+=+……………………(1分)解得22±=x∴当BE=22-时,∆CDF 是等腰三角形 (1)6.已知:□ABCD 中,对角线AC ⊥AB ,AB =15,AC =20,点P 为射线BC 上一动点,AP ⊥PM (点M 与点B 分别在直线AP 的两侧),且∠PAM =∠CAD ,连结MD 。
(word完整版)2017年中考专题复习动点产生的等腰三角形问题
0319动点产生的等腰三角形问题1.如图所示,矩形ABCD中,AB=4,BC=,点E是折线段A﹣D﹣C上的一个动点(点E与点A 不重合),点P是点A关于BE的对称点.使△PCB为等腰三角形的点E的位置共有()A.2个B.3个C.4个D.5个2.如图,抛物线y=x2与直线y=2x在第一象限内有一交点A.(1)你能求出点A的坐标吗?(2)在x轴上是否存在一点P,使△AOP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.3.如图,直线y=ax+b与双曲线y=有一个交点A(1,2)且与x轴、y轴分别交于B,C两点,已知△AOB的面积为3.(1)求双曲线和直线的解析式;(2)在x轴上是否存在一点P,使△ABP是等腰三角形?如果存在,直接写出满足条件的P点坐标;如果不存在,说明理由.4.如图,抛物线y=﹣x2+bx+c与y轴交于点A(0,3),与x轴交于点B(4,0).(1)求抛物线的解析式;(2)连接AB,点C为线段AB上的一个动点,过点C作y轴的平行线交抛物线于点D,设C点的横坐标为m,线段CD长度为d(d≠0)求d与m的函数关系式(不要求写出自变量m的取值范围);(3)在(2)的条件下,连接AD,是否存在m值,使△ACD是等腰三角形?若存在,求出m的值;若不存在,请说明理由.5.如图,在矩形ABCD中,AB=3cm,BC=4cm.设P,Q分别为BD,BC上的动点,在点P自点D 沿DB方向作匀速移动的同时,点Q自点B沿BC方向向点C作匀速移动,移动的速度均为1cm/s,设P,Q移动的时间为t(0<t≤4).(1)当t为何值时,△PBQ为等腰三角形?(2)△PBQ能否成为等边三角形?若能,求t的值;若不能,说明理由.6.如图,在梯形ABCD中,AD∥BC,∠C=90°,AB=BC=10,AD=16.动点P、Q分别从点D、B同时出发,动点P沿射线DA的方向以每秒2个单位长的速度运动,动点Q在线段BC上以每秒1个单位长的速度向点C运动,当点Q运动到点C时,点P随之停止运动.设运动的时间为t(秒).(1)直接用含t的代数式表示:PA= ;(2)当t= 秒时,PQ∥AB;(3)设射线PQ与射线AB相交于点E,△AEP能否为等腰三角形?如果能,请求出t的值;如果不能,请说明理由.7.如图,在△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以ED为边,在点A的异侧作正方形DEFG.(1)试求△ABC的面积;(2)当边FG与BC重合时,求正方形DEFG的边长;(3)设AD=x,当△BDG是等腰三角形时,求出AD的长.8.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动(E不与B、C重合),且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由.9.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC 向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)当t为何值时,△CPQ与△ABC相似?(3)当t为何值时,△CPQ为等腰三角形?10.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?11.如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)∠PBD的度数为,点D的坐标为(用t表示);(2)当t为何值时,△PBE为等腰三角形?(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.12.在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P 为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为点F,若△PDF为等腰三角形,求BP的长.13.如图,已知一次函数y=﹣x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O﹣C﹣A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l 都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.2017年03月19日马赛的初中数学组卷参考答案与试题解析一.选择题(共1小题)1.(2010•济南)如图所示,矩形ABCD中,AB=4,BC=,点E是折线段A﹣D﹣C上的一个动点(点E与点A不重合),点P是点A关于BE的对称点.使△PCB为等腰三角形的点E的位置共有()A.2个B.3个C.4个D.5个【分析】根据题意,结合图形,分情况讨论:①BP为底边;②BP为等腰三角形一腰长.【解答】解:①BP为等腰三角形一腰长时,符合点E的位置有2个,是BC的垂直平分线与以B 为圆心BA为半径的圆的交点即是点P;②BP为底边时,C为顶点时,符合点E的位置有2个,是以B为圆心BA为半径的圆与以C为圆心BC为半径的圆的交点即是点P;③以PC为底边,B为顶点时,这样的等腰三角形不存在,因为以B为圆心BA为半径的圆与以B 为圆心BC为半径的圆没有交点.故选:C.【点评】本题综合考查等腰三角形的判定,需对知识进行推理论证、运算及探究.二.解答题(共12小题)2.(2016秋•黄州区校级月考)如图,抛物线y=x2与直线y=2x在第一象限内有一交点A.(1)你能求出点A的坐标吗?(2)在x轴上是否存在一点P,使△AOP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)利用解方程组可得到A点坐标;(2)需要分类讨论:AP=AO、OA=OP、AP=OP,根据等腰三角形的性质来求点P的坐标.【解答】解:(1)解方程组得或,所以A点坐标为(2,4);(2)①当AP=AO时,作AB⊥x轴于B点,如图1,当PB=OB时,△AOP是以OP为底的等腰三角形,而A(2,4),所以P点坐标为(4,0).②当OA=OP时,∵A(2,4),∴OA==2,则P(±2,0);③当AP=OP时,如图2,过点P作PQ⊥AO于点Q.设P(t,0).则Q(1,2).故OA•PQ=OP×4,即×2×=t×4,解得t=5,即(5,0).综上所述,符合条件的点P的坐标是(4,0)或(2,0)或(﹣2,0)或(5,0).【点评】本题考查了二次函数综合题,同时在两个函数解析式上,应是这两个函数解析式的公共解.答案较多时,应有规律的去找不同的解是解题关键.3.(2010秋•本溪月考)如图,直线y=ax+b与双曲线y=有一个交点A(1,2)且与x轴、y 轴分别交于B,C两点,已知△AOB的面积为3.(1)求双曲线和直线的解析式;(2)在x轴上是否存在一点P,使△ABP是等腰三角形?如果存在,直接写出满足条件的P点坐标;如果不存在,说明理由.【分析】(1)根据双曲线y=过点A(1,2),利用待定系数法,可得双曲线解析式,根据△AOB 的面积为3,可得B点坐标,根据直线过A、B两点,利用待定系数法,可得直线解析式;(2)根据两边相等的三角形是等腰三角形,分类讨论,AB=AP,AB=BP,AP=BP,可得答案.【解答】解:(1)∵双曲线y=过点A(1,2),∴2=,k=2,双曲线的解析式是y=,∵△AOB的面积为3,底是OB的长,高是A点的纵坐标,×2×OB=3,∴B点坐标是(3,0),∵直线y=ax+b过点A、B,∴2=a+b ①,0=3a+b②,②﹣①得a=﹣1,b=3,∴一次函数的解析式是y=﹣x+3;(2)设P点坐标为(x,0),AB=,当AP=PB时,,x=3(不合题意,舍)或x=﹣1,P点坐标(﹣1,0),当AB=BP时,PB=2,∴P点坐标为(3﹣2,0)或(3+2,0),当AP=BP时,,x=,P点坐标是(,0).故P(﹣1,0),(3﹣2,0),(3+2,0),(,0).【点评】本题考查了反比例函数的综合题,(1)利用待定系数法求解是解题关键;(2)分类讨论是解题关键.4.(2015秋•道外区期末)如图,抛物线y=﹣x2+bx+c与y轴交于点A(0,3),与x轴交于点B(4,0).(1)求抛物线的解析式;(2)连接AB,点C为线段AB上的一个动点,过点C作y轴的平行线交抛物线于点D,设C点的横坐标为m,线段CD长度为d(d≠0)求d与m的函数关系式(不要求写出自变量m的取值范围);(3)在(2)的条件下,连接AD,是否存在m值,使△ACD是等腰三角形?若存在,求出m的值;若不存在,请说明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据自变量与函数值的对应关系,可得C、D点坐标,根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得答案;(3)根据等腰三角形的定义,可得关于m的方程,根据因式分解法解方程,可得答案.【解答】解:(1)将A、B点坐标代入,得,解得,抛物线的解析式为y=﹣x2+x+3;(2)如图:设AB的解析式为y=kx+b,将B、A的坐标代入,得,解得,AB的解析式为y=﹣x+3,C在直线AB上,C(m,﹣m+3),D(m,﹣m2+m+3).CD的长为﹣m2+m+3﹣(﹣m+3)=﹣m2+2m,即d=﹣m2+2m;(3)AC2=m2+(m)2,CD2=(﹣m2+2m)2,AD2=m2+(﹣m2+m)2,①当AC=AD时,m2+(m)2=m2+(﹣m2+m)2,化简,得(﹣m2+2m)(﹣m2+m)=0,解得m=0(不符合题意,舍),m=4(不符合题意,舍),m=1;②当AC=CD时,m2+(m)2=(﹣m2+2m)2,化简,得(﹣m2+m)(﹣m2+m)=0,解得m=0(不符合题意,舍),m=(不符合题意,舍),m=;③当AD=CD时,m2+(﹣m2+m)2=(﹣m2+2m)2,化简,得﹣m2(m﹣)=0,解得m=.综上所述:m的值为1、或.【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标得出函数解析式;利用等腰三角形的定义得出关于m的方程是解题关键,要分类讨论,以防遗漏.5.如图,在矩形ABCD中,AB=3cm,BC=4cm.设P,Q分别为BD,BC上的动点,在点P自点D沿DB方向作匀速移动的同时,点Q自点B沿BC方向向点C作匀速移动,移动的速度均为1cm/s,设P,Q移动的时间为t(0<t≤4).(1)当t为何值时,△PBQ为等腰三角形?(2)△PBQ能否成为等边三角形?若能,求t的值;若不能,说明理由.【分析】(1)此题由3种情况,①从假设△BPQ是等腰三角形入手.求证△BMP∽△BCD,利用对应边成比例即可求得t的值.②在Rt△BMP中,利用cos∠DBC=,解得t.③如图,当BQ=PQ时,自点Q向BD引垂线,垂足为N.利用Rt△BNQ∽Rt△BCD其对应边成比例即可求得t.(2)若△PBQ为等边三角形,则BQ=BP=PQ.由②,知当BQ=BP时,.由①,知当BP=PQ时,.而BQ=BP与BP=PQ不能同时成【解答】解:(1)若△BPQ是等腰三角形.①如图,当PB=PQ时,自点P向BC引垂线,垂足为M,则有BM=MQ.方法一:由△BMP∽△BCD,得,∴.∴,解得.方法二:在Rt△BMP中,.∴,解得.②当BQ=BP时,有t=5﹣t,解得.③如图,当BQ=PQ时,自点Q向BD引垂线,垂足为N.由Rt△BNQ∽Rt△BCD,得.∴,解得.(2)不能.若△PBQ为等边三角形,则BQ=BP=PQ.由(2)②,知当BQ=BP时,.由(2)①,知当BP=PQ时,.∴BQ=BP与BP=PQ不能同时成立,∴△PBQ不可能为等边三角形.【点评】此题主要考查学生对相似三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质的理解和掌握,此题涉及到的知识点较多,综合性较强,是一道难题.6.(2013春•邢台期末)如图,在梯形ABCD中,AD∥BC,∠C=90°,AB=BC=10,AD=16.动点P、Q分别从点D、B同时出发,动点P沿射线DA的方向以每秒2个单位长的速度运动,动点Q在线段BC上以每秒1个单位长的速度向点C运动,当点Q运动到点C时,点P随之停止运动.设运动的时间为t(秒).(1)直接用含t的代数式表示:PA= 16﹣2t ;(2)当t= 秒时,PQ∥AB;(3)设射线PQ与射线AB相交于点E,△AEP能否为等腰三角形?如果能,请求出t的值;如果不能,请说明理由.【分析】(1)根据已知求出即可;(2)根据平行四边形的性质和判定得出BQ=AP,求出即可;(3)求出CD和PN,分为三种情况:①PE=AP,②AE=AP,③PE=AE,根据勾股定理和等腰三角形的性质得出方程,求出方程的解即可.【解答】解:(1)∵AD=16,DP=t,∴AP=16﹣2t,故答案为:16﹣2t.(2)当BQ=AP,∵BC∥AD,∴四边形PABQ是平行四边形,∴此时PQ∥AB,即t=16﹣2t,t=,故答案为:.(3)设射线PQ与射线AB相交于点E,△AEP能为等腰三角形,过B作BM⊥AD于M,∴∠BMA=90°,∵∠C=90°,∴∠D=∠BMA,∴CD∥BM,∴四边形CDMB是矩形,∴CD=BM,BC=DM=10,∴AM=16﹣10﹣6,在Rt△BMA中,AB=10,由勾股定理得:BM=8,分为三种情况:①当PE=AP=16﹣2t时,如图1,过P作PN⊥BC于N,则四边形CDPN是矩形,∴PN=CD=8,CN=DP=2t,∵PE=AP,∴∠A=∠E,∵BC∥AD,∴∠EBQ=∠A,∴∠E=∠EBQ,∴EQ=BQ=t,在Rt△PNQ中,由勾股定理得:82+(10﹣2t﹣t)2=(16﹣2t﹣t)2,t=;②如图1,当AE=AP时,∴∠E=∠EPA,∵BC∥AD,∴∠EPA=∠CQP,∵∠EQB=∠CQP,∴∠E=∠EQB,∴EB=QB=t,∵AE=AP,BC=10,∴10+t=16﹣2t,t=2;③如图1,当PE=AE时,∵BC∥AD,∴∠EQB=∠EPA,∠EBQ=∠A,∵AE=PE,∴∠A=∠EPA,∴∠EQB=∠EBQ,∴QE=BE,∵AE=PE,∴BC=PQ=10,在Rt△PNQ中,NQ=10﹣2t﹣t=10﹣3t,pn=8,PQ=BC=10由勾股定理得:82+(10﹣3t)2=102,t=;④当p在DA的延长线上时,若PA=AE,则2t﹣16=10﹣t,解得:t=,而点Q运动到点C所用时间是10秒,<10,符合题意即设射线PQ与射线AB相交于点E,△AEP能为等腰三角形,t的值是秒或2秒或秒或秒.【点评】本题考查了矩形的性质和判定,梯形的性质,等腰三角形的性质和判定,勾股定理等知识点的应用,主要考查学生的推理能力,注意要进行分类讨论啊.7.(2012秋•宝安区期中)如图,在△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以ED为边,在点A的异侧作正方形DEFG.(1)试求△ABC的面积;(2)当边FG与BC重合时,求正方形DEFG的边长;(3)设AD=x,当△BDG是等腰三角形时,求出AD的长.【分析】(1)作底边上的高,利用勾股定理求出高就可以求出面积.(2)根据DE∥BC,得到△ADE∽△ABC,再根据相似三角形对应高的比等于相似比即可求出边DE 的长度.(3)根据△ADE∽△ABC得=,求出AD的长.【解答】解:(1)过A作AH⊥BC于H,∵AB=AC=5,BC=6,∴BH=BC=3,∴AH===4,∴S=BC•AH=×6×4=12.△ABC(2)令此时正方形的边长为a,∵DE∥BC,∴,∴a=.(3)当AD=x时,由△ADE∽△ABC得=,即=,解得DE=x,当BD=DG时,5﹣x=x,x=,当BD=BG时,=,解得x=,当BG=DG时,=,解得x=,∴当△BDG是等腰三角形时,AD=或或.【点评】本题考查了正方形、等腰三角形的性质,相似比等相关知识.综合性较强,解题时要仔细.8.(2013•金城江区三模)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF 与△ABC重合在一起,△ABC不动,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动(E不与B、C重合),且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由.【分析】(1)由AB=AC,根据等边对等角,可得∠B=∠C,又由△ABC≌△DEF与三角形外角的性质,易证出∠CEM=∠BAE,从而可证得△ABE∽△ECM;(2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AE≠AM,然后分别从AE=EM与AM=EM去分析,注意利用全等三角形与相似三角形的性质求解即可求得答案.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.解:∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴=,∴CE=,∴BE=6﹣=;∴BE=1或.【点评】此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、全等三角形的判定与性质,此题难度较大,注意数形结合思想、分类讨论思想与函数思想的应用是解此题的关键.9.(2016秋•芦溪县期中)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)当t为何值时,△CPQ与△ABC相似?(3)当t为何值时,△CPQ为等腰三角形?【分析】(1)先根据勾股定理求出AB的长,再由三角形的面积公式即可得出结论;(2)先用t表示出DP,CQ,CP的长,再分PQ⊥CD与PQ⊥AC两种情况进行讨论;(3)根据题意画出图形,分CQ=CP,PQ=PC,QC=QP三种情况进行讨论.【解答】解:(1)∵∠ACB=90°,AC=8,BC=6,∴AB=10.∵CD⊥AB,=BC•AC=AB•CD.∴S△ABC∴CD===4。
(初三)18因动点产生的等腰三角形问题
经典例题
例1. 在直角坐标系中,O为坐标原点,A(1,1),在坐标轴上确 定一点P,使△AOP为等腰三角形,则符合条件的点P共有( C) A. 4个
找法: (3)PA=PO: 点 P 为 AC 的垂直平分线与坐标轴的交点, 如图,有2个,共8个
B. 6个
C. 8个
D. 1个
经典例题
例2.如图,在平面直角坐标系中,抛物线y=的图象与轴交于 点A(-2,0)、B(4,0),与y轴交于点C(0,4),直线是抛物线的对称轴, 与x轴交于点D,点P是直线上一动点. (1)求此抛物线的表达式; (2)点P在直线上运动时,是否存在等腰△ACP?若存在,请写出所有符合条 件的点P坐标;若不存在,请说明理由. 解:(1)++4 对称轴=1
解法二:利用“三线合一”.
如图:若DA=DE,则需AE=2AF.
经典例题
例1. 在直角坐标系中,O为坐标原点,A(1,1),在坐标轴上确 定一点P,使△AOP为等腰三角形,则符合条件的点P共有( ) A. 4个
找法: (1)OP=OA: 点P为以O为圆心,OA为半径的圆 与坐标轴的交点, 如图,有4个
对称轴=1
Байду номын сангаас
(2) 连接CA、CP1、CP2,过点C作CH⊥P1P2. 设P1(1,a), P2(1,b) 由勾股定理得:=AC= =AC=
经典例题
例2.如图,在平面直角坐标系中,抛物线y=的图象与轴交于 点A(-2,0)、B(4,0),与y轴交于点C(0,4),直线是抛物线的对称轴, 与x轴交于点D,点P是直线上一动点. (1)求此抛物线的表达式; (2)点P在直线上运动时,是否存在等腰△ACP?若存在,请写出所有符合条 件的点P坐标;若不存在,请说明理由. 解:(1)++4 (2)
2018年中考压轴题汇编《因动点产生的等腰三角形问题》含答案
因动点产生的等腰三角形问题例年重庆市中考第题如图,在△中,=°,∠=°,点是∠的平分线上一点,过点作的垂线,过点作的垂线,两垂线交于点,连接,点是的中点,⊥,垂足为,连接,.()如图,若点是的中点,=,求、的长;()如图,求证:=.()如图,连接、,猜想:△是否是等边三角形?若是,请证明;若不是,请说明理由.图图例年长沙市中考第题如图,抛物线=++(、、是常数,≠)的对称轴为轴,且经过()和两点,点在该抛物线上运动,以点为圆心的⊙总经过定点(, ).()求、、的值;()求证:在点运动的过程中,⊙始终与轴相交;()设⊙与轴相交于(, )、(, )两点,当△为等腰三角形时,求圆心的纵坐标.图例年上海市虹口区中考模拟第题如图,在△中,∠=°,=,=,点为边的中点,⊥交边于点,点为射线上的一动点,点为边上的一动点,且∠=°.()求、的长;()若=,求的长;()记线段与线段的交点为,若△为等腰三角形,求的长.图备用图例年扬州市中考第题如图,抛物线=++经过(-)、(, )、( )三点,直线是抛物线的对称轴.()求抛物线的函数关系式;()设点是直线上的一个动点,当△的周长最小时,求点的坐标;()在直线上是否存在点,使△为等腰三角形,若存在,直接写出所有符合条件的点的坐标;若不存在,请说明理由.图例年临沂市中考第题如图,点在轴上,=,将线段绕点顺时针旋转°至的位置.()求点的坐标;()求经过、、的抛物线的解析式;()在此抛物线的对称轴上,是否存在点,使得以点、、为顶点的三角形是等腰三角形?若存在,求点的坐标;若不存在,请说明理由.图例年盐城市中考第题如图,已知一次函数=-+与正比例函数的图象交于点,且与轴交于点.()求点和点的坐标;()过点作⊥轴于点,过点作直线轴.动点从点出发,以每秒个单位长的速度,沿——的路线向点运动;同时直线从点出发,以相同速度向左平移,在平移过程中,直线交轴于点,交线段或线段于点.当点到达点时,点和直线都停止运动.在运动过程中,设动点运动的时间为秒.①当为何值时,以、、为顶点的三角形的面积为?②是否存在以、、为顶点的三角形是等腰三角形?若存在,求的值;若不存在,请说明理由.图因动点产生的等腰三角形问题答案例年重庆市中考第题如图,在△中,=°,∠=°,点是∠的平分线上一点,过点作的垂线,过点作的垂线,两垂线交于点,连接,点是的中点,⊥,垂足为,连接,.()如图,若点是的中点,=,求、的长;()如图,求证:=.()如图,连接、,猜想:△是否是等边三角形?若是,请证明;若不是,请说明理由.图图动感体验请打开几何画板文件名“重庆”,拖动点运动,可以体验到,△与△保持全等,△与△保持全等,△保持等边三角形的形状.思路点拨.把图形中所有°的角都标注出来,便于寻找等角和等边..中点有哪些用处呢?联想到斜边上的中线和中位线就有思路构造辅助线了.满分解答()如图,在△中,∠=°,=,所以=.在△中,∠=°,=,所以=,=.在△中,=,=,由勾股定理,得=.()如图,由∠=°,∠=°,平分∠,得∠=°,∠=°.在△中,=.在△中,=.所以=.因为点是△的斜边上的中线,所以=,∠=∠.所以∠=∠.所以△≌△.所以=.图图图()如图,作⊥于,联结.由,是的中点,得是的中点.因此=,△是等边三角形.又因为=,所以=.又因为=,∠=∠=°,所以△≌△.所以∠=∠,=.所以∠=∠=°.所以△是等边三角形.考点伸展我们再看几个特殊位置时的效果图,看看有没有熟悉的感觉.如图,如图,当点落在边上时,点与点重合.图图如图,图,点落在边上.如图,图,等腰梯形.图图图图例年长沙市中考第题如图,抛物线=++(、、是常数,≠)的对称轴为轴,且经过()和两点,点在该抛物线上运动,以点为圆心的⊙总经过定点(, ).()求、、的值;()求证:在点运动的过程中,⊙始终与轴相交;()设⊙与轴相交于(, )、(, )两点,当△为等腰三角形时,求圆心的纵坐标.图动感体验请打开几何画板文件名“长沙”,拖动圆心在抛物线上运动,可以体验到,圆与轴总是相交的,等腰三角形存在三种情况.思路点拨.不算不知道,一算真奇妙,原来⊙在轴上截得的弦长=是定值..等腰三角形存在三种情况,其中=和=两种情况时,点的纵坐标是相等的.满分解答()已知抛物线的顶点为(),所以=.所以=,=.将代入=,得.解得(舍去了负值).()抛物线的解析式为,设点的坐标为.已知(, ),所以>.而圆心到轴的距离为,所以半径>圆心到轴的距离.所以在点运动的过程中,⊙始终与轴相交.()如图,设的中点为,那么垂直平分.在△中,,,所以=.所以=.因此=,为定值.等腰△存在三种情况:①如图,当=时,点为原点重合,此时点的纵坐标为.图图②如图,当=时,在△中,=,=,所以=.此时==.所以点的纵坐标为.③如图,当=时,点的纵坐标为也为.图图考点伸展如果点在抛物线上运动,以点为圆心的⊙总经过定点(, ),那么在点运动的过程中,⊙始终与直线=-相切.这是因为:设点的坐标为.已知(, ),所以.而圆心到直线=-的距离也为,所以半径=圆心到直线=-的距离.所以在点运动的过程中,⊙始终与直线=-相切.例年上海市虹口区中考模拟第题如图,在△中,∠=°,=,=,点为边的中点,⊥交边于点,点为射线上的一动点,点为边上的一动点,且∠=°.()求、的长;()若=,求的长;()记线段与线段的交点为,若△为等腰三角形,求的长.图备用图动感体验请打开几何画板文件名“虹口”,拖动点在射线上运动,可以体验到,△与△保持相似.观察△,可以看到,、可以落在对边的垂直平分线上,不存在=的情况.请打开超级画板文件名“虹口”,拖动点在射线上运动,可以体验到,△与△保持相似.观察△,可以看到,、可以落在对边的垂直平分线上,不存在=的情况.思路点拨.第()题=分两种情况..解第()题时,画准确的示意图有利于理解题意,观察线段之间的和差关系..第()题探求等腰三角形时,根据相似三角形的传递性,转化为探求等腰三角形.满分解答()在△中,=,=,所以=.在△中,=,所以,.()如图,过点作⊥,⊥,垂足分别为、,那么、是△的两条中位线,=,=.由∠=°,∠=°,可得∠=∠.因此△∽△.所以.所以,.图图图①如图,当=,在上时,=.此时.所以.②如图,当=,在的延长线上时,=.此时.所以.()如图,如图,在△中,.在△中,.所以∠=∠.由∠=°,∠=°,可得∠=∠.因此△∽△.当△是等腰三角形时,△也是等腰三角形.①如图,当==时,=-=-=(如图所示).此时.所以.②如图,当=时,由,可得.所以=-=(如图所示).此时.所以.③不存在=的情况.这是因为∠≥∠>∠(如图,图所示).图图考点伸展如图,当△是等腰三角形时,根据等角的余角相等,可以得到△也是等腰三角形,=.在△中可以直接求解.例年扬州市中考第题如图,抛物线=++经过(-)、(, )、( )三点,直线是抛物线的对称轴.()求抛物线的函数关系式;()设点是直线上的一个动点,当△的周长最小时,求点的坐标;()在直线上是否存在点,使△为等腰三角形,若存在,直接写出所有符合条件的点的坐标;若不存在,请说明理由.图动感体验请打开几何画板文件名“扬州”,拖动点在抛物线的对称轴上运动,可以体验到,当点落在线段上时,+最小,△的周长最小.拖动点在抛物线的对称轴上运动,观察△的三个顶点与对边的垂直平分线的位置关系,可以看到,点有次机会落在的垂直平分线上;点有次机会落在的垂直平分线上;点有次机会落在的垂直平分线上,但是有次、、三点共线.思路点拨.第()题是典型的“牛喝水”问题,点在线段上时△的周长最小..第()题分三种情况列方程讨论等腰三角形的存在性.满分解答()因为抛物线与轴交于(-)、(, )两点,设=(+)(-),代入点( ),得-=.解得=-.所以抛物线的函数关系式是=-(+)(-)=-++.()如图,抛物线的对称轴是直线=.当点落在线段上时,+最小,△的周长最小.设抛物线的对称轴与轴的交点为.由,=,得==.所以点的坐标为(, ).图()点的坐标为(, )、(,)、(,)或().考点伸展第()题的解题过程是这样的:设点的坐标为().在△中,=,=+(-),=+.①如图,当=时,=.解方程+=+(-),得=.此时点的坐标为(, ).②如图,当=时,=.解方程+=,得.此时点的坐标为(,)或(,).③如图,当=时,=.解方程+(-)=,得=或.当(, )时,、、三点共线,所以此时符合条件的点的坐标为().图图图例年临沂市中考第题如图,点在轴上,=,将线段绕点顺时针旋转°至的位置.()求点的坐标;()求经过、、的抛物线的解析式;()在此抛物线的对称轴上,是否存在点,使得以点、、为顶点的三角形是等腰三角形?若存在,求点的坐标;若不存在,请说明理由.图动感体验请打开几何画板文件名“临沂”,拖动点在抛物线的对称轴上运动,可以体验到,⊙和⊙以及的垂直平分线与抛物线的对称轴有一个共同的交点,当点运动到⊙与对称轴的另一个交点时,、、三点共线.请打开超级画板文件名“临沂”,拖动点,发现存在点,使得以点、、为顶点的三角形是等腰三角形思路点拨.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验..本题中等腰三角形的角度特殊,三种情况的点重合在一起.满分解答()如图,过点作⊥轴,垂足为.在△中,∠=°,=,所以=,.所以点的坐标为.()因为抛物线与轴交于、(, ),设抛物线的解析式为=(-),代入点,.解得.所以抛物线的解析式为.()抛物线的对称轴是直线=,设点的坐标为(, ).①当==时,=.所以=.解得.当在时,、、三点共线(如图).②当==时,=.所以.解得.③当=时,=.所以.解得.综合①、②、③,点的坐标为,如图所示.图图考点伸展如图,在本题中,设抛物线的顶点为,那么△与△是两个相似的等腰三角形.由,得抛物线的顶点为.因此.所以∠=°,∠=°.例年盐城市中考第题如图,已知一次函数=-+与正比例函数的图象交于点,且与轴交于点.()求点和点的坐标;()过点作⊥轴于点,过点作直线轴.动点从点出发,以每秒个单位长的速度,沿——的路线向点运动;同时直线从点出发,以相同速度向左平移,在平移过程中,直线交轴于点,交线段或线段于点.当点到达点时,点和直线都停止运动.在运动过程中,设动点运动的时间为秒.①当为何值时,以、、为顶点的三角形的面积为?②是否存在以、、为顶点的三角形是等腰三角形?若存在,求的值;若不存在,请说明理由.图动感体验请打开几何画板文件名“盐城”,拖动点由向运动,从图象中可以看到,△的面积有一个时刻等于.观察△,可以体验到,在上时,只存在=的情况;在上时,有三个时刻,△是等腰三角形.思路点拨.把图复制若干个,在每一个图形中解决一个问题..求△的面积等于,按照点的位置分两种情况讨论.事实上,在上运动时,高是定值,最大面积为,因此不存在面积为的可能..讨论等腰三角形,按照点的位置分两种情况讨论,点的每一种位置又要讨论三种情况.满分解答()解方程组得所以点的坐标是(,).令,得.所以点的坐标是(,).()①如图,当在上运动时,≤<.由,得.整理,得.解得=或=(舍去).如图,当在上运动时,△的最大面积为.因此,当=时,以、、为顶点的三角形的面积为.图图图②我们先讨论在上运动时的情形,≤<.如图,在△中,∠=°,∠>°,=,,所以>.因此∠>∠>∠.如图,点由向运动的过程中,==,所以轴.因此∠=°保持不变,∠越来越大,所以只存在∠=∠的情况.此时点在的垂直平分线上,==.所以=,=.我们再来讨论在上运动时的情形,≤<.在△中,为定值,,.如图,当=时,解方程,得.如图,当=时,点在的垂直平分线上,=(-).解方程,得.如,当=时,那么.因此.解方程,得.综上所述,=或或或时,△是等腰三角形.图图图考点伸展当在上,=时,也可以用来求解.。
专题21 因动点产生的等腰三角形问题(基础)-冲刺2021年中考数学(解析版)
专题21 因动点产生的等腰三角形问题(基础)1.已知抛物线y =﹣(x ﹣m )2+1与x 轴的交点为A ,B (B 在A 的右边),与y 轴的交点为C .当点B 在原点的右边,点C 在原点下方时,是否存在△BOC 为等腰三角形的情形?若存在,求出m 的值;若不存在,请说明理由.【分析】先求出拋物线y =﹣(x ﹣m )2+1与x 轴的交点,与y 轴的交点,再用m 表示出OB ,OC 的长度,根据当△BOC 为等腰三角形时,BO =OC 列出方程,即可求出答案.【解答】解:当y =0时,﹣(x ﹣m )2+1=0,即有(x ﹣m )2=1.∴x 1=m ﹣1,x 2=m +1.∵点B 在点A 的右边,∴A (m ﹣1,0),B (m +1,0),∵点B 在原点右边∴OB =m +1,∵当x =0时,y =1﹣m 2,点C 在原点下方,∴OC =m 2﹣1,当m 2﹣1=m +1时,m 2﹣m ﹣2=0,∴m =2或m =﹣1(因为对称轴在y 轴的右侧,m >0,所以不合要求,舍去),∴存在△BOC 为等腰三角形的情形,此时m =2.【点评】此题考查了抛物线与x 轴的交点,解题的关键是用m 表示出OB ,OC 的长度,列出方程.2.如图,直线y =kx ﹣3与x 轴、y 轴分别交于B 、C 两点,且OB OC =12 (1)求点B 坐标和k 值;(2)若点A (x ,y )是直线y =kx ﹣3上在第一象限内的一个点,坐标(2,1),请问x 轴上是否存在点P ,使△ABP 为等腰三角形?若存在,请写出满足条件的所有P 点坐标;若不存在,请说明理由.【分析】(1)求出OC 的长,根据题意求出OB ,得到点B 坐标,把点B 坐标代入一次函数解析式,求出k ;(2)分BP =BA 、P A =PB 两种情况,根据勾股定理计算即可.【解答】解:(1)对于直线y =kx ﹣3,当x =0时,y =﹣3,∴点C 的坐标为(0,﹣3),即OC =3,∵OB OC =12, ∴OB =32,即点B 的坐标为(32,0),则32k ﹣3=0, 解得,k =2;(2)过点A 作AD ⊥x 轴于D ,则OD =2,BD =2−32=12,AD =1,∴Rt △ABD 中,AB =√BD 2+AD 2=√52,∴以B 为圆心,AB 长为半径画弧,从左往右依次交x 轴于P 1,P 2两点,则OP 1=32−√52,OP 2=32+√52,故P 1(32−√52,0),P 2(32+√52,0), 作AB 的垂直平分线交x 轴于P 3,设DP 3=x ,则Rt △ADP 3中,12+x 2=(12+x )2, 解得x =34,∴P 3(114,0),当AB =AP 时,DP =DB =12,∴P 4(52,0), 故存在四个点P ,使△ABP 为等腰三角形.【点评】本题考查的是一次函数图象上点的坐标特征、等腰三角形的判定,正确求出一次函数图象与坐标轴的交点、灵活运用分情况讨论思想是解题的关键.3.如图,在矩形ABCD 中,AB =12cm ,BC =21cm ,点P 从点B 出发沿BC 以2cm /s 的速度移动到点C ;同时,点Q 从点A 出发沿AD 以1cm /s 的速度移动到点D ;当点P 运动到点C 时点Q 也随之停止运动,设点P 的运动时间为ts 是否存在点P ,使△DPQ 是等腰三角形?如果存在,求出所有符合条件的t 的值;如果不存在,请说明理由.【分析】先表示出PQ,PD,DQ,再分三种情况讨论计算即可.【解答】解:如图,过点Q作QE⊥⊥BC,由题意得,AQ=t,PE=BP﹣BE=BP﹣AQ=2t﹣t=t,∴DQ=21﹣t,PC=21﹣2t,QE=12,(0<t≤21 2)在Rt△PQE中,PQ2=122+t2,在Rt△PCD中,PD2=(21﹣2t)2+122,∵△DPQ是等腰三角形,①当PQ=PD时,即:122+t2=(21﹣2t)2+122,∴t=7或t=21(舍);②当PQ=DQ时,即:122+t2=21﹣t,此方程无解,③当PD=DQ时,(21﹣2t)2+122=21﹣t,∴此方程无解.即:t=7时,△DPQ是等腰三角形.【点评】此题是矩形的性质,主要考查了勾股定理,矩形的性质,等腰三角形的性质,解本题的关键是表示出PD,DQ,PQ.4.如图,在长方形ABCD中,边AB、BC的长(AB<BC)是方程x2﹣7x+12=0的两个根,点P从点A出发,以每秒1个单位的速度沿△ABC边A→B→C→A的方向运动,运动时间为t(秒).(1)求AB与BC的长;(2)写出三角形APD的面积S与运动时间t的函数关系式,并写出自变量的取值范围.(3)当点P在运动中,试求出使AP长为√10时运动时间t的值;(4)当点P运动到边AC上时,是否存在点P,使△CDP是等腰三角形?若存在,请求出运动时间t 的值;若不存在,请说明理由.【分析】(1)利用因式分解法解出方程即可;(2)需要分类讨论:点P在AB边、在BC边和在对角线AC上三种情况;(3)根据勾股定理列出方程,解方程即可;(4)分PC=CD、PD=PC、PD=CD三种情况,根据等腰三角形的性质和勾股定理计算即可.【解答】解:(1)∵x 2﹣7x +12=0,则(x ﹣3)(x ﹣4)=0,∴x 1=3,x 2=4.∵AB <BC ,∴AB =3,BC =4;(2)如答图1,当点P 在边AB 上时,S =12AD •AP =12×4t =2t (0<t ≤4);如答图2,当点P 在边BC 上时,S =12AD •AB =12×4×3=6(4<t ≤7); 如答图3,当点P 在对角线AC 上时,由勾股定理得到AC =√32+42=5.S =12AD •AP sin ∠DAC =12×4×(t ﹣7)×35=6t 5−425.(7<t ≤12); 综上所述,S ={ 2t(0<t ≤4)6(4<t ≤7)6t 5−425(7<t ≤12);(3)由题意得√32−(t −3)2=√10,∴t 1=4,t 2=2(舍去),则t =4时,AP =√10;(4)存在点P ,使△CDP 是等腰三角形,①当PC =CD =3时,t =(3+4+3)÷1=10(秒);②当PD =PC (即P 为对角线AC 中点)时,AB =3,BC =4.∴AC =√AB 2+BC 2=5,CP =12AC =2.5,∴t =(3+4+2.5)÷1=9.5(秒);③当PD =CD =3时,作DQ ⊥AC 于Q ,DQ =12×3×412×5=125,PQ =√32+(125)2=95, ∴PC =2PQ =185,∴t =3+4+1851(秒),可知当t 为10秒或9.5秒或535秒时,△CDP 是等腰三角形.【点评】本题考查了四边形综合题.需要掌握矩形的性质、等腰三角形的判定和性质以及一元二次方程的解法,正确解出方程、灵活运用勾股定理列出算式是解题的关键,注意分情况讨论思想的运用.5.如图,直线y =kx +b 与x 轴交于点B (﹣3,0),且它与双曲线y =12x交于点A 、C ,其中点A (n ,4)在第一象限,点C 在第三象限.(1)求直线y =kx +b 的解析式;(2)在x 轴上是否存在点P ,使△AOP 是等腰三角形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.【分析】(1)根据点A 在双曲线图象上,可求出n 值,将A 、B 点的坐标代入直线y =kx +b 中,由待定系数法即可求出结论;(2)假设存在,设点P 的坐标为(m ,0),分三种情况考虑△AOP 是等腰三角形,由边相等得出关于m 的方程,解方程即可得出结论.【解答】解:∵点A (n ,4)在双曲线y =12x 的图象上, ∴有4=12n ,解得:n =3.即点A 的坐标为(3,4).将点A 、点B 的坐标代入直线y =kx +b 中得:{0=−3k +b 4=3k +b ,解得:{k =23b =2. ∴直线的解析式为y =23x +2.(2)假设存在,设点P 的坐标为(m ,0).点O (0,0),点A (3,4),由两点间的距离公式可知:OA =√(3−0)2+(4−0)2=5,OP =|m |,AP =√(3−m)2+(4−0)2.△AOP 是等腰三角形分三种情况:①OA =OP ,则有5=|m |,解得:m =±5,此时点P 的坐标为(﹣5,0)或(5,0);②OA =AP ,即5=√(3−m)2+(4−0)2,解得:m =0(舍去),或m =6,此时点P 的坐标为(6,0);③OP =AP ,即|m |=√(3−m)2+(4−0)2,解得:m =256,此时点P 的坐标为(256,0).综上可知:在x 轴上存在点P ,使△AOP 是等腰三角形,点P 的坐标为(﹣5,0)、(5,0)、(6,0)或(256,0).【点评】本题考查了反比例函数与一次函数交点的问题、待定系数法求函数解析式、等腰三角形的性质以及解无理方程,解题的关键:(1)由点在双曲线上求出点A 的坐标;(2)分3种情况考虑边相等的情况.本题属于中档题,难度不大,解决该题型题目时,根据等腰三角形的性质由边相等得出关于n 的方程是关键.6.如图,在平面直角坐标系中,点C 的坐标为(3,1),动点A 以每秒1个单位的速度从点O 出发沿x 轴正半轴运动,同时动点B 以每秒2个单位的速度从点O 出发沿y 轴正半轴运动,作直线AB .设运动的时间为t 秒,是否存在t ,使△ABC 是等腰三角形?若存在,求t 的值;若不存在,请说明理由.【分析】运动的时间是t ,则OA =t ,OB =2t ,利用勾股定理把AB 2,BC 2和AC 2用t 表示出来,然后利用勾股定理列方程求得t 的值,然后判断t 是否满足条件,以及是否是等腰三角形即可.【解答】解:运动的时间是t ,则OA =t ,OB =2t .在直角△OAB 中,AB 2=OA 2+OB 2=t 2+(2t )2=5t 2,过C 作CD ⊥x 轴于点D ,则D 的坐标是(3,0).在直角△ACD 中,AC 2=CD 2+AD 2=1+(3﹣t )2=t 2﹣6t +10,BC 2=32+(2t ﹣1)2=4t 2﹣4t +10,当AB 是斜边时,AB 2=AC 2+BC 2,则5t 2=t 2﹣6t +10+4t 2﹣4t +10,解得:t =2.此时AB 2=20,AC 2=2,BC 2=18,此时不是等腰三角形,故不符合条件;当AC 是斜边时,AC 2=AB 2+BC 2,则t 2﹣6t +10=5t 2+(4t 2﹣4t +10),解得:t=0或﹣4(不符合题意,舍去);当BC是斜边时,AB2+AC2=BC2,则5t2+(t2﹣6t+10)=4t2﹣4t+10,解得:t=0(舍去),或1.当t=1时,AB2=5,AC2=1﹣6+10=5,此时AB=AC.总之,当t=1时,△ABC是等腰直角三角形.【点评】本题考查了一次函数与勾股定理的综合应用,正确进行讨论,利用m表示出AB2,BC2和AC2是关键.7.如图,直线AB:y=−√62x+√3的图象与x轴、y轴交于A、B两点,直线上一动点P以1cm/s的速度由点A向终点B运动,设运动时间为t(s).(1)点A的坐标为(√2,0);点B的坐标为(0,√3);(2)求OP的最短距离;(3)是否存在t的值,使△OAP为等腰三角形?若存在,直接写出满足条件的t的值;若不存在,请说明理由.【分析】(1)根据y=−√62x+√3的图象与x轴、y轴交于A、B两点,于是令x=0,y=0,解方程即可得到结论;(2)根据勾股定理得到AB的长,由三角形的面积公式得到OA•OB=AB•OP,代入数据即可得到结论;(3)①根据平行线分线段成比例定理列比例式求得t,②根据AP=OA,求得t,③根据相似三角形的性质即可得到t.【解答】解:(1)在y=−√62x+√3中,令x=0,得y=√3,y=0,得x=√2,∴A的坐标为(√2,0),点B的坐标为(0,√3);故答案为:(√2,0),(0,√3);(2)当OP⊥AB时,OP的距离最短,∵OA=√2,OB=√3,∴AB=√OA2+OB2=√5,∵S△AOB=12OA•OB=12AB•OP,∴OP=OA⋅OBAB=√305;(3)①如图1,当OP=AP,过P作PC⊥OA于C,∴AC=0C,∴PC∥OB,∴APAB=ACAO=12,∴t=√5 2,②当AP=OA时,即t=√2,③如图2,当OA=OP时,过O作OC⊥AB于C,∴∠ACO=∠AOB=90°,∵∠OAB=∠AOC,∴△AOC∽△AOB,∴AOAB=ACOA,∴√2√5=√2,∴AC=2√5 5,∴AP=t=2AC=4√5 5.综上所述:当t=√52,√2,4√55时,△OAP为等腰三角形.【点评】本题考查了一次函数与坐标轴的交点,三角形的面积公式,相似三角形的判定和性质,等腰三角形的性质,正确的作出图形是解题的关键.8.如图,一次函数y=3x+3的图象与x轴交于点A,与y轴交于点B,二次函数y=ax2+bx+c的图象经过点A,B,C,且点C的坐标为(3,0).(1)求这个二次函数的表达式;(2)在这个二次函数图象的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,直接写出符合条件的点Q的坐标;若不存在,请说明理由.【分析】(1)由直线y=3x+3交x轴于A点,交y轴于B点,即可求得点A与B的坐标,又由过A、B 两点的抛物线交x轴于另一点C(3,0),利用两点式法即可求得抛物线的解析式;(2)分别从AB=BQ,AQ=BQ,AB=AQ三方面去分析,注意抓住线段的求解方法,借助于方程求解即可求得答案.【解答】解:(1)∵当x=0时,y=3,当y=0时,x=﹣1,∴A(﹣1,0),B(0,3),∵C(3,0),设抛物线的解析式为y=a(x+1)(x﹣3),∴3=a×1×(﹣3),∴a=﹣1,∴此抛物线的解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(2)存在.∵抛物线的对称轴为:直线x=−1+32=1,∴如图对称轴与x轴的交点即为Q1,∵OA=OQ1,BO⊥AQ1,∴当Q1B=AB时,设Q(1,q),∴1+(q﹣3)2=10,∴q=0,或q=6,∴Q(1,0)或Q(1,6)(在直线AB上,舍去).当Q2A=Q2B时,设Q2的坐标为(1,m),∴22+m2=12+(3﹣m)2,∴m=1,∴Q2(1,1);当Q3A=AB时,设Q3(1,n),∴22+n2=12+32,∴n=±√6,∴Q 3(1,√6),Q 4(1,−√6).∴符合条件的Q 点坐标为Q 1(1,0),Q 2(1,1),Q 3(1,√6),Q 4(1,−√6).【点评】此题考查了待定系数法求二次函数的解析式与等腰三角形的性质等知识.此题难度适中,注意分类讨论思想,方程思想与数形结合思想的应用是解此题的关键,还要注意别漏解.9.如图.在平面直角坐标系中,点C 、点A 为x 轴上两点,OA 、OC 的长是方程y =x 2﹣7x +12=0的两个根(OC >OA ).点B 在y 轴上,CD ⊥AB 交y 轴于点P ,且CP =AB .(1)求点A 、C 的坐标.(2)求直线CD 的函数解析式.(3)直线CD 上是否存在点E ,使△ACE 为等腰三角形?若存在,请直接写出点E 坐标;若不存在.请说明理由.【分析】(1)解方程x 2﹣7x +12=0得OC =4,OA =3,即可得到结论;(2)根据已知条件易求△PCO ≌△ABO ,于是得到OP =OA =3,OB =OC =4,求得p 的坐标,再根据待定系数法可求得结论;(3)易求AC =3﹣(﹣4)=7,分三种情况:①EC =EA ,根据等腰三角形的性质可求得结论,②EC =CA =7,根据相似三角形的性质可求得结论,③EA =CA =7,有勾股定理求出结论.【解答】(1)解:解方程x 2﹣7x +12=0得x 1=3,x 2=4,∴OC =4,OA =3,∴A (3,0),C (﹣4,0);(2)∵CD ⊥AB ,x 轴⊥y 轴,∴∠PCO =∠ABO =90°﹣∠BAO ,在△PCO 和△ABO 中,{∠POC =∠AOB ∠PCO =∠ABO CP =AB,∴△PCO ≌△ABO ,∴OP =OA =3,OB =OC =4,∴P (0,3),设直线AD 解析式为y =kx +b ,把P (0,3),C (﹣4,0)代入可得{b =3−4k +b =0解得{b =3k =34.故直线CD 的函数解析式为y =34x +3; (3)AC =3﹣(﹣4)=7,CP =√42+32=5,当EC =EA 时,根据等腰三角形的性质,E 点的横坐标为−12, 把x =−12代入y =34x +3得:y =218,即E (−12,218)当EC =AC =7时, 设p (b ,m ), ∴m PO=EC PC,即m 3=75,解得:m =215, 把y =215代入y =34x +3得x =85,即E (85,215) 当EA =AC =7时,设E (n ,34n +3),由勾股定理得:(n ﹣3)2+(34n +3)2=AE 2=72,解得:n =2450±22450,∵AP =√32+32=√18<7, ∴E 在第一象限, ∴n >0,∴n =12425,n =4,34n +3=16825, ∴E (12425,16825),(−485,−215), 综上所述:E 的坐标为:E (−485,−215),E (−12,218),E (85,215),E (12425,16825).【点评】本题主要考查了一元二次方程,全等三角形的判定与性质,一次函数的解析式的求法,等腰三角形的性质,综合性强,能正确分类是解决问题的关键.10.如图,已知A (1,3),B (5,0),在x 轴上是否存在点P ,使△P AB 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【分析】过A 作AC ⊥x 轴于C ,根据A (1,3),B (5,0),得到AC =3,BC =4,根据勾股定理得到AB =√AC 2+BC 2=5,①若AP =AB =5,则PC =BC =4,求得 P 1(﹣3,0);②若BP =BA =5,求得P 2(0,0)或P 3(10,0);③若P A =PB ,则P 在AB 的垂直平分线上,求得P 4(158,0).【解答】解:存在, 过A 作AC ⊥x 轴于C , ∵A (1,3),B (5,0), ∴AC =3,BC =4, ∴AB =√AC 2+BC 2=5,①若AP =AB =5,则PC =BC =4, ∴P 1(﹣3,0);②若BP =BA =5,则P 2(0,0)或P 3(10,0); ③若P A =PB ,则P 在AB 的垂直平分线上, ∴PB 5=524,∴PB =258,∴P 4(158,0).综上所述:p (﹣3,0),(0,0),(10,0),(158,0).【点评】本题主要考查了等腰直角三角形的判定和性质,勾股定理,相似三角形的判定和性质,分类讨论是解答此题的关键.11.如图,已知抛物线y =ax 2+bx +c 与x 轴交于A (m ,0),B (n ,0),点A 位于点B 的右侧,且m ,n 是一元二次方程x 2+2x ﹣3=0的两个根,与y 轴交于C (0,3).在抛物线上的对称轴上是否存在点P ,使得△P AC 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.【分析】解方程求得A 和B 的坐标,求得对称轴,当A 是直角顶点时,求得过A 于AC 垂直的直线与抛物线的对称轴的交点,然后判断是否是等腰三角形;同理当C 是直角顶点时利用相同的方法判断;当AC 是等腰三角形的底边时,求得AC 的中垂线与对称轴的交点,然后判断是否是直角三角形即可.【解答】解:解方程x 2+2x ﹣3=0得x 1=﹣3,x 2=1, 则A 的坐标是(1,0),B 的坐标是(﹣3,0). 抛物线的对称轴是x =﹣1.设AC 的解析式是y =kx +b ,则{k +b =0b =3,解得:{k =−3b =3,则直线AC 的解析式是y =﹣3x +3.当A 是直角顶点时,过A 且垂直于AC 的直线解析式设是y =13x +c , 把A 代入得:13+c =0,解得:c =−13, 则解析式是y =13x −13.令x =﹣1,则y =−13−13=−23,则交点是(﹣1,−23).到A 的距离是√(−1−1)2+(−23)2=2√103,AC =√32+12=√10, 则三角形不是等腰三角形;同理,当C 时直角时,过C 于AC 垂直的直线的解析式是y =13x +3,与对称轴x =﹣1的交点是(﹣1,83).到C 的距离是√(−1−1)2+(83)2=103≠AC ,则不是等腰直角三角形; 当P 是直角,即AC 是斜边时,AC 的中点是(12,32),过这点且与AC 垂直的直线的解析式是y =13x +86. 当x =﹣1时,y =−13+86=1. 则与对称轴的交点是(﹣1,1).则到A 的距离是√(−1−1)2+12=√5. ∵(√5)2+(√5)2=(√10)2, ∴P 的坐标是(﹣1,1).【点评】本题考查了二次函数与x 轴的交点以及等腰直角三角形的判定,正确进行讨论是关键. 12.直线MN 与x 轴,y 轴分别相交A 、C 两点,分别过A 、C 作x 轴、y 轴的垂线,二者相交于B 点,且OA =8,OC =6.(1)求直线MN 的解析式;(2)已知在直线MN 上存在点P ,使△PBC 是等腰三角形,求点P 的坐标.【分析】(1)根据题意求出点A 、C 的坐标,运用待定系数法求出直线MN 的解析式; (2)从PC =PB ,PC =BC ,PB =BC 三种情况进行解答. 【解答】解:(1)∵OA =8,OC =6, ∴A (8,0),C (0,6), 设直线MN 的解析式为:y =kx +b , {8k +b =0b =6, 解得:{k =−34b =6,直线MN 的解析式:y =−34x +6; (2)由题意得,B (8,6), ∵点P 在直线MN 上, ∴设P (a ,−34a +6),当PC =PB 时,点P 为BC 的中垂线与MN 的交点,则P 1(4,3); 当PC =BC 时,a 2+(−34a +6﹣6)2=64, 解得,a 1=−325,a 2=325, 则P 2(−325,545),P 3(325,65);当PB =BC 时,(a ﹣8)2+(−34a +6﹣6)2=64, 解得,a =25625, 则P 4(25625,−4225). 【点评】本题考查的是待定系数法求一次函数解析式和等腰三角形的判定,灵活运用待定系数法是解题的关键,注意分情况讨论思想的运用.13.在平面直角坐标中,x 轴上有点A 和点M ,y 轴上有一点B ,过点M 作MN ⊥AB 于点N ,交y 轴于点G ,且MG =AB ,OA 、OM (OA <OM )的长是方程x 2﹣7x +12=0的两个根. (1)求点A ,B 及点M 的坐标; (2)求直线MN 的解析式;(3)直线MN 上是否存在点P ,△PMA 是等腰三角形?若存在,直接写出点P 的坐标;若不存在,说明理由.【分析】(1)由一对直角相等,一对对顶角相等得到三角形BNG 与三角形OMG 相似,利用相似三角形对应角相等得到∠ABO =∠OMG ,再由一对直角相等,AB =MG ,利用AAS 得到三角形AOB 与三角形OMG 全等,利用全等三角形对应边相等得到OB =OM ,OG =OA ,求出已知方程的解确定出OA 与OM 的长,求出A 与M 坐标,进而确定出B 的坐标即可;(2)由(1)确定出G 与M 坐标,设直线MN 解析式为y =kx +b ,把G 与M 坐标代入求出k 与b 的值,确定出直线MN 解析式即可;(3)直线MN 上存在点P ,△PMA 是等腰三角形,如图所示,分三种情况考虑:若P A =PM ;MP =MA ;AM =PM ,分别求出P 的坐标即可.【解答】解:(1)∵∠BNG =∠GOM =90°,∠BGN =∠MGO , ∴∠BNG =∠OMG , 在△AOB 和△GOM 中, {∠ABO =∠GMO∠AOB =∠GOM AB =MG, ∴△AOB ≌△GOM (AAS ), ∴OB =OM ,OA =OG , 方程x 2﹣7x +12=0,分解因式得:(x ﹣3)(x ﹣4)=0, 解得:x =3或x =4, ∴OA =3,OM =4,∴A (﹣3,0),M (4,0),B (0,4);(2)由(1)得:G (0,3),M (4,0), 设直线MN 解析式为y =kx +b , 把G 与M 坐标代入得:{b =34k +b =0,解得:k =−34,b =3,则直线MN 解析式为y =−34x +3;(3)直线MN 上存在点P ,△PMA 是等腰三角形,分三种情况考虑:若P A =PM ,作PQ ⊥AM ,可得PQ 垂直平分AM , 由A (﹣3,0),M (4,0),得到AM =7,即QM =72,OQ =4−72=12, 把x =12代入得:y =218,此时P (12,218);若AM =MP ,设P (a ,−34a +3),由M (4,0), 得到(a ﹣4)2+(−34a +3)2=49, 解得:a =485或a =−85, 此时P (485,−215),P (−85,215),若AM =AP 时,∵OA =OG =3,∠AOB =∠GOM ,OB =PM =4, ∴△AOB ≌△GOM , ∴∠OAB =∠OGM =∠BGN , ∵∠OAB +∠ABO =90°, ∴∠ABO +∠BGN =90°, ∴MN =MP ,∵A (﹣3,0),B (0,4), ∴直线AB 的解析式为y =43x +4①, ∵直线MN 解析式为y =−34x +3②; ∴直线MN 和AB 的交点坐标为(−1225,8425), ∵M (4,0),∴P (−12425,16825) 综上,满足题意P 的坐标为(12,218)或(485,−215)或(−85,215)或(−12425,16825). 【点评】此题属于一次函数解析式,涉及的知识有:全等三角形的判定与性质,一元二次方程的解法,坐标与图形性质,待定系数法求一次函数解析式,熟练掌握待定系数法是解本题第二问的关键. 14.如图①,反比例函数y =kx (x <0)图象经过点A (﹣1,b ),过点A 作AB ⊥x 轴于B ,△AOB 的面积为√32.(1)求k 和b 的值.(2)若一次函数y =−√33x +m 的图象经过点A ,并且与x 轴交于点M ,求M 的值.(3)如图②,在x 轴上是否存在点P ,使△P AM 为等腰三角形?若存在,求出所有的P 点,若不存在,请说明理由.【分析】(1)根据三角形面积公式得到12×1×b =√32,则可求出b =√3,从而可确定A 点坐标,然后根据反比例函数图象上点的坐标特征求k 的值;(2)把A 点坐标代入一次函数解析式求出m 的值,然后根据x 轴上点的坐标特征求M 点的坐标; (3)先计算出AM 的长,再分类讨论:当MP =MA =2√3时,根据x 轴上点的坐标特征写出P 点坐标;当AP =AM 时,P 点与M 点关于AB 对称,易得此时P 点坐标;当P A =PM 时,由于OA =OM =2,所以此时P 点坐标为(0,0). 【解答】解:(1)∵△AOB 的面积为√32, ∴12×1×b =√32,∴b =√3, ∴A (﹣1,√3), ∴k =﹣1×√3=−√3,(2)把A (﹣1,√3)代入y =−√33x +m 得√33+m =√3,解得m =2√33,∴一次函数解析式为y =−√33x +2√33, 当y =0时,−√33x +2√33=0,解得x =2, ∴M 点的坐标为(2,0); (3)存在.∵A (﹣1,√3),M (2,0); ∴MA =√(2+1)2+(√3)2=2√3,当MP =MA =2√3时,P 点坐标为(2+2√3,0)或(2﹣2√3,0); 当AP =AM 时,P 点坐标为(﹣4,0); 当P A =PM 时,P 点坐标为(0,0),综上所述,当P 点坐标为(2+2√3,0)或(2﹣2√3,0)或(﹣4,0)或(0,0)时,△P AM 为等腰三角形.【点评】本题考查了反比例函数的综合题:熟练掌握反比例函数图象上点的坐标特征和一次函数图象上点的坐标特征;会应用等腰三角形的性质;会运用分类讨论的思想解决数学问题.15.如图所示,在等腰△ABC 中,AB =AC =5cm ,BC =8cm ,点P 由点A 出发沿AB 方向向点B 匀速运动,同时点Q 由点B 出发沿BC 方向向点C 匀速运动,它们的速度均为1cm /s .连接PQ ,设运动时间为t (s )(0<t <5),解答下列问题: (1)当t 为何值时,△BPQ 的面积为65cm 2;(2)在点P ,Q 的运动中,是否存在时间t ,使△BPQ 为等腰三角形.若存在,请求出对应的时间t ;若不存在,请说明理由.【分析】(1)过点A 作AE ⊥BC 于E ,过点P 作PF ⊥BC 于F ,先求出AE 的长,由相似三角形的性质可求PF =3(5−t)5cm ,BF =4(5−t)5cm ,由三角形的面积公式可求解; (2)分三种情况讨论,利用等腰三角形的性质可求解.【解答】解:(1)如图,过点A 作AE ⊥BC 于E ,过点P 作PF ⊥BC 于F ,∵AB =AC =5cm ,BC =8cm ,AE ⊥BC , ∴BE =EC =4cm , ∴AE =√AB2−BE2=√25−16=3cm ,∵∠PFB =∠AEB =90°,∠B =∠B , ∴△AEB ∽△PFB , ∴BP AB =PF AE =BF BE , ∴5−t 5=PF 3=BF4,∴PF =3(5−t)5cm ,BF =4(5−t)5cm , ∵△BPQ 的面积为65cm 2, ∴12×BQ ×PF =65,∴12×t ×3(5−t)5=65, ∴t 1=1,t 2=4,∴当t 为1或4时,△BPQ 的面积为65cm 2;(2)当BP =BQ 时,则5﹣t =t , ∴t =52,当BQ =PQ 时,∵PQ 2=PF 2+QF 2, ∴t 2=[3(5−t)5]2+[4(5−t)5−t ]2, ∴t 1=5(不合题意),t 2=2513,当BP =PQ 时,则点P 在BF 的垂直平分线上, ∴4(5−t)5=t2,∴t =4013, 综上所述:t 的值为52或2513或4013时,△BPQ 为等腰三角形.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,利用分类讨论思想解决问题是本题的关键.16.一次函数y =kx +b 的图象经过点A (0,9),并与直线y =53x 相交于点B ,与x 轴相交于点C ,其中点B 的横坐标为3.(1)求B 点的坐标和k ,b 的值;(2)点Q 为直线y =kx +b 上一动点,当点Q 运动到何位置时△OBQ 的面积等于272?请求出点Q 的坐标;(3)在y 轴上是否存在点P 使△P AB 是等腰三角形?若存在,请直接写出点P 坐标;若不存在,请说明理由.【分析】(1)y =53x 相交于点B ,则点B (3,5),将点A 、B 的坐标代入一次函数表达式,即可求解;(2)△OBQ 的面积=12×OA ×|xQ ﹣xB |=12×9×|m ﹣3|=272,即可求解; (3)分AB =AP 、AB =BP 、AP =BP 三种情况,分别求解即可. 【解答】解:(1)y =53x 相交于点B ,则点B (3,5),将点A 、B 的坐标代入一次函数表达式并解得:k =−43,b =9;(2)设点Q (m ,−43m +9),则△OBQ 的面积=12×OA ×|xQ ﹣xB |=12×9×|m ﹣3|=272, 解得:m =0或6,故点Q (0,9)或(6,1);(3)设点P (0,m ),而点A 、B 的坐标分别为:(0,9)、(3,5), 则AB 2=25,AP 2=(m ﹣9)2,BP 2=9+(m ﹣5)2, 当AB =AP 时,25=(m ﹣9)2,解得:m =14或4; 当AB =BP 时,同理可得:m =9(舍去)或1; 当AP =BP 时,同理可得:m =478;综上点P 的坐标为:(0,4)或(0,14)或(0,1)或(0,478)【点评】本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.17.如图,在平面直角坐标系中,直线y =x +2与x 轴,y 轴分别交于A ,B 两点,点C (2,m )为直线y =x +2上一点,直线y =−12x +b 过点C . (1)求m 和b 的值;(2)直线y =−12x +b 与x 轴交于点D ,动点P 在线段DA 上从点D 开始以每秒1个单位的速度向A 点运动.设点P 的运动时间为t 秒. ①若△ACP 的面积为10,求t 的值;②是否存在t 的值,使△ACP 为等腰三角形?若存在,直接写出t 的值;若不存在,请说明理由.【分析】(1)把点C (2,m )代入直线y =x +2中得:m =2+2=4,则点C (2,4),直线y =−12x +b 过点C ,4=−12×2+b ,b =5;(2)①由题意得:PD =t ,A (﹣2,0),y =−12x +5中,当y =0时,−12x +5=0,D (10,0),AD =10+2=12,12(12−t)•4=10,即可求解; ②分AC =PC 、AP =CP 、AC =AP 三种情况,分别求解即可.【解答】解:(1)把点C (2,m )代入直线y =x +2中得:m =2+2=4,∴点C (2,4),∵直线y =−12x +b 过点C ,4=−12×2+b ,b =5;(2)①由题意得:PD =t ,y =x +2中,当y =0时,x +2=0,x =﹣2,∴A (﹣2,0),y =−12x +5中,当y =0时,−12x +5=0,x =10,∴D (10,0),∴AD =10+2=12,∵△ACP 的面积为10,∴12(12−t)•4=10, t =7,则t 的值7秒;②设点P (10﹣t ,0),点A 、C 的坐标为:(﹣2,0)、(2,4),当AC =PC 时,则点C 在AP 的中垂线上,即2×2=10﹣t ﹣2,解得:t =4;当AP =CP 时,则点P 在点C 的正下方,故2=10﹣t ,解得:t =8;当AC =AP 时,同理可得:t =12﹣4√2故:当t =4秒或(12﹣4√2)秒或8秒时,△ACP 为等腰三角形.【点评】本题考查的是一次函数综合运用,涉及到等腰三角形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.18.如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交于y轴于点H.(1)连接BM,动点P从点A出发,沿折线ABC方向以1个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(2)在(1)的情况下,当点P在线段AB上运动时,是否存在以BM为腰的等腰三角形BMP?如存在,求出t的值;如不存在,请说明理由.【分析】(1)设点M到BC的距离为h,由△ABC的面积易得h,利用分类讨论的思想,三角形的面积公式①当P在直线AB上运动;②当P运动到直线BC上时分别得△PBM的面积;(2)分类讨论:①当MB=MP时,PH=BH,解得t;②当BM=BP时,利用勾股定理可得BM的长,易得t.【解答】解:(1)设点M到BC的距离为h,由S△ABC=S△ABM+S△BCM,即12×5×4=12×5×32+12×5h,∴h=5 2,①当P在直线AB上运动时△PBM的面积为S与P的运动时间为t秒关系为:S=12(5﹣t)×32,即S=−34t+154(0≤t<5);②当P运动到直线BC上时△PMB的面积为S与P的运动时间为t秒关系为:S=12[5﹣(10﹣t)]×52,即S=54t−254(5<t≤10);(2)存在①当MB=MP时,∵点A的坐标为(﹣3,4),AB=5,MB=MP,MH⊥AB,∴PH=BH,即3﹣t=2,∴t=1;②当BM=BP时,即5﹣t=√(4−52)2+22,t=52综上所述,当t =1或52时,△PMB 为以BM 为腰的等腰三角形. 【点评】本题主要考查了菱形的性质,动点问题,等腰三角形的性质和三角形的面积公式及待定系数法求解析式,利用分类讨论的思想,数形结合是解答此题的关键.19.已知直线y =﹣2x +4与x 轴、y 轴分别交于A 、D 两点,抛物线y =ax 2﹣x +c 经过点A 、D ,点B 是抛物线与x 轴的另一个交点.(1)求这条抛物线的解析式及点B 的坐标;(2)如果点C (﹣2,y )在这条抛物线上,在y 轴上是否存在点P ,使△BCP 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【分析】(1)根据直线解析式可求出A 与D 的坐标,然后将A 、D 的坐标代入抛物线的解析式中即可求出a 、c 的值,然后令y =0代入抛物线的解析式中即可求出B 的坐标.(2)设P (0,m ),由(1)可求出点C 的坐标,然后根据勾股定理求出BC 2、CP 2、BP 2,由于△BCP 为等腰三角形,故分三种情况:BC =CP 、BC =BP ,BP =CP ,然后列出方程求出m 的值.【解答】解:(1)令x =0代入y =﹣2x +4,∴y =4,∴D (0,4),令y =0代入y =﹣2x +4,∴x =2,∴A (2,0),把A (2,0)和D (0,4)代入y =ax 2﹣x +c ,∴{0=4a −2+c 4=c解得:{a =−12c =4∴抛物线的解析式为:y =−12x 2﹣x +4∴令y =0代入y =−12x 2﹣x +4,解得:x =2或x =﹣4∴B (﹣4,0)(2)将C (﹣2,y )代入y =−12x 2﹣x +4,∴y =4,∴C (﹣2,4),设P (0,m )∵B (﹣4,0),C (﹣2,4)∴由勾股定理可知:BC 2=(﹣4+2)2+(0﹣4)2=20,BP 2=(﹣4﹣0)2+(0﹣m )2=16+m 2,CP 2=(﹣2﹣0)2+(4﹣m )2=4+(4﹣m )2,当BC =BP 时,∴BC 2=BP 2,∴20=16+m 2,∴m =±2,P (0,2)或P (0,﹣2)当BC =CP 时,∴BC 2=CP 2,∴20=4+(4﹣m )2∴m =0或m =﹣8,∴P (0,0)或P (0,8),当BP =CP 时,∴BP 2=CP 2,∴16+m 2=4+(4﹣m )2,解得:m =12,∴P (0,12), 综上所述,P 的坐标为:(0,﹣2)、(0,2)(0,0)、(0,8)、(0,12) 【点评】本题考查二次函数的综合问题,涉及勾股定理,待定系数法求解析式,一元二次方程的解法,等腰三角形的性质与判定,综合程度较高,需要学生综合运用所学的知识.20.如图,抛物线y =−38x 2+34x +3与x 轴交于A 、B 两点,与y 轴交于点C ,在y 轴上是否存在点M 使△ACM 为等腰三角形?若存在,求出所有满足条件的M 点坐标;若不存在,请说明理由.【分析】令x =0可求得对应的y 值,从而可求得点C 的坐标,令y =0可求得对应的x 的值,可求得点A 的坐标,然后设点M 的坐标(0,a ),分为AM =AC 、AM =MC 、CA =CM 三种情况,并结合两点间的距离公式列方程求解即可.【解答】解:∵当x =0时,y =3,∴C (0,3).令y =0得:−38x 2+34x +3=0,解得:x =﹣2或x =4,∴A (﹣2,0).∴AC 2=32+(﹣2)2=13.设点M 的坐标为(0,a ).当AC =AM 时,由两点间的距离公式可知:22+a 2=13,解得a =3(舍去),或a =﹣3,∴点M 的坐标为(0,﹣3).当AC =CM 时,由两点间的距离公式可知:(a ﹣3)2=13,解得:a =3±√13,∴点M 的坐标为(0,3+√13)或(0,3−√13).当AM =CM 时,由两点间的距离公式可知:22+a 2=(3﹣a )2,a =56.∴点M 的坐标为(0,56). 综上所述,点M 的坐标为(0,﹣3)或(0,3+√13)或(0,3−√13)或(0,56). 【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了两点间的距离公式、等腰三角形的性质、二次函数与坐标轴的交点等知识,分类讨论是解题的关键.。
因动点产生的等腰三角形的专题(答案)
因动点产生的等腰三角形1、如图,在直角坐标系xOy 中,反比例函数 y = 8x 图像上的点A 、B 的坐标分别为(2,m )、(n ,2),点C 在x 轴上,且△ABC 为等腰三角形,求点C 的坐标.解:因为A (2,m )、B (n ,2)在y =8x 上,所以m =82 ,2=8n ,解得:m =4,n =4,所以A (2,4)、B (4,2).因为点C 在x 轴上,所以设C (x ,0), 则AB =(4─2)2+(2─4)2=22,AC =(x ─2)2+42=x 2─4x +20 ,BC =(x ─4)2+22 =x 2─8x +20 .若△ABC 为等腰三角形,分三种情况讨论:① AB =AC ,即x 2─4x +20 =22,整理得x 2─4x +12=0,因为△<0,所以方程无实数根,这种情 况不存在.② AB =BC ,即x 2─8x +20 =22,整理得x 2─8x +12=0,解得x 1=2,x 2=6,所以C (2,0)(如 图1-4);C (6,0)(因为A 、B 、C 三点在一条直线上,不能构成三角形,如图1-5,所以舍去).③ BC =AC ,即x 2─4x +20 =x 2─8x +20 ,解得:x =0,所以C (0,0)(如图1-6). 所以这样的点C 有两个,C (2,0)或(0,0).2、如图,点A (m ,2)是正比例函数和反比例函数的交点, AB ⊥y 轴于点B ,OB = 2 AB .(1)求正比例函数和反比例函数的解析式;(2)求正比例函数和反比例函数的另一个交点C 的坐标;(3)在y 轴上是否存在一点D ,使△ACD 为等腰三角形,若存在,请求出点D 的坐标,若不存在,请说明理由.解:(1)因为AB ⊥y 轴于点B ,OB =2 AB ,点A (m ,2)所以OB =2,AB =1,所以A (1,2), 因为A (1,2)在y =kx (k ≠ 0)上,所以k =2,所以y =2x . 又因为A (1,2)在y =kx (k ≠ 0)上,所以k=2,所以y =2x.(2)因为A (1,2),正比例函数和反比例函数的交点关于原点对称,所以C ( ─ 1,─ 2 ).图1-4图1-5图1-6(3)存在.因为点D在y轴上,所以设D(0,y),则AC=(1+1)2+(2+2)2=25,AD=12+(y─2)2,CD=(─1)2+(y+2)2若△ACD为等腰三角形,分三种情况讨论:①AC=AD,即25=12+(y─2)2,整理得y2─4y─15=0,解得y=2±19,所以D(0,2+19)或(0,2─19)②AC=CD,即25=(─1)2+(y+2)2,整理得y2+4y─15=0,解得y=─2±19,所以D(0,─2 +19)或(0,─2─19).③AD=CD,即12+(y─2)2=(─1)2+(y+2)2,解得y=0,此时点D与原点重合,舍去.所以这样的点D有四个,D(0,2+19),(0,2─19),(0,─2 +19),(0,─2─19).3、如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=12,AD=18,AB=10.动点P、Q分别从点D、B同时出发,动点P沿射线DA的方向以每秒2个单位长的速度运动,动点Q在线段BC上以每秒1个单位长的速度向点C运动,当点Q运动到点C时,点P随之停止运动.设运动的时间为t(秒).(1)当点P在线段DA上运动时,连接BD,若∠ABP=∠ADB,求t的值;(2)当点P在线段DA上运动时,若以BQ为直径的圆与以AP为直径的圆外切,求t的值;(3)设射线PQ与射线AB相交于点E,△AEP能否为等腰三角形?如果能,请直接写出t的值;如果不能,请说明理由.4、如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG . (1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长;(3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.5、如图,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3, 0)、C (0 ,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△P AC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.解:(1)因为抛物线与x 轴交于A (-1,0)、B (3, 0)两点,设y =a (x +1)(x -3), 代入点C (0 ,3),得-3a =3.解得a =-1.所以抛物线的函数关系式是y =-(x +1)(x -3)=-x 2+2x +3.(2)如图2,抛物线的对称轴是直线x =1.当点P 落在线段BC 上时,P A +PC 最小,△P AC 的周长最小. 设抛物线的对称轴与x 轴的交点为H . 由BH PH BO CO =,BO =CO ,得PH =BH =2. 所以点P 的坐标为(1, 2). 图2(3)点M 的坐标为(1, 1)、、(1,)或(1,0).第(3)题的解题过程是这样的:设点M 的坐标为(1,m ).在△MAC 中,AC 2=10,MC 2=1+(m -3)2,MA 2=4+m 2.①如图3,当MA =MC 时,MA 2=MC 2.解方程4+m 2=1+(m -3)2,得m =1. 此时点M 的坐标为(1, 1).②如图4,当AM =AC 时,AM 2=AC 2.解方程4+m 2=10,得m =此时点M 的坐标为或(1,).③如图5,当CM =CA 时,CM 2=CA 2.解方程1+(m -3)2=10,得m =0或6. 当M (1, 6)时,M 、A 、C 三点共线,所以此时符合条件的点M 的坐标为(1,0).图3 图4 图56、如图,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B 的坐标;(2)求经过A 、O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.解:(1)如图2,过点B 作BC ⊥y 轴,垂足为C .在Rt △OBC 中,∠BOC =30°,OB =4,所以BC =2,OC =所以点B 的坐标为(2,--.(2)因为抛物线与x 轴交于O 、A (4, 0),设抛物线的解析式为y =ax (x -4),代入点B (2,--,2(6)a -=-⨯-.解得a =.所以抛物线的解析式为2(4)y x =-=.(3)抛物线的对称轴是直线x =2,设点P 的坐标为(2, y ).①当OP =OB =4时,OP 2=16.所以4+y 2=16.解得y =±.当P 在时,B 、O 、P 三点共线(如图2).②当BP =BO =4时,BP 2=16.所以224(16y ++=.解得12y y ==-③当PB =PO 时,PB 2=PO 2.所以22224(2y y ++=+.解得y =-.综合①、②、③,点P 的坐标为(2,-,如图2所示.图2 图3如图3,在本题中,设抛物线的顶点为D ,那么△DOA 与△OAB 是两个相似的等腰三角形.由2(4)2)y x x x =-=-,得抛物线的顶点为D .因此tan DOA ∠=DOA =30°,∠ODA =120°.7、如图,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).解:(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3).②当P A =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H . 第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =.②如图4,当P A =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =.第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图78、如图,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.解:(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4).令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8APR ACP PORCORA S S S S =--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB中,∠B=45°,∠AOB>45°,OB=7,AB=OB>AB.因此∠OAB >∠AOB>∠B.如图4,点P由O向C运动的过程中,OP=BR=RQ,所以PQ//x轴.因此∠AQP=45°保持不变,∠P AQ越来越大,所以只存在∠APQ=∠AQP的情况.此时点A在PQ的垂直平分线上,OR=2CA=6.所以BR=1,t=1.我们再来讨论P在CA上运动时的情形,4≤t<7.在△APQ中,3cos5A∠=为定值,7AP t=-,5520333AQ OA OQ OA OR t=-=-=-.如图5,当AP=AQ时,解方程520733t t-=-,得418t=.如图6,当QP=QA时,点Q在P A的垂直平分线上,AP=2(OR-OP).解方程72[(7)(4)]t t t-=---,得5t=.如7,当P A=PQ时,那么12cosAQAAP∠=.因此2cosAQ AP A=⋅∠.解方程52032(7)335t t-=-⨯,得22643t=.综上所述,t=1或418或5或22643时,△APQ是等腰三角形.图5 图6 图7当P在CA上,QP=QA时,也可以用2cosAP AQ A=⋅∠来求解.9、如图,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B 方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.解:(1)如图2,图3,作NQ⊥x轴,垂足为Q.设点M、N的运动时间为t秒.在Rt △ANQ 中,AN =5t ,NQ =4t ,AQ =3t .在图2中,QO =6-3t ,MQ =10-5t ,所以MN ∶NP =MQ ∶QO =5∶3. 在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3. (2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MPQN MN=,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-. (Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=.(Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=.(Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况.②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.10、如图,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?解:(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m xx y-=.整理,得y 关于x 的函数关系为218y x x m m =-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2. (3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4本题中蕴涵着一般性与特殊性的辩证关系,例如: 由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.。
中考数学动点之等腰三角形问题
动点之等腰三角形问题【例3】(2019·湖南中考真题)如图一,在射线DE 的一侧以AD 为一条边作矩形ABCD ,AD =5CD =,点M 是线段AC 上一动点(不与点A 重合),连结BM ,过点M 作BM 的垂线交射线DE 于点N ,连接BN .(1)求CAD ∠的大小;(2)问题探究:动点M 在运动的过程中,①是否能使AMN ∆为等腰三角形,如果能,求出线段MC 的长度;如果不能,请说明理由.②MBN ∠的大小是否改变?若不改变,请求出MBN ∠的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M 运动到AC 的中点时,AM 与BN 的交点为F ,MN 的中点为H ,求线段FH 的长度.【答案】(1)30︒∠=CAD ;(2)①能,CM 的值为5或;②大小不变,30︒∠=MBN ;(3)=FH .【解析】(1)在Rt ADC ∆中,求出DAC ∠的正切值即可解决问题.(2)①分两种情形:当NA NM =时,当AN AM =时,分别求解即可.②30MBN ∠=.利用四点共圆解决问题即可.(3)首先证明ABM ∆是等边三角形,再证明BN 垂直平分线段AM ,解直角三角形即可解决问题.【详解】解:(1)如图一(1)中,∵四边形ABCD 是矩形,∴90ADC ∠=,∵DC tan AD 3∠===CAD , ∴30︒∠=CAD .(2)①如图一(1)中,当AN NM =时,∵90BAN BMN ︒∠=∠=,BN BN =,AN NM =,∴Rt Rt ()BNA BNM HL ∴∆≅∆,∴BA BM =,在Rt ABC ∆中,∵30ACB DAC ︒∠=∠=,5AB CD ==,∴210AC AB ==,∵60BAM ︒∠=,BA BM =, ∴ABM ∆是等边三角形,∴5AM AB ==,∴5CM AC AM =-=.如图一(2)中,当AN AM =时,易证15AMN ANM ︒∠=∠=,∵90BMN ︒∠=,∴75CMB ︒∠=,∵30MCB ︒∠=,∴180753075CBM ︒︒︒︒∠=--=, ∴CMB CBM ∠=∠,∴CM CB ==综上所述,满足条件的CM 的值为5或.②结论:30︒∠=MBN 大小不变.理由:如图一(1)中,∵180BAN BMN ︒∠+∠=,∴,,,A B M N 四点共圆,∴30MBN MAN ︒∠=∠=.如图一(2)中,∵90BMN BAN ∠=∠=,∴,,,A N B M 四点共圆,∴180MBN MAN ︒∠+∠=,∵180DAC MAN ︒∠+∠=,∴30MBN DAC ︒∠=∠=,综上所述,30︒∠=MBN .(3)如图二中,∵AM MC =,∴BM AM CM ==,∴2AC AB =,∴AB BM AM ==,∴ABM ∆是等边三角形,∴60BAM BMA ︒∠=∠=,∵90BAN BMN ︒∠=∠=,∴30NAM NMA ︒∠=∠=,∴NA NM =,∵BA BM =,∴BN 垂直平分线段AM , ∴52FM =,∴cos30FM NM ︒==, ∵90NFM ︒∠=,NH HM =,∴126FH MN ==.【点睛】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,解直角三角形,等边三角形的判定和性质,锐角三角函数,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.【变式3-1】如图①,已知正方形ABCD 边长为2,点P 是AD 边上的一个动点,点A 关于直线BP 的对称点是点Q ,连结PQ 、DQ 、CQ 、BQ .设AP=x.(1)当1x =时,求BP 长;(2)如图②,若PQ 的延长线交CD 边于E ,并且90CQD ∠=,求证:CEQ ∆为等腰三角形;(3)若点P 是射线AD 上的一个动点,则当CDQ ∆为等腰三角形时,求x 的值.【答案】(2)证明见解析;(3)△CDQ 为等腰三角形时x 的值为、+4.【解析】(1)利用勾股定理求出BP 的长即可;(2)根据对称性质及正方形的性质可得AB=BQ=BC ,∠A=∠BQP=∠BCE=90°,可得∠BQE=90°,由第一视角相等性质可得∠BCQ=∠BQC ,根据同角或等角的余角相等的性质可得∠EQC=∠ECQ ,可得EC=EQ ,可得结论;(3)若△CDQ 为等腰三角形,则边CD 边为该等腰三角形的一腰或者底边.又Q 点为A 点关于PB 的对称点,则AB=QB ,以点B 为圆心,以AB 的长为半径画弧,则Q 点只能在弧AB 上.若CD 为腰,以点C 为圆心,以CD 的长为半径画弧,两弧交点即为使得△CDQ 为等腰三角形(CD 为腰)的Q 点.若CD 为底边,则作CD 的垂直平分线,其与弧AC 的交点即为使得△CDQ 为等腰三角形(CD 为底)的Q 点.则如图所示共有三个Q 点,那么也共有3个P 点.作辅助线,利用直角三角形性质求之即可.【详解】(1)∵AP=x=1,AB=2,∴(2)∵四边形ABCD 是正方形,∴AB=BC,∠A=∠BCD=90°.∵Q点为A点关于BP的对称点,∴AB=QB,∠A=∠PQB=90°,∴QB=BC,∠BQE=∠BCE=90°,∴∠BQC=∠BCQ,∴∠EQC+∠BQC=∠ECQ+∠BCQ=90°,∴∠EQC =∠ECQ,∴EQ=EC,即△CEQ为等腰三角形.(3)如图,以点B为圆心,以AB的长为半径画弧,以点C为圆心,以CD的长为半径画弧,两弧分别交于Q1,Q3.此时△CDQ1,△CDQ3都为以CD为腰的等腰三角形.作CD的垂直平分线交弧AC于点Q2,此时△CDQ2以CD为底的等腰三角形.①讨论Q1,如图,连接BQ1、CQ1,作PQ1⊥BQ1交AD于P,过点Q1,作EF⊥AD 于E,交BC于F,∵△BCQ1为等边三角形,正方形ABCD边长为2,∴FC=1,在四边形ABPQ1中,∵∠ABQ1=30°,∴∠APQ1=150°,∴∠EPQ1=30°,△PEQ1为含30°的直角三角形,∵EF是BC的垂直平分线,∴AE=12AD=1,∴②讨论Q2,如图,连接BQ2,AQ2,过点Q2作PG⊥BQ2,交AD于P,交CD于G,连接BP,过点Q2作EF⊥CD于E,交AB于F,∵EF垂直平分CD,∴EF垂直平分AB,∴AQ2=BQ2.∵AB=BQ2,∴△ABQ2为等边三角形.∴AF=12AE=1,在四边形ABQ2P中,∵∠BAD=∠BQ2P=90°,∠ABQ2=60°,∴∠APQ2=120°,∴∠EQ2G=∠DPG=180°-120°=60°,∴∴,∴,即PD=2-,∴x=AP=2-PD=.③对Q3,如图作辅助线,连接BQ1,CQ1,BQ3,CQ3,过点Q3作PQ3⊥BQ3,交AD的延长线于P,连接BP,过点Q1,作EF⊥AD于E,此时Q3在EF上,记Q3与F 重合.∵△BCQ1为等边三角形,△BCQ3为等边三角形,BC=2,∴∴在四边形ABQ3P中∵∠ABF=∠ABC+∠CBQ3=150°,∴∠EPF=30°,∴,∵AE=1,∴+4.综上所述:△CDQ 为等腰三角形时x 的值为、、【点睛】本题考查四边形的综合、正方形的性质、含30°角的直角三角形的性质,第三问是一个难度非常高的题目,可以利用尺规作图的思想将满足要求的点Q 找全.另外求解各个P 点也是勾股定理的综合应用熟练掌握并灵活运所学知识是解题关键.【变式3-2】(2019·河南中考模拟)如图,抛物线y=ax2+bx+3交y 轴于点A ,交x 轴于点B(-3,0)和点C(1,0),顶点为点M .(1)求抛物线的解析式;(2)如图,点E 为x 轴上一动点,若△AME 的周长最小,请求出点E 的坐标;(3)点F 为直线AB 上一个动点,点P 为抛物线上一个动点,若△BFP 为等腰直角三角形,请直接写出点P 的坐标.【答案】(1)223y x x =--+ ;(2)E(-37,0);(3)点P 的坐标为(2,-5)或(1,0). 【解析】(1)设抛物线的解析式为:y=a(x+3)(x-1),然后将点A 的坐标代入函数解析式即可求得此抛物线的解析式;(2)作A关于x轴的对称点A′(0,-3),连接MA′交x轴于E,此时△AME的周长最小,求出直线MA'解析式即可求得E的坐标;(3)如图2,先求直线AB的解析式为:y=x+3,根据解析式表示点F的坐标为(m,m+3),分三种情况进行讨论:①当∠PBF=90°时,由F1P⊥x轴,得P(m,-m-3),把点P的坐标代入抛物线的解析式可得结论;②当∠BF3P=90°时,如图3,点P与C重合,③当∠BPF4=90°时,如图3,点P与C重合,从而得结论.【详解】(1)当x=0时,y=3,即A(0,3),设抛物线的解析式为:y=a(x+3)(x-1),把A(0,3)代入得:3=-3a,a=-1,∴y=-(x+3)(x-1)=-x2-2x+3,即抛物线的解析式为:y=-x2-2x+3;(2)y=-x2-2x+3=-(x+1)2+4,∴M(-1,4),如图1,作点A(0,3)关于x轴的对称点A'(0,-3),连接A'M交x轴于点E,则点E就是使得△AME的周长最小的点,设直线A′M 的解析式为:y=kx+b ,把A'(0,-3)和M(-1,4)代入得:43k b b ==-+⎧⎨-⎩,解得:73k b -⎧⎨-⎩==∴直线A'M 的解析式为:y=-7x-3,当y=0时,-7x-3=0, x=-37,∴点E(-37,0),(3)如图2,易得直线AB 的解析式为:y=x+3,设点F的坐标为(m,m+3),①当∠PBF=90°时,过点B作BP⊥AB,交抛物线于点P,此时以BP为直角边的等腰直角三角形有两个,即△BPF1和△BPF2,∵OA=OB=3,∴△AOB和△A'OB是等腰直角三角形,∴∠F1BC=∠BF1P=45°,∴F1P⊥x轴,∴P(m,-m-3),把点P的坐标代入抛物线的解析式y=-x2-2x+3中得:-m-3=-m2-2m+3,解得:m1=2,m2=-3(舍),∴P(2,-5);②当∠BF3P=90°时,如图3,∵∠F3BP=45°,且∠F3BO=45°,∴点P 与C 重合,故P(1,0),③当∠BPF4=90°时,如图3,∵∠F4BP=45°,且∠F4BO=45°,∴点P 与C 重合,故P(1,0),综上所述,点P 的坐标为(2,-5)或(1,0).【点睛】此题考查了待定系数法求函数的解析式,周长最短问题,等腰直角三角形的性质和判定等知识.此题综合性很强,解题的关键是注意数形结合和分类讨论思想的应用.【变式3-3】(2019·广西中考真题)已知抛物线2y mx =和直线y x b =-+都经过点()2,4M -,点O 为坐标原点,点P 为抛物线上的动点,直线y x b =-+与x 轴、y 轴分别交于AB 、两点. (1)求m b 、的值;(2)当PAM ∆是以AM 为底边的等腰三角形时,求点P 的坐标;(3)满足(2)的条件时,求sin BOP ∠的值.【答案】(1)1m =;2b =;(2)点P 的坐标为()1,1-或()2,4;(3)sin BOP ∠的值为2.【解析】(1)根据点M 的坐标,利用待定系数法可求出,m b 的值;(2)由(1)可得出抛物线及直线AB 的解析式,继而可求出点A 的坐标,设点P 的坐标为2(,)x x ,结合点,A M 的坐标可得出22,PA PM 的值,再利用等腰三角形的性质可得出关于x 的方程,解之即可得出结论;(3)过点P 作PN y ⊥轴,垂足为点N ,由点P 的坐标可得出,PN PO 的长,再利用正弦的定义即可求出sin BOP ∠的值.【详解】(1)将()2,4M -代入2y mx =,得:44m =, ∴1m =;将()2,4M -代入y x b =-+,得:42b =+,∴2b =;(2)由(1)得:抛物线的解析式为2y x ,直线AB 的解析式为2y x =-+, 当0y =时,20x -+= ,解得:2x =,∴点A 的坐标为()2,0,2OA =,设点P 的坐标为2(,)x x ,则()222242204()4PA x x x x x =-+-=+-+, ()222242()247420PM x x x x x =--+-=-++, ∵PAM ∆是以AM 为底边的等腰三角形,∴22PA PM =,即4242447420x x x x x x +-+=-++,整理,得:220x x --=,解得:121,2x x =-=,∴点P 的坐标为()1,1-或()2,4;(3)过点P 作PN y ⊥轴,垂足为点N ,如图所示,当点P 的坐标为()1,1-时,1PN =,PO ==,∴sin 2PN BOP PO ∠==;当点P 的坐标为()2,4时,2PN =,PO ==∴sin PN BOP PO ∠==,∴满足(2)的条件时,sin BOP ∠的值的值为.【点睛】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等腰三角形的性质、勾股定理以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出,m b 的值;(2)利用勾股定理及等腰三角形的性质,找出关于x 的方程;(3)通过解直角三角形,求出sin BOP ∠的值.。
动点产生的等腰三角形问题
动点产生的等腰三角形问题类型1:一动点两定点如图,在平面中找点P,使得点P与已知点A.B构成等腰三角形分类讨论:第一种情况:以AB为腰,分别以AB为圆心,AB长为半径画圆,则在圆上的点(除去AB重合或共线的点)都能与AB构成等腰三角形;第二种情况:以AB为底,即为两圆的交点P1P2,P1P2是线段AB的垂直平分线总结:就是“两圆一线”模型解题技巧:步骤1:通过“两圆一线”确定动点位置;步骤2:分类讨论,建立方程模型求动点坐标注意:去除与直线AB共线的点的方法:求直线AB的解析式,再验证P点是否在直线AB 上,在则共线,不在,则不共线或用几何方法证明例题1:在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )A.5B.6C.7D.8例题2:如图,在平面直角坐标系中,抛物线2y x x =--x 轴交于A,B 两点(点A 在点B 的左侧),与y 轴交于点C,对称轴与x 轴交于点D,点E(4,n)在抛物线上.(1) 求直线AE 的解析式;(2) 点P 为直线CE 下方抛物线上的一点,连接PC,PE.当△PCE 的面积最大时,求P 点坐标.(3) 点G 是线段CE 下方的中点,将抛物线2y x =x 轴正方向平移得到新抛物线'y ,'y 经过点D, 'y 的顶点为点F.在新抛物线'y 的对称轴上,是否存在点Q,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.练习1:如图1,已知二次函数2y ax bx c =++(a,b,c 为常数,a ≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M 的纵坐标为83-.直线l 的解析式为y=x.(1) 求二次函数的解析式;(2) 直线l 沿x 轴向右平移,得到直线'l ,'l 与线段OA 相交于B,与x 轴下方的抛物线相交于点C,过点C 作CE ⊥x 轴于点E,把△BCE 沿直线'l 折叠,当点E 恰好落在抛物线上'E 点时,(图2),求直线'l 的解析式;(3) 在(2)的条件下, 'l 与y 轴交于点N,把△BON 绕点O 逆时针旋转135°得到△''B ON ,P为'l 上的动点,当△''PB N 为等腰三角形时,求符合条件的点P 的坐标.练习2:如图1,在平面直角坐标系中,抛物线249y x bx c =-++经过点A(-5,0)和点B(1,0). (1) 求抛物线的解析式及顶点D 的坐标;(2) 如图2,连接AD,BD,点M 在线段AB 上(不与A,B 重合),∠DMN=∠DBA,MN 交线段AD 于点N,是否存在这样点M,使得△DMN 为等腰三角形?若存在,求出AN 的长;若不存在,请说明理由.类型2:多个动点1.在平面内使构成等腰三角形的三个点中,动点个数≥2个;解决这类问题的方法:让三个点分别做顶角顶点,进行分类讨论;如图,在平面内点A、B、P为动点,使得△PAB是等腰三角形?分类:①以P为顶点,PA=PB;②以A为顶点,AP=AB③以B为顶点,BA=BP2.在具体的题目中有时不仅要找出符合题意的点,还要计算出点的坐标,计算点的坐标的方法可以参考以下几种方法:①全等;②相似;③勾股定理;④锐角三角函数;⑤面积法;⑥方程或者方程组.例题1:如图,△ABC是边长为8的等边三角形,现有两点M,N分别从点A,点B同时出发,沿三角形的边运动,已知点M的速度为每秒1个单位长度,点N的运动速度为每秒2个单位长度,当点M第一次到达B点时,M,N同时停止运动.(1)点M,N运动几秒后,可得到等边三角形AMN?(2)点M,N运动几秒后,M,N两点重合?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰△AMN?若存在,请求出此时M,N运动的时间.例题2:如图1,在平面直角坐标系中,点O 为坐标原点,抛物线2y ax bx c =++与y 轴交于点A(0,6),与x 轴交于点B(-2,0),C(6,0).(1) 直接写出抛物线的解析式及其对称轴;(2) 如图2,连接AB,AC,设点P(m,n)是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点P 作PD ⊥AC 于点E,交x 轴于点D,过点P 作PG ∥AB 交AC 于点F,交x 轴于点G.设线段DG 的长为d,求d 与m 的函数关系式,并注明m 的取值范围;(3) 在(2)的条件下,若△PDG 的面积为4912. ①求点P 的坐标;②设M 为直线AP 上一动点,连接OM 交直线AC 与点S,则点M 在运动过程中,在抛物线上是否存在点R,使得△ARS 为等腰直角三角形?若存在,请直接写出点M 及其对应的点R 的坐标;若不存在,请说明理由.练习1:如图①,在平面直角坐标系中,已知A(-2,2),B(-2,0),C(0,2),D(2,0)四点,动点M 以B →C →D 运动(M 不与点B,点D 重合),设运动时间为t(秒).(1) 求经过A,C,D 三点的抛物线的解析式;(2) 点P 在(1)中的抛物线上,当M 为BC 的中点时,若△PAM ≌PBM,求点P 的坐标;(3) 当点M 在CD 上运动时,如图②,过点M 作MF ⊥x 轴,垂足为F,ME ⊥AB,垂足为E,设矩形MEBF 与△BCD 重叠部分的面积为S,求S 与t 的函数关系,并求出S 的最大值;(4) 点Q 为x 轴上一点,直线AQ 与直线BC 交于点H,与y 轴交于点K,是否存在点Q,使得△HOK 为等腰三角形?若存在,直接写出符合条件的所有Q 点的坐标;若不存在,请说明理由.练习2:抛物线229y x bx c =-++与x 轴交于A(-1,0),B(5,0)两点,顶点为C,对称轴交x 轴于点D,点P 为抛物线对称轴CD 上的一动点(点P 不与C,D 重合),过点C 作直线PB 的垂线交PB 于点E,交x 轴于点F.(1) 求抛物线的解析式;(2) 当△PCF 的面积为5时,求点P 的坐标;(3) 当△PCF 为等腰三角形时,请直接写出点P 的坐标.课后练习:1.如图所示,二次函数2(1)2y k x =-+的图象与一次函数y=kx-k+2的图象交于A,B 两点,点B 在点A 的右侧,直线AB 分别与x,y 轴交于C,D 两点,其中k <0.(1)求A,B 两点的横坐标;(2)若△OAB 是以OA 为腰的等腰三角形,求k 的值;(3)二次函数图象的对称轴与x 轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k 的值;若不存在,说明理由.2.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点A(-4,0),B(2,0),交y 轴于点C(0,6),在y 轴上有一个点E(0,-2),连接AE.(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求△ADE 面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP 为等腰三角形?若存在,请直接写出所有P 点的坐标,若不存在,请说明理由.3.抛物线263y x x =-+-与y 轴相交于点C(0,-3),且抛物线的对称轴为x=3,D 为对称轴与x 轴的交点,在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E,F 两点,若△DEF 是等腰三角形,求△DEF 的面积.4.如图,抛物线2y ax bx c =++交x 轴于A,B 两点,交y 轴于点C(0,3),顶点F 的坐标为(1,4),对称轴交x 轴于点H,直线112y x =+交x 轴于点D,交y 轴于点E,交抛物线的对称轴于点G.(1)求出a,b,c 的值;(2)点M 为抛物线对称轴上一个动点,若△DGM 是以DG 为腰的等腰三角形时,请求出点M 的坐标;(3)点P 为抛物线上的一个动点,当点P 关于直线112y x =+的对称轴恰好落在x 轴上时,请直接写出此时点P 的坐标.5.如图,抛物线与x 轴交于A,B 两点,与y 轴交于点C(0,-2),点A 的坐标是(2,0),P 为抛物线上的一个动点,过点P 作PD ⊥x 轴于点D,交直线BC 于点E,抛物线的对称轴是直线x=-1.(1) 求抛物线的函数表达式;(2) 若点P 在第二象限内,且PE=14OD,求△PBE 的面积; (3) 在(2)的条件下,若M 为直线BC 上一点,在x 轴的上方,是否存在点M,使△BDM 是以BD 为腰的等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.6.如图,一次函数3y x =-图象与坐标轴交于点A(3,0),B (0,,二次函数233y x x =-A,B 两点,点B 关于抛物线对称轴的对称点为点C,点P 是对称轴上一动点,在抛物线上是否存在点Q,使得以B,C,P,Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.7.如图,抛物线213222y x x =-++与x 轴交于A(-1,0),B(4,0),与y 轴交于点C,连接AC,BC,点P 在抛物线上运动,如图,若点P 在第一象限,直线AP 交BC 于点F,过点P 作x 轴的垂线交BC 于点H,当△PFH 为等腰三角形时,求线段PH 的长.8.如图,已知两直线1l ,2l 分别经过点A(1,0),点B(-3,0),且两条直线相交于y 轴的正半轴上的点C,当点C 的坐标为时,恰好有1l ⊥2l ,经过点A,B,C 的抛物线的对称轴与1l ,2l ,x 轴分别交于点G,E,F,D 为抛物线的顶点.(1)抛物线的函数解析式;(2)试说明DG 与DE 的数量关系?并说明理由;(3)若直线2l 绕点C 旋转时,与抛物线的另一个交点为M,当△MCG 为等腰三角形时,请直接写出点M 的坐标.9.如图,已知抛物线2y=ax 9a --与坐标轴交于A,B,C 三点,其中C(0,3),∠BAC 的平分线AE 交y 轴于点D,交BC 于点D,交BC 于点E,过点D 的直线l 与射线AC,AB 分别交于点M,N.(1)直接写出a 的值,点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标;(3)证明:当直线l 绕点D 旋转时, 11AM AN+均为定值,并求出该定值.。
专题一 因动点产生的等腰三角形问题
专题一因动点产生的等腰三角形问题例1、已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.例2、如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A.O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.第25题备用图分)如图,已知AB 是⊙O 的直径,AB=8, 点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,联结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F .(1)若ED BE =,求∠F 的度数;(2)设,,y EF x CO ==写出y 与x 之间的函数解析式,并写出定义域;(3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长.题5分)在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上一动点,点Q为边AC上一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为点F,若△PDF为等腰三角形,求BP 的长.ABECAB CED第25题图(备用图)专题一 引动点产生的等腰三角形问题答案例1、【答案】解:(1)∵A(-1,0)、B(3,0)经过抛物线y =ax2+bx +c ,∴可设抛物线为y =a (x +1)(x -3)。
因动点产生的等腰三角形、直角三角形问题
因动点产生的等腰三角形问题例1 2013年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠A =90°,AB =6,AC =8,点D 为边BC 的中点,DE ⊥BC 交边AC 于点E ,点P 为射线AB 上的一动点,点Q 为边AC 上的一动点,且∠PDQ =90°.(1)求ED 、EC 的长;(2)若BP =2,求CQ 的长;(3)记线段PQ 与线段DE 的交点为F ,若△PDF 为等腰三角形,求BP 的长.图1 备用图满分解答(1)在Rt △ABC 中, AB =6,AC =8,所以BC =10. 在Rt △CDE 中,CD =5,所以315tan 544ED CD C =⋅∠=⨯=,254EC =. (2)如图2,过点D 作DM ⊥AB ,DN ⊥AC ,垂足分别为M 、N ,那么DM 、DN 是△ABC 的两条中位线,DM =4,DN =3.由∠PDQ =90°,∠MDN =90°,可得∠PDM =∠QDN .因此△PDM ∽△QDN .所以43PM DM QN DN ==.所以34QN PM =,43PM QN =.图2 图3 图4①如图3,当BP =2,P 在BM 上时,PM =1.此时3344QN PM ==.所以319444CQ CN QN =+=+=. ②如图4,当BP =2,P 在MB 的延长线上时,PM =5.此时31544QN PM ==.所以314CQ CN QN =+=.(3)如图5,如图2,在Rt △PDQ 中,3tan 4QD DN QPD PD DM ∠===.在Rt △ABC 中,3tan 4BA C CA ∠==.所以∠QPD =∠C .由∠PDQ =90°,∠CDE =90°,得∠PDF =∠CDQ .因此△PDF ∽△CDQ .当△PDF 是等腰三角形时,△CDQ 也是等腰三角形. ①如图5,当CQ =CD =5时,QN =CQ -CN =5-4=1(如图3所示). 此时4433PM QN ==.所以45333BP BM PM =-=-=. ②如图6,当QC =QD 时,由cos CHC CQ=,可得5425258CQ =÷=.所以QN =CN -CQ =257488-=(如图2所示).此时4736PM QN ==.所以725366BP BM PM =+=+=. ③不存在DP =DF 的情况.这是因为∠DFP ≥∠DQP >∠DPQ (如图5,图6所示).图5 图6考点伸展如图6,当△CDQ 是等腰三角形时,根据等角的余角相等,可以得到△BDP 也是等腰三角形,PB =PD .在△BDP 中可以直接求解256BP =. 例2 2012年扬州市中考第27题如图1,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3, 0)、C (0 ,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△P AC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.满分解答(1)因为抛物线与x 轴交于A (-1,0)、B (3, 0)两点,设y =a (x +1)(x -3), 代入点C (0 ,3),得-3a =3.解得a =-1.所以抛物线的函数关系式是y =-(x +1)(x -3)=-x 2+2x +3. (2)如图2,抛物线的对称轴是直线x =1.当点P 落在线段BC 上时,P A +PC 最小,△P AC 的周长最小. 设抛物线的对称轴与x 轴的交点为H . 由BH PH BO CO=,BO =CO ,得PH =BH =2. 所以点P 的坐标为(1, 2). 图2(3)点M 的坐标为(1, 1)、、(1,)或(1,0).设点M 的坐标为(1,m ).在△MAC 中,AC 2=10,MC 2=1+(m -3)2,MA 2=4+m 2.①如图3,当MA =MC 时,MA 2=MC 2.解方程4+m 2=1+(m -3)2,得m =1.此时点M 的坐标为(1, 1).②如图4,当AM =AC 时,AM 2=AC 2.解方程4+m 2=10,得m =.此时点M 的坐标为或(1,). ③如图5,当CM =CA 时,CM 2=CA 2.解方程1+(m -3)2=10,得m =0或6. 当M (1, 6)时,M 、A 、C 三点共线,所以此时符合条件的点M 的坐标为(1,0).图3 图4 图5例3 2012年临沂市中考第26题如图,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B 的坐标;(2)求经过A 、O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.满分解答(1)如图2,过点B 作BC ⊥y 轴,垂足为C .在Rt △OBC 中,∠BOC =30°,OB =4,所以BC =2,OC =所以点B 的坐标为(2,--.(2)因为抛物线与x 轴交于O 、A (4, 0),设抛物线的解析式为y =ax (x -4),代入点B (2,--,2(6)a --⨯-.解得a =.所以抛物线的解析式为2(4)y x =-=.(3)抛物线的对称轴是直线x =2,设点P 的坐标为(2, y ).①当OP =OB =4时,OP 2=16.所以4+y 2=16.解得y =±当P 在时,B 、O 、P 三点共线(如图2).②当BP =BO =4时,BP 2=16.所以224(16y ++=.解得12y y ==-③当PB =PO 时,PB 2=PO 2.所以22224(2y y ++=+.解得y =-综合①、②、③,点P 的坐标为(2,-,如图2所示.图2 图3考点伸展如图3,在本题中,设抛物线的顶点为D ,那么△DOA 与△OAB 是两个相似的等腰三角形.由2(4)2)y x x x =-=-D .因此tan DOA ∠=DOA =30°,∠ODA =120°.例4 2011年盐城市中考第28题如图,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B . (1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4).令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8A P R A C P P O RC O R AS S S S=--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,AB =OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠P AQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1. 我们再来讨论P 在CA 上运动时的情形,4≤t <7. 在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418t =.如图6,当QP =QA 时,点Q 在P A 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当P A =PQ 时,那么12cos AQ A AP∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P 在CA 上,QP =QA 时,也可以用2cos AP AQ A =⋅∠来求解.因动点产生的直角三角形问题例1 2013年山西省中考第26题如图1,抛物线213442y x x =--与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.满分解答(1)由21314(2)(8)424y x x x x =--=+-,得A (-2,0),B (8,0),C (0,-4). (2)直线DB 的解析式为142y x =-+.由点P 的坐标为(m , 0),可得1(,4)2M m m --,213(,4)42Q m m m --.所以MQ =221131(4)(4)82424m m m m m -+---=-++.当MQ =DC =8时,四边形CQMD 是平行四边形. 解方程21884m m -++=,得m =4,或m =0(舍去). 此时点P 是OB 的中点,N 是BC 的中点,N (4,-2),Q (4,-6). 所以MN =NQ =4.所以BC 与MQ 互相平分. 所以四边形CQBM 是平行四边形.图2 图3(3)存在两个符合题意的点Q ,分别是(-2,0),(6,-4). 第(3)题可以这样解:设点Q 的坐标为1(,(2)(8))4x x x +-.①如图3,当∠DBQ =90°时, 12QG BH GB HD ==.所以1(2)(8)1482x x x -+-=-.解得x =6.此时Q (6,-4).②如图4,当∠BDQ =90°时, 2QG DH GD HB ==.所以14(2)(8)42x x x-+-=-.解得x =-2.此时Q (-2,0).图3 图4例 2 2008年河南省中考第23题如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.满分解答(1)直线434+-=x y 与x 轴的交点为B (3,0)、与y 轴的交点C (0,4).Rt △BOC 中,OB =3,OC =4,所以BC =5.点A 的坐标是(-2,0),所以BA =5.因此BC =BA ,所以△ABC 是等腰三角形.(2)①如图2,图3,过点N 作NH ⊥AB ,垂足为H .在Rt △BNH 中,BN =t ,4sin 5B =,所以45NH t =. 如图2,当M 在AO 上时,OM =2-t ,此时211424(2)22555S OM NH t t t t =⋅⋅=-⨯=-+. 定义域为0<t ≤2.如图3,当M 在OB 上时,OM =t -2,此时211424(2)22555S OM NH t t t t =⋅⋅=-⨯=-. 定义域为2<t ≤5.图2 图3②把S =4代入22455S t t =-,得224455t t -=.解得12t =22t =.因此,当点M 在线段OB 上运动时,存在S =4的情形,此时2t =.③如图4,当∠OMN =90°时,在Rt △BNM 中,BN =t ,BM 5t =-,3cos 5B =,所以535t t -=.解得258t =.如图5,当∠OMN =90°时,N 与C 重合,5t =.不存在∠ONM =90°的可能. 所以,当258t =或者5t =时,△MON 为直角三角形.图4 图5考点伸展在本题情景下,如果△MON 的边与AC 平行,求t 的值.如图6,当ON //AC 时,t =3;如图7,当MN //AC 时,t =2.5.图6 图7。
2012因动点产生的等腰三角形问题
中考压轴——因动点产生的等腰三角形问题1.(2009年黄冈中考20题)如图,在平面直角坐标系xoy 中,抛物线21410189y x x =--与x 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q分别从O,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒)(1)求A,B,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当0<t <92时,△PQ F 的面积是否总为定值?若是,求出此定值,若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.2(2009年深圳中考23题).如图,在平面直角坐标系中,直线l :y =-2x -8分别与x 轴,y 轴相交于A ,B 两点,点P (0,k )是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作⊙P .(1)连结P A ,若P A =PB ,试判断⊙P 与x 轴的位置关系,并说明理由; (2)当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?3.(2009年重庆中考26题).已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . (1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.. (2010上海宝山中考25题)如图9,矩形ABCD中,AB ,点E 是BC 边上的一个动点,联结AE ,过点D 作DF AE ⊥,垂足为点F . (1)设BE x =,ADF ∠的余切值为y ,求y 关于x 的函数解析式;(2)若存在点E ,使得∆ABE 、∆ADF 与四边形CDFE 的面积比是3:4:5,试求矩形ABCD 的面积;(3)对(2)中求出的矩形ABCD ,联结CF ,当BE 的长为多少时,∆CDF 是等腰三角形?26题图x(备用图)DCBA EFD CBA EF(图9)中考压轴——因动点产生的等腰三角形问题答案20(2009年黄冈中考20题) 解:(1)21(8180)18y x x =--,令0y =得281800x x --=,()()18100x x -+= ∴18x =或10x =-∴(18,0)A ;………………………1′在21410189y x x =--中,令0x =得10y =即(0,10)B -;………………2′ 由于B C ∥OA ,故点C 的纵坐标为-10,由2141010189x x -=--得8x =或0x = 即(8,10)C -且易求出顶点坐标为98(4,)9-……………………………………3′于是,(18,0),(0,10),(8,10)A B C --,顶点坐标为98(4,)9-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1因动点产生的等腰三角形答案
1.如图,在长方形ABCD中,AB=12cm,BC=8cm,动点P从点A出发,沿AB以2cm/s的速度向终点B匀速运动;动点Q从点B出发,沿BC以1cm/s的速度向终点C匀速运动;两点同时出发多少秒时,△PBQ 是等腰三角形?
分析:设两点同时出发x秒时,△PBQ是等腰三角形,根据等腰三角形得出方程12﹣2x=x,求出方程的解即可.
解答:解:设两点同时出发x秒时,△PBQ是等腰三角形,∵长方形ABCD,
∴∠B=90°,
∵△BPQ是等腰三角形,
∴BP=BQ,
∴12﹣2x=x,
解得:x=4,
即两点同时出发4秒时,△PBQ是等腰三角形.
点评:本题考查了矩形性质,等腰三角形的性质的应用,关键是能根据题意得出方程.
2.如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一定点,
且MC=8.动点P从C点出发沿C→D→A→B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC 为等腰三角形的点P有几个?并求出相应等腰三角形的腰长.
分析:连接DM,根据已知分析可得满足等腰三角形的多种情况:PM=CM或CM=PM,然后根据勾股定理进行分析计算.
解答:
解:根据已知得AD∥BM,AD=BM=6,则四边形ABDM是平行四边形.
又∠ABC=90°,根据勾股定理,得CD=10.
①作CM的中垂线交CD于P,则△PMC是等腰三角形,此时,
CP=5;
②当CP=CM=8时,△PMC是等腰三角形;
③当点P在AD上,DP=2时,CM=PM=8;
④当点P在AB上,BP=2时,CM=PM=8;
故有四个.
3.如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.
(1)点A坐标是(﹣8,0),点B的坐标(0,6),BC=10.
(2)当点P在什么位置时,△ APQ≌△ CBP,说明理由.
(3)当△ PQB为等腰三角形时,求点P的坐标.
分析:(1)把x=0和y=0分别代入一次函数的解析式,求出A、B的坐标,根据勾股定理求出BC即可.(2)求出∠PAQ=∠BCP,∠AQP=∠BPC,根据点的坐标求出AP=BC,根据全等三角形的判定推出即可.
(3)分为三种情况:①PQ=BP,②BQ=QP,③BQ=BP,根据(2)即可推出①,根据三角形外角性质即可判断②,根据勾股定理得出方程,即可求出③.
解答:
解:(1)∵y=x+6
∴当x=0时,y=6,
当y=0时,x=﹣8,
即点A的坐标是(﹣8,0),点B的坐标是(0,6),
∵C点与A点关于y轴对称,
∴C的坐标是(8,0),
∴OA=8,OC=8,OB=6,
由勾股定理得:BC==10,
(2)当P的坐标是(2,0)时,△ APQ≌△ CBP,
理由是:∵OA=8,P(2,0),
∴AP=8+2=10=BP,
∵∠BPQ=∠BAO,∠BAO+∠AQP+∠APQ=180°,∠APQ+∠BPQ+∠BPC=180°,
∴∠AQP=∠BPC,
∵A和C关于y轴对称,
∴∠BAO=∠BCP,
在△ APQ和△ CBP中,
,
∴△ APQ≌△ CBP(AAS),
∴当P的坐标是(2,0)时,△ APQ≌△ CBP.
(3)分为三种情况:
①当PB=PQ时,∵由(2)知,△APQ≌△CBP,
∴PB=PQ,
即此时P的坐标是(2,0);
②当BQ=BP时,则∠BPQ=∠BQP,
∵∠BAO=∠BPQ,
∴∠BAO=∠BQP,
而根据三角形的外角性质得:∠BQP>∠BAO,
∴此种情况不存在;
③当QB=QP时,则∠BPQ=∠QBP=∠BAO,
即BP=AP,
设此时P的坐标是(x,0),
∵在Rt△OBP中,由勾股定理得:BP2=OP2+OB2,
∴(x+8)2=x2+62,
解得:x=﹣,
即此时P的坐标是(﹣,0).
∴当△PQB为等腰三角形时,点P的坐标是(2,0)或(﹣,0).故答案为:(﹣8,0),(0,6),10.
点评:本题考查了一次函数图象上点的坐标特征,勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,题目综合性比较强,难度偏大.
4.(2010•门头沟区二模)如图,在平面直角坐标系xOy中,直线y=x+1与交于点A,分别交
x轴于点B和点C,点D是直线AC上的一个动点.
(1)求点A的坐标.
(2)当△CBD为等腰三角形时,求点D的坐标.
(3)在直线AB上是否存在点E,使得以点E,D,O,A为顶点的四边形是平行四边形?如果存在,直接写出有几种情况.
分析:
(1)利用直线y=x+1与交于点A,直接联立函数解析式求出即可;
(2)当△ CBD为等腰三角形时,有三种情况当BD1=D1C时,当BC=BD2时,当CD3=BC分别得出即可;
(3)以点E,D,O,A为顶点的四边形是平行四边形有三种情形.
解答:
解:(1)由题意,得:,
解得:,
∴点A的坐标为(,).
(2)当△ CBD为等腰三角形时,有以下三种情况,如图(1).设动点D的坐标为(x,y).
在y=x+1中,当y=0时,x+1=0,
∴x=﹣1,点B的坐标为(﹣1,0).
在y=﹣+3中,当y=0时,﹣x+3=0,
∴x=4,
点C的坐标为(4,0).
∴BC=5.
①当BD1=D1C时,过点D1作D1M1⊥x轴,垂足为点M1,则BM1=M1C=BC.
∴BM1=,OM1=﹣1=,x=,
∴y=﹣×+3=,点D1的坐标为(,).
②当BC=BD2时,过点D2作D2M2⊥x轴,垂足为点M2,则
D2M22+M2B2=D2B2.
∵M2B=﹣x﹣1,D2M2=﹣x+3,D2B=5,
∴(﹣x﹣1)2+(﹣x+3)2=52,
解得:x1=﹣,x2=4(舍去).此时,y=﹣×(﹣)+3=,∴D2的坐标为(﹣,),
③当CD3=BC时,CB=5,CD3=5,此时D3坐标为(0,3),
当CD4=BC时,BC=CD4,=5,M4D4=OD3=3,CO=CM4=4,则D点坐标为(8,﹣3).(6分)
由此可得点D的坐标分别为D1(,),D2(﹣,),D3(0,3),D4(8,﹣3).
(3)存在.以点E,D,O,A为顶点的四边形是平行四边形有三种情形.(8分)
点评:此题主要考查了等腰三角形的判定以及两直线交点的求法以及平行四边形的判定等知识,注意分类讨论思想的应用不要漏解.。