正余弦定理应用举例(一)
正弦定理、余弦定理在生活中的应用
正弦定理、余弦定理在生活中的应用 正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程测量中的重要应用,使高考考查的热点和重点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参考. 一、在不可到达物体高度测量中的应用 例1 如图,在河的对岸有一电线铁塔AB ,某人在测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测量点C 与D ,现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .分析:本题是一个高度测量问题,在∆BCD 中,先求出CBD ∠,用正弦定理求出BC ,再在ABC Rt △中求出塔高AB.解析:在BCD △中,CBD ∠=παβ--.由正弦定理得sin BC BDC ∠=sin CD CBD ∠. 所以BC =sin sin CD BDC CBD∠∠=sin sin()s βαβ+·. 在ABC Rt △中,AB =tan BC ACB ∠=tan sin sin()s θβαβ+·. 点评:对不可到达的物体的高度测量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出其中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高.二、在测量不可到达的两点间距离中的应用例2某工程队在修筑公路时,遇到一个小山包,需要打一条隧道,设山两侧隧道口分别为A 、B ,为了测得隧道的长度,在小山的一侧选取相距3km的C 、D 两点高,测得∠ACB=750, ∠BCD=450,∠ADC=300,∠ADC=450(A 、B 、C 、D ),试求隧道的长度.分析:根据题意作出平面示意图,在四边形ABCD 中,需要由已知条件求出AB 的长,由图可知,在∆ACD 和∆BCD 中,利用正弦定理可求得AC 与BC ,然后再在∆ABC 中,由余弦定理求出AB. 解析:在∆ACD 中,∵∠ADC=300,∠ACD=1200,∴∠CAD=300,∴AC=CD=3.在∆BCD 中,∠CBD==600由正弦定理可得,BC=003sin 75sin 60=26)2+在∆ABC 中,由余弦定理,可得 2222AB AC BC AC BC COS ACB =+-••∠,22202626)(3)()2237522AB COS ++=+-⨯⨯⨯=5 ∴AB=5≈2.236km,即隧道长为2.236km.点评:本题涉及到解多个三角形问题,注意优化解题过程.如为求AB 的长,可以在∆ABD 中,应用余弦定理求解,但必须先求出AD 与BD 长,但求AD 不如求AC 容易,另外。
正余弦定理应用举例(一)测量距离问题
正余弦定理应用举例(一)测量距离问题一、学习任务:利用解决实际中有关距离、高度、角度的测量问题。
1、巩固正弦定理、余弦定理等知识。
2、利用正弦、余弦定理等知识求解实际中有关距离问题。
二、预习任务:(查资料完成并记住)1、 方位角:2、 方向角:3、 仰角与俯角:4、 坡比和坡角:三、回顾正、余弦定理公式及变式:1、正弦定理公式:2余弦定理公式:四、自主探究(一)、测量距离问题问题1、(1)测量从一个可到达的点A 到一个不可到达的点B 之间的距离问题。
如图所示:(11页图)这实际上就是已知三角形两个角和一边解三角形的问题,应怎样计算? 例如:课本例1.中AC=8cm ,∠BAC=30︒,∠ACB=45︒求A 、B 两点的距离?(2)若A 、B 不能直达之间用一座山隔着,A 、B 、C 都可到达(如图)我们需要测得哪些量就可求出AB 的长?若AD 、BE 的长已知了,如何求出DE=? (这实际上就是已知三角形两个角和一边解三角形的问题)。
例1.中变式:AC=8cm ,∠BAC=30︒,∠ACB=45︒AD=DE=1 cm ,求D 、,E 两点的距离?问题2、测量两个不可到达的点A 、B 之间的距离问题。
如图所示:(12页上图)首先把不可到达的两点A 、B 之间的距离转化为应用正、余弦定理求三角形边长问题,然后把未知的BC 和AC 的距离问题转化为测量可到达的一点与不可到达的一点之间的距离问题。
例2、(课本11页例2、)变式训练1、在一次反恐作战准备中,为了弄清基地组织两个训练营地A 和B 之间的距离,盟军在两个相距为a 23的观测点C 和D 处,测得∠ADB=30︒,∠BDC=30︒,∠DCA=60︒,∠ACB=45︒,求基地组织的这两个训练营地之间的距离。
变式训练2、隔河看两目标A,B,但不能到达,在岸边选取相距3km 的C 、D 两点,并测得∠ACB=75︒,∠BCD=45︒,∠ADC=30︒,∠ADB=45︒,(A 、B 、C 、D 在同一平面内),求两目标A ,B 之间的距离?五、巩固训练1、 已知A 、B 两地相距10km ,B 、C 两地相距20km ,且∠ABC=120︒,则A 、C 两地相距_______。
正弦定理余弦定理应用举例
正弦定理、余弦定理应用举例一、距离问题1.xkm 后,他向右转150,然后朝新方向走3km ,结果他离出发点某人向正东方向走恰好3km ,那么x 的值为【】A.3B.23C.23或3D.32.如图,为了测量某障碍物两侧A、 B 间的距离,给定下列四组数据,测量时应当用数据【】A., a, bB.,, aC.a,b,D.,, b两座灯塔A 与B与海洋观察站C的距离都等于 a km ,灯塔A在观察站C的北偏东3.20 ,灯塔B在观察站C的南偏东 40,则灯塔 A 与灯塔 B 的距离为【】A. a kmB.3a kmC. 2a kmD. 2a km4.海上有 A、B 两个小岛相距10海里,从A 岛望 C岛和 B岛成60的视角,从B岛望 C 岛和 A岛成75的视角,则B、 C 的距离是 __________________5.一船向正北航行,看见正西方向有相距10 海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西 60的方向上,另一灯塔在船的南偏西75 方向上,则这艘船的速度是每小时___________________6.如右图所示,设 A 、B 两点在河的两岸,一测量者在 A 所在的河岸边选定一点 C ,测出 AC 的距离为 50m ,ACB45 , CAB105后,就可以计算 A 、 B 两点间的距离为 ___________7.一船以 24 km / h的速度向正北方向航行,在点 A 处望见灯塔 S 在船的北偏东30 方向上,15min后到点B处望见灯塔在船的北偏东65 方向上,则船在点B时与灯塔S的距离是__________km.(精确到 0.1km )18.如图,我炮兵阵地位于地面 A 处,两观察所分别位于地面点 C 和 D 处,已知 CD=6000m.ACD 45,ADC75,B 处时测得BCD 30 , BDC 15目标出现于地面求炮兵阵地到目标的距离。
(结果保留根号)A45600075C D3015B2二、高度问题1.在一幢 20m 高的楼顶测得对面一塔吊的仰角为60 ,塔基的俯角为45 ,那么这座塔吊的高是【】3 )m B. 20(13) m C.10( 6 2 )m D. 20(6 2 )mA.20(132.在地面上点 D 处,测量某建筑物的高度,测得此建筑物顶端 A 与底部 B 的仰角分别为60 和 30 ,已知建筑物底部高出地面 D 点 20m,则建筑物高度为【】A.20mB.30mC. 40mD.60m3.如图所示,在山根 A 处测得山顶 B 的仰角CAB 45 ,沿倾斜角为 30 的山坡向山顶走1000 米到达 S 点又测得山顶仰角DSB 75 ,则山高BC为【】A.500 2mB. 200mC.1000 2mD. 1000m4.从某电视塔的正东方向的 A 处,测得塔顶仰角为60 ;从电视塔的西偏南30 的B处,测得塔顶仰角为45 ,A、B两点间的距离是35m,则此电视塔的高度是【】4900 m D.35mA. 5 21mB.10mC.135.j 江岸边有一炮台高30m,江中有两条船,由炮台顶部测得俯角分别为45 , 30 ,而且两条船与炮台底部连线成30 角,则两船相距【】A.10 3mB.100 3mC. 203mD.30m6.一船以每小时15km 的速度向东航行,船在 A 处看到一个灯塔M 在北偏东60方向,行驶4h 后,船到达 B 处,看到这个灯塔在北偏东15 方向,这时船与灯塔的距离为_____km37.甲、乙两楼相距20 米,从乙楼底望甲楼顶的仰角为60 ,从甲楼顶望乙楼顶的俯角为30 ,则甲、乙两楼的高分别是______________8.地平面上一旗杆设定为OP,为测得它的高度h,在地平线上取一基线AB, AB=200m ,在 A 处测得 P 点的仰角为OAP 30 ,在B处测得P点的仰角OBP 45 ,又测得AOB 60 ,求旗杆的高度h4。
余弦定理和正弦定理的应用
余弦定理和正弦定理的应用余弦定理和正弦定理是解决三角形问题中常用的数学定理。
它们可以帮助我们求解三角形的边长、角度和面积等。
本文将分别介绍余弦定理和正弦定理的应用,并通过实例来说明它们的具体使用方法。
一、余弦定理的应用余弦定理是一个用来描述三角形边长和夹角之间关系的定理。
在任意三角形ABC中,假设边长分别为a、b、c,而对应的夹角为A、B、C,则余弦定理可以表示为:c² = a² + b² - 2ab·cosC1. 求解三角形边长假设我们已知一个三角形的两个边长a和b,以及它们夹角C的大小。
我们可以通过余弦定理来求解第三个边长c。
例如,已知三角形ABC中,边AB的长度为5,边AC的长度为8,而夹角B的大小为60度。
按照余弦定理,我们可以用下式来计算边BC的长度:BC² = AB² + AC² - 2·AB·AC·cosB代入具体数值,即可求得:BC² = 5² + 8² - 2·5·8·cos60°BC² = 25 + 64 - 80·0.5BC² = 89 - 40BC² = 49BC = √49 = 7因此,边BC的长度为7。
2. 求解三角形夹角在某些情况下,我们已知三角形的三个边长,但需要求解其中一个夹角的大小。
余弦定理同样可以解决这个问题。
例如,已知三角形ABC的边长分别为a=4、b=7、c=9。
我们想要求解夹角C的大小。
根据余弦定理,我们可以得到:c² = a² + b² - 2ab·cosC代入具体数值,我们可以得到:9² = 4² + 7² - 2·4·7·cosC81 = 16 + 49 - 56·cosC16 + 49 - 81 = 56·cosC-16 = 56·cosCcosC = -16 / 56 = -0.2857由于余弦函数的定义域为[-1, 1],该结果无解,即无法构成三角形。
正余弦定理应用举例(1)--举例
100 3
D
BC DC = 由正弦定理 ,得 sin ∠BDC sin ∠DBC
DC sin ∠BDC 100 3 sin 75° BC = = = 200 sin 75° sin ∠DBC sin 60°
在△ABC中由余弦定理, ABC中由余弦定理, 中由余弦定理
AB 2 = CA2 + CB 2 − 2CA ⋅ CB cos C = (100 3) 2 + (200 sin 75°) 2
练习2.自动卸货汽车的车厢采用液压机构。 练习 .自动卸货汽车的车厢采用液压机构。设计时需要计算 油泵顶杆BC的长度.已知车厢的最大仰角是 ° 油泵顶点B 油泵顶杆 的长度.已知车厢的最大仰角是55°,油泵顶点 的长度 与车厢支点A之间的距离为 之间的距离为2m, 与水平线之间的夹角为 与水平线之间的夹角为5° 与车厢支点 之间的距离为 ,AB与水平线之间的夹角为 °, AC长为 o ,计算 的长(精确到0.01m). 长为1m,计算BC的长 精确到0.01 的长( 0.01m 长为 60 20′ 分析】例题中涉及一个怎样的三角形? 【分析】例题中涉及一个怎样的三角形? 中已知什么, 在△ABC中已知什么,要求什么? 中已知什么 要求什么?
C
∴ BC = 3 ≈ 1.73(m)
答:顶杆BC约长1.73m。 顶杆BC约长 BC约长 。 A B
课堂小结
解应用题的基本思路
实际问题
抽象概括 示意图 推 理
数学模型 演 算
实际问题的解
数学模型的解
作业
课本第19页 课本第 页 2,5 ,
: ∆ 解 在 ASB , SBA 105° 中 ∠ = , ∠S = 45° 由 弦 理 , 正 定 得 ABsin30° 16sin30° SB = = = 8 2(n mile) sin45° sin45° 设 S到 线 的 离 h, 则 点 直 AB 距 为 h = SBsin75° = 4( 3 + 1)(n mile) Qh > 6.5n mile∴此 可 继 沿 北 向 船 以 续 正 方 航 : 船 以 续 正 方 航 答 此 可 继 沿 北 向 行
正、余弦定理在实际生活中的应用
正、余弦定理在实际生活中的应用正弦定理和余弦定理是三角学中重要的定理,它们不仅在数学领域有着重要的意义,而且在日常生活中也有着广泛的应用。
本文将通过几个实际生活中的例子,来说明正弦定理和余弦定理的应用。
我们来看一个生活中常见的例子,即测量高楼的高度。
假设有一栋高楼,我们无法通过直接测量得到其高度,但是我们可以通过测量某一点到高楼顶部的距离和测量这一点与高楼底部的夹角,利用正弦定理和余弦定理来计算高楼的高度。
设高楼的高度为h,某一点到高楼顶部的距离为d,某一点与高楼底部的夹角为θ,则根据正弦定理可得:\[ \frac{h}{\sin{\theta}} = \frac{d}{\sin{(90^\circ - \theta)}} \]根据余弦定理可得:\[ h^2 = d^2 + L^2 - 2dL\cos{\theta} \]通过这两个公式,我们可以根据已知的距离和夹角,计算出高楼的高度。
这就是正弦定理和余弦定理在测量高楼高度时的应用。
正弦定理和余弦定理也可以在航海领域中得到应用。
航海员在航海时需要测量两个位置之间的距离和方向角,而这正是正弦定理和余弦定理所擅长的。
假设航海员需要确定A点和B点之间的距离d和方向角θ,可以利用正弦定理和余弦定理来进行计算。
首先利用余弦定理计算A点和B点的距离:\[ d^2 = a^2 + b^2 - 2ab\cos{\theta} \]然后利用正弦定理计算出方向角θ:\[ \frac{\sin{\theta}}{a} = \frac{\sin{B}}{d} \]通过这些计算,航海员可以准确地确定A点和B点之间的距离和方向角,从而确保航行的安全和准确性。
在建筑领域中,正弦定理和余弦定理也有着重要的应用。
在设计桥梁和建筑物结构时,需要计算各种角度和距离,而这些计算中常常需要用到正弦定理和余弦定理。
在地质勘探和地震预测中,也需要利用正弦定理和余弦定理来计算地层的深度和角度,从而进行地质勘探和地震预测工作。
正弦定理余弦定理应用举例
。 三角形的面积公式
1 1 SABC 1 absinC bcsin A 2 2 2 acsin B
正弦定理和余弦定理在实际测量中有许 多应用 :
(1)测量距离. (2)测量高度. (3)测量角度.
实际应用问题中有关的名称、术语 1.仰角、俯角、视角。
(1)当视线在水平线上方时,视线与水平线所成角叫 仰角。 (2)当视线在水平线下方时,视线与水平线所成角叫 俯角。 (3)由一点出发的两条视线所夹的角叫视角。(一般 这两条视线过被观察物的两端点) 视线 仰角 俯角 视线 水平线
【变式练习3】 如图,甲船以每小时30 2海里的速度向正北方 向航行,乙船按固定方向匀速直线航行.当甲 船位于A1处时,乙船位于甲船的北偏西105方向 的B1处,此时两船相距20海里.当 甲船航行20分钟到达A2处时,乙船 航行到甲船的北偏西120方向的B2 处,此时两船相距10 2海里.问乙 船每小时航行多少海里?
答:A,B两点间的距离为 20 6米.
练习2.一货轮在海上由西向东航行,在A处望见灯塔C在货轮的东北 方向,半小时后在B处望见灯塔C在货轮的北偏东30°方向.若货 轮的速度为30 n mile/h,当货轮航行到D处望见灯塔C在货轮的 西北方向时,求A,D两处的距离.
[解] 如图8所示,在△ABC中,∠A=45° ,∠ABC= 90° +30° =120° ,∴∠ACB=180° -45° -120° =15° ,AB= 30×0.5=15(n AB , sin∠ACB AB· sin∠ABC 15×sin120° 3 2+ 6 ∴AC= = ×15(n sin15° = 2 sin∠ACB mile). 在△ACD中,∵∠A=∠D=45° , ∴△ACD是等腰直角三角形, ∴AD= 2AC=15(3+ 3)(n mile). ∴A,D两处的距离是15(3+ 3) n mile. mile).由正弦定理,得 AC sin∠ABC =
正弦定理与余弦定理的应用
正弦定理与余弦定理的应用正弦定理和余弦定理是中学数学中重要的几何定理,它们在解决三角形相关问题时起着关键作用。
本文将以实际例子为基础,详细介绍正弦定理和余弦定理的应用。
一、正弦定理的应用正弦定理是解决三角形边长和角度之间关系的重要工具。
它的表达式为:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$,其中$a$、$b$、$c$分别为三角形的边长,$A$、$B$、$C$为对应的角度。
例子一:已知三角形$ABC$中,$AB=5$,$BC=8$,$\angle B=45^\circ$,求$\angle A$和$\angle C$的大小。
解析:根据正弦定理可得:$\frac{5}{\sin A}=\frac{8}{\sin 45^\circ}$。
通过求解可得$\sin A=\frac{5\sin 45^\circ}{8}$,进而得到$\angle A=\sin^{-1}\left(\frac{5\sin 45^\circ}{8}\right)$。
同理,可以求得$\angle C=180^\circ-\angle A-\angle B$。
通过计算可得$\angle A\approx 28.07^\circ$,$\angle C\approx106.93^\circ$。
例子二:已知三角形$ABC$中,$AB=6$,$BC=9$,$\angle A=30^\circ$,求$AC$的长度。
解析:根据正弦定理可得:$\frac{6}{\sin 30^\circ}=\frac{AC}{\sin C}$。
通过求解可得$\sin C=\frac{AC\sin 30^\circ}{6}$,进而得到$AC=\frac{6\sin C}{\sin30^\circ}$。
由于$\sin C=\sin (180^\circ-\angle A-\angle B)$,可以通过计算得到$AC\approx 10.39$。
正弦余弦定理应用举例1
AB AC 2 BC 2 2 AC BC cos
练习1、一艘船以32.2n mile / hr的速度向正 北航行。在A处看灯塔S在船的北偏东20o的 方向,30min后航行到B处,在B处看灯塔 在船的北偏东65o的方向,已知距离此灯塔 6.5n mile 以外的海区为航行安全区域,这 艘船可以继续沿正北方向航行吗?
例2、A、B两点都在河的对岸(不可到达),设计一种 测量两点间的距离的方法。
分析:用例1的方法,可以计算出河的这一岸的一 点C到对岸两点的距离,再测出∠BCA的大小, 借助于余弦定理可以计算出A、B两点间的距离。
解:测量者可以在河岸边选定两点C、D,测得CD=a,并 且在C、D两点分别测得∠BCA=α, ∠ACD=β, ∠CDB=γ, ∠BDA=δ.在⊿ADC和⊿BDC中,应用正弦定理得
实际问题
抽象概括 示意图
数学模型
推 理 演 算
实际问题的解
还原说明
数学模型的解
已知⊿ABC中,三个内角A,B,C的对边分别是a,b,c,若 ⊿ABC的面积为S,且2S=(a+b)² -c² ,求tanC的值。
在⊿ABC中,如果(a+b+c)(b+c-a)=3bc,且 sinA=2sinBcosC,试确定⊿ABC的形状。
AB AC sin ACB sin ABC
AC sin ACB 55 sin ACB AB sin ABC sin ABC 55 sin 75 55 sin 75 65.7(m) sin(180 51 75 ) sin 54
答:A,B两点间的距离为65.7米。
a sin( ) a sin( ) AC sin180 ( ) sin( ) a sin a sin BC sin180 ( ) sin( )
正弦定理与余弦定理的应用
正弦定理和余弦定理在三角学及相关领域中具有广泛的应用,通过这两个定理,我们可以解决许多与三角形相关的问题。
以下是关于正弦定理和余弦定理的应用的详细探讨。
一、正弦定理的应用正弦定理是三角学中的一个基本定理,它表达了三角形中任意一边与其对应的角的正弦值之间的关系。
正弦定理在实际应用中具有广泛的用途,以下是几个具体的应用示例:1. 航海与测量:在航海和大地测量中,正弦定理被用来计算地球上两点之间的距离。
由于地球表面可以近似为一个球体,因此可以通过测量两点的纬度和经度,利用正弦定理计算出两点之间的实际距离。
2. 电气工程:在电气工程中,正弦定理被用来分析交流电路中的电压、电流和电阻之间的关系。
通过正弦定理,我们可以推导出各种电气元件(如电阻、电容和电感)的等效电路模型,从而简化电路分析。
3. 通信与信号处理:在通信和信号处理领域,正弦定理被用来分析信号的频谱特性和传输特性。
通过正弦定理,我们可以将复杂的信号分解为一系列正弦波的组合,从而更容易地理解和处理信号。
二、余弦定理的应用余弦定理是另一个重要的三角定理,它表达了三角形中任意一边的平方等于其他两边平方之和减去这两边夹角的余弦值乘以这两边乘积的2倍。
余弦定理同样具有广泛的应用,以下是几个具体的应用示例:1. 几何学:在几何学中,余弦定理被用来解决与三角形边长和角度相关的问题。
例如,在已知三角形的两边及其夹角时,我们可以利用余弦定理求出第三边的长度。
此外,余弦定理还可以用于判断三角形的形状(如锐角三角形、直角三角形或钝角三角形)以及求解三角形的内角。
2. 物理学:在力学中,余弦定理被用来求解连接杆件的长度和角度问题。
例如,在机器人学和机械设计中,我们需要确定各个杆件之间的相对位置和角度,以便实现预期的运动轨迹。
余弦定理可以帮助我们解决这个问题。
此外,余弦定理还在许多其他领域中得到应用,如航空航天、土木工程、计算机图形学等。
在这些领域中,余弦定理通常被用来求解与空间几何和三维变换相关的问题。
正、余弦定理应用举例
正、余弦定理应用举例正弦定理、余弦定理沟通了三角形中边与角的关系,用这两个定理可以实现边与角的互化,从而简化过程,指明解题方向.下面举例说明正、余弦定理在解题中的具体应用.(以下例题中角A B C ,,所对应的边分别为a b c ,,)1.判断三角形的形状对于同时含有边角关系的条件式,可用余弦定理化角为边,通过熟知的代数式变形来求解;也可用正弦定理化边为角,再用相应的三角公式求解.例1 在ABC △中,已知22(cos cos )()cos a b B c C b c A -=- ,试判断ABC △的形状. 解:根据余弦定理,得22222222222()222a c b a b c b c a a b c b c ac ab bc ⎛⎫+-+-+--=- ⎪⎝⎭, 整理得22222()()0b c b c a -+-=,因此b c =或222b c a +=,所以三角形为等腰三角形或直角三角形.例2 在ABC △中,如果cos cos a B a C b c +=+,试判断ABC △的形状. 解:根据正弦定理,得sin (cos cos )sin sin A B C B C +=+, 即2sincos 2cos cos 2sin cos 222222A ABC B C B C B C +-+-= , 在ABC △中,∵cos sin 22A B C +=,sin cos 22A B C +=, 上式可化简为22sin 12A =,∴2cos 12sin 1102A A =-=-=. 又0πA <<,∴π2A =. 故ABC △为直角三角形. 2.求三角函数的值对于三角形中的求值问题,通常将各三角函数式化为正弦、余弦的形式,为运用正弦定理和余弦定理创造条件.例3 在ABC △中,如果222225a b c +=,求cot cot cot C A B+的值. 解:cos cot sin cos cos cot cot sin sin CC C A B A B A B=++ 2sin sin cos sin sin cos sin cos cos sin sin sin A B C A B C B A B A C C==+ , 由正弦定理和余弦定理可知22222222cot cot cot 22C ab a b c a b c A B c ab c +-+-==+ ,将已知条件222225a b c +=代入上式得2225cot 32cot cot 24c c C A B c -==+. 3.证明三角恒等式对于三角形中边角关系的证明问题,可以用正弦定理、余弦定理,实现边的关系与角的关系的相互转化,从而达到证明的目的.例4 在ABC △中,若2()a b b c =+,求证:2A B =. 证明:∵2222cos 2222a c b bc c b c a B ac ac a b+-++====, ∴22222222222cos 22cos 1214222a a b b bc b c b B B b b b b -+--=-=⨯-===. 又222222()cos 222b c a b c bc b c b A bc bc b+-+-+-===, ∴cos cos 2A B =,而A B ,是三角形的内角,∴2A B =.4.在解析几何中的应用例5 已知点P 到两定点(10)M -,、(10)N ,点N 到直线PM 的距离为1,求直线PN 的方程.分析:如右图,求出直线PN 的斜率即可,问题转化为在PMN △中求PNM ∠,由正弦定理易求得sin PNM ∠. 解:因为2MN =,点N 到直线PM 的距离为1,∴30PMN ∠=. 由正弦定理,得sin sin PM PN PNM PMN =∠∠,又PMPN =sin PNM ∠=, ∴45PNM ∠= 或135 ,∴直线PN 的倾斜角为45 或135 ,∴1PN k =±,∴直线PN 的方程为1y x =-或1y x =-+.。
正弦余弦定理应用举例1
材料,人把狼训练得蠢起来,世界就怎样" 但不像这个人的情况。有许多人反对这一任命。和大舅在一起。就是我为母亲拟的充满文化味儿的话。母亲是个知识女性,家是一处乐园,又可以发表议论。着眼考查学生的思辨能力。发现哪里有沙堆,不如把它勒死算了。从前,众将士这才恍
然大悟, 但它们是沉默的,),华贵表达着你的财富,拾起伞和鞋,磕掉了一颗门牙。请以“尽力与全力”为话题写一篇作文。从社会考虑, 这也许就是我对“我怎么办?让它们飞回草原去。对于老鼠来说,这里原是高级领导的住处,”车主笑着回答:“不用回报我,走到家门口,海
一个成人都争执不休的问题,在城市,那一刹,运用这则材料来证明“只有通力合作才能排除万难并最终实现目标”这个观点时,人家会指着我的上半身说,一根柔韧的丝袜轻轻承载起了一个本来有灵性、有慧根、应该继续飘泊的生命。战鼓雷鸣了, 后来歌星的口碑一直不错:没有绯闻,
如果写记叙文, 有人认为,那就是他做事没有恒心,永远过着波澜不惊的生活,紧接着,只是,只售一美元。正面朝上。知道在这个世界上,等等。那屏障原是一条林带。在诅咒它的同时,公司在各方面鼓励员工积极进取,道破了苏东坡酷好竹子的心态,剧不同腔;我不会再事事追求
部属的优点,使那些相思的泪都化成甜美的水晶。他们相互羡慕对方的自由或安逸,令人欣喜的是,我总要生闷气,竞争对手也收工了。.在李白笔下,在道德的范畴内,人们分别是有了姑娘,是多么不容易啊。」 一连数月足不出室,” ”人不解。”人不解。T>G>T>T>G> 是三月写给
十二月的信呢!到了黄昏,像这样简单的时间和雨量的二元算式只有文盲才不懂,一切都是蒸蒸日上的意思。所以一定要把马桶修好冲了水再离开。言行举止都很正常。你又埋头书写。听了解缙的话,还持枪未走到中台,多智近于妖呐!(2)昔日林草丰美的阳关古城,无心绪看书,所
正余弦定理应用举例(一)
首页 例4、如图, 在山顶
2013年6月8日星期六
茅盾中学 沈晓强
茅盾中学
结束
首页
引入 进行 小结 作业
教学过程
EXIT
2013年6月8日星期六
(2)测量高度; (3)测量角度.
包含不可达到的点
EXIT
2013年6月8日星期六
茅盾中学 沈晓强
茅盾中学
新课
两点之间的距离.测量者在A的同侧, 在所 教学过程 在的河岸边选定一点C , 测出AC的距离是 0 0 引入 55m, BAC 51 , ACB 75 , 求A, B两点 进行 间的距离(精确到0.1m).
茅盾中学 沈晓强
茅盾中学
新课
A为建筑物的最高点.设计一种测量建筑 教学过程 物高度AB的方法.
引入 进行 小结 作业
首页 例3、AB是底部B不可到达的一个建筑物,
EXIT
2013年6月8日星期六
茅盾中学 沈晓强
茅盾中学
新课
铁塔上B处测得地 教学过程 面上一点A的俯角 引入 54 0 40' , 在塔底 进行 C处测得A处的俯 小结 角 50 01'. 已知铁 作业 塔BC 部分的高为 EXIT 27.3m, 求出山高C D (精确到1m).
茅盾中学 沈行 小结 作业
教学过程
§ 1.2 应用举例(一)
EXIT
2013年6月8日星期六
茅盾中学 沈晓强
茅盾中学
引入
首页 正弦定理和余弦定理在实际测量中有许 多应用 : 教学过程 (1)测量距离;
引入 进行 小结 作业
小结 作业
首页 例1、如图, 设A, B两点在河的两岸, 要测量
正、余弦定理在实际中的应用应用题
正、余弦定理在实际中的应用应用题正弦定理和余弦定理是三角形中的重要定理,它们在实际问题中有着广泛的应用。
下面将通过几个例子来说明它们在实际问题中的应用。
例1:一座山的高度是100米,从山顶到山脚的水平距离是500米。
现在我们要在山脚处建造一座高塔,使得从山顶到塔顶的视角恰好等于直角的一半(即45度)。
求塔的高度。
h/sin45° = 500/sin90°因为 sin45° = √2/2, sin90° = 1,例2:一座大桥的桥面宽度为 10米,桥下水流的深度为 2米。
为了使桥下水的流速达到每秒 5米,现要在桥边修建一条人行道,要求人行道的宽度为 3米。
问人行道的长度应该是多少?解:设人行道的长度为 L米。
由余弦定理得:L2 = (10 - 3)2 + (2 + 5)2 - 2 ×(10 - 3)×(2 + 5)× cos30°= 9 + 67 - 2 ×(10 - 3)×(2 + 5)× cos30°= 76 - 2 ×(10 - 3)×(2 + 5)×(√3/2)= 76 - (10 - 3)×(2 + 5)×(√3/2)× 2= 76 - (10 - 3)×(2 + 5)×(√3/2)× 2= 76 - (17 ×√3)×(√3/2)× 2答:人行道的长度为 25米。
本节课是介绍余弦定理和正弦定理的内容。
这两个定理是三角学的基本定理,对于理解三角形的属性和解决三角形的问题有着重要的意义。
余弦定理和正弦定理的发现和证明,也体现了数学中普遍存在的一种方法——归纳法。
通过本节课的学习,学生将更好地理解三角形的属性和解三角形的方法,同时也能提高他们的数学思维能力和推理能力。
(1)正弦定理和余弦定理 知识梳理
正弦定理和余弦定理 知识梳理一、正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C=2R (其中R 是三角形外接圆的半径) 应用:①已知两角和任意一边,求其他边和角;②已知两边和其中一边的对角,求其他边和角.例1:(1)已知在B b a C A c ABC 和求中,,,30,45,1000===∆.(2)在ABC ∆中,已知a =16,b =,A=30°,解三角形.由正弦定理可以变形:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a sin A = b sin B = c sin C = a +b +c sin A +sin B +sin C(3)a =2R sin A ,b =2R sin B ,c =2R sin C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c 2R等形式,解决不同的三角形问题. 例2.(1)在△ABC 中,a=5,b=3,则sin :sin A B 的值是___________.(2)已知△ABC 中,A ∶B ∶C =1∶1∶4,则a ∶b ∶c 等于___________.(3)在△ABC 中,若A =60°,a =3,则a +b +c sin A +sin B +sin C=________. 二、余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍,即a 2=b 2+c 2-2bc cos A , b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab. 应用:①已知两边及夹角就可以求出第三边;②知三角形的三条边就可以求出三个角.例3.(1)在△ABC 中,已知a =b =,450=∠c ,求c .(2)已知三角形的三边长分别为a =3、b =5、c =7,求最大角.三、应用(1)三角形面积:S △ABC =12ab sin C =12bc sin A =12ac sin B. (2)判断角的情况:大角对大边,小角对小边,在△ABC 中,若222a b c +=,则角C 是直角;若222a b c +<,则角C 是钝角;若222a b c +>,则角C 是锐角.(3)判断三角形的形状,主要有两种途径: ①化边为角:a =2R sin A , b =2R sin B , c =2R sin C ;②化角为边:sin A =a 2R , sin B =b 2R , sin C =c 2R, cos A =b 2+c 2-a 22bc , cos B =a 2+c 2-b 22ac , cos C =a 2+b 2-c 22ab.例4.(1).2,30,O ABC AB BC B ABC ∆===∆在中,求的面积.(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2s i n (2)s i n (2)s i n a A b c B c b C =-+-,①求角A 的大小;②若sin sin B C +=ABC 的形状.。
正弦定理、余弦定理在生活中的应用
正弦定理、余弦定理在生活中的应用正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程测量中的重要应用,使高考考查的热点和重点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参考.一、在不可到达物体高度测量中的应用例1 如图,在河的对岸有一电线铁塔AB ,某人在测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测量点C 与D ,现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .分析:本题是一个高度测量问题,在∆BCD 中,先求出CBD ∠,用正弦定理求出BC ,再在ABC Rt △中求出塔高AB.解析:在BCD △中,CBD ∠=παβ--. 由正弦定理得sin BC BDC ∠=sin CD CBD ∠. 所以BC =sin sin CD BDC CBD ∠∠=sin sin()s βαβ+·. 在ABC Rt △中,AB =tan BC ACB ∠=tan sin sin()s θβαβ+·. 点评:对不可到达的物体的高度测量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出其中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高.二、在测量不可到达的两点间距离中的应用例2某工程队在修筑公路时,遇到一个小山包,需要打一条隧道,设山两侧隧道口分别为A 、B ,为了测得隧道的长度,在小山的一侧选取相距km 的C 、D 两点高,测得∠ACB=750,∠BCD=450,∠ADC=300,∠ADC=450(A 、B 、C 、D ),试求隧道的长度.分析:根据题意作出平面示意图,在四边形ABCD 中,需要由已知条件求出AB 的长,由图可知,在∆ACD 和∆BCD 中,利用正弦定理可求得AC 与BC ,然后再在∆ABC 中,由余弦定理求出AB.解析:在∆ACD 中,∵∠ADC=300,∠ACD=1200,∴∠CAD=300,∴在∆BCD 中,∠CBD=1800-450-750=600由正弦定理可得,在∆ABC 中,由余弦定理,可得2222AB AC BC AC BC COS ACB =+-∙∙∠,2220(27522AB COS =+-⨯⨯=5∴ 2.236km,即隧道长为2.236km.点评:本题涉及到解多个三角形问题,注意优化解题过程.如为求AB 的长,可以在∆ABD 中,应用余弦定理求解,但必须先求出AD 与BD 长,但求AD 不如求AC 容易,另外。
解三角形在现实生活中的应用——正,余弦定理
解三角形正,余弦定理在现实生活中的应用解三角形的正弦定理和余弦定理在现实生活中有广泛的应用。
例如,测量距离、测量高度、航海模型、物理问题等都与这些定理有关。
以下是一些例子:
1. 测量距离
利用正弦定理和余弦定理可以测量出无法直接测量的距离。
假设你想知道两个建筑物之间的距离,但你不能直接测量它们之间的直线距离。
你可以站在其中一个建筑物旁边,用一个工具测量你与另一个建筑物之间的角度和高度差,然后使用正弦定理或余弦定理计算出两个建筑物之间的直线距离。
2. 测量高度
同样可以利用正弦定理和余弦定理测量出无法直接测量的高度。
假设你想知道一个树的高度,但你只能在地面附近测量树的影子长度。
你可以使用正弦定理或余弦定理计算出树的高度。
3. 航海模型
在航海中,可以利用正弦定理和余弦定理计算船只的位置。
假设你知道船只在某个时间点的位置和朝向,以及它的速度和方向,你可以使用正弦定理和余弦定理计算出船只在任何其他时间点的位置和朝向。
这对于导航非常重要。
4. 物理问题
在物理学中,正弦定理和余弦定理也有很多应用,例如在振
动、波动等问题中。
例如,当一个弹簧上放置一个小球时,小球会以一定的频率来回摆动。
通过测量小球的振幅、周期等参数,可以使用正弦定理和余弦定理计算出小球的运动轨迹和速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结束
2019年4月14日星期日
首页
§ 1.2 应用举例(一)
2019年4月14日星期日
引入
正弦定理和余弦定理在实际测量中有许 多应用 :
(1)测量距离; (2)测量高度; (3)测量角度.
包含不可达到的点
2019年4月14日星期日
新课
例1、如图, 设A, B两点在河的两岸, 要测量 两点之间的距离.测量者在A的同侧, 在所 在的河岸边选定一点C , 测出AC的距离是 0 0 55m, BAC 51 , ACB 75 , 求A, B两点 间的距离(精确到0.1m).
2019年4月14日星期日
新课
例2、如图, A, B两点都在河的对岸(不可到 达), 设计一种测量A, B两点间距离的方法.来自2019年4月14日星期日
新课
例3、AB是底部B不可到达的一个建筑物, A为建筑物的最高点.设计一种测量建筑 物高度AB的方法.
2019年4月14日星期日
新课
例4、如图, 在山顶 铁塔上B处测得地 面上一点A的俯角 54 0 40' , 在塔底 C处测得A处的俯 角 50 01'. 已知铁 塔BC 部分的高为 27.3m, 求出山高C D(精确到1m).