人教版数学必修五模块综合测试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学必修五模块综合测试题 (时间120分钟,满分150分)
一、选择题(本大题共12个小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的)
1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是 ( )
A .()2
1
1+-n
B .cos
2π
n C .cos ()21π+n D .cos ()2
2π+n 思路分析:分别取n=1,2,3,4代入验证可得. 答案:B
2.已知△ABC 的三边长分别为a-2,a ,a+2,且它的最大角的正弦值为2
3
,则这个三角形的面积是 ( ) A .
4
15 B .
4315 C .4
3
2 D .
4
3
35 思路分析:先判断出a+2所对角最大,设为α,则sin α=
23,∴cos α=±2
1
. 当cos α=21时,由(a+2)2=a 2+(a-2)2
-2a(a-2)·cos α,解得S=0,不合题意. 当cos α=-2
1时,由(a+2)2=a 2+(a-2)2
-2a(a-2)·cos α,解得a=5或a=0(舍去).
∴S=
21 (a-2)·a ·sin α=2
1
×3×5×23=4315.
答案:B
3.在等比数列{a n }中,a 9+a 10=a (a≠0),a 19+a 20=b ,则a 99+a 100等于 ( )
A .89
a
b
B .(a
b
)9
C .910
a
b
D .(
a
b )10 思路分析:∵a 19+a 20=a 9q 10
+a 10q 10
=q 10
(a 9+a 10)(q 为公比), ∴q 10
=
1092019a a a a ++=a
b
.
又a 99+a 100=a 19q 80
+a 20q 80
=q 80
(a 19+a 20)=(a
b )8
·b=89a b .
答案:A
4.首项为2,公比为3的等比数列,从第n 项到第N 项的和为720,则n 、N 的值分别是 ( ) A .n=2,N=6 B .n=2,N=8 C .n=3,N=6 D .n=3,N>6 思路分析:∵S N -S n-1=720,
∴3
1)31(231)31(21------n N =720,即3N -3n-1
=720.
由选择肢知N=6,n=3适合上述方程. 答案:C
5.设α、β是方程x 2-2x+k 2=0的两根,且α,α+β,β成等差数列,则k 为 ( ) A .2 B .4 C .±4 D .±2
思路分析:α+β=2,αβ=k 2,又(α+β)2
=αβ,
∴4=k 2
.∴k=±2. 答案:D
6.等比数列{a n }中,前n 项和S n =3n +r ,则r 等于 ( ) A .-1 B .0 C .1 D .3
思路分析:当n=1时,a 1=3+r ;当n ≥2时,a n =S n -S n-1=2·3n-1
,要使{a n }为等比数列,则3+r=2,即r=-1. 答案:A
7.在△ABC 中,AB=7,AC=6,M 是BC 的中点,AM=4,则BC 等于 ( ) A .21
B .106
C .69
D .154
思路分析:本题可以用平行四边形的结论:对角线的平方和等于四条边的平方和,或在三角形中用余弦定理求解.
由平行四边形对角线的平方和等于四条边的平方和,得4AM 2+BC 2=2(AB 2+AC 2
). ∴BC=164)3649(2⨯-+=106.
答案:B
8.设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,那么a n +b n 所组成的数列的第37项的值是 ( ) A .0 B .37 C .100 D .-37
思路分析:设{a n }的公差为d 1,{b n }的公差为d 2,则a n =a 1+(n-1)d 1,b n =b 1+(n-1)d 2. ∴a n +b n =(a 1+b 1)+(n-1)(d 1+d 2). ∴{a n +b n }也是等差数列. 又a 1+b 1=100,a 2+b 2=100,
∴{a n +b n }是常数列,故a 37+b 37=100. 答案:C 9.不等式组⎩
⎨
⎧≤≤≥++-30,
0))(5(x y x y x 表示的平面区域是一个 ( )
A .三角形
B .直角梯形
C .等腰梯形
D .矩形
思路分析:原不等式组可化为
⎪⎩⎪⎨⎧≤≤≥+≥+-30,0,05x y x y x 或⎪⎩
⎪⎨⎧≤≤≤+≤+-30,0,05x y x y x
画出各不等式组表示的公共区域,即可看出图形的形状. 答案:C
10.数列{a n }中,a n >0,且{a n a n+1}是公比为q (q>0)的等比数列,满足a n a n+1+a n+1a n+2>a n+2a n+3(n ∈N *),则公比q 的取值范围是 ( )