利用定积分求曲线围成的面积

合集下载

(完整版)定积分的应用--平面图形的面积

(完整版)定积分的应用--平面图形的面积

C3x
跨度为6米, 高为3米,此抛物
线形拱桥的横截面积为多少?
解:如图建立平面直角坐标系,
A
-3
B
可设抛物线方程为
y ax2 (a 0)
于是抛物线形拱桥的横截面积
S= S长方形 - S曲边梯形
点 (3,3)代入方程,得
a 1
所以抛物线方程
3 y
1
x2
3
= 18 -
3 1 x2dx 3 3
=12 - 3 1 x2dx
3 3
计算
问题情境
b
a f ( x)dx 的几何意义是什么?
几何意义
y
当 f (x) ≥ 0,定积分
b
a f (x)dx
0
a
表示曲线 y = f (x),直线 x = a,
x = b和 x 轴所围成的曲边梯形
的面积
y f (x)
bx
几何意义
ya
b
当函数 f (x) 0 , 定积分 x
b
a f (x)dx
1 2
y2)d
y
所围图形
y y2 2x (8, 4)
o
yx4 x
(2, 2)
18
定积分在几何上的应用
y
y y 2 (x)
y 1(x)
oa x b
x
X —型:
a x b
d
y
cx 1( y) o
x 2 ( y)
x
Y —型:
c yd
h 2 (x) 1(x) h 2 ( y) 1( y)
y f (x)
就是位于x轴下方的曲边梯形
面积的相反数. 即
b
a f (x)dx S

定积分求面积

定积分求面积

计算由曲线 y 2 = 2 x 和直线 y = x − 4 所围
成的图形的面积. 成的图形的面积
解 两曲线的交点
y = x−4
y2 = 2x y = x−4
⇒ ( 2,−2), (8,4).
y2 = 2 x
选 y 为积分变量
y ∈ [−2, 4] −
A = ∫ dA = 18.
−2 4
y2 dA = y + 4 − dy 2
0 x
x
x
两边同时对 x 求导
3 f ( x ) = 2 y + 2 xy ′ ⇒ 2 x y ′ = y
积分得 y = cx ,
2
9 因为曲线 y = f ( x ) 过点 ( 2 , 3 ) ⇒ c = 2
9 ∴ y = x, 2
2
因为 f ( x ) 为单调函数
3 所以所求曲线为 y = 2x. 2
a
b
例:曲线 y = x ( x − 1)( 2 − x )与 x轴所围图形的面积可表 为: A) − ∫ x ( x − 1)( 2 − x )dx ;
0 2
B ) ∫ x ( x − 1)( 2 − x )dx − ∫ x ( x − 1)( 2 − x )dx ;
0 1
1
2
C ) − ∫ x ( x − 1)( 2 − x )dx + ∫ x ( x − 1)( 2 − x )dx ;
6 曲线 y = x 2 与它两条相互垂直的切线所围成平面图 形的面积 S ,其中一条切线与曲线相切于点 A( a , a 2 ) , a > 0 ,则当 a = __时,面积 S 最小 . __时
二、求由下列各曲线所围成的图形的面积: 求由下列各曲线所围成的图形的面积: 1 1、 y = 与直线 y = x 及 x = 2 ; x 2、 y = x 2 与直线 y = x 及 y = 2 x ; 3、 r = 2a ( 2 + cosθ ) ; 4 、 摆线 x = a( t − sin t ) , y = a (1 − cos t ) (0 ≤ t ≤ 2π ) 及 x 轴; 的公共部分; 5、 r = 3 cosθ 及 r = 1 + cosθ 的公共部分; 6、笛卡尔叶形线 x 3 + y 3 + 3axy .

利用定积分求曲线围成的面积

利用定积分求曲线围成的面积

12.9 利用定积分求曲线围成的面积武汉外国语学校汪家硕一.复习回顾:当f(x )0时,由y = f ( x) 、x = a、x = b与x轴所围成的曲边梯形位于x轴的下方。

2.牛顿—莱布尼茨公式定理(微积分基本定理)如果f (x)是区间[a,b]上的连续函数,并且F'(x) = f (x),则.曲线围成的面积1.设f和g是区间[a,b]上的连续函数且对任意的x[a,b]有f(x )g(x),则直线x=a和直线x=b以及曲线间围成的面积可以表示为:b b bf (x)dx -g(x)dx =f (x)-g(x)dx a a a例1.求抛物线y=x2和直线y=2x所围成的区域面积。

解:先求出P点坐标。

y= x2x = 0解方程组y = x x=0y= 2x x = 2P点的坐标是(2,4) 。

2所求的面积= 2x - x2dx = x20=4-8=4b1.定积分的几何意义:当f(x )0时,积分f(x)dx在几何上表示由y= f(x)、x=a、a3 33例3 例2.计算曲线y = x 2 +1和y = 4 - x 2 ,以及直线x =1和x = -1所围成的区域面积。

f (x )-g (x )dx + g (x )- f (x )dx + f (x )-g (x )dx + g (x )-f (x )dx ac1 c2 c 3例3:求 f (x )= x 3和g (x )= x 所围成的封闭区域面积。

解:当 f (x )= g (x )时图像的交点,即 x 3 = x x 3 - x = 0 x ( x 2 -1) = 0x = 0或 1解:所求面积=-11 (x2 +1)dx = 3-2x 2dx =-1 3x -2x 3 3-1 14 32.前面的例题都是一个曲线总在另外一个曲线的上方,如果它们交叉会是什么结考虑区间[a ,c 1],[c 1,c 2],[c 2,c 3],[c 3,b ],阴影部分面积可以表示为:例 4 :求阴影部分的面积。

利用定积分求曲线围成的面积

利用定积分求曲线围成的面积

利用定积分求曲线围成的面积
定积分是数学中一种重要的积分计算方法,用于求解两变量t和y之间函数关系的积分。

它是一种对曲线积分测量技术,通常用于求曲线所围成的面积。

下面介绍定积分求曲
线围成的面积的原理,以及如何运用定积分求解。

首先,求曲线所围成的面积,要求先将曲线分解为多个小矩形,这就是定积分技术的
基础。

定积分技术可以用原函数曲线在一个区间内离散对应的多个矩形累加得到该区间内
的整个积分值,其具体流程如下:
1. 首先确定积分区间,确定积分上下限,通常记做a和b;
2. 确定在积分区间中拆分的点数,也就是将积分区间拆分成多少子区间,其记号为n;
3. 经过上面的步骤后,就可以确定出定积分的“积分步长”h=(b-a)/ n;
4. 接下来根据所给函数,计算一下积分步长h对应的函数值,我们将这个值记为Fi,i为1,2,...,n,F1为a点处的函数值,F2为a+h点处的函数值,以此类推,Fn为b点处的函数值;
5. 通过上面计算出所有矩形的面积,把它们累加起来,就可以得到整个曲线所围成
的面积;
6. 如果矩形面积很小,也就是说n足够大,则积分值基本已经接近其实际值;
7. 再把整个曲线所围成的面积减去各个子矩形与曲线实际接触处的总面积,也就是
被曲线分割的矩形的形面积,就可以得到最终的积分结果了。

上面叙述的是定积分求曲线围成的面积的原理,要实际操作运用定积分求解,还需要
根据实际情况进行处理。

在实际应用中,需要特别注意函数在曲线上断点处不可能出现悬
挂断层,以及曲线上拐点处的积分计算。

只有在这些要点上仔细处理,定积分求曲线围成
的面积才可行。

利用定积分求曲线围成的面积资料

利用定积分求曲线围成的面积资料

利用定积分求曲线围成的面积12.9 利用定积分求曲线围成的面积武汉外国语学校 汪家硕一.复习回顾:1.定积分的几何意义:当()0f x ≥时,积分()ba f x dx ⎰在几何上表示由()y f x =、x a =、xb =与x 轴所围成的曲边梯形的面积。

当()0f x ≤时,由()y f x =、x a =、x b =与x 轴所围成的曲边梯形位于x 轴的下方。

2.牛顿—莱布尼茨公式定理(微积分基本定理)如果()f x 是区间[,]a b 上的连续函数,并且'()()F x f x =,则()()()ba f x dx Fb F a =-⎰二.曲线围成的面积1.设f 和g 是区间[,]a b 上的连续函数且对任意的[,]x a b ∈有()()f x g x ≥,则直线x a =和直线x b =以及曲线间围成的面积可以表示为:()()()()b b ba a a f x dx g x dx f x g x dx -=-⎰⎰⎰例1.求抛物线2y x =和直线2y x =所围成的区域面积。

⎰b a f (x )dx =⎰c a f (x )dx +⎰b c f (x )dx 。

解:先求出P 点坐标。

解方程组22y x y x⎧=⎨=⎩ ⇒ 02x x =⎧⎨=⎩ ∴ P 点的坐标是(2,4)。

所求的面积= 22322008424333x x x dx x ⎡⎤-=-=-=⎢⎥⎣⎦⎰ 例1例2.计算曲线21y x =+和24y x =-,以及直线1x =和1x =-所围成的区域面积。

解:所求面积=11132221112144(1)32333x x x dx x dx x ---⎡⎤--+=-=-=⎢⎥⎣⎦⎰⎰例22.前面的例题都是一个曲线总在另外一个曲线的上方,如果它们交叉会是什么结果?考虑区间112233[,],[,],[,],[,]a c c c c c c b ,阴影部分面积可以表示为:123123()()()()()()()()c c c ba c c c f x g x dx g x f x dx f x g x dx g x f x dx -+-+-+-⎰⎰⎰⎰例3:求3()f x x =和()g x x =所围成的封闭区域面积。

利用定积分求曲线围成的面积

利用定积分求曲线围成的面积

利用定积分求曲线围成的面积This manuscript was revised on November 28, 2020利用定积分求曲线围成的面积武汉外国语学校 汪家硕一.复习回顾:1.定积分的几何意义:当()0f x ≥时,积分()ba f x dx ⎰在几何上表示由()y f x =、x a =、xb =与x 轴所围成的曲边梯形的面积。

当()0f x ≤时,由()y f x =、x a =、x b =与x 轴所围成的曲边梯形位于x 轴的下方。

2.牛顿—莱布尼茨公式定理(微积分基本定理)如果()f x 是区间[,]a b 上的连续函数,并且'()()F x f x =,则二.曲线围成的面积1.设f 和g 是区间[,]a b 上的连续函数且对任意的[,]x a b ∈有()()f x g x ≥,则直线x a =和直线x b =以及曲线间围成的面积可以表示为:()()()()bb ba a a f x dx g x dx f x g x dx -=-⎰⎰⎰ 例1.求抛物线2y x =和直线2y x =所围成的区域面积。

解:先求出P 点坐标。

解方程组22y x y x⎧=⎨=⎩ ⇒ 02x x =⎧⎨=⎩ ∴ P 点的坐标是(2,4)。

所求的面积= 22322008424333x x x dx x ⎡⎤-=-=-=⎢⎥⎣⎦⎰ 例1 例2.计算曲线21y x =+和24y x =-,以及直线1x =和1x =-所围成的区域面积。

解:所求面积=例22.前面的例题都是一个曲线总在另外一个曲线的上方,如果它们交叉会是什么结果考虑区间112233[,],[,],[,],[,]a c c c c c c b ,阴影部分面积可以表示为:例3:求3()f x x =和()g x x =所围成的封闭区域面积。

解:当()()=时图像的交点,f xg x即332=⇒-=⇒-=x x x x x x0(1)0例3 例4:求阴影部分的面积。

1_定积分与微积分基本定理(理)含答案版

1_定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理)基础巩固强化1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =⎠⎛01(x 2-x )d x B .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d y D .S =⎠⎛01(y -y )d y[答案]B[分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析]两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .2.如图,阴影部分面积等于( )A .23B .2- 3 C.323D.353 [答案]C[解析]图中阴影部分面积为S =⎠⎛-31(3-x 2-2x )d x =(3x -13x 3-x 2)|1-3=323. 3.⎠⎛024-x 2d x =( )A .4πB .2πC .π D.π2 [答案]C[解析]令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积,∴S =14×π×22=π.4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( )A .在t 1时刻,甲车在乙车前面B .在t 1时刻,甲车在乙车后面C .在t 0时刻,两车的位置相同D .t 0时刻后,乙车在甲车前面 [答案]A[解析]判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间行驶的路程就是该时间段速度函数的定积分,即速度函数v (t )的图象与t 轴以与时间段围成区域的面积.从图象知:在t 0时刻,v 甲的图象与t 轴和t =0,t =t 0围成区域的面积大于v 乙的图象与t 轴和t =0,t =t 0围成区域的面积,因此,在t 0时刻,甲车在乙车的前面,而且此时乙车的速度刚刚赶上甲车的速度,所以选项C ,D 错误;同样,在t 1时刻,v 甲的图象与t 轴和t =t 1围成区域的面积,仍然大于v 乙的图象与t 轴和t =t 1围成区域的面积,所以,可以断定:在t 1时刻,甲车还是在乙车的前面.所以选A.5.向平面区域Ω={(x ,y )|-π4≤x ≤π4,0≤y ≤1}随机投掷一点,该点落在曲线y =cos2x 下方的概率是( )A.π4B.12C.π2-1D.2π [答案]D[解析]平面区域Ω是矩形区域,其面积是π2,在这个区6.的值是( )A .0 B.π4 C .2 D .-2 [答案]D[解析]2(cos sin )2x x ππ---=2(cos sin )2x x ππ---=-2. 7.⎠⎛02(2-|1-x |)d x =________.[答案]3[解析]∵y =⎩⎨⎧1+x 0≤x ≤13-x 1<x ≤2,∴⎠⎛02(2-|1-x |)d x =⎠⎛01(1+x )d x +⎠⎛12(3-x )d x=(x +12x 2)|10+(3x -12x 2)|21=32+32=3. 9.已知a =20(sin cos )x x dx π+⎰,则二项式(a x -1x)6的展开式中含x 2项的系数是________.[答案]-192 [解析]由已知得a =2(sin cos )x x dx π+⎰=(-cos x +sin x )|π20=(sin π2-cos π2)-(sin0-cos0)=2,(2x -1x)6的展开式中第r +1项是T r +1=(-1)r ×C r 6×26-r×x 3-r ,令3-r =2得,r =1,故其系数为(-1)1×C 16×25=-192.10.有一条直线与抛物线y =x 2相交于A 、B 两点,线段AB 与抛物线所围成图形的面积恒等于43,求线段AB 的中点P 的轨迹方程.[解析]设直线与抛物线的两个交点分别为A (a ,a 2),B (b ,b 2),不妨设a <b ,则直线AB 的方程为y -a 2=b 2-a 2b -a (x -a ),即y =(a +b )x -ab .则直线AB 与抛物线围成图形的面积为S =⎠⎛ab [(a +b )x -ab -x 2]d x=(a +b 2x 2-abx -x 33)|ba =16(b -a )3,∴16(b -a )3=43,解得b -a =2.设线段AB 的中点坐标为P (x ,y ), 其中⎩⎪⎨⎪⎧x =a +b 2,y =a 2+b 22.将b -a =2代入得⎩⎨⎧x =a +1,y =a 2+2a +2.消去a 得y =x 2+1.∴线段AB 的中点P 的轨迹方程为y =x 2+1.能力拓展提升11.等比数列{a n }中,a 3=6,前三项和S 3=⎠⎛034x d x ,则公比q 的值为( )A .1B .-12C .1或-12D .-1或-12 [答案]C [解析]因为S 3=⎠⎛034x d x =2x 2|30=18,所以6q +6q 2+6=18,化简得2q 2-q -1=0,解得q =1或q =-12,故选C.12.已知(x ln x )′=ln x +1,则⎠⎛1e ln x d x =( )A .1B .eC .e -1D .e +1 [答案]A[解析]由(x ln x )′=ln x +1,联想到(x ln x -x )′=(ln x +1)-1=ln x ,于是⎠⎛1e ln x d x =(x ln x -x )|e 1=(e ln e -e )-(1×ln1-1)=1.13.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.[答案]18[解析]由方程组⎩⎨⎧y 2=2x ,y =4-x ,解得两交点A (2,2)、B (8,-4),选y 作为积分变量x =y 22、x =4-y ,∴S =⎠⎛-42 [(4-y )-y 22]dy =(4y -y 22-y 36)|2-4=18.14.已知函数f (x )=e x -1,直线l 1:x =1,l 2:y =e t -1(t 为常数,且0≤t ≤1).直线l 1,l 2与函数f (x )的图象围成的封闭图形如图中区域Ⅱ所示,其面积用S 2表示.直线l 2,y 轴与函数f (x )的图象围成的封闭图形如图中区域Ⅰ所示,其面积用S 1表示.当t 变化时,阴影部分的面积的最小值为________.[答案](e -1)2[解析]由题意得S 1+S 2=⎠⎛0t (e t -1-e x +1)d x +⎠⎛t1(e x -1-e t +1)d x=⎠⎛0t (e t -e x )d x +⎠⎛t1(e x -e t )d x =(xe t -e x )|t 0+(e x -xe t )|1t =(2t -3)e t +e +1,令g (t )=(2t -3)e t +e +1(0≤t ≤1),则g ′(t )=2e t +(2t -3)e t =(2t -1)e t,令g ′(t )=0,得t =12,∴当t ∈[0,12)时,g ′(t )<0,g (t )是减函数,当t ∈(12,1]时,g ′(t )>0,g (t )是增函数,因此g (t )的最小值为g (12)=e +1-2e 12=(e -1)2.故阴影部分的面积的最小值为(e -1)2.15.求下列定积分. (1)⎠⎛1-1|x |d x; (2)⎠⎛πcos 2x2d x ;(3)∫e +121x -1d x . [解析](1)⎠⎛1-1|x |d x =2⎠⎛1x d x =2×12x 2|10=1.(2)⎠⎛πcos 2x 2d x =⎠⎛0π1+cos x 2d x =12x |π0+12sin x |π0=π2. (3)∫e +121x -1d x =ln(x -1)|e +12=1. 16.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,求a 的值.[解析]f ′(x )=-3x 2+2ax +b ,∵f ′(0)=0,∴b =0, ∴f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0). ∴S 阴影=⎠⎛a0[0-(-x 3+ax 2)]d x=(14x 4-13ax 3)|0a =112a 4=112, ∵a <0,∴a =-1.1.已知函数f (x )=sin 5x +1,根据函数的性质、积分的性质和积分的几何意义,探求22()f x dx ππ-⎰的值,结果是( )A.16+π2 B .π C .1 D .0 [答案]B[解析]22()f x dx ππ-⎰=22ππ-⎰sin 5x d x +22ππ-⎰1d x ,由于函数y =sin 5x 是奇函数,所以22ππ-⎰sin 5x d x =0,而22ππ-⎰1d x =x |π2-π2=π,故选B.2.若函数f (x )=⎩⎨⎧-x -1 (-1≤x <0),cos x (0≤x <π2),的图象与坐标轴所围成的封闭图形的面积为a ,则a 的值为( )A.2+π4B.12 C .1 D.32 [答案]D[解析]由图可知a =12+⎠⎜⎜⎛0π2cos x d x =12+sin x |π20=32.3.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.[答案]22[解析]∵⎠⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22. 4.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________. [答案]33[解析]⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =(ax 33+cx )|10=a 3+c ,故a 3+c =ax 20+c ,即ax 20=a 3,又a ≠0,所以x 20=13,又0≤x 0≤1,所以x 0=33.故填33. 5.设n =⎠⎛12(3x 2-2)d x ,则(x -2x)n 展开式中含x 2项的系数是________.[答案]40[解析]∵(x 3-2x )′=3x 2-2, ∴n =⎠⎛12(3x 2-2)d x =(x 3-2x )|21 =(23-2×2)-(1-2)=5.∴(x -2x )5的通项公式为T r +1=C r 5x 5-r (-2x)r =(-2)r C r 5x 5-3r 2 ,令5-3r2=2,得r =2, ∴x 2项的系数是(-2)2C 25=40.。

定积分应用求面积

定积分应用求面积


y2 2
4


y3
4

4y 2

6
2
18
8
注:如果取x为积分变量
X型 在 0,8 上任取小区间x, x dx,
则 dA 2 x1xdx

A

8
0
2 x
y穿出


1 x
y穿入
dx
y
dA
o (2,2)
(8,4)
以 f ( x)dx作为 A的近似值。
即: A f ( x)dx
f ( x)dx 叫做面积元素, 记为
dA f ( x)dx
Oa
y f (x)
A
dx
x x dx
b
x
b
(3)写出A的积分表达式,即:A f ( x)dx a
3
一般地,如果某一实际问题中的所求量 U符合下列条件:
以极点O为圆心,以 a为半径的的圆的极坐标方程: r a.
P(r, )
P(r, )
r

O
(a,0) x O (a,0)
x
P(r, )

3
3
O
x
以点(a,0) 为圆心,以 a 为半径的的圆的极坐标方程 r 2a cos
过极点O,且与极轴的夹角为 的直线方程 .
(1)U是与一个变量x的变化区间[a,b]有关的量; (2)U对于区间[a,b]具有可加性;
(3)部分量
U
的近似值可表为
i
f i xi
那么这个量就
可以用积分来表示。
具体步骤是:
(1)确定积分变量,和它的变化区间[a,b]; (2)写出积分元素

利用定积分求曲线围成的面积

利用定积分求曲线围成的面积

12.9利用定积分求曲线围成的面积
武汉外国语学校
汪家硕
•复习回顾:
b 1.定积分的几何意义:当f(x)_O 时,积分 f(x)dx 在几何上表示由y = f(x)、x = a 、x =b _a 与x 轴所围成的曲边梯形的面积。

当f(x)空0时,由y 二f(x)、x 二a 、x 二b 与x 轴所围成的曲边梯形位于x 轴的下方。

2.牛顿一莱布尼茨公式
定理(微积分基本定理)如果f (x)是区间[a, b ]上的连续函数,并且F (x)= f (x),则 二•曲线围成的面积
1.设f 和g 是区间[a,b ]上的连续函数且对任意的[a,b ]有f(x) —g(x),则直线x = a 和直
线x =b 以及曲线间围成的面积可以表示为:
b b b
J f(x)dx —a g(x)dx=J f(x)—g(x)dx a a a 例1求抛物线y =x 2和直线y =2x 所围成的区域面积。

例2.计算曲线y =X 2 • 1和y =4 -X 2,以及直线x =1和x - -
1所围成的区域面积
解:所求面积=
例2
解:先求出P 点坐标 解方程组 P 点的坐标是(2,4) 所求的面积=
2x -x 2dx 二 x 2 0 - A
0 a b
2.前面的例题都是一个曲线总在另外一个曲线的上方,
它们交叉会是什么结果?
考虑区间[a’CiHcitLGqHob],阴影部分面积可以表示为: 例3:求f(x) =x3和g(x)二x所围成的圭寸闭区域面积
解:当f(x)=g(x)时图像的交点,
即x3 = x 二f - x 0 : (x 2x 1) £
例4:求阴影部分的面积
练习:
1.求阴影部分面积例3例4。

用定积分的几何意义求不规则平面图形面积的思路

用定积分的几何意义求不规则平面图形面积的思路

备考指南求平面几何图形的面积问题比较常见.对于规则的平面几何图形,可以直接利用三角形、矩形、等腰梯形、圆等的面积公式来求解;而对于不规则的曲边平面图形,直接运用平面几何图形的面积公式往往很难求得,须利用定积分的几何意义求解.定积分的几何意义是指被积函数与坐标轴围成的面积,即曲边图形的面积S =∫a bf (x )d x .若被积函数的图象位于x 轴上方,则函数的定积分为正;若位于x 轴的下方,则函数的定积分为负.定积分与曲边梯形面积的关系,如下表所示.图形阴影部分面积S =∫b a f (x )d x S =-∫baf (x )d xS =∫ca f (x )d x -∫bc f (x )d xS =∫b af (x )dx -∫b ag (x )d x =∫ba [f (x )-g (x )]d x利用定积分的几何意义求平面几何图形面积的步骤如下:(1)根据题意画出平面几何图形;(2)根据几何图形确定被积函数,求出图象与x 轴、y 轴的交点坐标,并求出积分的上、下限;(3)把曲边梯形的面积表示成若干个定积分的和;(4)计算定积分.例1.(1)求函数y =4-x 2在[-2,2]上的图象与x轴所围成的图形的面积;(2)求函数y =sin x 在区间[-π,π]上的图象与x 轴围成的图形的面积.解:(1)由y =4-x 2可得x 2+y 2=4(y ≥0),该式表示的是圆心在原点、半径为2的半圆,如图1中阴影部分所示.根据定积分的几何意义可知该半圆的面积为S=∫-224-x 2d x =12π×22=2π.图1图2(2)根据题意画出图形,函数y =sin x 在区间[-π,π]上的图象与x 轴围成的图形如图2中的阴影部分所示,根据定积分的几何意义可知阴影部分的面积为∫-ππsin x d x =0.当被积函数的图象关于坐标轴或坐标原点对称时,比较容易求得几何图形的面积,直接利用定积分的几何意义和图形的对称性即可解题.例2.求曲线y 2=2x 与y =x -4所围成的图形的面积.分析:题中的图形由两条曲线围成,很难快速求得问题的答案,需将图形分割,把问题转化为求两部分图形的面积的和或差,再根据定积分的几何意义来解题.图3图4解法一:以两曲线的交点为分界点,将阴影部分分割为两部分,如图3所示.S =S 12=2∫022x x +∫28[2x -(x -4)]d x=32)|2032-(12x 2-4x )]|82=18.解法二:以x 轴为分界线,将阴影部分分割为两用定积分的几何意义求不规则平面图形黄文琴56备考指南∫226|图5图6当不能直接用定积分表示不规则平面几何图形的面积时,需采取分割图形的方法或者变换积分变量∫.反证法是解答数学问题的常用方法,是一种间接证明方法.当遇到一些从正面分析、求解较为困难的问题,或采用常规方法难以获解的问题时,采用反证法求解往往比较奏效.反证法是指假设原命题不成立,经过推理后,得到与已知条件、定理、性质等相矛盾的结论,从而证明原命题成立的方法.对于两个互相矛盾的命题和判断来说,根据矛盾律,可由其中一个为真,推断出另一个为假,但是不能由一个为假来断定另一个为真.然而,根据排中律的原理,我们不但能够由其中一个为真推断出另一个为假,同时也能够由一个为假来推断出另一个为真.反证法的逻辑依据是矛盾律和排中律.在运用反证法来证明问题时,根据推出的矛盾和结果来否定反设,用的就是矛盾律;在否定反设之后,能够肯定原命题的正确性,用的是排中律.反证法解题的一般步骤为:第一步:认真读题,准确找到原命题的条件和结论;第二步:对原命题进行反设,即假设原命题不成立;第三步:由假设出发,进行推理论证,得到与已知条件、公理、定理、公式、定义等相矛盾的结论;第四步:得出最后的结论,证明原命题成立.对于命题:p⇒q,则需先假设命题结论q不成立,即¬q成立,然后由p和¬q出发,运用相关的定理、性质、公式等进行推理,得出相矛盾的结果,断定是结论q成立,从而间接地证明了命题p⇒q为真.反证法的应用范围较广,可用于解答方程、不等式、函数、数列、解析几何、三角函数、立体几何等问题,下面举例说明.例1.求证:方程2x=3有且只有一个根.证明:由2x=3,可得x=log23,则方程2x=3有解.下面运用反证法来证明方程2x=3只存在唯一的赵雪岑。

经济学微积分定积分的应用求面积体积

经济学微积分定积分的应用求面积体积

(3) 生产多少单位产品才能获得最大利润;
(4) 最大利润是多少?
解:(1)
C( x) C(0)
x
C(t)dt 200
x
(16 0.002t)dt
0
0
16x 0.001x2 200
(2) L( x) R( x) C( x) px C( x) (20 0.001x)x (16x 0.001x2 200) 0.002x2 4x 200
S
2

y

4

2
dy
18.
选x为积分变量
2
8
S 0 2x ( 2x ) dx 2 ( 2x ( x 4))dx 18.
例:求由曲线 y 1 与y x, x 2 所围面积。
x
解: 画草图,
y y 1
x
2
1
S

1
(x

)dx x
c
d
b
S S1 S2 S3
f ( x)dx
a
c
f ( x)dx
d
f ( x)dx
b
a | f ( x) | dx
由y f ( x), x a, x b及x轴所围图形的面积为
b
S a | f ( x) | dx
一条曲线(积分变量为y)
y
d
x (y)
y
d
y
d
x (y) e
c
c
c
O
x
O
x
O
x
(1) ( y) 0 (2) ( y) 0

高等数学 积分 (5.6.2)--定积分的应用

高等数学 积分 (5.6.2)--定积分的应用

习题5.61. 求下列曲线所围成的图形的面积:(1) 1y x=与直线y x =及2x =; (2) 22x y y =-与直线2y x =+;(3) 1=与两坐标轴;(4) 2236x y y +=与直线y x =(两部分都要计算);(5) ln y x =与直线ln y a =,ln y b =(0b a >>)及y 轴;(6) |ln |y x =与直线1e x =,e x =及x 轴. 2. 求下列图形的面积:(1) 抛物线22y px =(0p >)及其在点,2p p ⎛⎫⎪⎝⎭处的法线所围成的图形; (2) 曲线e x y =与通过坐标原点的切线及y 轴所围成的图形.3. 求抛物线21y x =-+在(0,1)内的一条切线,使得它与两坐标轴及该抛物线所围成的图形的面积最小.4. 求下列曲线所围成的图形的面积: (1) 星形线33cos ,sin ;x a t y a t ⎧=⎨=⎩ (2) 心脏线(2cos cos 2),(2sin sin 2).x a t t y a t t =-⎧⎨=-⎩5. 设P 为曲线2cos ,2sin x t y t =⎧⎨=⎩ π02t ⎛⎫≤≤ ⎪⎝⎭上的一点,O 为坐标原点,记曲线与直线OP 及x 轴所围成的图形的面积为S .(1) 把y 表示成x 的函数,并求面积()S S x =的表达式;(2) 把S 表示成t 的函数()S t ,并求d d S t取得最大值时点P 的坐标. 6. 求下列曲线所围成的图形的面积:(1) 心脏线2(1cos )r a θ=- (0a >);(2) 双纽线22cos 2r a θ=.7. 求下列曲线所围成的图形的公共部分的面积:(1) 3cos r θ=及1cos r θ=+;(2) r θ=及2cos 2r θ=;(3) 22cos 2r θ=,2cos r θ=及1r =.8. 在双纽线24cos 2r θ=位于第一象限部分上求一点M ,使得坐标原点O 与点M 的连线OM 将双纽线所围成的位于第一象限部分的图形分为面积相等的两部分.9. 求下列各立体的体积:(1) 以椭圆域22221x y a b+≤ (0a b >>)为底面,且垂直于长轴的截面都是等边三角形的立体;(2) 由曲面222e x y z -+=与平面0x =,1x =所围成的立体.10. 求下列各旋转体的体积:(1) 抛物线2y x =与28y x =所围成的图形分别绕x 轴、y 轴旋转所得的旋转体;(2) 曲线sin y x =,cos y x = π02t ⎛⎫≤≤⎪⎝⎭与直线π2x =,0x =所围成的图形绕x 轴旋转所得的旋转体; (3) 摆线(sin )(0)(1cos )x a t t a y a t =-⎧>⎨=-⎩的第一拱(02π)t ≤≤与x 轴所围成的图形绕直线2y a =旋转所得的旋转体.11. 用“薄壳法”求下列各旋转体的体积:(1) 由曲线2(1)y x x =-与x 轴所围成的图形绕y 轴旋转所得的旋转体;(2) 由抛物线22y x x =-与直线y x =及x 轴所围成的图形绕y 轴旋转所得的旋转体.12. 求下列各旋转体的体积:(1) 抛物线y =(1,0)的切线及x 轴所围成的图形绕x 轴旋转所得的旋转体;(2) 抛物线y =(2,4)处的法线及x 轴所围成的图形绕x 轴旋转所得的旋转体.13. 设抛物线2y ax = (0,0a x >≥)与21y x =-的交点为A ,过坐标原点O 与点A 的直线与抛物线2y ax =围成一平面图形. 问a 为何值时,该图形绕x 轴旋转所得的旋转体体积最大?并求此最大体积.14. 求下列各旋转面的面积:(1) 立方抛物线3y x =介于0x =与1x =之间的一段弧绕x 轴旋转所得的旋转面;(2) 星形线222333x y a +=绕x 轴旋转所得的旋转面.15. 求抛物线y =x 轴所围成的图形绕x 轴旋转所得的旋转体的表面积.16. 计算下列各弧长:(1) 曲线2ln 42x x y =-相应于1e x ≤≤的一段弧; (2) 曲线ln(cos )y x =上从0x =到π4x =的一段弧;(3) 曲线y t =⎰的全长;(4) 曲线arctan x t =,2ln(1)2t y +=相应于01t ≤≤的一段弧; (5) 对数螺线2e r θ=上从0θ=到2πθ=的一段弧;(6) 曲线112r r θ⎛⎫=+ ⎪⎝⎭相应于13θ≤≤的一段弧. 17. 在摆线(sin )(0)(1cos )x a t t a y a t =-⎧>⎨=-⎩上求分其第一拱成1:3的点的坐标.18. 若1kg 的力能使弹簧伸长1cm ,现在要使这弹簧伸长10cm ,问需要做多少功?19. 用铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉击入木板的深度成正比. 在击第一次时,将铁钉击入木板1cm. 如果铁锤每次打击铁钉所做的功相等,问铁锤击第二次时,铁钉又被击入多少?20. 一蒸汽锅是旋转抛物面形状,开口朝上,口半径为R ,高为H ,其中盛满了密度为ρ的液体,问从锅中将液体全部抽出需做多少功?21. 有一水槽,其横截面为等腰梯形,两底的长分别为0.8m 和0.4m ,高为0.2m ,较长的底在上. 当盛满水时,求横截面上一侧所受的压力.22. 边长为a 和b 的矩形薄板(a b >),与液面成α角斜沉于密度为ρ的液体内,长边平行于液面而位于深h 处. 试求薄板每面所受的压力.23. 一根长为l ,质量为M 的均匀细直棒,在棒的延长线上距棒右端点a 单位处有一质量为m 的质点,若将该质点沿棒的延长线从a 处移至b 处(b a >),试求克服引力所做的功.24. 求一质量为M ,半径为R 的均匀半圆弧对位于其中心的质量为m 的质点的引力.。

定积分的概念,曲边图形求面积

定积分的概念,曲边图形求面积
曲边图形求面积
主讲:王永超
例:如何求由 y x 2与直线x=1,y=0所围成的平面图形的面积呢?
例:如何求由 y x 2与直线x=1,y=0所围成的平面图形的面积呢? 解:在区间[0, 1]上等间隔的插入n-1个点,将他等分成n个小区间
1 1 2 n 1 0 , , , ,...... , 1 n n n n
S
S
i 1
n
i
例:如何求由 y x 2与直线x=1,y=0所围成的平面图形的面积呢?
记f(x) x 2 当n很大时,即 S 很小时,在区间
i - 1 i 上,可以认为函数 , n n
y x 2 的值变化很小,近似的等于
i -1 i -1 一个常数,不妨认为近似的等于左端点 处的函数值 f n n
n i 1 n
◆求曲边梯形面积的一般步骤 引例——曲边梯形的面积(演示)
y f ( x)
y
A?
o 分割
a
b
x
近似代替
求和
取极限
由直线x=0,x=2,y=0与曲线
yx
2
所围成曲边图形的面积
通过本节课的学习,我们知道了曲边图 求和,取极限。通过本节课的学习,我们还 掌握了化归转化,以直代曲,极限逼近的数 学思想。
n i 1
求 f (i )
n
(i1, 2,, n), 作和 f (i )xi 如果当n 时, 上述和式的 极限存在, 则称此极限为函数f(x)在区间[a, b]上的定积分 记
a f ( x)dx 即 a
b
b
f ( x) d x lim f (i )xi
n i 1

用定积分求面积的技巧

用定积分求面积的技巧

用定积分求面积的技巧求平面图形的面积是定积分在几何中的重要应用.把求平面图形的面积问题转化为求定积分问题,充分体现了数形结合的数学思想.求解此类题常常用到以下技巧.一、巧选积分变量求平面图形面积时,要注意选择积分变量,以使计算简便.例1 求抛物线22y x =与直线4y x =-围成的平面图形的面积.解析:如图1,解方程组224y x y x ⎧=⎨=-⎩,,得两曲线的变点为(22)(84)-,,,.方法一:选取横坐标x 为积分变量,则图中阴影部分的面积应该是两部分之和,即332828822022024222(24)224183032S xdx x x dx x x x =+-+=++=⎰⎰|||. 方法二:选取纵坐标y 为积分变量,则图中阴影部分的面积可据公式求得,即2423422114418226y S y y dy y y --⎛⎫⎛⎫=+-=+-= ⎪ ⎪⎝⎭⎝⎭⎰|. 点评:从上述两种解法可以看出,对y 积分比对x 积分计算简捷.因此,应用定积分求平面图形面积时,积分变量的选取是至关重要的.但同时也要注意对y 积分时,积分函数应是()x y ϕ=,本题须将条件中的曲线方程、直线方程化为2142x y x y ==+,的形式,然后求得积分.另外还要注意的是对面积而言,不管选用哪种积分变量去积分,面积是不会变的,即定积分的值不会改变.二、巧用对称性在求平面图形面积时,注意利用函数的奇偶性等所对应曲线的对称性解题,也是简化计算过程的常用手段. 例2 求由三条曲线2241y x y x y ===,,所围图形的面积. 解析:如图2,因为224y x y x ==,是偶函数,根据对称性,只算出y 轴右边的图形的面积再两倍即可.解方程组21y x y ⎧=⎨=⎩,,和241y x y ⎧=⎨=⎩,,得交点坐标(11)(11)(21)(21)--,,,,,,,. 方法一:选择x 为积分变量, 则221223123201101114212444123x x S x dx dx x x x ⎡⎤⎛⎫⎛⎫⎡⎤⎛⎫⎛⎫=-+-=+-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎝⎭⎝⎭⎣⎦⎰⎰|||. 方法二:可以选择y 为积分变量,求解过程请同学们自己完成.点评:对称性的应用和积分变量的选取都影响着计算过程的繁简程度.三、分割计算例3 求由抛物线243y x x =-+-及其在点(03)M -,和点(30)N ,处两条切线所围成的图形的面积.解析:由243y x x =-+-,得24y x '=-+,04x y ='=∴|,过M 点的切线方程为43y x =-;32x y ='=-|,过N 点的切线方程为26y x =-+. 又可求得两切线交点的横坐标为32x =, 故所求面积332223029(43)(43)[(26)(43)]4S x x x dx x x x dx =---+-+-+--+-=⎰⎰. 点评:本题求图形的面积,适当的分割是关键,故求出两切线交点,过交点作x 轴垂线, 将图形分割成两部分,分别用定积分求解.同学们应注意掌握这种分割的处理方法.。

定积分求面积

定积分求面积
2
a2.
A1
2 a2 cos 2
例 6 求心形线r a(1 cos )所围平面图形的
面积(a 0).
解 dA 1 a2(1 cos )2 d
d
2
利用对称性知
A 2 1 a2 (1 cos )2 d 20
a2

(1 2cos cos2 )d
练习题答案
一、1、1;
2、32 ; 3
4、 y ;
5、e 1 2 ; e
二、1、3 ln 2; 2
2、7 ; 6
4、3a2 ;
5、5 ; 4
三、9 . 4
四、e . 2
3、2;
6、1 . 2
3、a2 ;
6、3 a 2 . 2
五、8 a 2 . 3
三、 求 抛 物 线 y x 2 4x 3 及 其 在 点 ( 0 ,3 ) 和 ( 3 , 0 )处的切线所围成的图形的面积 .
四、 求位于曲线 y e x 下方,该曲线过原点的切线的 左方以及 x 轴上方之间的图形的面积 .
五、 求由抛物线 y 2 4ax 与过焦点的弦所围成的图形 面积的最小值 .
的图形的面积. y x3 6x

两曲线的交点
y

x2
y x2
(0,0), (2,4), (3,9).
y x3 6x
选 x 为积分变量 x [2, 3]
(1) x [2, 0],dA1 ( x3 6x x2 )dx
(2) x [0,3], dA2 ( x2 x3 6x)dx
0

a
2

3 2

定积分与曲线下面积的关系

定积分与曲线下面积的关系

定积分与曲线下面积的关系在微积分中,定积分是一个非常重要的概念。

它是对曲线下方某一区域面积的度量。

本文将详细讨论定积分与曲线下面积的关系以及其应用。

一、定积分的定义及性质定积分是微积分中的一种积分形式,用于求解曲线下面某一区域的面积。

如果我们将曲线表示为y=f(x),且f(x)在[a, b]上连续,则曲线y=f(x)与x轴所夹的区域面积可以表示为定积分∫[a,b]f(x)dx。

定积分可以通过极限的方法定义为曲线在[a, b]上的所有小矩形面积之和的极限值。

定积分的性质包括线性性、区间可加性、保号性等,这些性质使得定积分成为测量曲线下面积的有力工具。

二、定积分的计算方法计算定积分的方法有很多种,其中较为常用的有几何法、代数法和微积分基本定理法。

1. 几何法几何法是一种直观的计算定积分的方法,它将曲线下面的面积分解为几何图形的面积之和。

具体做法是将曲线与x轴相交的区域分成若干个长方形、三角形或梯形,并计算每个几何图形的面积,最后将它们累加起来即可得到曲线下面积的近似值。

2. 代数法代数法是通过将曲线方程转化为多项式函数的形式,然后进行常规的求导和积分运算来计算定积分。

通过代数法求解定积分可以减少几何法中面积的分割和累加的操作,但是在某些复杂的函数中计算难度较大。

3. 微积分基本定理法微积分基本定理是计算定积分最常用且最便捷的方法。

根据基本定理,若f(x)是[a, b]上的可导函数,并且存在原函数F(x),那么曲线y=f(x)与x轴所夹的区域面积可以表示为F(b)-F(a),即定积分∫[a,b]f(x)dx=F(b)-F(a)。

利用基本定理可以简化定积分的计算,使得求解过程更加简便。

三、定积分的应用领域定积分不仅是微积分理论的基础,还具有广泛的应用领域。

下面介绍定积分在几何学、物理学和经济学等领域的应用。

1. 几何学中的应用定积分在几何学中常用于计算曲线与x轴所夹的面积。

例如,可以利用定积分计算圆的面积、椭圆的面积以及其他曲线形状的面积等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.9 利用定积分求曲线围成的面积
武汉外国语学校 汪家硕
一.复习回顾:
1.定积分的几何意义:当()0f x ≥时,积分()b
a f x dx ⎰在几何上表示由()y f x =、x a =、
x b =与x 轴所围成的曲边梯形的面积。

当()0f x ≤时,由()y f x =、x a =、x b =与x 轴所围成的曲边梯形位于x 轴的下方。

2.牛顿—莱布尼茨公式
定理(微积分基本定理)如果()f x 是区间[,]a b 上的连续函数,并且'
()()F x f x =,则 ()()()b
a f x dx F
b F a =-⎰
二.曲线围成的面积
1.设f 和g 是区间[,]a b 上的连续函数且对任意的[,]x a b ∈有()()f x g x ≥,则直线x a
=和直线x b =以及曲线间围成的面积可以表示为:
()()()()b b b a a a
f x dx
g x dx f x g x dx -=-⎰
⎰⎰ 例1.求抛物线2y x =和直线2y x =所围成的区域面积。

解:先求出P 点坐标。

解方程组22y x y x
⎧=⎨=⎩ ⇒ 02x x =⎧⎨=⎩ ∴ P 点的坐标是(2,4)。

所求的面积= 2
23220
08424333x x x dx x ⎡⎤-=-=-=⎢⎥⎣⎦⎰ 例1 ⎰b a f (x )dx =⎰c a f (x )dx +⎰b c f (x )dx 。

例2.计算曲线2
1y x =+和24y x =-,以及直线1x =和1x =-所围成的区域面积。

解:所求面积=
1
11322211
12144(1)32333x x x dx x dx x ---⎡⎤--+=-=-=⎢⎥⎣⎦⎰⎰
例2
2.前面的例题都是一个曲线总在另外一个曲线的上方,如果它们交叉会是什么结
果?
考虑区间112233[,],[,],[,],[,]a c c c c c c b ,阴影部分面积可以表示为:
1
23123
()()()()()()()()c c c b a c c c f x g x dx g x f x dx f x g x dx g x f x dx -+-+-+-⎰⎰⎰⎰ 例3:求3()f x x =和()g x x =所围成的封闭区域面积。

解:当()()f x g x =时图像的交点,
即 332
0(1)0x x x x x x =⇒-=⇒-= 01x ∴=±或
例3
例4:求阴影部分的面积。

例4 练习:
1.求阴影部分面积。

相关文档
最新文档