四川中考模拟试题(一)及答案
四川中考仿真模拟考试《数学试卷》含答案解析
四川数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列各数中,比﹣2小的数是( )A. 3B. 1C. ﹣1D. ﹣32. 如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )A. B. C. D. 3.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为( )A. 30.210-⨯B. 40.210-⨯C. 3210-⨯D. 4210-⨯ 4.将A (﹣4,1)向右平移5个单位,再向下平移2个单位,平移后点的坐标是( )A. (﹣9,3)B. (1,﹣1)C. (﹣9,1)D. (1,3) 5.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( ).A. 45°B. 60°C. 75°D. 85° 6.下列计算正确的是( ).A. (x+y)2=x 2+y 2B. (-12xy 2)3=-16 x 3y 6C. x 6÷x 3=x 2D. 2(2)-7.方程22111x x x x -=-+的解是( )A. x =12B. x =15C. x =14D. x =148.成都市某小区5月1日至5日每天用水量(单位:吨)分别是:30,32,36,28,34,则这组数据的中位数是( )A. 32吨B. 36吨C. 34吨D. 30吨9.如图,正方形ABCD 四个顶点都在O 上,点是在弧AB 上的一点,则CPD ∠的度数是( )A 35 B. 40 C. 45 D. 6010.对于二次函数y =2(x+1)(x ﹣3),下列说法正确的是( )A. 图象开口向下B. 当x >1时,y 随x 的增大而减小C. 图象的对称轴是直线x =﹣1D. 当x <1时,y 随x 的增大而减小二.填空题(共9小题)11.已知2|2|(1)0a b ++-=,则+a b 的值为________.12.若一次函数y=(1-m )x+2,函数值y 随x 增大而减小,则m 的取值范围是___________.13.如图,在等边△ABC 中,D 是BC 边上的一点,延长AD 至E ,使AE =AC ,∠BAE 的平分线交△ABC 的高BF 于点O ,则∠E =_____.14.如图,在菱形ABCD 中,AB =4,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 的长为半径画弧,两弧交于点M ,N ;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E ,连接BE ,则BE 的值为_____.15.已知m 是方程x 2﹣3x+1=0的一个根,则(m ﹣3)2+(m+2)(m ﹣2)的值是_____.16.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy 中,矩形ABCD 的边AB 在x 轴上,(3,0)A ,(4,0)B,边AD长为5. 现固定边AB,”推”矩形使点D落在y轴的正半轴上(落点记为),相应地,点C的对应点的坐标为_______.17.如图,△ABC是边长为4的等边三角形,点D是AB上异于A,B的一动点,将△ACD绕点C逆时针旋转60°得△BCE,则旋转过程中△BDE周长的最小值_____18.如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D,若BC=6,sin∠BAC=35,则AC=_____,CD=_____.19.如图,在Rt△ABC中,∠C=90°,BC=23,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE 的长为_____.三.解答题(共9小题)20.计算:(1)计算:(π﹣314)0+(13)﹣2﹣|12|+4cos30°(2)解不等式组:()3242113x x x x ⎧-->⎪⎨+≥-⎪⎩21.先化简,再求值:2211x x yx y y x ⎛⎫-÷ ⎪-+-⎝⎭,其中x =2,y =2﹣2. 22.”树德之声”结束后,王老师和李老师整理了所有参赛选手的比赛成绩(单位:分),绘制成如图频数直方图和扇形统计图:(1)求本次比赛参赛选手总人数,并补全频数直方图;(2)求扇形统计图中扇形D 的圆心角度数;(3)成绩在D 区域的选手中,男生比女生多一人,从中随机抽取两人,求恰好选中一名男生和一名女生的概率.23.如图是小花在一次放风筝活动中某时段的示意图,她在A 处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30°角,线段AA 1表示小花身高1.5米,当她从点A 跑动92米到达点B 处时,风筝线与水平线构成45°角,此时风筝到达点E 处,风筝的水平移动距离CF =103米,这一过程中风筝线的长度保持不变,求风筝原来的高度C 1D .24.如图,在平面直角坐标系中,直线y 1=2x ﹣2与双曲线y 2=k x交于A 、C 两点,AB ⊥OA 交x 轴于点B ,且AB =OA .(1)求双曲线的解析式;(2)连接OC ,求△AOC 的面积.25.如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接BD、DE.(1)求DE是⊙O的切线;(2)设△CDE的面积为S1,四边形ABED的面积为S2,若S2=5S1,求tan∠BAC的值;(3)在(2)的条件下,连接AE,若⊙O的半径为2,求AE的长.26.铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?(3)该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?27.如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明:四边形CEGF正方形;(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图3所示,当B,E,F三点在一条直线上时,延长CG交AD于点H,若AG=6,GH=22,求BC的长.28.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(3)在(2)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.答案与解析一.选择题(共10小题)1.下列各数中,比﹣2小的数是( )A. 3B. 1C. ﹣1D. ﹣3【答案】D【解析】分析】根据正数都大于0、负数都小于0,再根据两个负数、绝对值大的反而小即可解答.【详解】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2故答案为D .【点睛】本题考查了有理数的大小比较,其方法为①负数<0<正数;②两个负数,绝对值大的反而小.2. 如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( ) A. B. C. D.【答案】C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上. 故选C.考点:三视图3.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为( )A. 30.210-⨯B. 40.210-⨯C. 3210-⨯D. 4210-⨯【答案】D【解析】【分析】根据科学记数法的表示形式写出即可.【详解】解:将数0.0002用科学记数法表示为4210-⨯.故选D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,为整数,表示时关键要正确确定的值以及的值.4.将A (﹣4,1)向右平移5个单位,再向下平移2个单位,平移后点的坐标是( )A. (﹣9,3)B. (1,﹣1)C. (﹣9,1)D. (1,3)【答案】B【解析】【分析】根据向右平移横坐标加,向下平移纵坐标减即可解答.【详解】解:∵点A (﹣4,1)向右平移5个单位长度,再向下平移2个单位长度,∴平移后点的横坐标为﹣4+5=1,纵坐标为1﹣2=﹣1,即平移后点的坐标为(1,﹣1).故答案为B .【点睛】本题考查了坐标与图形变化-平移,其平移规律为:横坐标右移加,左移减;纵坐标上移加,下移减. 5.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( ).A. 45°B. 60°C. 75°D. 85°【答案】C【解析】 分析:先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB 可得答案.详解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选C.点睛:本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.6.下列计算正确的是().A. (x+y)2=x2+y2B. (-12xy2)3=-16x3y6C. x6÷x3=x2=2【答案】D【解析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.详解:(x+y)2=x2+2xy+y2,A错误;(-12xy2)3=-18x3y6,B错误;x6÷x3=x3,C错误;,D正确;故选D.点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.7.方程22111x xx x-=-+的解是( )A. x=12B. x=15C. x=14D. x=14【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:2x2+2x=2x2﹣3x+1,解得:x=15,经检验x=15是分式方程的解,故选B.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.成都市某小区5月1日至5日每天用水量(单位:吨)分别是:30,32,36,28,34,则这组数据的中位数是( )A. 32吨B. 36吨C. 34吨D. 30吨【答案】A【解析】【分析】先将这组数据从小到大排列,然后找出最中间的数即可.【详解】解:把这些数从小到大排列为:28,30,32,34,36,最中间的数是32吨,则这5天用水量的中位数是32吨;故答案为A.【点睛】本题考查了中位数,掌握确定中位数的方法是解答本题的关键.的度数是( )9.如图,正方形ABCD四个顶点都在O上,点是在弧AB上的一点,则CPDA. 35B. 40C. 45D. 60【答案】C【解析】【分析】连AC,由四边形ABCD为正方形,得到∠CAD=45°,由∠CPD=∠CAD=45°.【详解】连接AC,如图,∵四边形ABCD为正方形,∴∠CAD=45°.又∵∠CPD=∠CAD,∴∠CPD=45°.故选C.【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.也考查了正方形的性质.10.对于二次函数y=2(x+1)(x﹣3),下列说法正确的是( )A. 图象开口向下B. 当x >1时,y 随x 的增大而减小C. 图象的对称轴是直线x =﹣1D. 当x <1时,y 随x 的增大而减小【答案】D【解析】【分析】 先将二次函数化为顶点式,然后再根据二次函数的性质解答即可.【详解】解:二次函数y =2(x+1)(x ﹣3)可化为y =2(x ﹣1)2﹣8的形式,∵二次函数的解析式为y =2(x ﹣1)2﹣8,∴抛物线开口向上,对称轴为x =1,∴当x >1时,y 随x 的增大而增大;当x <1时,y 随x 的增大而减小.故答案为D .【点睛】本题考查的是二次函数的性质,将二次函数的解析式化为顶点式的形式是解答本题的关键.二.填空题(共9小题)11.已知2|2|(1)0a b ++-=,则+a b 的值为________.【答案】【解析】【分析】根据非负数的性质得到关于a,b 的方程,解出a,b 的值代入计算即可.【详解】解:由已知得20a +=,10b -=,解得2a =-,1b =.则1a b +=-.故答案为-1【点睛】本题考查了非负数的性质和一元一次方程的应用,根据性质列出方程是解题关键.12.若一次函数y=(1-m )x+2,函数值y 随x 的增大而减小,则m 的取值范围是___________.【答案】m >1.【解析】【分析】对于一次函数y=kx+b(k ,b 为常数,且k≠0),当k >0时,y 随着x 的增大而增大;当k <0时,y 随着x 的增大而减小.【详解】解:∵函数值y 随着x 的增大而减小, ∴1-m <0,解得:m >1.故答案为:m >1.【点睛】本题主要考查的是一次函数的性质,属于基础题型.理解k 与增减性的关系是解题的关键. 13.如图,在等边△ABC 中,D 是BC 边上的一点,延长AD 至E ,使AE =AC ,∠BAE 的平分线交△ABC 的高BF 于点O ,则∠E =_____.【答案】30°【解析】【分析】先证△ABO ≌△AEO ,可得∠ABO=∠AEO ,再根据等边三角形的性质可得∠ABF=30°,进而得到∠AEO=30°即可解答.详解】解:∵OA 平分∠BAE ,∴∠BAO =∠EAO ,∵三角形ABC 是等边三角形,AE =AC ,∴AE =AC=AB ,在△ABO 和△AEO 中AB AE BAO AEO AO AO =⎧⎪∠=∠⎨⎪=⎩∴△ABO ≌△AEO ,∴∠ABO =∠AEO ,∵BF 为等边△ABC 的高,∴BF 平分∠ABC ,∴∠ABF =30°,∴∠AEO =30°.故答案为30°.【点睛】本题考查了全等三角形的判定与性质和等边三角形,证明三角形全等是解答本题的关键. 14.如图,在菱形ABCD 中,AB =4,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 的长为半径画弧,两弧交于点M ,N ;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E ,连接BE ,则BE 的值为_____.【答案】7【解析】【分析】利用基本作法得到得MN 垂直平分CD ,即CE =DE ,AE ⊥CD ,再利用菱形的性质得到AD =CD =AB =4,CD ∥AB ,则利用勾股定理先计算出AE ,然后计算出BE .【详解】解:由作法得MN 垂直平分CD ,即CE =DE ,AE ⊥CD ,∵四边形ABCD 为菱形,∴AD =CD =AB =4,CD ∥AB ,∴DE =2,AE ⊥AB ,在Rt △ADE 中,AE 224-2=23在Rt △ABE 中,BE ()22423+7.故答案为7【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).15.已知m 是方程x 2﹣3x+1=0的一个根,则(m ﹣3)2+(m+2)(m ﹣2)的值是_____.【答案】3【解析】【分析】将x=m 代入原方程得m 2-3m=-1,然后将原式进行化简,再整体代入即可解答.【详解】解:由题意可知:m 2﹣3m+1=0,∴m 2﹣3m =-1,∴原式=m 2﹣6m+9+m 2﹣4=2m 2﹣6m+5=2(m 2﹣3m )+5=-2+5=3故答案为3.【点睛】本题考查一元二次方程的解和整式的化简求值,解题的关键是正确理解一元二次方程的解的定义并灵活应用.16.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,B,边AD长为5. 现固定边AB,”推”矩形使点D落在y轴的正半轴上(落点记为),相(3,0)A-,(4,0)应地,点C的对应点的坐标为_______.7,4【答案】()【解析】分析:根据勾股定理,可得OD',根据平行四边形的性质,可得答案.详解:由勾股定理得:OD'=224'-=,即(0,4).D A AO矩形ABCD的边AB在x轴上,∴四边形ABC D''是平行四边形,A=B, =AB=4-(-3)=7,与的纵坐标相等,∴ (7,4),故答案为(7,4).点睛:本题考查了多边形,利用平行四边形的性质得出A=B,=AB=4-(-3)=7是解题的关键.17.如图,△ABC是边长为4的等边三角形,点D是AB上异于A,B的一动点,将△ACD绕点C逆时针旋转60°得△BCE,则旋转过程中△BDE周长的最小值_____【答案】3.【解析】【分析】由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论.【详解】∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,∵△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=23,∴△BDE的最小周长=CD+4=23+4,故答案23+4.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,熟练掌握旋转的性质是解题的关键.18.如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D,若BC=6,sin∠BAC=35,则AC=_____,CD=_____.【答案】10(2). 90 13【解析】【分析】连接BO延长BO交⊙O于H,连接CH,连接AO延长AO交BC于T.设OD=x,AD=y.再解直角三角形得到BH和CH,再由三角形的中位线定理求出OT,然后再利用勾股定理求出AC,最后根据相似三角形的性质构建方程组并解答即可.【详解】解:连接BO延长BO交⊙O于H,连接CH,连接AO延长AO交BC于T.设OD=x,AD=y.∵BH 是直径,∴∠BCH =90°,∵∠BAC =∠BHC ,∴sin ∠BAC =sin ∠BHC =35BC BH = ∵BC =6,∴BH =10,CH 2222106BH BC --8,∵AB =AC ,∴AB AC =,∴AT ⊥BC ,∴BT =CT =3,∵BO =OH ,BT =TC ,∴OT =12CH =4, ∴AT =AO+OT =5+4=9,∴AC 222293310AT TC +=+=∵AB =AC ,AT ⊥BC ,∴∠DAO =∠CAO ,∵OA =OC ,∴∠CAO =∠OCA ,∴∠DAO =∠OCA ,∵∠ADO =∠CDA ,∴△DAO ∽△DCA , ∴AD AO OD DC CA AD==, ∴5310y x x y==+ ,解得x=2513,∴CD=OD+OC=2513+5=9013,故答案为310,90 13.【点睛】本题考查三角形的外接圆与外心圆周角定理、解直角三角形、相似三角形的判定和性质等知识,正确添加辅助线、构造直角三角形解决问题是解答本题的关键.19.如图,在Rt△ABC中,∠C=90°,BC=23,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE 的长为_____.【答案】3或14 5【解析】【分析】由∠C=90°,BC=3AC=2可得tanB=3323ACBC==,即∠B=30°,再根据直角三角形的性质可得AB=2AC=4;再由翻折的性质可得DB=DC3EB′=EB,∠DB′E=∠B=30°;设AE=x,则BE=4﹣x,EB′=4﹣x.当∠AFB′=90°时,解直角三角形可得EF=x﹣52;又由在Rt△B′EF中,∠EB′F=30°,可得EB′=2EF;再用x表示出来,然后解关于x的方程即可;②当∠AB′F=90°时,即B′不落在C点处时,在进行求解即可.【详解】解:∵∠C=90°,BC=3,AC=2,∴tanB=3323ACBC==,∴∠B=30°,∴AB=2AC=4,∵点D是BC的中点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F∴DB=DC=3,EB′=EB,∠DB′E=∠B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,当∠AFB′=90°时,在Rt△BDF中,cosB=BF BD,∴BF=3cos30°=32,∴EF=32﹣(4﹣x)=x﹣52,在Rt△B′EF中,∵∠EB′F=30°,∴EB′=2EF,即4﹣x=2(x﹣52),解得x=3,此时AE为3;②当∠AB′F=90°时,即B′不落在C点处时,作EH⊥AB′于H,连接AD,如图,∵DC=DB′,AD=AD,∴Rt△ADB′≌Rt△ADC,∴AB′=AC=2,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=12B′E=12(4﹣x),EH=3B′H=32(4﹣x),在Rt△AEH中,∵EH2+AH2=AE2,∴34(4﹣x)2+[12(4﹣x)+2]2=x2,解得x=145,此时AE为145.综上所述,AE的长为3或145.故答案为3或145.【点睛】本题考查了翻折变换、勾殷定理、解直角三角形、相似三角形的判定与性质、全等三角形的判定和性质等知识,学会用分类讨论的思想解决问题是解答本题的关键.三.解答题(共9小题)20.计算:(1)计算:(π﹣3.14)0+(13)﹣2﹣||+4cos30° (2)解不等式组:()3242113x x x x ⎧-->⎪⎨+≥-⎪⎩【答案】(1)10;(2)1<x ≤4.【解析】【分析】(1)先用零次幂、负指数幂、绝对值、特殊角的三角函数值化简,最后计算即可;(2)先分别解出两个不等式的解集,最后求两个解集的公共部分即可.【详解】(1)原式=1+9﹣+4=1+9﹣=10; (2)3(2)42113x x x x -->⎧⎪⎨+≥-⎪⎩①② , 由①得:x >1,由②得:x ≤4,则不等式组的解集为1<x ≤4.【点睛】本题主要考查了零指数幂、解一元一次不等式组等知识点,掌握好基础知识和解不等式组的方法是解答本题的关键.21.先化简,再求值:2211x x y x y y x ⎛⎫-÷ ⎪-+-⎝⎭,其中x,y =2. 【答案】y x y -+【解析】【分析】先根据分式的四则混合运算法则对原式进行化简,然后将x、y的值代入即可解.【详解】解:原式=﹣()()()x x yx y x y--+-•(x﹣y)=﹣yx+y,当x=2,y=2﹣2时,原式=22222--+-=222-.【点睛】本题考查了分式的化简求值,熟练掌握运算法则和良好的计算能力是解答本题的关键.22.”树德之声”结束后,王老师和李老师整理了所有参赛选手的比赛成绩(单位:分),绘制成如图频数直方图和扇形统计图:(1)求本次比赛参赛选手总人数,并补全频数直方图;(2)求扇形统计图中扇形D的圆心角度数;(3)成绩在D区域的选手中,男生比女生多一人,从中随机抽取两人,求恰好选中一名男生和一名女生的概率.【答案】(1)本次比赛参赛选手总人数36人,补图见解析;(2)50°;(3)35.【解析】【分析】(1)先求出C区域的人数和所占的百分比,然后用C区域的人数除以其所占的百分比,即可求得总人数,再用总人数乘以每个区域所占的百分比求出每个区域的人数,最后完成直方图即可;(2)用360°乘以D区域的人数所占的百分比即可;(3)先求出D区域男生、女生的人数,再画树状图求出等可能的结果数和所求的结果数,最后根据概率公式求解即可.【详解】解:(1)本次比赛参赛选手总人数是9÷90360︒︒=36(人),80≤x<90的人数有:36×50%=18(人),则80≤x<85的人数有18﹣11=7(人),95≤x<100的人数有:36﹣4﹣18﹣9=5(人),补图如下:(2)求扇形统计图中扇形D的圆心角度数是360°×536=50°;(3)∵D区域的选手共有5人,其中男生比女生多一人,∴男生有3人,女生有2人,画图如下:共有20种等情况数,其中选中一名男生和一名女生的有12种,则恰好选中一名男生和一名女生的概率是123 205=.【点睛】本题考查了扇形统计图、直方图以及树状图法求概率,掌握树形图是解答本题的关键.23.如图是小花在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30°角,线段AA1表示小花身高1.5米,当她从点A跑动2米到达点B处时,风筝线与水平线构成45°角,此时风筝到达点E处,风筝的水平移动距离CF=3米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.【答案】风筝原来高度为2762⎛+⎝米. 【解析】【分析】 设AF =x ,则BF =AB+AF =92+x ,在Rt △BEF 中求得AD=BE=182cos BF x EBF =+∠,由cos ∠CAD=AC AD,然后建立关于x 的方程,解之求得x 的值,确定AD 的长,最后由CD= A Dsin ∠CAD 即可求出C 1D .【详解】解:设AF =x ,则BF =AB+AF =2+x ,在Rt △BEF 中,BE =182cos BF x EBF=+∠, 由题意知AD =BE =2x ,∵CF =3∴AC =AF+CF =3+x ,由cos ∠CAD =AC AD 3103182x x+=+ , 解得:x =2 3则AD =2(23)=6,∴CD =ADsin ∠CAD =(6)×12=6,则C 1D =CD+C 1C =6+32=2726; 答:风筝原来的高度C 1D 为(2726)米 【点睛】本题主要考查解直角三角形的应用,三角函数的定义以及根据题意找到两直角三角形间的关联是解答本题的关键.24.如图,在平面直角坐标系中,直线y 1=2x ﹣2与双曲线y 2=k x交于A 、C 两点,AB ⊥OA 交x 轴于点B ,且AB =OA .(1)求双曲线的解析式;(2)连接OC ,求△AOC 的面积.【答案】(1)24y x=;(2)3. 【解析】【分析】 (1)作AH ⊥OB 于H ,先证△OAB 为等腰直角三角形,可得OH=BH=AH ,设A (t,t ),把A (t,t )代入解析式即可求得t 的值,进一步可得A 的坐标,最后利用待定系数法即可求解;(2)先确定一次函数与y 轴的交点坐标为(0,-2),再联立一次函数和反比例函数解析式求得C 的坐标,最后根据三角形面积公式求解即可.【详解】(1)作AH ⊥OB 于H ,如图,∵AB ⊥OA 交x 轴于点B ,且AB =OA .∴△OAB 为等腰直角三角形,∴OH =BH =AH ,设A (t ,t ),把A (t ,t )代入y =2x ﹣2得2t ﹣2=t ,解得t =2,∴A (2,2),把A (2,2)代入y 2=k x得k =2×2=4, ∴双曲线的解析式为y 2=k x ; (2)当x =0时,y =2x ﹣2=﹣2,则一次函数与y 轴的交点坐标为(0,﹣2), 解方程422y x y x ⎧=⎪⎨⎪=-⎩ 得22x y =⎧⎨=⎩或14x y =-⎧⎨=-⎩,则C (﹣1,﹣4), ∴△AOC 的面积=12×(2+1)×2=3.【点睛】本题考查了反比例函数与一次函数的交点问题以及待定系数法求函数解析式,解题的关键在于灵活运用一次函数和反比例函数知识以及数形结合思想.25.如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接BD、DE.(1)求DE是⊙O的切线;(2)设△CDE的面积为S1,四边形ABED的面积为S2,若S2=5S1,求tan∠BAC的值;(3)在(2)的条件下,连接AE,若⊙O的半径为2,求AE的长.【答案】(1)证明见解析;(2)22;(3)32【解析】【分析】(1)连接OD,由圆周角定理就可得∠ADB=90°和∠CDB=90°,又由E为BC的中点可以得出DE=BE,进一步得到∠EDO=∠EBO,由等式的性质就可以得出∠ODE=90°即可证明;(2)由S2=5S1,即△ADB的面积是△CDE面积的4倍,可得AD:CD=2:1,AD:BD=2,则可求tan∠BAC;(3)由(2)的关系即可知AD:BD=2,在Rt△AEB中,运用勾股定理解答即可.【详解】(1)证明:连接OD,∴OD=OB∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB =90°.∵E 为BC 的中点,∴DE =BE ,∴∠EDB =∠EBD ,∴∠ODB+∠EDB =∠OBD+∠EBD ,即∠EDO =∠EBO .∵BC 是以AB 为直径的⊙O 的切线,∴AB ⊥BC ,∴∠EBO =90°,∴∠ODE =90°,∴DE 是⊙O 的切线;(2)解:∵S 2=5S 1,∴S △ADB =2S △CDB , ∴AD DC =21, ∵△BDC ∽△ADB , ∴AD DB =DB DC, ∴DB 2=AD •DC ,∴DB AD 2= ,∴tan ∠BAC =DB AD 2=;(3)解:∵tan ∠BAC =DB AD 2=,∴BC AB =BC AB = , ∵E 为BC 中点,∴BE =12BC ,∴AE ==【点睛】本题考查了圆周角定理的运用、直角三角形的性质的运用、等腰三角形的性质的运用、切线的判定定理的运用、勾股定理的运用、相似三角形的判定和性质等知识点,正确添加辅助线是解答本题的关键.26.铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?(3)该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?【答案】(1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【解析】【分析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量×每千克利润=总利润列出方程求解即可;(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.【详解】(1)设y与x之间的函数关系式为:y=kx+b,把(2,120)和(4,140)代入得,2120 4140 k bk b+=⎧⎨+=⎩,解得:10100 kb=⎧⎨=⎩,∴y与x之间的函数关系式为:y=10x+100;(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,解得:x =1或x =9,∵为了让顾客得到更大的实惠,∴x =9,答:这种干果每千克应降价9元;(3)该干果每千克降价x 元,商贸公司获得利润是w 元,根据题意得,w =(60﹣40﹣x)(10x+100)=﹣10x 2+100x+2000,∴w =﹣10(x ﹣5)2+2250,∵a=-100<,∴当x =5时,w 2250=最大故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生”用数学”的意识.27.如图1,已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明:四边形CEGF 是正方形;(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图3所示,当B ,E ,F 三点在一条直线上时,延长CG 交AD 于点H ,若AG =6,GH =22,求BC 的长.【答案】(1)证明见解析;(2)AG 2BE ,理由见解析;(3)5【解析】【分析】(1)先说明GE ⊥BC 、GF ⊥CD ,再结合∠BCD=90°可证四边形CEGF 是矩形,再由∠ECG=45°即可证明;(2)连接CG ,证明△ACG ∽△BCE ,再应用相似三角形的性质解答即可;(3)先证△AHG ∽△CHA 可得AG GH AH AC AH CH ==,设BC =CD =AD =a ,则AC =2a ,求出AH=23a ,DH=13a ,CH=103a ,最后代入AG AH AC CH =即可求得a 的值. 【详解】(1)∵四边形ABCD 是正方形,∴∠BCD =90°,∠BCA =45°,∵GE ⊥BC 、GF ⊥CD ,∴∠CEG =∠CFG =∠ECF =90°,∴四边形CEGF 是矩形,∠CGE =∠ECG =45°,∴EG =EC ,∴四边形CEGF 是正方形.(2)结论:AG =2BE ;理由:连接CG ,由旋转性质知∠BCE =∠ACG =α,在Rt △CEG 和Rt △CBA 中,CE CG =cos45°=22,2cos 452CB CA ︒== , ∴2CE CA CG CB==, ∴△ACG ∽△BCE , ∴2AG CA BE CB == ∴线段AG 与BE 之间的数量关系为AG 2BE ;(3)∵∠CEF =45°,点B 、E 、F 三点共线,∴∠BEC =135°,∵△ACG ∽△BCE ,∴∠AGC =∠BEC =135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴AG GH AH AC AH CH==,设BC=CD=AD=a ,则AC=2a,则由AG GHAC AH=,得6222AHa=,∴AH=23 a,则DH=AD﹣AH=13a,2210CH CD DH3a=+=,∴AG AHAC CH=,得2632103aa=,解得:a=35,即BC=35.【点睛】本题属于四边形综合题,主要考查相似形的判定和性质、正方形的性质等知识点,解题的关键是正确寻找相似三角形解决问题并利用参数构建方程解决问题.28.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(3)在(2)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.【答案】(1)y=x2+x﹣1;(2)t的值为1或0;(3)满足条件的Q点坐标为:(0,2)、(﹣1,3)、(35,195)、(45,125).【解析】【分析】(1)用待定系数法即可确定函数解析式;(2)根据图形分∠ANM=90°和∠AMN=90°两种情况解答即可;(3)根据题意画出满足条件图形,可以找到AN为△KNP对称轴,由对称性找到第一个满足条件Q,再通过延长和圆的对称性找到剩余三个点,利用勾股定理进行计算.【详解】(1)∵抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1)∴1421 11a ba b=--⎧⎨-=--⎩解得:a=1 b=1⎧⎨⎩∴抛物线C1:解析式为y=x2+x﹣1(2)∵动直线x=t与抛物线C1交于点N,与抛物线C2交于点M∴点N的纵坐标为t2+t﹣1,点M的纵坐标为2t2+t+1∴MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2①当∠ANM=90°,AN=MN时,由已知N(t,t2+t﹣1),A(﹣2,1) ∴AN=t﹣(﹣2)=t+2∵MN=t2+2∴t2+2=t+2∴t1=0(舍去),t2=1∴t=1②当∠AMN=90°,AM=MN时,由已知M(t,2t2+t+1),A(﹣2,1) ∴AM=t﹣(﹣2)=t+2,∵MN=t2+2∴t2+2=t+2∴t1=0,t2=1(舍去)∴t=0故t的值为1或0;。
2022年四川省达州市中考数学模拟试卷(1)
2022年四川省达州市中考数学模拟试卷(1)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各数的相反数是正整数的是()A.2B.C.0D.﹣22.(3分)如图所示的是由5个小立方块搭建而成的几何体,其左视图是()A.B.C.D.3.(3分)如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0、2、4、6,先让正方形上表示数字6的点与数轴上表示﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上.则数轴上表示99的点与正方形上表示数字()的点重合.A.0B.2C.4D.64.(3分)下列等式一定成立的是()A.a2×a5=a10B.C.(﹣a3)4=a12D.5.(3分)如图,AB∥CD,∠D=37°,下列各角中一定等于37°的是()A.∠A B.∠B C.∠C D.∠AOC6.(3分)下列各点中,在反比例函数图象上的是()A.(2,4)B.(﹣1,8)C.(2,﹣4)D.(﹣16,﹣2)7.(3分)下列命题正确的是()A.若甲组数据的方差s2甲=0.39,乙组数据的方差s2乙=0.25,则甲组数据波动比乙组数据波动小B.从1、2、3、4、5中随机抽取一个数,是偶数的可能性比较大C.数据3、4、4、1、﹣2的中位数是3,众数是4D.若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖8.(3分)符号“f”表示一种运算,运算规律如下:f(1)=1﹣,f(2)=1﹣,f(3)=1﹣,f(4)=1﹣,…,则f(1)•f(2)•f(3)…f(100)=()A.B.C.D.9.(3分)如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是()A.(100,50)B.(50,50)C.(25,50)D.(26,50)10.(3分)在平面直角坐标系内,已知点A(﹣1,0),点B(1,1),若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2B.a<C.1≤a<或a≤﹣2D.﹣2≤a<二.填空题(共6小题,满分18分,每小题3分)11.(3分)为认真贯彻落实党的“十九大”和中央政治局关于“八项规定”的精神,厉行节约、反对铺张浪费,某市严格控制“三公”经费支出,共节约“三公”经费5.05亿元,5.05亿元用科学记数法表示为.12.(3分)根据图示的程序计算变量y的对应值,若输入变量x的值为﹣1,则输出的结果为.13.(3分)如果等式+(b﹣2)2=0有意义,那么a2=.14.(3分)如图,动线段AD所在的直线方程是y=﹣x+b(b>0),矩形OMPN的一个顶点P在双曲线y=(x>0)上,且AD交PM于B,交PN于C,则AC•BD=.15.(3分)若关于x的分式方程﹣3=无解,则m=.16.(3分)如图,在等边△ABC中,AC=10,点O在线段AC上,且AO=3,点P是线段AB上一点,连接OP,以O为圆心,OP长为半径画弧交线段BC于点D,连接PD.若PO=PD,则AP的长是.三.解答题(共9小题,满分72分)17.(5分)计算:|﹣1|﹣2cos260°﹣sin245°+18.(7分)先化简,再求值:(2a﹣)÷,其中a与2,3构成△ABC的三边长,且a为整数.19.(7分)疫情期间,人们的沟通大都依赖电子产品,我校设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为.(2)将条形统计图补充完整;(3)我校现有3800名学生,请估计最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.20.(7分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)B(﹣6,0)C(﹣1,0).(1)画出△ABC关于原点成中心对称的三角形△A'B'C'.(2)如果将△ABC向下平移3个单位,向右平移3个单位.直接写出点B的对应点B1的坐标.(3)如果将△ABC绕坐标原点O逆时针旋转90°,直接写出点B的对应点B2的坐标.21.(7分)如图,某风景区内有一瀑布,AB表示瀑布的垂直高度,在与瀑布底端同一水平位置的点D处测得瀑布顶端A的仰角β为45°,斜坡CD的坡度i=3:4,CD=100米,在观景台C处测得瀑布顶端A的仰角α为37°,若点B、D、E在同一水平线上,求瀑布的落差AB.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)22.(8分)已知童装每件成本价是35元,某商店定售价为55元时,每天可以销售60件,若售价每降低2元,即可多销售10件(售价不能高于55元).(1)若该商店要使得每天销售这种服装所获得的利润为1100元,则每件童装的售价应该为多少元?(2)售价为多少元时,该商店每天获取的利润最大?最大利润是多少?23.(8分)如图AB是⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为1cm,求图中阴影部分的面积.24.(12分)如图,矩形ABCD中,已知AB=6.BC=8,点E是射线BC上的一个动点,连接AE并延长,交射线DC于点F.将△ABE沿直线AE翻折,点B的对应点为点B'.(1)如图1,若点E为线段BC上一点,延长AB'交CD于点M,求证:AM=FM;(2)如图2,若点B'恰好落在对角线AC上,求的值;(3)若=,求∠DAB'的正弦值.25.(11分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y 轴交于点C.(1)求b,c的值:(2)如图1,点P是第一象限抛物线上一动点,过点P作x轴的垂线1,交BC于点H.当△PHC为等腰三角形时,求点P的坐标;(3)如图2,抛物线顶点为E.已知直线y=kx﹣k+3与二次函数图象相交于M、N两点,求证:无论k为何值,△EMN恒为直角三角形.2022年四川省达州市中考数学模拟试卷(1)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各数的相反数是正整数的是()A.2B.C.0D.﹣2【解答】解:A.2的相反数是﹣2,是负整数,不合题意;B.的相反数是,是正分数,不合题意;C.0的相反数是0,既不是负数,也不是正数,不合题意;D.﹣2的相反数是2,是正整数,合题意;故选:D.2.(3分)如图所示的是由5个小立方块搭建而成的几何体,其左视图是()A.B.C.D.【解答】解:从左边看第一层是两个小正方形,第二层右边是一个小正方形,故选:B.3.(3分)如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0、2、4、6,先让正方形上表示数字6的点与数轴上表示﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上.则数轴上表示99的点与正方形上表示数字()的点重合.A.0B.2C.4D.6【解答】解:从点﹣1到点99共100个单位长度,正方形的周长为2×4=8个单位长度,100÷8=12…4,故数轴上表示99的点与正方形上表示数字4的点重合,故选:C.4.(3分)下列等式一定成立的是()A.a2×a5=a10B.C.(﹣a3)4=a12D.【解答】解:A、a2×a5=a7≠a10,所以A错误,B、不能化简,所以B错误.C、(﹣a3)4=a12,所以C正确,D、=|a|,所以D错误,故选:C.5.(3分)如图,AB∥CD,∠D=37°,下列各角中一定等于37°的是()A.∠A B.∠B C.∠C D.∠AOC【解答】解:∵AB∥CD,∴∠A=∠D=37°,∠B=∠C,∴一定等于37°的角是∠A.故选:A.6.(3分)下列各点中,在反比例函数图象上的是()A.(2,4)B.(﹣1,8)C.(2,﹣4)D.(﹣16,﹣2)【解答】解:∵,∴xy=8,A、∵2×4=8,∴点(2,4)在反比例函数图象上,故本选项符合题意;B、∵﹣1×8=﹣8≠8,∴点(﹣1,8)不在反比例函数图象上,故本选项不合题意;C、∵2×(﹣4)=﹣8≠8,∴点(2,﹣4)不在反比例函数图象上,故本选项不合题意;D、∵﹣16×(﹣2)=32≠8,∴点(﹣16,﹣2)不在反比例函数图象上,故本选项不合题意.故选:A.7.(3分)下列命题正确的是()A.若甲组数据的方差s2甲=0.39,乙组数据的方差s2乙=0.25,则甲组数据波动比乙组数据波动小B.从1、2、3、4、5中随机抽取一个数,是偶数的可能性比较大C.数据3、4、4、1、﹣2的中位数是3,众数是4D.若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖【解答】解:A.若甲组数据的方差s2甲=0.39,乙组数据的方差s2乙=0.25,则甲组数据波动比乙组数据波动小;不正确;B.从1、2、3、4、5中随机抽取一个数,是偶数的可能性比较大;不正确;C.数据3、4、4、1、﹣2的中位数是3,众数是4;正确;D.若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖;不正确;故选:C.8.(3分)符号“f”表示一种运算,运算规律如下:f(1)=1﹣,f(2)=1﹣,f(3)=1﹣,f(4)=1﹣,…,则f(1)•f(2)•f(3)…f(100)=()A.B.C.D.【解答】解:根据题中的新定义得:原式=(1﹣)•(1﹣)•(1﹣)…(1﹣)=×××…×=.故选:D.9.(3分)如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是()A.(100,50)B.(50,50)C.(25,50)D.(26,50)【解答】解:经过观察可得:P1和P2的纵坐标均为1,P3和P4的纵坐标均为2,P5和P6的纵坐标均为3,因此可以推知P99和P100的纵坐标均为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到:P n的横坐标为n÷4+1(n 是4的倍数).故点P100的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P第100次跳动至点P100的坐标是(26,50).故选:D.10.(3分)在平面直角坐标系内,已知点A(﹣1,0),点B(1,1),若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2B.a<C.1≤a<或a≤﹣2D.﹣2≤a<【解答】解:设直线AB为y=kx+b,将A(﹣1,0),B(1,1)代入得:,解得,∴直线AB为y=x+,抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,∴令x+=ax2﹣x+1,则2ax2﹣3x+1=0,∴Δ=9﹣8a>0,∴a<.①当a<0时,,解得a≤﹣2,故a≤﹣2②当a>0时,,解得a≥1,∴1≤a<.综上所述:1≤a<或a≤﹣2.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.(3分)为认真贯彻落实党的“十九大”和中央政治局关于“八项规定”的精神,厉行节约、反对铺张浪费,某市严格控制“三公”经费支出,共节约“三公”经费5.05亿元,5.05亿元用科学记数法表示为 5.05×108元..【解答】解:5.05亿元=505000000元=5.05×108元.故答案为:5.05×108元.12.(3分)根据图示的程序计算变量y的对应值,若输入变量x的值为﹣1,则输出的结果为2.【解答】解:当x=﹣1时,y=x2+1=(﹣1)2+1=1+1=2.故答案为:2.13.(3分)如果等式+(b﹣2)2=0有意义,那么a2=81.【解答】解:∵+(b﹣2)2=0,≥0,(b﹣2)2≥0,∴=0,(b﹣2)2=0,解得,a=﹣9,b=2,则a2=(﹣9)2=81,故答案为:81.14.(3分)如图,动线段AD所在的直线方程是y=﹣x+b(b>0),矩形OMPN的一个顶点P在双曲线y=(x>0)上,且AD交PM于B,交PN于C,则AC•BD=8.【解答】解:如图所示:过C作x轴的垂线垂足为F,过B点作y轴的垂线垂足为E,设P(x,y),∵动线段AD所在的直线方程是y=﹣x+b,∴DO=AO,∴△AOD是等腰直角三角形,∴∠DCN=∠MBA=45°,∴∠PCB=∠PBC=45°,∴CP=PB,BE=ED=x,CF=AF=y,∴AC=y,DB=x,∴AC•BD=2xy=8,故答案为:8.15.(3分)若关于x的分式方程﹣3=无解,则m=2.【解答】解:去分母得:x﹣3(x﹣2)=m,即﹣2x=m﹣6,∴x=﹣.根据题意得:﹣=2,解得:m=2.故答案是:2.16.(3分)如图,在等边△ABC中,AC=10,点O在线段AC上,且AO=3,点P是线段AB上一点,连接OP,以O为圆心,OP长为半径画弧交线段BC于点D,连接PD.若PO=PD,则AP的长是7.【解答】解:连接OD,如图:∵PO=PD,∴OP=DP=OD,∴∠DPO=60°,∵△ABC是等边三角形,∴∠A=∠B=60°,AC=AB=10,∴∠OP A=∠PDB=∠DAP﹣60°,在△OP A和△PDB中,,∴△OP A≌△PDB(AAS),∵AO=3,∴AO=PB=3,∴AP=AB﹣PB=10﹣3=7,故答案为:7.三.解答题(共9小题,满分72分)17.(5分)计算:|﹣1|﹣2cos260°﹣sin245°+【解答】解:原式=1﹣2×()2﹣()2+1=1﹣﹣+1=1.18.(7分)先化简,再求值:(2a﹣)÷,其中a与2,3构成△ABC的三边长,且a为整数.【解答】解:原式===2a2﹣4a.∵a与2,3构成△ABC的三边长,∴3﹣2<a<3+2,即1<a<5.∵a为整数,∴a为2或3或4.当a=2时,分母a﹣2=0(舍去);当a=4时,分母a﹣4=0(舍去).故a的值只能为3.∴当a=3时,2a2﹣4a=2×32﹣4×3=6.19.(7分)疫情期间,人们的沟通大都依赖电子产品,我校设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了100名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为108°.(2)将条形统计图补充完整;(3)我校现有3800名学生,请估计最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.【解答】解:(1)喜欢用电话沟通的人数为20人,所占百分比为20%,∴这次统计共抽查学生人数为:20÷20%=100(名),在扇形统计图中,表示“QQ”的扇形圆心角的度数为:360°×=108°,故答案为:100,108°;(2)喜欢用短信的人数为:100×5%=5(名),喜欢用微信的人数为:100﹣20﹣5﹣30﹣5=40(名),将条形统计图补充完整如下:(3)3800名学生中喜欢用“微信”进行沟通的人数为:3800×=1520(名);(4)把“微信”、“QQ”、“电话”三种沟通方式分别记为:A、B、C,画树状图如下:共有9种等可能的结果,甲、乙两名同学恰好选择同一种沟通方式的结果有3种,∴甲、乙两名同学恰好选择同一种沟通方式的概率为=.20.(7分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)B(﹣6,0)C(﹣1,0).(1)画出△ABC关于原点成中心对称的三角形△A'B'C'.(2)如果将△ABC向下平移3个单位,向右平移3个单位.直接写出点B的对应点B1的坐标.(3)如果将△ABC绕坐标原点O逆时针旋转90°,直接写出点B的对应点B2的坐标.【解答】解:(1)如图,△A'B'C'即为所求作.(2)如图,△A1B1C1即为所求作.B1(﹣3,﹣3).(3)如图,△A2B2C2即为所求作,B2(0,﹣6).21.(7分)如图,某风景区内有一瀑布,AB表示瀑布的垂直高度,在与瀑布底端同一水平位置的点D处测得瀑布顶端A的仰角β为45°,斜坡CD的坡度i=3:4,CD=100米,在观景台C处测得瀑布顶端A的仰角α为37°,若点B、D、E在同一水平线上,求瀑布的落差AB.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)【解答】解:∵i=3:4=tan∠CDE=,∴CE:DE=3:4,设CE=3x米,则DE=4x米,在Rt△CDE中,由勾股定理得:(3x)2+(4x)2=1002,解得:x=20(负值舍去),∴CE=60米,DE=80米,过C作CF⊥AB于F,则四边形CEBF是矩形.∴BF=CE=60米,CF=BE.在Rt△ADB中,∠ADB=45°,∴△ABD是等腰直角三角形,∴AB=BD,设AB=BD=y米.在Rt△ACF中,∠ACF=37°,∵tan∠ACF=≈0.75=,∴AF≈CF,∴y﹣60≈(y+80),解得:y≈480.答:瀑布的落差约为480米.22.(8分)已知童装每件成本价是35元,某商店定售价为55元时,每天可以销售60件,若售价每降低2元,即可多销售10件(售价不能高于55元).(1)若该商店要使得每天销售这种服装所获得的利润为1100元,则每件童装的售价应该为多少元?(2)售价为多少元时,该商店每天获取的利润最大?最大利润是多少?【解答】解:(1)设每件童装的售价为x元,根据题意列方程得,(x﹣35)(60+×10)=1100,解得x1=45,x2=57,因为售价不能高于55元,所以x=45,答:每件童装的售价为45元时,才能使每天利润为1100元;(2)设售价为x元,利润为y元,根据题意得:y=(x﹣35)(60+×10)=﹣5(x2﹣102x+2345)=﹣5(x﹣51)2+1280,∵a=﹣5<0,∴抛物线开口向下,∴当x=51时,y最大值=1280,答:售价为51元时,该商店每天获取的利润最大,最大利润是1280元.23.(8分)如图AB是⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为1cm,求图中阴影部分的面积.【解答】(1)证明:如图,连接OD,∵∠ACD=60°,∴∠AOD=2∠ACD=120°,∴∠DOP=180°﹣120°=60°,∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°,∴OD⊥DP,∵OD为半径,∴DP是⊙O切线;(2)解:∵∠ODP=90°,∠P=30°,OD=1cm,∴OP=2cm,DP=cm.∴图中阴影部分的面=S△ODP﹣S扇形BOD=•OD•DP﹣=×1×﹣=(cm2).24.(12分)如图,矩形ABCD中,已知AB=6.BC=8,点E是射线BC上的一个动点,连接AE并延长,交射线DC于点F.将△ABE沿直线AE翻折,点B的对应点为点B'.(1)如图1,若点E为线段BC上一点,延长AB'交CD于点M,求证:AM=FM;(2)如图2,若点B'恰好落在对角线AC上,求的值;(3)若=,求∠DAB'的正弦值.【解答】(1)证明:∵四边形ABCD为矩形,∴AB∥CD,∴∠F=∠BAF,由折叠可知:∠BAF=∠MAF,∴∠F=∠MAF,∴AM=FM.(2)解:同(1)的证法可得△ACF是等腰三角形,AC=CF,在Rt△ABC中,∵AB=6,BC=8,∴AC===10,∴CF=AC=10,∵AB∥CF,∴△ABE∽△FCE,∴;(3)①当点E在线段BC上时,如图3,AB'的延长线交CD于点M,由AB∥CF可得:△ABE∽△FCE,∴,即,∴CF=4,同(1)的证法可得AM=FM.设DM=x,则MC=6﹣x,则AM=FM=10﹣x,在Rt△ADM中,AM2=AD2+DM2,即(10﹣x)2=82+x2,解得:x=,则AM=10﹣x=10﹣=,∴sin∠DAB'==.②当点E在线段BC的延长线上时,如图4,由AB∥CF可得:△ABE∽△FCE,∴,即,∴CF=4,则DF=6﹣4=2,设DM=x,同理可得出AM=FM=2+x,∵AM2=AD2+DM2,∴(2+x)2=82+x2,解得x=15.∴AM=17,∴sin∠DAB'=.综合以上可得,∠DAB'的正弦值为或.25.(11分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y 轴交于点C.(1)求b,c的值:(2)如图1,点P是第一象限抛物线上一动点,过点P作x轴的垂线1,交BC于点H.当△PHC为等腰三角形时,求点P的坐标;(3)如图2,抛物线顶点为E.已知直线y=kx﹣k+3与二次函数图象相交于M、N两点,求证:无论k为何值,△EMN恒为直角三角形.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),∴,解得:,∴b=2,c=3;(2)∵抛物线的函数表达式为:y=﹣x2+2x+3,∴C(0,3),设直线BC的解析式为y=kx+3,将点B(3,0)代入y=kx+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),①如图1,过点C作CM⊥PH于点M,则CM=x,PH=﹣x2+3x,当CP=CH时,PM=MH,∠MCH=∠MCP,∵OB=OC,∴∠OBC=45°,∵CM∥OB,∴∠MCH=∠OBC=45°,∴∠PCH=90°,∴MC=PH=(﹣x2+3x),即x=(﹣x2+3x),解得:x1=0(舍去),x2=1,∴P(1,4);②如图2,当PC=PH时,∵PH∥OC,∴∠PHC=∠OCB=45°,∴∠CPH=90°,∴点P的纵坐标为3,∴﹣x2+2x+3=3,解得:x=2或x=0(舍去),∴P(2,3);③当CH=PH时,如图3,∵B(3,0),C(0,3),∴BC==3.∵HF∥OC,∴,∴,解得:x=3﹣,∴P(3﹣,4﹣2).综合以上可得,点P的坐标为(1,4)或(2,3)或(3﹣,4﹣2).(3)∵函数表达式为:y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点E(1,4);设点M、N的坐标为(x1,y1),(x2,y2),∴MN2=(x1﹣x2)2+(y1﹣y2)2,ME2=(x1﹣1)2+(y1﹣4)2,NE2=(x2﹣1)2+(y2﹣4)2,∵ME2+NE2=(x1﹣1)2+(y1﹣4)2+(x2﹣1)2+(y2﹣4)2=x12+x22﹣2(x1+x2)+2+y12+y22﹣8(y1+y2)+32=x12+x22﹣2x1x2+2﹣4+y12+y22﹣2y1•y2+18﹣48+32=(x1﹣x2)2+(y1﹣y2)2,∴MN2=ME2+NE2,∴∠MEN=90°,故EM⊥EN,即:△EMN恒为直角三角形.。
2020年四川省绵阳市中考数学全真模拟试卷1解析版
2020年四川省绵阳市中考数学全真模拟试卷1解析版一.选择题(共12小题,满分36分,每小题3分)1.下面有4个汽车标志图案,其中是中心对称图形的是()A.B.C.D.2.一元二次方程﹣x2+2x=0的根为()A.﹣2B.0,2C.0,﹣2D.23.对于二次函数y=2(x﹣2)2+1,下列说法中正确的是()A.图象的开口向下B.函数的最大值为1C.图象的对称轴为直线x=﹣2D.当x<2时y随x的增大而减小4.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34°B.46°C.56°D.66°5.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是()A.90°B.30°C.45°D.60°6.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=2107.如图,AB是⊙O的直径,点C为⊙O外一点,CA、CD是⊙O的切线,A、D为切点,连接BD、AD.若∠ACD=48°,则∠DBA的大小是()A.32°B.48°C.60°D.66°8.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°9.如图,P是抛物线y=﹣x2+x+3在第一象限的点,过点P分别向x轴和y轴引垂线,垂足分别为A、B,则四边形OAPB周长的最大值为()A.6B.7.5C.8D.410.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为()A.πcm2B.cm2C.D.11.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中FK1,K1K2,K2K3,K3K4,K5K6…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为l1,l2,l3,l4,l5,l6,….当AB=1时,l2014等于()A.B.C.D.12.如图,抛物线y1=ax2+bx+c(a≠0),其顶点坐标为A(﹣1,3),抛物线与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a﹣b=0,②abc>0,③方程ax2+bx+c=3有两个相等的实数根,④抛物线与x轴的另一个交点是(1,0),⑤当﹣3<x<﹣1时,有y2<y1.其中正确结论的个数是()A.5B.4C.3D.2二.填空题(共6小题,满分18分,每小题3分)13.已知m是关于x的方程x2+4x﹣5=0的一个根,则2m2+8m=14.在一个圆内接四边形ABCD中,已知∠A=100°,则∠C的度数为.15.如图,平面直角坐标系xOy中,点A(2,0),以OA为半径作⊙O,若点P,B都在⊙O上,且四边形AOPB为菱形.当点P在第三象限时,则点P的坐标为.16.在一幢高125m的大楼上掉下一个苹果,苹果离地面的高度h(m)与时间t(s)大致有如下关系:h=125﹣5t2.秒钟后苹果落到地面.17.点A(0,3),点B(4,0),则点O(0,0)在以AB为直径的圆(填内、上或外)18.已知关于x的方程x2﹣(2m﹣8)x+m2﹣16=0的两个实根x1、x2满足x1<<x2.则实数m 的取值范围.三.解答题(共7小题,满分86分)19.(16分)(1)计算:(2019﹣π);(2)解方程:3x(1﹣x)=2x﹣2.20.(11分)如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在(2)的条件下算出线段BC旋转到B2C所经过的扇形的面积.(结果保留π)21.(11分)已知关于x的一元二次方程x2﹣2x+m﹣1=0(1)当m取何值时,这个方程有两个不相等的实根?(2)若方程的两根都是正数,求m的取值范围;(3)设x1,x2是这个方程的两个实数根,且1﹣x1x2=x12+x22,求m的值.22.(11分)已知二次函数的图象经过点A(﹣1,0)和点B(3,0),且有最小值为﹣2.(1)求这个函数的解析式;(2)函数的开口方向、对称轴;(3)当y>0时,x的取值范围.23.(11分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.24.(12分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.25.(14分)如图,O是坐标原点,过点A(﹣1,0)的抛物线y=x2﹣bx﹣3与x轴的另一个交点为B,与y轴交于点C,其顶点为D点.(1)求b的值以及点D的坐标;(2)连接BC、BD、CD,在x轴上是否存在点P,使得以A、C、P为顶点的三角形与△BCD相似?若存在,求出点P的坐标;若不存在,说明理由.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解.【解答】解:根据中心对称的定义可得:A、B、C都不符合中心对称的定义.故选:D.【点评】本题考查中心对称的定义,属于基础题,注意掌握基本概念.2.【分析】利用因式分解法解方程.【解答】解:﹣x(x﹣2)=0,﹣x=0或x﹣2=0,所以x1=0,x2=2.故选:B.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了配方法.3.【分析】根据题目中的函数解析式,可以判断各个选项中的说法是否正确.【解答】解:二次函数y=2(x﹣2)2+1,a=2>0,∴该函数的图象开口向上,故选项A错误,函数的最小值是y=1,故选项B错误,图象的对称轴是直线x=2,故选项C错误,当x<2时y随x的增大而减小,故选项D正确,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.4.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB=90°,又由∠ACD =34°,可求得∠ABD的度数,再根据直角三角形的性质求出答案.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ACD=34°,∴∠ABD=34°∴∠BAD=90°﹣∠ABD=56°,故选:C.【点评】此题考查了圆周角定理以及直角三角形的性质.此题比较简单,注意掌握数形结合思想的应用.5.【分析】根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.【解答】解:∵四边形ABCD是正方形,∴∠BCD=90°,∵△BEC绕点C旋转至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故选:C.【点评】本题考查了旋转的性质,正方形的性质,等腰直角三角形的判定与性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小,然后判断出△CEF是等腰直角三角形是解题的关键.6.【分析】根据题意列出一元二次方程即可.【解答】解:由题意得,x(x﹣1)=210,故选:B.【点评】本题考查的是一元二次方程的应用,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系.7.【分析】根据切线长定理可知CA=CD,求出∠CAD,再证明∠DBA=∠CAD即可解决问题.【解答】解:∵CA、CD是⊙O的切线,∴CA=CD,∵∠ACD=48°,∴∠CAD=∠CDA=66°,∵CA⊥AB,AB是直径,∴∠ADB=∠CAB=90°,∴∠DBA+∠DAB=90°,∠CAD+∠DAB=90°,∴∠DBA=∠CAD=66°,故选:D.【点评】本题考查切线长定理和切线的性质、等腰三角形的性质、直径所对的圆周角是直角等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【分析】根据圆周角定理即可求出答案【解答】解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.【点评】本题考查圆周角定理,注意圆的半径都相等,本题属于基础题型.9.【分析】设P(x,﹣x2+x+3),利用矩形的性质得到四边形OAPB周长=2PA+2OA=﹣2x2+2x+6+2x,然后根据二次函数的性质解决问题.【解答】解:设P(x,﹣x2+x+3),四边形OAPB周长=2PA+2OA=﹣2x2+2x+6+2x=﹣2x2+4x+6=﹣2(x﹣1)2+8,当x=1时,四边形OAPB周长有最大值,最大值为8.故选:C.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10.【分析】根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.【解答】解:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1cm,∠ABC=120°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),==(cm2).∴图中阴影部分面积为:S扇形OBC故选:A.是解题【点评】此题主要考查了正多边形和圆以及扇形面积求法,得出阴影部分面积=S扇形OBC 关键.11.【分析】利用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2014的长.【解答】解:根据题意得:l1==,l2==,l3===π,l4==,按照这种规律可以得到:l n=,所以l2014=.故选:C.【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出l2014的长.12.【分析】根据抛物线的图象特征和对称性可得①②④;将方程ax2+bx+c=3转化为函数图象求交点问题可解;通过数形结合可得⑤.【解答】解:由抛物线对称轴为直线x=﹣b=2a,则①正确;由图象,ab同号,c>0,则abc>0,则②正确;方程ax2+bx+c=3可以看做是抛物线y=ax2+bx+c与直线y=3求交点横坐标,由抛物线顶点为(﹣1,3)则直线y=3过抛物线顶点.∴方程ax2+bx+c=3有两个相等的实数根.故③正确;由抛物线对称轴为直线x=﹣1,与x轴的一个交点(﹣3,0)则有对称性抛物线与x轴的另一个交点为(1,0)则④正确;∵A(﹣1,3),B(﹣3,0),直线y2=mx+n与抛物线交于A,B两点∴当当﹣3<x<﹣1时,抛物线y1的图象在直线y2上方,则y2<y1,故⑤正确.故选:A.【点评】本题是二次函数综合题,考查了二次函数各项系数的性质、抛物线对称性和从函数观点看方程和不等式,解答关键是数形结合.二.填空题(共6小题,满分18分,每小题3分)13.【分析】利用一元二次方程的解的定义得到m2+4m=5,再把2m2+8m变形为2(m2+4m),然后利用整体代入的方法计算.【解答】解:∵m是关于x的方程x2+4x﹣5=0的一个根,∴m2+4m﹣5=0,∴m2+4m=5,∴2m2+8m=2(m2+4m)=2×5=10.故答案为10.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.【分析】直接根据圆内接四边形的性质求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠C+∠A=180°,∴∠C=180°﹣100°=80°.故答案为:80°【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的任意一个外角等于它的内对角.15.【分析】根据菱形的性质可知△POB,△AOB是等边三角形,从而得出∠POM=180°﹣60°×2=60°,再根据三角函数即可求出OM,PM的长度,得到点P的坐标.【解答】解:∵四边形AOPB为菱形∴OP=PB=AB=OB,∵OP=OB,∴△POB,△AOB是等边三角形,∴∠POM=180°﹣60°×2=60°,∴OM=OP•cos∠POM=1,PM=OP•sin∠POM=.当点P在第三象限时,P的坐标为(﹣1,﹣).故答案为:(﹣1,﹣).【点评】本题考查了菱形的性质,等边三角形的性质和三角函数等知识,得出△POB,△AOB是等边三角形是解题关键.16.【分析】苹果落到地面,即h的值为0,代入函数解析式求得t的值即可解决问题.【解答】解:把h=0代入函数解析式h=125﹣5t2得,125﹣5t2=0,解得t1=5,t2=﹣5(不合题意,舍去);答:5秒钟后苹果落到地面.故答案为:5.【点评】此题主要考查二次函数与一元二次方程的关系,解答时注意结合图象解答.17.【分析】先得出圆的圆心坐标C,进而得出OC的长与半径的长进行比较解答即可.【解答】解:如图,∵点A(0,3),点B(4,0),∴AB=,点C(2,1.5),∴OC==CA,∴点O(0,0)在以AB为直径的圆上,故答案为:上【点评】本题考查点与圆的位置关系的判断,是基础题,解题时要认真审题.18.【分析】根据当x=时,y<0时得到关于m的不等式,通过解不等式求得m的取值范围即可.【解答】解:∵关于x的方程x2﹣(2m﹣8)x+m2﹣16=0的两个实根x1、x2满足x1<<x2.∴令y=x2﹣(2m﹣8)x+m2﹣16,∴当x=时,y<0,即﹣(2m﹣8)+m2﹣16<0.解得﹣<m<.故答案是:﹣<m<.【点评】考查了抛物线与x轴的交点坐标,熟练掌握二次函数的图象的性质是解题的关键.三.解答题(共7小题,满分86分)19.【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)利用因式分解法求解可得.【解答】解:(1)原式=1+9﹣(2﹣)+3×﹣6×=10﹣2++﹣2=8;(2)∵3x(1﹣x)=﹣2(1﹣x),∴3x(1﹣x)+2(1﹣x)=0,则(1﹣x)(3x+2)=0,∴1﹣x=0或3x+2=0,解得:x1=1,x2=﹣.【点评】本题考查一元二次方程的解法和实数的混合运算,解题的关键是灵活运用所学知识解决问题,学会用适当的方法解一元二次方程,属于中考常考题型.20.【分析】(1)利用轴对称的性质画出A、B、C的定义点A1、B1、C1,而从得到△A1B1C1;(2)利用旋转的性质和网格特点,画出A、B的定义点A2、B2而从得到△A2B2C;(3)由于线段BC旋转到B2C所经过的扇形的半径为CB,圆心角为90度,然后利用扇形的面积公式可计算它的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C为所作;(3)BC==,所以线段BC旋转到B2C所经过的扇形的面积==π.【点评】本题考查了作图﹣旋转:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称.21.【分析】(1)根据根的判别式得出不等式,求出不等式的解集即可;(2)根据根与系数的关系得出不等式,求出不等式的解集即可;(3)根据根与系数的关系得出x1+x2=2,x1x2=m﹣1,变形后代入,即可求出m,再判断即可.【解答】解:(1)∵△=(﹣2)2﹣4(m﹣1)=﹣4m+8>0,∴m<2时,方程有两个不相等的实数根;(2)∵设x1,x2是这个方程的两个实根,则x1>0,x2>0,∴x1x2=m﹣1>0,∴m>1,由(1)知:当△≥0时,m≤2,即m的取值范围是1<m≤2;(3)∵x1+x2=2,x1x2=m﹣1,,∴1﹣m+1=22﹣2(m﹣1),∴m=4,∵由(1)知:m<2,∴此时不存在,所以当1﹣x1x2=x12+x22时,m不存在.【点评】本题考查了根的判别式和根与系数的关系,能熟记知识点的内容是解此题的关键.22.【分析】由题意得:函数的对称轴为x=1,此时y=﹣2,则函数的表达式为:y=a(x﹣1)2﹣2,即可求解.【解答】解:(1)由题意得:函数的对称轴为x=1,此时y=﹣2,则函数的表达式为:y=a(x﹣1)2﹣2,把点A坐标代入上式,解得:a=,则函数的表达式为:y=x2+x+(2)a=>0,函数开口向上,对称轴为:x=1;(3)当y>0时,x的取值范围为:x>3或x<﹣1.【点评】本题考查的是二次函数基本性质,函数的开口方向、对称轴、x的取值范围都是函数的基本属性,是一道基本题.23.【分析】(1)根据题意选择合适坐标系即可,结合已知条件得出点B的坐标即可,根据抛物线在坐标系的位置,可知抛物线的顶点坐标为(5,5),抛物线的右端点B坐标为(10,0),可设抛物线的顶点式求解析式;(2)根据题意可知水面宽度变为6m时x=2或x=8,据此求得对应y的值即可得.【解答】解:(1)选择方案二,根据题意知点B的坐标为(10,0),由题意知,抛物线的顶点坐标为(5,5),且经过点O(0,0),B(10,0),设抛物线解析式为y=a(x﹣5)2+5,把点(0,0)代入得:0=a(0﹣5)2+5,即a=﹣,∴抛物线解析式为y=﹣(x﹣5)2+5,故答案为:方案二,(10,0);(2)由题意知,当x=5﹣3=2时,﹣(x﹣5)2+5=,所以水面上涨的高度为米.【点评】本题主要考查二次函数的应用,根据抛物线在坐标系中的位置及点的坐标特点,合理地设抛物线解析式,再运用解析式解答题目的问题.24.【分析】(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.【解答】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.25.【分析】(1)根据待定系数法,可得函数解析式,根据配方法,可得顶点坐标;(2)根据相似三角形的性质,可得AP的长,根据线段的和差,可得P点坐标.【解答】解:(1)把A(﹣1,0)代入y=x2﹣bx﹣3,得1+b﹣3=0,解得b=2.y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D(1,﹣4).(2)如图,当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,即A(﹣1,0),B(3,0),D(1,﹣4).由勾股定理,得BC2=18,CD2=1+1=2,BD2=22+16=20,BC2+CD2=BD2,∠BCD=90°,①当△APC∽△DCB时,,即,解得AP=1,即P(0,0).②当△ACP∽△DCB时,,即,解得AP=10,即P′(9,0).综上所述:点P的坐标(0,0)(9,0).【点评】本题考查了二次函数综合题,利用配方法求函数的顶点坐标;(2)利用相似三角形的性质得出关于AP的方程是解题关键,要分类讨论,以防遗漏.。
四川中考考前模拟考试《数学卷》含答案解析
四川数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.31-+=( ) A. 4B. -4C. 2D. -22.下列计算中,正确的是( ) A. 2a+3a=5B. 325a a a ⋅=C. 321a a ÷=D. (-a)33a =3.某企业2017年总收入约为7380000元,这一数据用科学记数法表示为( ) A. 7.38410元B. 73.8510元C. 7.38610元D. 0.738610元4. 下列图形中,既是中心对称图形又是轴对称图形的是( ) A. 等边三角形B. 平行四边形C. 等腰梯形D. 矩形5.在一次歌唱比赛中,10名评委给某一歌手打分如下表: 成绩(分) 8.9 9.3 9.4 9.5 97 9.8 评委(名) 121411则这名歌手成绩的中位数和众数分别是( ) A. 9.3, 2B. 9.5 ,4C. 9.5,9.5D. 9.4 ,9.56.一个底面直径为2,高为3的圆锥的体积是( ) A.B. 2C. 3D. 47.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是( )A. B. C. D.8.一个菱形的四个内角度数之比依次为1:2:3:4,这个事件是( )A. 必然事件B. 随机事件C. 不可能事件D. 以上都不是9.关于x的分式方程55ax x=-有解,则字母a的取值范围是( )A. a=5或a=0B. a≠0C. a≠5D. a≠5且a≠010.将矩形ABCD沿对角线BD折叠,使得与'C重合,若2DC'=,则AB=( )A. 1B. 2C. 3D. 411.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )A. 13B.23C.34D.4512.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回.点P在运动过程中速度大小不变.则以点A为圆心,线段AP长为半径的圆的面积S与点P的运动时间t之间的函数图象大致为A. B. C. D.第Ⅱ卷非选择题(84分)二、填空题(本大题共5个小题,每小题3分,满分15分)请把答案直接填在题中的横线上.13.分解因式:4a2﹣16=_____.14.一个不透明的袋子里装有除颜色不同外其他都相同的5个小球,其中红球3个、白球2个,一次从中摸出两个小球,全是红球的概率为________________.15.如图,⊙O半径为1cm,正六边形内接于⊙O,则图中阴影部分面积为_____.16.对于反比例函数2y x=,下列说法:①点()2,1--在它的图象上;②它的图象在第一、三象限;③当x 0)>时,随的增大而增大;④当x 0<时,随的增大而减小.上述说法中,正确的序号是________.(填上所有你认为正确的序号) 17.观察下列等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, …………………….以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为”数字对称等式”.根据上述规律填空:27×_________=_______×_________.三、解答题(第18题6分,第19题7分,第20题11分,本大题满分24分)18.计算:()1131tan 601222π-⎛⎫+-︒--︒+÷ ⎪⎝⎭.19. 如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,连接BE 、DF ,DF 交对角线AC 于点G ,且DE=DG . (1)求证:AE=CG;(2)试判断BE 和DF 的位置关系,并说明理由.20.学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以”我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生;(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍学生人数;(5)学校若在喜爱艺术、文学、科普、体育四类中任意抽取两类建立兴趣小组,求出恰好选中是体育和科普两类的概率.四、解答题(第21题9分,第22题10分,本大题满分19分)21.如图,点D在双曲线上,AD垂直轴,垂足为A,点C在AD上,CB平行于轴交双曲线于点B,直线AB与轴交于点F,已知AC:AD=1:3,点C的坐标为(3,2).(1)求该双曲线的解析式;(2)求△OFA的面积.22.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.五、解答题(本大题满分12分)23. 如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BF=BC,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交于点H,连接BD、FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.六、解答题(本大题满分14分)24.如图,经过原点的抛物线y=﹣x2﹣2mx(m>1)与x轴的另一个交点为A.过点P(﹣1,m)作直线PD⊥x 轴于点D,交抛物线于点B,BC∥x轴交抛物线于点C.(1)当m=2时.①求线段BC的长及直线AB所对应的函数关系式;②若动点Q在直线AB上方的抛物线上运动,求点Q在何处时,△QAB的面积最大?③若点F在坐标轴上,且PF=PC,请直接写出符合条件的点F在坐标;(2)当m>1时,连接CA、CP,问m何值时,CA⊥CP.答案与解析第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.31-+=( ) A. 4 B. -4C. 2D. -2【答案】C 【解析】【详解】解:根据正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数可知:3122-+=-=.故选C.2.下列计算中,正确的是( ) A. 2a+3a=5B. 325a a a ⋅=C. 321a a ÷=D. (-a)33a =【答案】B 【解析】A.合并同类项字母及字母的指数不变,系数相加,2a +3a =5a ,则2235a a a +=错误;B. 同底数幂相乘,底数不变,指数相加,33522a a a a +⋅==,正确;C.同底数幂相除,底数不变,指数相减,3232a a a a -÷==,则321a a ÷=错误;D.根据乘方的意义()33a a -=-,则()33a a -=错误. 故选B.3.某企业2017年总收入约为7380000元,这一数据用科学记数法表示为( ) A. 7.38410元 B. 73.8510元C. 7.38610元D. 0.738610元【答案】C 【解析】 【分析】将一个数字表示成10n a ⨯的形式,其中1≤|a |<10,n 为整数,这种表示方法叫做科学记数法.当原数较大时,n 等于原数的整数位数减去1.【详解】解:则673800007.3810=⨯.故选C.4. 下列图形中,既是中心对称图形又是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 等腰梯形D. 矩形【答案】D【解析】【详解】根据轴对称图形的概念和中心对称图形的定义针对每一个选项进行分析,即可选出答案D.考点:1.中心对称图形;2.轴对称图形5.在一次歌唱比赛中,10名评委给某一歌手打分如下表:则这名歌手成绩的中位数和众数分别是( )A. 9.3,2B. 9.5 ,4C. 9.5,9.5D. 9.4 ,9.5【答案】C【解析】【分析】根据众数与中位数的定义分别进行解答即可.【详解】解:由于共有10个数据,则中位数为第5、6个数据的平均数,即中位数为9.5+9.52=9.5(分),这组数据中出现次数最多的是9.5分,一共出现了4次,则众数为9.5分,故选:C.【点睛】此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.一个底面直径为2,高为3的圆锥的体积是( )A. B. 2 C. 3 D. 4【答案】A【解析】【分析】圆锥的体积等于底面积乘以高的三分之一.【详解】解:212332ππ⎛⎫⨯⨯=⎪⎝⎭故选A.7.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是( )A. B. C. D.【答案】A【解析】【详解】解:这个几何体的主视图有两层,从左起上一层有两列,下一层有三列所以其主视图为故选A.8.一个菱形的四个内角度数之比依次为1:2:3:4,这个事件是( )A. 必然事件B. 随机事件C. 不可能事件D. 以上都不是【答案】C【解析】【分析】根据必然事件、不可能事件、随机事件的概念解答即可.【详解】解:菱形的对角相等,不可能出现菱形的四个内角度数之比依次为1:2:3:4,所以这个事件是不可能事件,故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.关于x的分式方程55ax x=-有解,则字母a的取值范围是( )A. a=5或a=0B. a≠0C. a≠5D. a≠5且a≠0【答案】D 【解析】【详解】55ax x=-,去分母得:5(x﹣5)=ax,去括号得:5x﹣25=ax,移项,合并同类项得:(5﹣a)x=25,∵关于x的分式方程55ax x=-有解,∴5﹣a≠0,x≠0且x≠2,即a≠5,系数化为1得:255xa =-,∴255a-≠0且255a-≠5,即a≠5,a≠0,综上所述:关于x的分式方程55ax x=-有解,则字母a的取值范围是a≠5,a≠0;故选D.点睛:此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式.另外,解答本题时,容易漏掉5﹣a≠0,这应引起同学们的足够重视.10.将矩形ABCD沿对角线BD折叠,使得与'C重合,若2DC'=,则AB=( )A. 1B. 2C. 3D. 4【答案】B【解析】【详解】解:因为折叠前后对应线段相等,所以DC=DC′,而DC=AB,所以AB=2.故选B.11.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )A. 13B. 23C. 34D. 45 【答案】C 【解析】 【分析】易证△DEF ∽△DAB ,△BEF ∽△BCD ,根据相似三角形的性质可得EF AB = DF DB ,EF CD =BF BD,从而可得EF AB +EF CD =DF DB +BF BD=1.然后把AB=1,CD=3代入即可求出EF 的值. 【详解】∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF ,∴△DEF ∽△DAB,△BEF ∽△BCD ,∴EF AB = DF DB ,EF CD =BF BD, ∴EF AB +EF CD =DF DB +BF BD =BD BD =1. ∵AB=1,CD=3,∴1EF +3EF =1, ∴EF=34. 故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.12.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回.点P 在运动过程中速度大小不变.则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为A. B. C. D.2·S AP π=(是AP 二次函数),点P 从A –B 时,AP 变长,点P 从B –A 时,AP 变短,故选A第Ⅱ卷 非选择题(84分)二、填空题(本大题共5个小题,每小题3分,满分15分)请把答案直接填在题中的横线上. 13.分解因式:4a 2﹣16=_____.【答案】4(a +2)(a ﹣2)【解析】【分析】首先提取公因式4,进而利用平方差公式进行分解即可.【详解】解:4a 2﹣16=4(a 2﹣4)=4(a+2)(a ﹣2).故答案为:4(a+2)(a ﹣2).【点睛】本题是对因式分解的考查,熟练掌握因式分解的提公因式法和公式法是解决本题的关键. 14.一个不透明的袋子里装有除颜色不同外其他都相同的5个小球,其中红球3个、白球2个,一次从中摸出两个小球,全是红球的概率为________________. 【答案】310 【解析】【详解】解:这是一个等可能事件,一次从中摸出两个小球共有20种可能性,其中全是红球的可能性有6种,所以P (一次从中摸出两个小球,全是红球)=632010=. 故答案为:310. 15.如图,⊙O 的半径为1cm ,正六边形内接于⊙O ,则图中阴影部分面积为_____.【答案】6π根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可.【详解】解:如图,连接BO,CO,OA.由题意得,△OBC,△AOB都是等边三角形,∴∠AOB=∠OBC=60°,∴OA∥BC,∴△OBC的面积=△ABC的面积,∴图中阴影部分的面积等于扇形OBC的面积=2601= 3606ππ⨯.故答案为6π【点睛】本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出阴影部分面积=S扇形OBC,属于中考常考题型.16.对于反比例函数2yx=,下列说法:①点()2,1--在它的图象上;②它的图象在第一、三象限;③当x0)>时,随的增大而增大;④当x0<时,随的增大而减小.上述说法中,正确的序号是________.(填上所有你认为正确的序号)【答案】①②④【解析】【详解】解:①因为(-2)×(-1)=2,所以点(﹣2,﹣1)在它的图象上,正确;②因为k=2>0,所以它的图象在第一、三象限,正确;③k=2>0,所以在每一个象限内,y随x的增大而减小,所以当x>0时,y随x的增大而增大,错误;④k=2>0,所以在每一个象限内,y随x的增大而减小,所以当x<0时,y随x的增大而减小,正确.故答案为①②④.17.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…………………….以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为”数字对称等式”.根据上述规律填空:27×_________=_______×_________.【答案】 (1). 792 (2). 297 (3). 72【解析】【详解】解:等式的第二个数的百位数是第一个数的个位数,第二个数的个位数是第一个数的十位数,第二个数的十位数是第一个数的数位上数字的和,等式右边的两个数分别是左边两个数的对称数.故答案为:27×792=297×72. 【点睛】本题考查的是有理数的乘法,其本质是探索规律,探索规律型问题也是归纳猜想型问题,其特点是:给出一组具有某种特定关系的数、式、图形,或是给出与图形有关的操作变化过程,或某一具体的问题情境,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.三、解答题(第18题6分,第19题7分,第20题11分,本大题满分24分)18.计算:()1131tan 6022π-⎛⎫+-︒--︒+ ⎪⎝⎭. 【答案】4【解析】试题分析:理解负整数指数,零指数,绝对值的意义,二次根式的化简,并记住60°角的正切值.试题解析:原式=)211+-=4. 19.如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,连接BE 、DF ,DF 交对角线AC 于点G ,且D E=DG .(1)求证:AE=CG;(2)试判断BE 和DF 的位置关系,并说明理由.【答案】(1)证明见解析;(2)BE ∥DF ,理由见解析.【解析】试题分析:(1)先证∠AED=∠CGD ,再证明△ADE ≌△CDG ,根据全等三角形的对应边相等即可得出结论;(2)先证明△AEB ≌△CGD ,得出对应角相等∠AEB=∠CGD ,得出∠AEB=∠EGF ,即可证出平行线. 试题解析:(1)在正方形ABCD 中,∵AD=CD ,∴∠DAE=∠DCG ,∵DE=DG ,∴∠DEG=∠DGE ,∴∠AED=∠CGD .在△AED 和△CGD 中,{DAE DCGAED CGD DE DG∠=∠∠=∠=∴△AED ≌△CGD(AAS),∴AE=CG .(2)BE ∥DF ,理由如下:在正方形ABCD 中,AB ∥CD ,∴∠BAE=∠DCG .在△AEB 和△CGD 中,{AE CGBAE DCG AB CD=∠=∠=∴△AEB ≌△CGD(SAS),∴∠AEB=∠CGD .∵∠CGD=∠EGF ,∴∠AEB=∠EGF ,∴BE∥DF.考点:1.正方形的性质;2.全等三角形的判定与性质.20.学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以”我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生;(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数;(5)学校若在喜爱艺术、文学、科普、体育四类中任意抽取两类建立兴趣小组,求出恰好选中是体育和科普两类的概率.【答案】(1)300人;(2)补图见解析;(3)48 ;(4)480人;(5)16.【解析】【分析】(1)由折线图知喜爱文学的人数,由扇形统计图可知喜爱文学学生所占的百分比,则此则可求出参加调查学生的总数;(2)结合折线图与扇形图计算出喜爱艺术的人数和其他的人数;(3)用喜爱体育学生点总人数的百分比乘以360°;(4)用样本估计总体,通过300个中喜爱科普类书籍估计结果;(5)这是一个等可能事件,画出树状图,列出所有可能的结果,是科普和体育的结果,从而计算出是体育和科普两类的概率.【详解】解:(1)调查的学生人数为:90÷30%=300人;(2)如图(3)喜爱体育书籍的学生人数为:300―80―90―60―30=40体育部分所对的圆心角为:40100%36048 300︒︒⨯⨯=;(4)在抽样调查中,喜欢科普类书籍所占比例为:80430015=,可以估计,在全校同学中,喜欢科普类书籍人数大约占了415,人数约为1800×415=480人;(5)画出树状图:∴P(选中恰是体育和科普)=16.四、解答题(第21题9分,第22题10分,本大题满分19分)21.如图,点D在双曲线上,AD垂直轴,垂足为A,点C在AD上,CB平行于轴交双曲线于点B,直线AB与轴交于点F,已知AC:AD=1:3,点C的坐标为(3,2).(1)求该双曲线的解析式;(2)求△OFA的面积.【答案】(1)该双曲线解析式为18yx;(2)32【解析】【分析】(1)由点C的坐标为(3,2)得AC=2,而AC:AD=1:3,得到AD=6,则D点坐标为(3,6),然后利用待定系数法确定双曲线的解析式;(2)已知A(3,0)和B(9,2),利用待定系数法确定直线AB解析式,得到F点的坐标,然后利用三角形的面积公式计算即可【详解】(1)∵点C的坐标为(3,2),AD垂直x轴,∴AC=2,又∵AC:AD=1:3,∴AD=6,∴D点坐标为(3,6),设双曲线的解析式为y=k x把D(3,6)代入y=kx得,k=3×6=18,所以双曲线解析式为y=18x;(2)设直线AB的解析式为y=kx+b,∵CB平行于x轴交曲线于点B,∵双曲线的解析式为y=18x,∴B(9,2)把A(3,0)和B(9,2)代入y=kx+b得,3k+b=0,9k+b=2,解得k=13,b=-1,∴直线AB的解析式为y=13x-1,令x=0,得y=-1,∴F点的坐标为(0,-1),∴S△OFA=12×OA×OF=12×3×1=32.【点睛】本题考查了利用待定系数法确定反比例函数和一次函数解析式的方法:把求解析式的问题转化为解方程或方程组.也考查了坐标与线段之间的关系以及三角形面积公式.22.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.【答案】(1)每个篮球和每个排球的销售利润分别为25元,20元(2)购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【解析】【分析】(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意列方程组,解方程即可得到结果;(2)设购进篮球m个,排球(100﹣m)个,根据题意得不等式组即可得到结果.【详解】解:(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得:79355 1020650 x yx y+=+=⎧⎨⎩,解得:2520 xy⎧⎨⎩==.答:每个篮球和每个排球的销售利润分别为25元,20元;(2)设购进篮球m个,排球(100﹣m)个,根据题意得:200160(100)17400 1002m mmm⎪+-≤-⎧⎪⎨⎩≥,解得:10035 3m≤≤,∴m=34或m=35,∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【点睛】本题考查一元一次不等式的应用;二元一次方程组的应用;方案型.五、解答题(本大题满分12分)23. 如图,在Rt△ABC 中,∠ABC=90°,AC 的垂直平分线分别与AC ,BC 及AB 的延长线相交于点D ,E ,F ,且BF=BC ,⊙O 是△BEF 的外接圆,∠EBF 的平分线交EF 于点G ,交于点H ,连接BD 、FH .(1)求证:△ABC≌△EBF ;(2)试判断BD 与⊙O 的位置关系,并说明理由;(3)若AB=1,求HG•HB 的值.【答案】(1)证明见试题解析;(2)相切,理由见试题解析;(3)22【解析】【分析】(1)由∠ABC=90°和FD ⊥AC ,得到∠ABF=∠EBF ,由∠DEC=∠BEF ,得到∠DCE=∠EFB ,从而得到△ABC ≌△EBF (ASA );(2)BD 与⊙O 相切.连接OB ,只需证明∠DBE+∠OBE=90°,即可得到OB ⊥BD ,从而有BD 与⊙O 相切;(3)连接EA ,EH ,由DF 为线段AC 的垂直平分线,得到AE=CE ,由△ABC ≌△EBF ,得到AB=BE=1,进而得到22AB =12BF BC ==+2422EF =+BH 为角平分线,易证△EHF 为等腰直角三角形,故222EF HF =,得到221222HF EF ==,再由△GHF ∽△FHB ,得到2HG HB HF ⋅=.【详解】解:(1)∵∠ABC=90°,∴∠CBF=90°,∵FD ⊥AC ,∴∠CDE=90°,∴∠ABF=∠EBF ,∵∠DEC=∠BEF ,∴∠DCE=∠EFB ,∵BC=BF ,∴△ABC ≌△EBF (ASA );(2)BD 与⊙O 相切.理由:连接OB ,∵DF 是AC 的垂直平分线,∴AD=DC ,∴BD=CD ,∴∠DCE=∠DBE ,∵OB=OF ,∴∠OBF=∠OFB ,∵∠DCE=∠EFB ,∴∠DBE=∠OBF ,∵∠OBF+∠OBE=90°,∴∠DBE+∠OBE=90°,∴OB ⊥BD ,∴BD 与⊙O 相切;(3)连接EA ,EH ,∵DF 为线段AC 的垂直平分线,∴AE=CE ,∵△ABC ≌△EBF ,∴AB=BE=1,∴=∴1BF BC ==+∴(2222114EF BE BF =+=++=+ 又∵BH 为角平分线,∴∠EBH=∠EFH=45°,∴∠HEF=∠HBF=45°,∠HFG=∠EBG=45°,∴△EHF 为等腰直角三角形,∴222EF HF =,∴22122HF EF ==,∵∠HFG=∠FBG=45°,∠GHF=∠GHF,∴△GHF∽△FHB,∴HF HG HB HF=,∴2HG HB HF⋅=,∴222HG HB HF⋅==+.【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,圆周角定理,勾股定理,线段的垂直平分线的性质,直角三角形的性质,等腰直角三角形的判定和性质,熟练掌握这些定理是解题的关键.六、解答题(本大题满分14分)24.如图,经过原点的抛物线y=﹣x2﹣2mx(m>1)与x轴的另一个交点为A.过点P(﹣1,m)作直线PD⊥x 轴于点D,交抛物线于点B,BC∥x轴交抛物线于点C.(1)当m=2时.①求线段BC的长及直线AB所对应的函数关系式;②若动点Q在直线AB上方的抛物线上运动,求点Q在何处时,△QAB的面积最大?③若点F在坐标轴上,且PF=PC,请直接写出符合条件的点F在坐标;(2)当m>1时,连接CA、CP,问m为何值时,CA⊥CP.【答案】(1)BC=2;①直线AB所对应的函数关系式为y=x+4;②当a=-52时,△QAB的面积最大,此时Q的坐标为(-52,154);③符合条件的点F坐标为F1(﹣2,0),F2(0,0),F3(0,4);(2)m=32.【解析】【分析】(1)①将m=2代入y=﹣x2﹣2mx,得出y=﹣x2﹣4x,求出A(﹣4,0),B(﹣1,3),由B、C两点关于抛物线y=﹣x2﹣4x的对称轴x=﹣2对称,得出BC=2,运用待定系数法求出直线AB所对应的函数关系式;②过点Q作QE∥y轴,交AB于点E,设Q(a,﹣a2﹣4a),则E(a,a+4),QE=(﹣a2﹣4a)﹣(a+4)=﹣a2﹣5a﹣4,由S△QAB=12QE•AD求出S△QAB=﹣32(a+52)2+278,根据二次函数的性质即可求解;③分两种情况进行讨论:若点Fx轴上,设F(x,0).根据PF=PC列出方程,解方程得到F1(﹣2,0),F2(0,0);若点F在y轴上,设F(0,y),根据PF=PC列出方程,解方程得到F3(0,4),F4(0,0)与F2(0,0)重合;(2)过点C作CH⊥x轴于点H.先求出PB=m﹣1,BC=2(m﹣1),CH=2m﹣1,AH=1,再证明△ACH∽△PCB,根据相似三角形对应边成比例得出AH CHPB BC=,即12112(1)mm m-=--,解方程可求出m的值.【详解】解:(1)①当m=2时,y=﹣x2﹣4x,令y=0,得﹣x2﹣4x=0,解得x1=0,x2=﹣4,则A(﹣4,0).当x=﹣1时,y=3,则B(﹣1,3).∵抛物线y=﹣x2﹣4x的对称轴为直线x=﹣2,∴B、C两点关于对称轴x=﹣2对称,∴C(﹣3,3),BC=2.设直线AB所对应的函数关系式为y=kx+b.∵A(﹣4,0)、B(﹣1,3)在直线AB上,∴043k bk b⎧⎨⎩=-+=-+,解得14kb=⎧⎨=⎩∴直线AB所对应的函数关系式为y=x+4;②过点Q作QE∥y轴,交AB于点E(如图1).由题意可设Q(a,﹣a2﹣4a),则E(a,a+4),∴QE=(﹣a2﹣4a)﹣(a+4)=﹣a2﹣5a﹣4.∴S△QAB=12QE•AD=12×(﹣a2﹣5a﹣4)×3=﹣32(a+52)2+278,∴当a=-52时,△QAB的面积最大,此时Q的坐标为(-52,154);③分两种情况:若点F在x轴上,设F(x,0).∵PF=PC,P(﹣1,2),C(﹣3,3),∴(x+1)2+(2﹣0)2=(﹣3+1)2+(3﹣2)2,整理,得x2+2x=0,解得x1=﹣2,x2=0,∴F1(﹣2,0),F2(0,0);若点F在y轴上,设F(0,y).∵PF=PC,P(﹣1,2),C(﹣3,3),∴(0+1)2+(y﹣2)2=(﹣3+1)2+(3﹣2)2,整理,得y2﹣4y=0,解得y1=4,y2=0,∴F3(0,4),F4(0,0)与F2(0,0)重合;综上所述,符合条件的点F坐标为F1(﹣2,0),F2(0,0),F3(0,4);(2)过点C作CH⊥x轴于点H(如图2).∵P(﹣1,m),B(﹣1,2m﹣1),∴PB=m﹣1.∵抛物线y=﹣x2﹣2mx的对称轴为直线x=﹣m,其中m>1,∴B、C两点关于对称轴x=﹣m对称,∴BC=2(m﹣1),∴C(1﹣2m,2m﹣1),H(1﹣2m,0),∴CH=2m﹣1,∵A(﹣2m,0),∴AH=1.由已知,得∠ACP=∠BCH=90°,∴∠ACH=∠PCB.又∵∠AHC=∠PBC=90°,∴△ACH∽△PCB,∴AH CHPB BC=,即12112(1)mm m-=--,∴m=32.【点睛】本题考查二次函数综合题.其中涉及到运用待定系数法求一次函数解析式,二次函数的性质,三角形的面积,两点间的距离公式,相似三角形的判定与性质等知识,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.。
2023年四川省自贡市富顺学区中考化学模拟试卷(一)+答案解析(附后)
2023年四川省自贡市富顺学区中考化学模拟试卷(一)1. 以下物质的用途涉及到化学性质的是( )A. 氮气填充食品包装袋B. 用石墨制成玻璃刀切割玻璃C. 促进植物的光合作用D. 分离液态空气制取氧气2. 据报道:某地一名5岁的女孩把涂改液当饮料吸食,结果食道被严重烧伤.经医院检测发现,涂改液中含有苯、甲基环已烷等多种有毒物质.由此可知,涂改液是( )A. 单质B. 化合物C. 纯净物D. 混合物3. 富顺县创建文明城市,不少街道旁栽种了桂花树,金秋时节,常常可以闻到花香,从分子的角度分析是因为( )A. 分子体积很小B. 分子之间有间隙C. 分子是不断运动的D. 分子是由原子构成的4. 保护水资源,节约用水是每个公民的义务,下列做法中不正确的是( )A. 农业和园林浇灌用喷灌、滴灌B. 工业用水循环利用C. 利用家庭洗菜、洗衣水等拖地、冲马桶D. 将生活污水直接排放到江河中5. 下列实验操作或装置错误的是( )A. 实验室制取氧气B. 检查装置的气密性C. 向试管中滴加溶液D. 实验室制取二氧化碳6. 据统计,我国仅20世纪90年代就发生火灾约89万起,给人民造成重大损失.应用化学知识能有效预防和控制火灾.下面对灭火实例的灭火原理解释不正确的是( )灭火实例灭火原理A住宅失火时,消防队员用水灭火降低可燃物的着火点B酒精在桌上着火时,用湿抹布盖灭隔绝空气或氧气C炒菜油锅着火时,用锅盖盖熄隔绝空气或氧气D扑灭森林火灾时,设置隔离带可燃物与火源隔离A. AB. BC. CD. D7. 下列涉及化学学科观念的说法中,不正确的是( )A.微粒观:氢氧化钠溶于水产生自由移动的和B. 守恒观:24g镁与17g氧气充分反应,生成41g氧化镁C. 转化观:CO和在一定条件下可以相互转化D. 结构观:金刚石和石墨中碳原子的排列方式不同,导致两者物理性质差异很大8. 2011年4月11日晚,央视曝光“上海华联超市等销售染色馒头”,商家为了降低成本将柠檬黄用在玉米馒头中着色,山梨酸钾用在馒头中防止馒头发霉,甜蜜素用在馒头中代替蔗糖,甜味素的化学式为,下列关于甜味素的说法正确的是( )A. 甜味素是由碳、氢、氮、氧四个元素组成的B. 其中碳、氢、氮、氧四种元素的质量比为14:18:2:5C. 甜味素分子中共有39个原子核D. 甜味素中碳元素的质量分数最大9. 日常生活中,下列做法不正确的是( )A. 用加热煮沸的方法将硬水软化B. 用含小苏打的药物治疗胃酸过多C. 用聚氯乙烯塑料袋盛装食品D. 为补充土壤多种营养元素,可施用复合肥硝酸钾10. 机动车驾驶员严禁酒后驾车,交警常用装有重铬酸钾的仪器检测司机是否酒后驾车,因为酒中的酒精分子可以使橙红色的重铬酸钾变成绿色的硫酸铬.重铬酸钾中铬的化合价为( )A. B. C. D.11. 的合成开启了工业催化新纪元,为世界粮食增产做出了巨大贡献。
四川中考综合模拟考试《数学试题》含答案解析
四川数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.-2的倒数是( )A. -2B. 12-C. 12D. 22.下列所给图案中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D. 3.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子( )A. 越长B. 越短C. 一样长D. 随时间变化而变化 4.如今青白江投资环境,得到越来越多的境内外优质企业的青睐,外资和注册资本5000万以上的企业相比去年同期翻了一番,将5000万这个数用科学记数法表示为( )A. 65010⨯B. 7510⨯C. 8510⨯D. 9510⨯ 5.已知3( ) A. 75° B. 60° C. 45° D. 30°6.下列运算正确的是( )A. 2x 2•3x 2=6x 2B. x 3+x 5=x 8C. x 4÷x =x 3D. (x 5)2=x 77.二次函数2y ax bx c =++的图象如图所示,下列结论错误..的是( )A. 0a <B. 0b <C. 0c >D. 240b ac -> 8.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( )A. 3B. 4C. 5D. 99.如图,ABC 中,//DE BC ,若:1:2AD DB =,ADE 的周长是6,则ABC 的周长是( )A. 6B. 12C. 18D. 24 10.当0<x <1时,x 2、x 、1x 的大小顺序是( ) A. 21x x x << B. 21x x x << C. 21x x x << D. 21x x x<< 二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.计算(31)(31)+-的结果等于_____________.12.如图,等边OAB 的边长为2,则点B 的坐标为_____.13.若23b a =,则a b b -的值等于_____. 14.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为10,AB =16,则CD 的长是__.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算30(2)2716sin 60(2019)π︒--+-+-. (2)先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中1x =-. 16.已知23+是方程240x x c -+=的一个根,求方程的另一个根及c 的值.17.小明调查了本校九年级300名学生到校的方式,根据调査结果绘制出统计图的一部分如图:(1)补全条形统计图;(2)求扇形统计图中表示”步行”的扇形圆心角的度数;(3)请估计在全校1200名学生中乘公交的学生人数.18.如图,有一个三角形的钢架ABC ,30A ︒∠=,C 45︒∠=,AC 2(31)m =+.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.4m 的圆形门?19.如图,已知三角形OAB 的顶点B 在x 轴的负半轴上,AB OB ⊥,点A 的坐标为(4,2)-),双曲线k y (k 0)x=<的一支经过OA 边的中点C ,且与AB 相交于点D.(1)求此双曲线的函数表达式;(2)连结OD ,求AOD 的面积.20.将一副三角板Rt △ABD 与Rt △ACB (其中∠ABD =∠ACB =90°,∠D =60°,∠ABC =45°)如图摆放,Rt △ABD 中∠D 所对的直角边与Rt △ACB 的斜边恰好重合.以AB 为直径的圆经过点C ,且与AD 相交于点E ,连接EB ,连接CE 并延长交BD 于F .(1)求证:EF 平分∠BED ;(2)求△BEF 与△DEF 的面积的比值.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)B 卷(共50分) 21.已知a 2a -_____.22.在试制某种洗发液新品种时,需要选用两种不同添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常要先从芳香度为0,1,2的三种添加剂中随杋选取一种,再从芳香度为3,4,5的三种添加剂中随机选取一种,进行搭配试验,则芳香度之和等于5的概率为____. 23.如图,在平面直角坐标系中,直线11:y x 2l =-与反比例函数k y x =的图象交于A ,B 两点(点A 在点B 左侧),已知A 点的纵坐标是1:将直线11:y x 2l =-沿y 向上平移后的直线2l 与反比例函数k y x =在第二象限内交于点C ,如果ABC 的面积为3,则平移后的直线2l 的函数表达式为_____.24.如图,等边三角形ABC 中,3AB =,点D 是CB 延长线上一点,且BD 1=,点E 在直线..AC 上,当BAD CDE ∠=∠时,AE 长为_____.25.如图,线段AC =n +1(其中n 为正整数),点B 在线段AC 上,在线段AC 同侧作菱形ABMN 与菱形BCEF ,点F 在BM 边上,AB =n ,∠ABM =60°,连接AM 、ME 、EA 得到△AME .当AB =1时,△AME 的面积记为S 1;当AB =2时,△AME 的面积记为S 2;当AB =3时,△AME 的面积记为S 3;…;当AB =n 时,△AME 的面积记为S n ,当n ≥2时,S n ﹣S n ﹣1=__.五、解答题(本小题共三个小题,共30分,答案写在答题卡上)26.某服装厂生产某品牌的T 恤衫成本是每件10元.根据市场调查,以单价13元批发给经销,商销商愿意经销5000件,并且表示每降价0.1元,愿意多经销500件.服装厂决定批发价在不低于11.4元的前提下,将批发价下降0.1x 元.(1)求销售量y 与x 的关系,并求出x 的取值范围;(2)不考虑其他因素,请问厂家批发单价是多少时所获利润W 可以最大?最大利润为多少?27.已知:ABC 和ADE 均为等腰直角三角形,90BAC DAE ︒∠=∠=,AB AC =,AD AE =,连接BD CD CE ,,.(1)如图1所示,线段BD 与CE 的数量关系是_____,位置关系是_____;(2)在图1中,若点M 、P 、N 分别为DE DC BC 、、的中点,连接PM PN MN ,,,请判断PMN 的形状,并说明理由;(3)如图2所示,若M 、N 、P 分别为DE BC DC 、、上的点,且满足DM BN DP 1DE BC DC 3===,6BD =,连接PM PN MN ,,,则线段MN 长度是多少? 28.如图,抛物线2y ax bx c =++与x 轴相交于A (3,0)、B 两点,与y 轴交于点C (0,3),点B 在x 轴的负半轴上,且OA 3OB =.(1)求抛物线的函数关系式;(2)若P 是抛物线上且位于直线AC 上方的一动点,求ACP 的面积的最大值及此时点P 的坐标;(3)在线段OC 上是否存在一点M ,使2BM CM 2+值最小?若存在,请求出这个最小值及对应的M 点的坐标;若不存在,请说明理由.答案与解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.-2的倒数是()A. -2B.12C. 12D. 2【答案】B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握2.下列所给的图案中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.【答案】D【解析】【分析】根据中心对称图形与轴对称图形的概念对各选项进行逐一分析即可.【详解】A.不是轴对称图形,是中心对称图形,故本选项错误;B.不是轴对称图形,是中心对称图形,故本选项错误;C.是轴对称图形,但不是中心对称图形,故本选项错误;D. 既是轴对称图形,又是中心对称图形,故本选项正确;故选:D.【点睛】本题考查的是中心对称图形,轴对称图形.熟知中心对称图形与轴对称图形的概念是解答此题的关键.3.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子( )A. 越长B. 越短C. 一样长D. 随时间变化而变化【答案】B【解析】 由图易得AB <CD ,那么离路灯越近,它的影子越短,故选B .【点睛】本题考查了中心投影,用到的知识点为:影长是点光源与物高的连线形成的在地面的阴影部分的长度.4.如今的青白江投资环境,得到越来越多的境内外优质企业的青睐,外资和注册资本5000万以上的企业相比去年同期翻了一番,将5000万这个数用科学记数法表示为( )A. 65010⨯B. 7510⨯C. 8510⨯D. 9510⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:5000万=50000000=7510⨯.故选:B.【点睛】本题考查用科学记数法表示一个数. 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,能正确确定a 和n 是关键.5.已知sin=32,且是锐角,则等于( ) A. 75°B. 60°C. 45°D. 30°【答案】B【解析】 试题分析:本题只需要根据特殊角的三角函数值即可得出答案.sin60°=32,则=60°. 6.下列运算正确的是( )A. 2x 2•3x 2=6x 2B. x 3+x 5=x 8C. x 4÷x =x 3 D. (x 5)2=x 7 【答案】C【解析】【分析】 根据同底数幂的乘除法运算法则与合并同类项法则及积的乘方运算法则逐一计算,然后再加以判断即可.【详解】A :224236x x x ⋅=,故A 错误;B :3x 与5x 不是同类项,无法合并,故B 错误;C :43x x x ÷=,故C 正确;D :()2510x x =,故D 错误;故选:C .【点睛】本题主要考查了同底数幂的乘除法运算与合并同类项及积的乘方运算,熟练掌握相关方法是解题关键.7.二次函数2y ax bx c =++的图象如图所示,下列结论错误..的是( )A. 0a <B. 0b <C. 0c >D. 240b ac ->【答案】B【解析】【分析】据抛物线的开口方向得出a 的符号,可判断A ;根据抛物线的对称轴在y 轴的右侧,a ,b 异号,得出b 的符号,可判断B ;根据抛物线与y 轴的交点情况得到c 的符号,可判断C ;根据抛物线与x 轴交点情况得到24b ac -的符号,可判断D.【详解】解:A .由二次函数的图象开口向下可得a <0,故A 正确; B. 0,0,02b x a b a=-><∴>,故B 错误; C.图象与y 轴相交于正半轴,所以0c >,故C 正确;D.图象与x 轴有两个交点,所以240b ac ->,故D 正确.故选:B.【点睛】本题考查二次函数图象与系数关系. 对于二次函数y=ax 2+bx+c (a≠0)来说,①二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线开口向下;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).④抛物线与x 轴交点个数.△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴无交点.8.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( )A. 3B. 4C. 5D. 9【答案】C【解析】【分析】先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可.【详解】解:∵一组数据4,m ,5,n ,9的众数为9,∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6, 45965m n ++++= ∴12m n +=∴m ,n 中一个是9,另一个是3∴这组数按从小到大排列为:3,4,5,9,9.∴这组数的中位数为:5.故选:C.【点睛】本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.9.如图,ABC 中,//DE BC ,若:1:2AD DB =,ADE 的周长是6,则ABC 的周长是( )A. 6B. 12C. 18D. 24【答案】C【解析】【分析】 根据:1:2AD DB =可得出:1:3AD AB =,根据//DE BC 可证明△ADE ∽△ABC ,再根据相似三角形的性质即可求解.【详解】:1:2AD DB =:1:3AD AB ∴=//DE BC∴△ADE ∽△ABC ,相似比为:1:3 ∴13ADE ABC C C =△△ ∴ABC 的周长是:1618.3÷= 故选:C 【点睛】本题考查比例的性质,相似三角形的性质与判定.掌握相似三角形周长比等于相似比是解决此题的关键.10.当0<x <1时,x 2、x 、1x 的大小顺序是( ) A. 21x x x <<B. 21x x x <<C. 21x x x <<D. 21x x x<< 【答案】A【解析】分析:先在不等式0<x<1的两边都乘上x,再在不等式0<x<1的两边都除以x,根据所得结果进行判断即可.详解:当0<x<1时,在不等式0<x<1的两边都乘上x,可得0<x2<x,在不等式0<x<1的两边都除以x,可得0<1<1x,又∵x<1,∴x2、x、1x的大小顺序是:x2<x<1x.故选A.点睛:本题主要考查了不等式,解决问题的关键是掌握不等式的基本性质.不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或a bm m >.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.计算(31)(31)+-的结果等于_____________.【答案】2【解析】【分析】根据平方差公式计算即可.【详解】解:原式=3﹣1=2.故答案为2.【点睛】本题考查了二次根式的混合运算,熟记平方差公式是解题的关键.12.如图,等边OAB的边长为2,则点B的坐标为_____.【答案】3).【解析】【分析】过B作BD⊥OA于D,则∠BDO=90°,根据等边三角形性质求出OD,根据勾股定理求出BD,即可得出答案.【详解】解:如图,过B 作BD ⊥OA 于D ,则∠BDO=90°,∵△OAB 是等边三角形,112122OD AD OA ∴===⨯= 在Rt △BDO 中,由勾股定理得:22213BD =-=∴点B 的坐标为:3). 故答案为:3).【点睛】本题考查了等边三角形的性质,坐标与图形和勾股定理.能正确作出辅助线,构造Rt △BDO 是解决此题的关键.13.若23b a =,则a b b -的值等于_____. 【答案】12. 【解析】【分析】 根据23b a =可得32a b =,然后利用分比性质即可得解. 【详解】解:∵23b a = ∴32a b = ∴32122a b b --==. 故答案为:12. 【点睛】本题考查比例的性质.熟练掌握分比性质(如果a c b d=,则a b c d b d --=)是解决此题的关键. 14.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为10,AB =16,则CD 的长是__.【答案】4【解析】【分析】连接OA ,如图,利用垂径定理得到AD =BD =12AB =8,再利用勾股定理计算出OD ,然后计算OC ﹣OD 即可.【详解】解:连接OA ,如图,∵OC ⊥AB ,∴AD =BD =12AB =12×16=8, 在Rt △OAD 中,OD =22108-=6,∴CD =OC ﹣OD =10﹣6=4.故答案为:4.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算30(2)2716sin 60(2019)π︒--+-. (2)先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中1x =-. 【答案】(1)-8;(2)化简为:13x x -+,结果为:. 【解析】【分析】(1)原式第一项利用乘方进行计算,第二项化简二次根式,第三项绝对值内利用特殊角的三角函数值计算后化简绝对值,第四项利用零指数幂进行计算,将各自计算的结果相加(减);(2)根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可.【详解】解:(1)原式=6811--+-=811+--+=-8;(2)原式=231221111x x x x x x x +--÷++-++()()()()=23(1)(1)1(3)x x x x x ++-++ =13x x -+. 当1x =-时,原式=11113--=--+. 【点睛】本题考查实数的混合运算,分式的化简求值.(1)中能根据乘方、二次根式的性质、绝对值、三角函数、零指数幂分别计算是解决此问的关键;(2)中熟练掌握分式的混合运算顺序和运算法则是解决此问的关键.16.已知2是方程240x x c -+=的一个根,求方程的另一个根及c 的值.【答案】1x 2=1c =【解析】试题分析:设另一根为x 1,由根与系数的关系得,两根和为4,求得x 1,,再根据两根积求得常数项c.试题解析:设另一根为x 1,由根与系数的关系得:12x 4∴=1x 2∴=(2c =1c =考点:根与系数的关系.17.小明调查了本校九年级300名学生到校的方式,根据调査结果绘制出统计图的一部分如图:(1)补全条形统计图;(2)求扇形统计图中表示”步行”的扇形圆心角的度数;(3)请估计在全校1200名学生中乘公交的学生人数.【答案】(1)补全条形统计图见解析;(2)”步行”的扇形圆心角的度数为60°;(3)1200名学生中乘公交的人数约为560人.【解析】【分析】(1)先计算乘公交的学生数=300-步行人数-骑自行车人数-乘私车人数,据此补充条形统计图即可;(2)先计算步行所占调查人数的比,再计算步行扇形圆心角的度数;(3)先计算乘公交的学生占调查学生的比例,再估计1200名学生中乘公交的人数.【详解】(1)乘公交的人数为:300−50−80−30=140(人)补全的条形图如图所示:(2)”步行”的扇形圆心角的度数为:5036060300︒⨯=︒;(3)因为调查的九年级300名学生中,乘公交的学生有140人,所以乘公交的学生占调查学生的比例为:1407= 30015,所以1200名学生中乘公交的人数约为:71200=56015⨯人.答:1200名学生中乘公交的人数约为560人.【点睛】本题考查条形统计图,扇形统计图,用样本估计总体.能读懂条形图和扇形图,从中提取有用信息是解决本题的关键.18.如图,有一个三角形的钢架ABC ,30A ︒∠=,C 45︒∠=,AC 2(31)m =+.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.4m 的圆形门?【答案】工人师傅搬运此钢架能通过一个直径为2.4m 的圆形门.【解析】【分析】过B 作BD ⊥AC 于D ,设BD=xm ,解直角三角形求出3,AD x CD x ==,根据AD CD AC += 得出方程,求出方程即可求出BD 的长度,与2.4m 比较即可.【详解】解:工人师傅搬运此钢架能通过一个直径为2.4m 的圆形门,理由是:过B 作BD ⊥AC 于D ,∵AB >BD ,BC >BD ,AC >AB , ∴求出BD 长和2.4m 比较即可,设BD=xm ,∵∠A=30°,∠C=45°,∴在Rt △ABD 和Rt △BDC 中,33DC BD xm AD BD xm ====,2(31)AC m =,331)x x ∴=,解得x=2,即BD=2m <2.4m ,∴工人师傅搬运此钢架能通过一个直径为2.4m 的圆形门.【点睛】本题考查了解直角三角形的应用,一元一次方程的应用.能正确作出辅助线,构造Rt △ABD 和Rt △BDC 是解决此题的关键.19.如图,已知三角形OAB 的顶点B 在x 轴的负半轴上,AB OB ⊥,点A 的坐标为(4,2)-),双曲线k y (k 0)x=<的一支经过OA 边的中点C ,且与AB 相交于点D.(1)求此双曲线的函数表达式;(2)连结OD ,求AOD 的面积.【答案】(1)2y x-=;(2)3. 【解析】【分析】(1)根据C 为OA 的中点,由A 点的坐标求出C 点坐标,根据C 点坐标利用待定系数法可求双曲线的函数表达式;(2)根据AOD ABO DBO S S S ∆∆∆=-,分别求出ABO S ∆和DBO S ∆即可求出AOD 的面积.【详解】(1)∵点A 的坐标为(4,2)-,C 为OA 的中点,∴C 点的坐标为(2,1)-, 将C (2,1)-代入k y (k 0)x=<中得12k =-, 解得k=-2, 所以,此双曲线的函数表达式为:2y x-=; (2)∵AB OB ⊥,D 点在双曲线2y x-=上 ∴|2|12DBO S ∆-==,1142422ABO S BO AB ∆=⋅=⨯⨯= ∴413AOD ABO DBO S S S ∆∆∆=-=-=故AOD 的面积为3.【点睛】本题考查反比例函数与几何综合,反比例函数比例系数k 的几何意义及应用.(1)中能利用C 为OA 的中点求出点C 坐标是解决此问的关键;(2)中理解过反比例函数图象一点,作任一坐标轴的垂线,并连接原点,围成的三角形的面积为||2k 是解决此问的关键. 20.将一副三角板Rt △ABD 与Rt △ACB (其中∠ABD =∠ACB =90°,∠D =60°,∠ABC =45°)如图摆放,Rt △ABD 中∠D 所对的直角边与Rt △ACB 的斜边恰好重合.以AB 为直径的圆经过点C ,且与AD 相交于点E ,连接EB ,连接CE 并延长交BD 于F .(1)求证:EF 平分∠BED ;(2)求△BEF 与△DEF 的面积的比值.【答案】(1)见解析;(23【解析】【分析】(1)利用圆周角定理证明∠AEC =∠ABC =45°即可解决问题.(2)首先证明BE 3,再利用三角形的面积公式计算即可.【详解】(1)证明:∵CA =CB ,∠ACB =90°,∴∠ABC =∠AEC =45°,∵AB 是直径,∴∠AEB =∠BED =90°,∵∠AEC =∠DEF =45°, ∴FEB =∠FED =45°,∴EF 平分∠BED .(2)解:∵∠BED =90°,∠D =60°,∴tan ∠D =BE DE 3 ∵S △BEF =12•BE •EF •sin45°,S △EDF =12•DE •EF •sin45°, ∴BEFDEF S S =BE DE3 【点睛】本题考查圆周角定理、三角形的面积和三角函数,解题的关键是掌握圆周角定理、三角形的面积和三角函数的使用.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)B卷(共50分)21.已知a_____.【答案】0【解析】【分析】根据非负数性质,只有a=0【详解】解:根据非负数的性质a2≥0,根据二次根式的意义,﹣a2≥0,故只有a=00.故填:0.【点睛】考查了算术平方根.注意:平方数和算术平方根都是非负数,这是解答此题的关键.22.在试制某种洗发液新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常要先从芳香度为0,1,2的三种添加剂中随杋选取一种,再从芳香度为3,4,5的三种添加剂中随机选取一种,进行搭配试验,则芳香度之和等于5的概率为____.【答案】1 3 .【解析】【分析】列举出所有情况,让芳香度之和等于5的情况数除以总情况数即为所求的概率.【详解】解:列表如下:所有可能出现的结果共有9种,芳香度之和等于5的结果有3种,故概率为31 93 =.故答案为:1 3 .【点睛】考查的是用列表法或树状图法求概率,能根据题意利用列表法或树状图法列出所有可能的结果是解决此题的关键. 概率=所求情况数与总情况数之比.23.如图,在平面直角坐标系中,直线11:y x 2l =-与反比例函数k y x =的图象交于A ,B 两点(点A 在点B 左侧),已知A 点的纵坐标是1:将直线11:y x 2l =-沿y 向上平移后的直线2l 与反比例函数k y x =在第二象限内交于点C ,如果ABC 的面积为3,则平移后的直线2l 的函数表达式为_____.【答案】1322y x =-+. 【解析】【分析】 先求出A 点坐标,根据题意可得A 、B 关于原点对称,求出B 点坐标. 设平移后的直线l 2与y 轴交于点D ,连接AD 和BD ,可知△ABC 的面积与△ABD 的面积相等.由此可求出D 点坐标. 直线2l 的一次项系数与直线1l 的一次项系数相同,它的常数项即为D 点的纵坐标.【详解】解:∵直线11:y x 2l =-经过A 点,且A 点纵坐标是1, ∴当y=1时,x=-2,∴(2,1)A -,∵反比例函数与正比例函数都关于原点中心对称,∴(2,1)B -如下图,设平移后的直线l 2与y 轴交于点D ,连接AD 和BD ,根据平移的性质12l l //,∴△ABC 的面积与△ABD 的面积相等,∵△ABC 的面积为3,3AOD BOD S S∴+=,即()132A B OD x x +=, ∴1432OD ⨯=,解得32OD =, 即平移后的直线2l 的函数表达式为:1322y x =-+. 故答案为:1322y x =-+. 【点睛】本题考查反比例函数与一次函数交点问题,一次函数的平移,一次函数与几何问题.本题的关键点有两个①根据正比例函数与反比例函数的对称性求得B 点坐标;②构造△ABD ,依据△ABC 的面积与△ABD 的面积相等,得到D 点的坐标.24.如图,等边三角形ABC 中,3AB =,点D 是CB 延长线上一点,且BD 1=,点E 在直线..AC 上,当BAD CDE ∠=∠时,AE 的长为_____.【答案】2或133. 【解析】【分析】 分①在线段AC 上,②在线段AC 的延长线上两种情况讨论.对于①作EF//AB 与BC 相交于F ,证明△DFE ∽△ABD ,利用相似三角形对应边相等可求得EC ,即也可求得AE ;对于②作EF//AB 与BC 的延长线交于F ,证明△DCE ∽△ABD ,利用相似三角形对应边相等可求得EC ,即也可求得AE.【详解】解:E 点的位置有两种可能,①在线段AC 上,②在线段AC 的延长线上. E 不可能在CA 的延长线上(因为若E 在CA 的延长线上由①可知CDE ∠不可能等于BAD ∠).①若E 在线段AC 上,如图作EF//AB 与BC 相交于F ,∵ABC ∆等边三角形,3AB =,∴AC=BC=AB=3,60BAC ABC C ∠=∠=∠=︒,∴∠ABD=120°,∵EF//AB ,∴60,60CFE ABC CEF BAC ∠=∠=︒∠=∠=︒,∴△EFC 为等边三角形,∠EFD=120°,设EF=FC=EC=x .∵BAD CDE ∠=∠,∠ABD=∠EFD=120°,∴△DFE ∽△ABD , ∴EF DF BD AB= ∵1BD =,∴314BFBC FC BD x x =-+=-+=- ∴413x x -=,解得 1.x = ∴EF=FC=EC=1,∴AE=AC-EC=3-1=2;②若E 点在线段AC 的延长线上,作EF//AB 与BC 的延长线交于F.与①同理可证△EFC为等边三角形,∠ECD=120°,设EF=FC=EC=x. ∵BAD CDE∠=∠,∠ABD=∠ECD=120°,∴△DCE∽△ABD,∴EC DC BD AB=,∵1BD=,∴BD=BC+BD=4,∴413x=,解得43x=,∴EF=FC=EC=43,413333AE AC CE∴=+=+=,故答案为:2或13 3.【点睛】本题考查等边三角形的性质和判定,相似三角形的性质和判定. 解题的关键是学会用分类讨论的思想,学会添加常用辅助线,构造相似三角形解决问题.25.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作菱形ABMN与菱形BCEF,点F在BM边上,AB=n,∠ABM=60°,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为S n,当n≥2时,S n﹣S n﹣1=__.【答案】2334n-【解析】【分析】根据连接BE,则BE∥AM,利用△AME的面积=△AMB的面积即可得出S n=34n2,S n﹣1=34(n﹣1)2,即可得出答案.【详解】连接BE.∵菱形ABMN及菱形BCEF,∠ABM=60°,∠FBC=180°﹣∠ABM=120°,∴NA∥MB,∠EBC=60°,∴NAB=180°﹣∠ABM=120°,∴∠MAB=60°,∴∠MAB=∠EBC,∴BE∥AM,∴△AME与△AMB同底等高,∴△AME的面积=△AMB的面积,∴当AB=n时,△AME的面积记为S n=S△ABM 32,S n﹣13n﹣1)2,∴当n≥2时,S n﹣S n﹣13n﹣1)232233n-;故答案为:2334n.【点睛】本题考查三角形面积求法以及菱形的性质,根据已知得出正确图形,得出S与n的关系是解题关键.五、解答题(本小题共三个小题,共30分,答案写在答题卡上)26.某服装厂生产某品牌的T 恤衫成本是每件10元.根据市场调查,以单价13元批发给经销,商销商愿意经销5000件,并且表示每降价0.1元,愿意多经销500件.服装厂决定批发价在不低于11.4元的前提下,将批发价下降0.1x 元.(1)求销售量y 与x 的关系,并求出x 的取值范围;(2)不考虑其他因素,请问厂家批发单价是多少时所获利润W 可以最大?最大利润为多少?【答案】(1)5005000y x =+,016x ≤≤;(2)批发单价是12元时所获利润W 可以最大,最大利润为20000元.【解析】【分析】(1)根据销售量=原销量+多经销的销量即可列出函数关系式,根据批发价在不低于11.4元,可得x 的取值范围;(2)根据利润W=销量×单利润即可列出函数关系式,将函数化为顶点式,根据顶点式求最值即可.【详解】解:(1)根据题意:5005000y x =+,因为批发价在不低于11.4元,所以130.111.4x -≥,解得16x ≤,又0x ≥,所以016x ≤≤.所以销售量y 与x 的关系为:5005000y x =+,x 的取值范围为016x ≤≤;(2)根据题意:22(5005000)(13100.1)5010001500050(10)20000W x x x x x =+--=-++=--+ 因为-50<0,所以当x=10时(在x 取值范围之内),利润最大为20000元.因为当x=10时,13-0.1x=12元所以当批发单价是12元时所获利润W 可以最大,最大利润为20000元.【点睛】本题考查一次函数的应用,二次函数的应用.能根据题意得出等量关系,根据等量关系列出函数关系式是解决此题的关键.27.已知:ABC 和ADE 均为等腰直角三角形,90BAC DAE ︒∠=∠=,AB AC =,AD AE =,连接BD CD CE ,,.(1)如图1所示,线段BD 与CE 的数量关系是_____,位置关系是_____;(2)在图1中,若点M 、P 、N 分别为DE DC BC 、、的中点,连接PM PN MN ,,,请判断PMN 的形状,并说明理由;(3)如图2所示,若M 、N 、P 分别为DE BC DC 、、上的点,且满足DM BN DP 1DE BC DC 3===,6BD =,连接PM PN MN ,,,则线段MN 长度是多少?【答案】(1)相等,垂直;(2)PMN 为等腰直角三角形,证明见解析;(3)25MN =.【解析】【分析】(1)延长BD 与EC 相交于F ,证明△ABD ≌△ACE ,根据全等三角形的性质可得BD=CE,ABD ACE ∠=∠,再进一步证明90DBC BCE ∠+∠=︒可得∠BFC=90°,由此可证明BD 与CE 垂直且相等;(2)结合(1),根据中位线的定理,可推出PMN 为等腰直角三角形;(3)证明△CPN ∽△CDB ,△DPM ∽△DCE ,根据相似三角形的性质可求得NP 和MP 的值,结合(2)可证明∠NPM=90°,根据勾股定理可求得MN 的长度.【详解】解:(1)如下图延长BD 与EC 相交于F ,∵ABC 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,∴90,90,BAD DAC EAC DAC ∠+∠=︒∠+∠=︒∴,BAD EAC ∠=∠又∵AB AC =,AD AE =∴△ABD ≌△ACE(SAS)∴BD=CE,ABD ACE ∠=∠,∵BAC 90∠=︒∴90ABC ACB ∠+∠=︒,∴ 90ABD DBC ACB ∠+∠+∠=︒∴90ACE DBC ACB ∠+∠+∠=︒,即90DBC BCE ∠+∠=︒∴90BFC ∠=︒,即BF EC ⊥.故线段BD 与CE 的数量关系是相等,位置关系是垂直.答案为:相等,垂直.(2)PMN 为等腰直角三角形,理由如下:∵点M 、P 、N 分别为DE DC BC 、、的中点,∴NP 和MP 分别为△BCD 和△ECD 的中位线, ∴11//,,//,,22NP BD NP BD MP CE MP CE == ∴,DPN FDC DPM DCE ∠=∠∠=∠,由(1)得BD=CE ,∴NP MP =,由(1)得BF EC ⊥,∴90FDC DCE ∠+∠=︒∴90DPN DPM ∠+∠=︒,即90NPM ∠=︒.∴PMN 为等腰直角三角形.(3)∵13BN DP BC DC == ∴23CP BC C DC N == 又∵∠BCD=∠BCD∴△CPN ∽△CDB ∴23CP BD N DC P ==,NPC BDC ∠=∠, ∴NP//BD ,∵6BD = ∴243NP BD ==, 同理可证△DPM ∽△DCE ,13PM DP EC DC ==,MP//EC ,∴11233PM CE BC === 与(2)同理可证90NPM ∠=︒,∴在Rt △NPM 中,根据勾股定理22224225MN NP MP =+=+=.【点睛】本题考查等腰直角三角形的性质,全等三角形的性质和判定,三角形中位线定理,相似三角形的性质和判定,勾股定理.(1)中掌握全等三角形的判定定理并能灵活运用是解决此问的关键;(2)掌握三角形中位线的判定定理是解决此问的关键;(3)能根据证明三角形相似,并根据相似三角形的性质求出NP 和PM 是解题关键.本题中的难点是利用角之间的数量关系证明∠BFC 和∠MPN 为90°. 28.如图,抛物线2y ax bx c =++与x 轴相交于A (3,0)、B 两点,与y 轴交于点C (0,3),点B 在x 轴的负半轴上,且OA 3OB =.(1)求抛物线的函数关系式;(2)若P 是抛物线上且位于直线AC 上方的一动点,求ACP 的面积的最大值及此时点P 的坐标;(3)在线段OC 上是否存在一点M ,使2BM +的值最小?若存在,请求出这个最小值及对应的M 点的坐标;若不存在,请说明理由.【答案】(1)2y x 2x 3=-++;(2)ACP 的面积的最大值为278,此时315(,)24P -;(3)当(0,1)M 时,2BM CM 2+的最小值为2【解析】【分析】(1)根据OA 3OB =求出B 点坐标,设交点式,用待定系数法即可求出函数关系式;(2)作PD ⊥x 轴,与线段AC 相交于D ,根据APC DPC DPA S S S ∆∆∆=+表示ACP 的面积,利用二次函数的性。
四川省绵阳市 中考数学模拟试卷含答案解析
四川省绵阳市中考数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.下列四个数中,比0大的是()A.﹣B.﹣C.0 D.|﹣2|2.下列计算正确的是()A.2x+x=x3B.x3÷x=x2C.(﹣2x2y)3•4x﹣3=﹣32x2y3 D.(x﹣y)2=x2﹣y23.与如图所示的三视图对应的几何体是()A.B.C.D.4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10 D.3.4×10﹣115.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0 B.﹣3 C.﹣2 D.﹣16.下列说法中正确的是()A.四边相等的四边形是菱形B.一组对边相等,另一组对边平行的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相平分的四边形是菱形7.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tanB的值为()A.B.C.D.8.清明小长假期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩,已知甲地到乙地有2条公路,乙地到丙地有3条公路,每一条公路的长度如图,梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是()A.B.C.D.9.已知a、b为两个连续整数,且a<﹣<b,则a+b=()A.4 B.5 C.6 D.810.如图,在正五边形ABCDE中,∠ACD=()A.30°B.36°C.40°D.72°11.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使点C和点A重合,则折痕EF的长为()A.B.C.15 D.1612.如图,已知在⊙O中,AB=4,AF=6,AC是直径,AC⊥BD于F,图中阴影部分的面积是()A.π﹣2B.π﹣2C.π﹣4D.π﹣4二.填空题(本大题共6小题,每小题3分,共18分)13.因式分解:x3﹣9x=.14.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=.15.如图,直线a∥b,点B在直线b上,∠1=38°,∠ABC=90°,则∠2=.16.绵阳市在改造剑南路西段工程中为治理污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽量减少施工对城市交通所造成的影响,后来每天的工作效率比原计划提高20%,结果共用30天完成这一任务.如果设原计划每天铺设x米管道,那么根据题意可列方程.17.已知M,N两点关于y轴对称,且点M在双曲线y=上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a﹣b)x的顶点坐标为.18.如图,在△ABC中,AB=AC=3,高BD=,AE平分∠BAC,交BD于点E,则DE的长为.三.解答题(本大题共7小题,共86分)19.(1)计算:(sin30°)﹣1﹣(2015)0+|1﹣|﹣.(2)解不等式组:,并判断x=是否为该不等式组的解.20.某中学在“五月份学习竞赛月”中举办了演讲、书法、作文、手抄报、小品、漫画六项比赛(2013•红河州模拟)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地1800元/台1600元/台B地1600元/台1200元/台(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.22.关于x的一元二次方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β.(1)求k的取值范围;(2)若α+β+αβ=6,求(α﹣β)2+3αβ﹣5的值.23.如图,AB为⊙O的直径,BC⊥AB,CP切⊙O于点P,连OC,交⊙O于N,交BP于E,连BN,AP.(1)求证:BN平分∠PBC.(2)连AC交BP于M,若AB=BC=4,求tan∠PAC的值.24.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.25.已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD.(1)如图1,若AB=BC=AC,求证:AE=EF;(2)如图2,若AB=BC,(1)中的结论是否仍然成立?证明你的结论;(3)如图3,若AB=kBC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出AE与EF 之间的数量关系,并证明.四川省绵阳市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个符合题目要求)1.下列四个数中,比0大的是()A.﹣B.﹣C.0 D.|﹣2|【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:因为|﹣2|=2,所以根据实数比较大小的方法,可得2,所以比0大的是|﹣2|.故选:D.【点评】此题主要考查了实数比较大小的方法,要熟练掌握.2.下列计算正确的是()A.2x+x=x3B.x3÷x=x2C.(﹣2x2y)3•4x﹣3=﹣32x2y3 D.(x﹣y)2=x2﹣y2【考点】整式的混合运算.【专题】计算题.【分析】A、利用合并同类项法则合并得到结果,即可做出判断;B、利用同底数幂的除法法则计算,即可做出判断;C、先利用积的乘方及幂的乘方运算法则计算,再利用单项式乘以单项式的法则计算,即可做出判断;D、利用差的完全平方公式展开,即可做出判断.【解答】解:A、2x+x=3x,本选项错误;B、x3÷x=x3﹣1=x2,本选项正确;C、(﹣2x2y)3•4x﹣3=﹣8x6y3•4x﹣3=﹣32x3y3,本选项错误;D、(x﹣y)2=x2﹣2xy+y2,本选项错误,故选B【点评】此题考查了整式的混合运算,涉及的知识有:完全平方公式,合并同类项法则,积的乘方及幂的乘方运算法则,以及同底数幂的除法法则,熟练掌握公式及法则是解本题的关键.3.与如图所示的三视图对应的几何体是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从正视图可以排除C,故C选项错误;从左视图可以排除A,故A选项错误;从左视图可以排除D,故D选项错误;符合条件的只有B.故选:B.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认知能力,可通过排除法进行解答.4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10 D.3.4×10﹣11【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0 B.﹣3 C.﹣2 D.﹣1【考点】在数轴上表示不等式的解集.【专题】计算题.【分析】首先根据不等式的性质,解出x≤,由数轴可知,x≤﹣1,所以,=﹣1,解出即可;【解答】解:不等式2x﹣a≤﹣1,解得,x≤,由数轴可知,x≤﹣1,所以,=﹣1,解得,a=﹣1;故选:D.【点评】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.下列说法中正确的是()A.四边相等的四边形是菱形B.一组对边相等,另一组对边平行的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相平分的四边形是菱形【考点】菱形的判定.【分析】根据菱形的判定:一组邻边相等的平行四边形是菱形;四条边都相等的四边形是菱形.对角线互相垂直的平行四边形是菱形分别进行分析即可.【解答】解:A、四边相等的四边形是菱形,说法正确;B、一组对边相等,另一组对边平行的四边形是菱形,说法错误;C、对角线互相垂直的四边形是菱形,说法错误;D、对角线互相平分的四边形是菱形,说法错误;故选:A.【点评】此题主要考查了菱形的判定,关键是掌握菱形的判定定理.7.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tanB的值为()A.B.C.D.【考点】解直角三角形.【专题】计算题.【分析】在直角三角形ACM中,利用锐角三角函数定义表示出sin∠CAM,由已知sin∠CAM的值,设CM=3x,得到AM=5x,根据勾股定理求出AC=4x,由M为BC的中点,得到BC=2CM,表示出BC,在直角三角形ABC中,利用锐角三角函数定义表示出tanB,将表示出的AC与BC代入即可求出值.【解答】解:在Rt△ACM中,sin∠CAM==,设CM=3x,则AM=5x,根据勾股定理得:AC==4x,又M为BC的中点,∴BC=2CM=6x,在Rt△ABC中,tanB===.故选B【点评】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握锐角三角函数定义是解本题的关键.8.清明小长假期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩,已知甲地到乙地有2条公路,乙地到丙地有3条公路,每一条公路的长度如图,梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】依据题意先分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:如图所示:由树状图可知共有2×3=6种可能,这条路线正好是最短路线的有1种,所以概率是.故选:A.【点评】此题主要考查了列表法求概率,正确列举出所有可能是解题关键.9.已知a、b为两个连续整数,且a<﹣<b,则a+b=()A.4 B.5 C.6 D.8【考点】估算无理数的大小.【分析】先估算出与的取值范围,再求出a,b的值,进而可得出结论.【解答】解:∵16<20<25,∴4<<5.∵4<5<9,∴2<<3,∴﹣3<﹣<﹣2,∴4﹣3<﹣<5﹣2,即1<﹣<3,∵a、b为两个整数,∴a=2,b=3,∴a+b=5.故选:B.【点评】本题考查的是估算无理数的大小,熟知用有理数逼近无理数,求无理数的近似值是解答此题的关键.10.如图,在正五边形ABCDE中,∠ACD=()A.30°B.36°C.40°D.72°【考点】全等三角形的判定与性质;等腰三角形的性质;多边形内角与外角.【分析】根据正多边形的性质求出AB=BC=AE=DE,∠EAB=∠B=∠ACD=∠CDE=∠E,根据多边形内角和定理求出∠B=∠BCD=108°,根据等腰三角形性质和三角形内角和定理求出∠BAC=∠BCA=36°,代入∠ACD=∠BCD﹣∠BCA求出即可.【解答】解:∵五边形ABCDE是正五边形,∴AB=BC=AE=DE,∠EAB=∠B=∠ACD=∠CDE=∠E,∴∠B=∠BCD==108°,∴∠BAC=∠BCA=(180°﹣∠B)=36°,∴∠ACD=∠BCD﹣∠BCA=108°﹣36°=72°,故选D.【点评】本题考查了等腰三角形的性质,多边形的内角和定理,正多边形的性质的应用,解此题的关键是求出∠BCD和∠ACB的度数,注意:正多边形的所有边都相等,所有角都相等.11.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使点C和点A重合,则折痕EF的长为()A.B.C.15 D.16【考点】翻折变换(折叠问题).【分析】先连接AF,由于矩形关于EF折叠,所以EF垂直平分AC,那么就有AF=CF,又ABCD是矩形,那么AB=CD,AD=BC,在Rt△ABF中,(设CF=x),利用勾股定理可求出CF=,在Rt△ABC中,利用勾股定理可求AC=5,在Rt△COF中再利用勾股定理可求出OF=,同理可求OE=,所以EF=OE+OF=.【解答】解:连接AF.∵点C与点A重合,折痕为EF,即EF垂直平分AC,∴AF=CF,AO=CO,∠FOC=90°.又∵四边形ABCD为矩形,∴∠B=90°,AB=CD=3,AD=BC=4.设CF=x,则AF=x,BF=4﹣x,在Rt△ABC中,由勾股定理得AC2=BC2+AB2=52,且O为AC中点,∴AC=5,OC=AC=.∵AB2+BF2=AF2∴32+(4﹣x)2=x2∴x=.∵∠FOC=90°,∴OF2=FC2﹣OC2=()2﹣()2=()2∴OF=.同理OE=.即EF=OE+OF=.故选:A.【点评】该题主要考查了翻折变换的性质及其应用问题;解题的关键是作辅助线,灵活运用翻折变换的性质、勾股定理等几何知识点来分析、判断、推理或解答.12.如图,已知在⊙O中,AB=4,AF=6,AC是直径,AC⊥BD于F,图中阴影部分的面积是()A.π﹣2B.π﹣2C.π﹣4D.π﹣4【考点】扇形面积的计算.【分析】利用勾股定理求得BD=2BF=4,连接OB、OD、BC,先求得∠ABC=90°,进而根据射影定理=S 求得FC=2,从而求得直径的长,根据余弦函数求得∠BAF=30°,进而得出∠BOD=120°,最后根据S阴影﹣S△BOD即可求得阴影的面积.扇形【解答】解:∵AC是直径,AC⊥BD于F,∴BF=DF,=,∴∠BAC=∠DAC,在RT△ABF中,BF==2,∴BD=2BF=4,连接OB、OD、BC,∵AC是直径,∴∠ABC=90°,∴BF2=AF•FC,即(2)2=6FC,∴FC=2,∴直径AC=AF+FC=6+2=8,∴⊙O 的半径为4,∵AB=4,AF=6,∴cos ∠BAF===, ∴∠BAF=30°,∴∠BAD=60°,∴∠BOD=120°,∵OC=4,FC=2,∴OF=2,∴S 阴影=S 扇形﹣S △BOD =﹣×4×2=π﹣4;故选D .【点评】本题考查了垂径定理,扇形的面积、及直角三角函数和勾股定理等知识,难度适中.二.填空题(本大题共6小题,每小题3分,共18分)13.因式分解:x 3﹣9x= x (x+3)(x ﹣3) .【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再利用平方差公式进行分解.【解答】解:x 3﹣9x,=x (x 2﹣9),=x (x+3)(x ﹣3).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.14.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=125°.【考点】作图—基本作图.【分析】根据角平分线的作法可得AD平分∠CAB,再根据三角形内角和定理可得∠ADB的度数.【解答】解:由题意可得:AD平分∠CAB,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°﹣20°﹣35°=125°.故答案为:125°.【点评】此题主要考查了角平分线的作法以及角平分线的性质,熟练根据角平分线的性质得出∠ADB 度数是解题关键.15.如图,直线a∥b,点B在直线b上,∠1=38°,∠ABC=90°,则∠2=52°.【考点】平行线的性质.【分析】由AB⊥BC,可得∠1+∠3=90°,求出∠3,又由a∥b推出∠2=∠3,从而求出∠2.【解答】解:∵∠ABC=90°,∠1+∠2+∠ABC=90°,∴∠1+∠3=90°,∴∠3=90°﹣∠1=90°﹣38°=52°,∵a∥b,∴∠2=∠3=52°.故答案为:52°.【点评】此题考查的知识点是平行线的性质及余角、补角,解题的关键是先由余角、补角求出∠3,再由平行线的性质求出∠2.16.绵阳市在改造剑南路西段工程中为治理污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽量减少施工对城市交通所造成的影响,后来每天的工作效率比原计划提高20%,结果共用30天完成这一任务.如果设原计划每天铺设x米管道,那么根据题意可列方程120+(1+20%)x•(30﹣)=300.【考点】由实际问题抽象出分式方程.【分析】设原计划每天铺设x米管道,提高工作效率之后每天铺设(1+20%)x米管道,根据共用30天完成这一任务,列方程.【解答】解:设原计划每天铺设x米管道,提高工作效率之后每天铺设(1+20%)x米管道,由题意得,120+(1+20%)x•(30﹣)=300.故答案为:120+(1+20%)x•(30﹣)=300.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.17.已知M,N两点关于y轴对称,且点M在双曲线y=上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a﹣b)x的顶点坐标为(﹣3,).【考点】二次函数的性质;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】首先根据函数图象上点的坐标特点可得ab=,a﹣b=﹣3,进而得到二次函数解析式y=﹣x2﹣3x,再利用顶点坐标公式求解即可.【解答】解:∵M,N两点关于y轴对称,点M坐标为(a,b),∴N(﹣a,b),∵点M在双曲线y=上,∴ab=,∵点N在直线y=﹣x+3上,∴b=a+3,∴a﹣b=﹣3,∴y=﹣abx2+(a﹣b)x变为y=﹣x2﹣3x,∴=﹣3,=即顶点坐标为(﹣3,),故答案为:(﹣3,).【点评】此题主要考查了函数图象上点的坐标性质,以及求二次函数顶点坐标,关键是掌握凡是函数图象经过的点必能满足解析式.18.如图,在△ABC中,AB=AC=3,高BD=,AE平分∠BAC,交BD于点E,则DE的长为.【考点】勾股定理;角平分线的性质;等腰三角形的性质.【分析】延长AE交BC于点F.在Rt△ADB中,根据勾股定理得到AD,进一步得到CD;在Rt△BDC 中,根据勾股定理得到BC;根据等腰三角形的性质和角平分线的性质得到CF,在Rt△AFC中,根据勾股定理得到AF,通过AA证明△DAE∽△FAC,根据相似三角形的性质即可求解.【解答】解:延长AE交BC于点F.∵在△ABC中,AB=AC=3,高BD=,∴在Rt△ADB中,AD==2,∴CD=AC﹣AD=1,∴在Rt△BDC中,BC==,∵AE平分∠BAC,∴CF=,∠AFC=90°,∴在Rt△AFC中,AF==,∵∠DAE=∠FAC,∠ADE=∠AFC=90°,∴△DAE∽△FAC,∴DE:AD=CF:AF,DE===.故答案为:.【点评】考查了勾股定理,等腰三角形的性质和角平分线的性质,相似三角形的判定和性质,关键是根据题意作出辅助线.三.解答题(本大题共7小题,共86分)19.(1)计算:(sin30°)﹣1﹣(2015)0+|1﹣|﹣.(2)解不等式组:,并判断x=是否为该不等式组的解.【考点】实数的运算;估算无理数的大小;零指数幂;负整数指数幂;解一元一次不等式组;特殊角的三角函数值.【专题】计算题.【分析】(1)原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项化为最简二次根式,计算即可得到结果;(2)分别求出不等式中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可做出判断.【解答】解:(1)原式=2﹣1+﹣1﹣2=﹣;(2),由①得:x>﹣3,由②得:x≤1,∴不等式组的解集为﹣3<x≤1,则x=不是不等式组的解.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.某中学在“五月份学习竞赛月”中举办了演讲、书法、作文、手抄报、小品、漫画六项比赛(2013•红河州模拟)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地1800元/台1600元/台B地1600元/台1200元/台(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.【考点】一次函数的应用;一元一次不等式的应用.【分析】(1)派往A地x台乙型联合收割机,那么派往B地(30﹣x)台,派往A地的(30﹣x)台甲型收割机,派往B地(20﹣30+x)台,可得y=(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200,10≤x≤30.(2)根据题意可列不等式(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200≥79600,解出x 看有几种方案.【解答】解:(1)y=(30﹣x)×1800+(x﹣10)×1600+1600x+(30﹣x)×1200=200x+74000,10≤x≤30;(2)200x+74000≥79600,解得x≥28,三种方案,依次为x=28,29,30的情况①当x=28时,派往A地28台乙型联合收割机,那么派往B地2台乙,派往A地的2台甲型收割机,派往B地18台甲.②当x=29时,派往A地29台乙型联合收割机,那么派往B地1台乙,派往A地的1台甲型收割机,派往B地19台甲.③当x=30时,派往A地30台乙型联合收割机,那么派往B地0台乙,派往A地的0台甲型收割机,派往B地20台甲.【点评】本题考查的是用一次函数解决实际问题,根据题意列出函数式以及根据题意列出不等式结合自变量的取值范围确定方案.22.关于x的一元二次方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β.(1)求k的取值范围;(2)若α+β+αβ=6,求(α﹣β)2+3αβ﹣5的值.【考点】根与系数的关系;解一元二次方程-因式分解法;根的判别式.【分析】(1)由于关于x的一元二次方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β,那么其判别式应该是一个正数,由此即可求出k的取值范围;(2)根据根与系数的关系可以得到α+β=﹣(2k﹣3),αβ=k2,而α+β+αβ=6,由此可以求出k的值,再把(α﹣β)2+3αβ﹣5变为(α+β)2﹣αβ﹣5,代入前面的值就可以求出结果.【解答】解:(1)∵方程x2+(2k﹣3)x+k2=0有两个不相等的实数根,∴△>0即(2k﹣3)2﹣4×1×k2>0解得k<;(2)由根与系数的关系得:α+β=﹣(2k﹣3),αβ=k2.∵α+β+αβ=6,∴k2﹣2k+3﹣6=0解得k=3或k=﹣1,由(1)可知k=3不合题意,舍去.∴k=﹣1,∴α+β=5,αβ=1,故(α﹣β)2+3αβ﹣5=(α+β)2﹣αβ﹣5=19.【点评】此题首先利用一元二次方程的判别式求出k的取值范围,然后利用根与系数的关系求出k的值,接着把所求的代数式变形为两根之和与两根之积的形式,代入值就解决问题.23.如图,AB为⊙O的直径,BC⊥AB,CP切⊙O于点P,连OC,交⊙O于N,交BP于E,连BN,AP.(1)求证:BN平分∠PBC.(2)连AC交BP于M,若AB=BC=4,求tan∠PAC的值.【考点】切线的性质.【分析】(1)连接OP,证OC垂直平分PB,求出∠NBE+∠ENB=90°,∠CBN+∠NBO=90°,根据∠ONB=∠OBN求出∠NBP=∠NBC,即可得出答案;(2)证△OEB∽△BEC,求出BE=2OE,CE=2BE=4OE,设OE=x,则CE=4x,过C作CQ⊥AP交AP延长线于Q,得出四边形QPEC是矩形,推出QC=PE=BE=2x,QP=CE=4x,AQ=6x,代入tan∠PAC=求出即可.【解答】(1)证明:连接PO,∵CB⊥AB,∴CB是⊙O切线,∵CP是⊙O切线,∴PC=BC,即C在PB垂直平分线上,∵OP=OB,∴O在PB的垂直平分线上,∴OC⊥PB,PE=BE,∴∠BEC=∠CBO=90°,∴∠NBE+∠ENB=90°,∠CBN+∠NBO=90°, ∵ON=OB,∴∠ONB=∠OBN,∴∠NBP=∠NBC,∴BN平分∠PBC.(2)解:∵BE⊥OC,∴∠OEB=∠CEB=∠OBC=90°,∴∠OBE+∠EOB=90°,∠EBO+∠EBC=90°, ∴∠EOB=∠EBC,∴△OEB∽△BEC,∴==,∵OB=AB=2,BC=4,∴BE=2OE,CE=2BE=4OE,设OE=x,则CE=4x,∵PE=BE,AO=OB,∴AP=2OE=2x,过C作CQ⊥AP交AP延长线于Q,则∠Q=∠QPE=∠PEC=90°,∴四边形QPEC是矩形,∴QC=PE=BE=2x,QP=CE=4x,∴AQ=4x+2x=6x,在Rt△AQC中,tan∠PAC===.【点评】本题考查了切线的性质,矩形的性质和判定,解直角三角形,线段垂直平分线性质的应用,主要考查学生综合运用性质进行推理和计算的能力.24.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.【考点】二次函数综合题;二次函数的最值;待定系数法求二次函数解析式;等腰三角形的性质;勾股定理.【专题】代数几何综合题;压轴题;分类讨论.【分析】(1)设y=ax(x﹣4),把A点坐标代入即可求出答案;(2)根据点的坐标求出PC=﹣m2+3m,化成顶点式即可求出线段PC的最大值;(3)当0<m<3时,仅有OC=PC,列出方程,求出方程的解即可;当m≥3时,PC=CD﹣PD=m2﹣3m,OC=,分为三种情况:①当OC=PC时,,求出方程的解即可得到P的坐标;同理可求:②当OC=OP时,③当PC=OP时,点P的坐标.综合上述即可得到答案.【解答】解:(1)设y=ax(x﹣4),把A点坐标(3,3)代入得:a=﹣1,函数的解析式为y=﹣x2+4x,答:二次函数的解析式是y=﹣x2+4x.(2)解:0<m<3,PC=PD﹣CD,∵D(m,0),PD⊥x轴,P在y=﹣x2+4x上,C在OA上,A(3,3),∴P(m,﹣m2+4m),C(m,m)∴PC=PD﹣CD=﹣m2+4m﹣m=﹣m2+3m,=﹣+,∵﹣1<0,开口向下,∴有最大值,当D(,0)时,PC max=,答:当点P在直线OA的上方时,线段PC的最大值是.(3)当0<m<3时,仅有OC=PC,∴,解得,∴;当m≥3时,PC=CD﹣PD=m2﹣3m,OC=,由勾股定理得:OP2=OD2+DP2=m2+m2(m﹣4)2,①当OC=PC时,,解得:或m=0(舍去),∴;②当OC=OP时,,解得:m1=5,m2=3,∵m=3时,P和A重合,即P和C重合,不能组成三角形POC,∴m=3舍去,∴P(5,﹣5);③当PC=OP时,m2(m﹣3)2=m2+m2(m﹣4)2,解得:m=4,∴P(4,0),答:存在,P的坐标是(3﹣,1+2)或(3+,1﹣2)或(5,﹣5)或(4,0).【点评】本题主要考查对用待定系数法求二次函数的解析式,等腰三角形的性质,勾股定理,二次函数的最值等知识点的理解和掌握,用的数学思想是分类讨论思想,此题是一个综合性比较强的题目,(3)小题有一定的难度.25.已知:在四边形ABCD中,AD∥BC,∠BAC=∠D,点E、F分别在BC、CD上,且∠AEF=∠ACD.(1)如图1,若AB=BC=AC,求证:AE=EF;(2)如图2,若AB=BC,(1)中的结论是否仍然成立?证明你的结论;(3)如图3,若AB=kBC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出AE与EF 之间的数量关系,并证明.【考点】四边形综合题.【分析】(1)中所给的是最特殊的一种情况,但对整个题来说,要从(1)中找到基本的解题思路,此题难的是构造全等三角形,从而证明线段相等.虽然(1)中没有要求步骤,但能正确的解出(1)可以给(2)和(3)定一个基调;(2)是将(1)中的等边三角形变为等腰三角形,但起关键作用的条件没变,任然可以仿照(1)中的方法去做;(3)中将三角形变为更一般的三角形,但和(1)比较起来还是有两个条件没变,而利用这两个条件能证明两个三角形相似,从而利用相似的对应边成比例得出结论.【解答】解:(1)证明:如图1,过点E作EH∥AB交AC于点H.则∠BAC+∠AHE=180°,∠BAC=∠CHE,∵AB=BC=AC,∴∠BAC=∠ACB=60°,∴∠CHE=∠ACB=∠B=60°,∴EH=EC.∵AD∥BC,∴∠FCE=180°﹣∠B=120°,又∵∠AHE=180°﹣∠BAC=120°,∴∠AHE=∠FCE,∵∠AOE=∠COF,∠AEF=∠ACF,∴∠EAC=∠EFC,∴△AEH≌△FEC,∴AE=EF;(2)(1)中的结论仍然成立.证明:如图2,过点E作EH∥AB交AC于点H,则∠BAC+∠AHE=180°,∠BAC=∠CHE,∵AB=BC,∴∠BAC=∠ACB∴∠CHE=∠ACB,∴EH=EC∵AD∥BC,∴∠D+∠DCB=180°.∵∠BAC=∠D,∴∠AHE=∠DCB=∠ECF∵∠AOE=∠COF,∠AEF=∠ACF,∴∠EAC=∠EFC,∴△AEH≌△FEC,∴AE=EF;(3)猜想:(1)中的结论仍然成立.证明:如图3,过点E作EH∥AB交AC于点H.由(2)可得∠EAC=∠EFC,∵AD∥BC,∠BAC=∠D,∴∠AHE=∠DCB=∠ECF,∴△AEH∽△FEC,∴AE:EF=EH:EC,∵EH∥AB,∴△ABC∽△HEC,∴EH:EC=AB:BC=k,∴AE:EF=k,∴AE=kEF.【点评】主要考查了四边形的综合知识.本题三问由特殊到一般,注意比较它们之间的异同,关键抓住不变量,从而得出结论.本题难度很大.。
【中考冲刺】2023年四川省广安市中考模拟英语试卷(附答案)
2023年四川省广安市中考模拟英语试题学校:___________姓名:___________班级:___________考号:___________一、完形填空I am Zhao Jie. I am a girl. I am ten years old. My favorite ____1____ is English. It’s very interesting. And I like speaking English. I have a nice English teacher. Her name is Jiang Hong. She loves us very much. She is very strict with us, but we all like her. She plays basketball after class. She likes ___2___ books very much, and she often ___3___ us some funny stories. My favorite sport is swimming. I like playing chess, but it is not ___4___ for me. My favorite animal is a cat. Its name is Baixue. It’s white. It often stays ___5___ the chair but now it sleeps on the chair.1.A.science B.subject C.food D.fruit 2.A.watching B.looking C.reading D.read 3.A.talks B.speaks C.says D.tells 4.A.easy B.interesting C.happy D.boring 5.A.under B.on C.in D.of On the first day of school, a new classmate touched my shoulder, “Hi, handsome! I’m Rose. I’m 87 years old.” I turned around and found a little ___6___ lady with a warm smile. I said, “Of course!”“___7___ are you in college at such an age?” I asked.She joked, “I’m here to meet a rich husband, get ___8___, have children, and then travel around. I always ___9___ of having a college education and now I’m getting one!” She told me. Then, we became friends.Over the year, Rose became an icon(偶像)and she easily made friends. She loved to dress up and she enjoyed the ___10___ from the other students. At the end of the term,we invited Rose to our party. I’ll never forget what she said.“We do not stop playing because we are old; we grow old because we stop playing. Here are the ___11___ of staying young. You have to laugh and find humor every day. You’ve got to have a dream. When you ___12___ your dreams, you die! There’s a huge difference___13___ growing old and growing up. Anybody can grow older. That doesn’t take any talent (天赋) or ability.” she added, “But ___14___ requires finding the chance in change.”One week after graduation that year, Rose died. She taught us by example that it’s nevertoo____15____ to be all you can possibly be.6.A.old B.exciting C.strange D.nervous 7.A.How B.When C.Why D.What 8.A.married B.dressed C.lost D.mad 9.A.told B.heard C.reminded D.dreamed 10.A.question B.attention C.situation D.action 11.A.secrets B.stories C.reasons D.results 12.A.have B.find C.take D.lose 13.A.in B.on C.between D.among 14.A.stopping playing B.having a dream C.growing olderD.growing up15.A.small B.late C.early D.young二、阅读单选16.When is the school’s Open Day?A.July 16th.B.August 16th.C.11:30-12:00 a.m D.October 6th.17.The parents can be in the school for ________ hours.A.four B.two C.three D.five18.The parents can have a look at ________ on the Open Day.A.the teachers’ classroom B.Room 305C.classrooms and clubs D.offices19.Where do parents have lunch on the Open Day?A.In a park.B.Room 305.C.At home.D.In the classroom.20.What’s the name of the school?A.Goodwin Middle School.B.Melodie Lezar.C.******************.net.D.Guangming Experimental School.In the online world, it’s very common for people to talk to each other with emojis(表情符号). However, do you know that people in different age groups have totally different preferences for choosing their emojis? The result is based on a report shared by WeChat, China’s most popular messaging App in January, 2020.According to the report, users born in the 2000s like to stay up late at night and cold drinks and desserts are their cup of tea. “Facepalm”, it is the most popular emoji with this age group.Those born in the 1990s are likely to get out of bed later in the morning compared with other groups. The emoji “face with tears of joy” is their favorite. Also, their reading materials have changed from entertainment and gossip three years ago to the present relationship and lifestyle.For WeChat users born in the 1980s, their tastes have remained the same, as they are interested in news related to the country and public events. The most commonly used emoji for this age group is “smiling widely”.Users born in the 1970s use the emoji “smiling face with hand over mouth” a lot and their bedtime usually takes place around 11:30 pm.The group aged 55 and above is the early-bird group with rich entertainment activities in WeChat, such as making video calls and reading. They like to cheer up other age groups, so their favorite emoji is “giving a thumbs-up”.21.The emoji “________” is mostly enjoyed by people born in the 2000s.A.Facepalm B.Face with tears of joyC.Smiling face with hand over mouth D.Giving a thumbs-up22.Which of the following can describe WeChat users born in the 1990s?A.They are usually late risers.B.They care about entertainment and gossip.C.They use the emoji “smiling widely” a lot.D.They like cold drinks and desserts very much.23.The underlined phrase “related to” means _________ in Chinese.A.涉及B.以防C.排除D.处理24.What can we learn from the text?A.Four different age groups are mentioned in the text.B.“Giving a thumbs-up” is commonly used by people over 55.C.WeChat users born in the 1980s have changed their reading materials.D.WeChat users born in the 1970s usually go to bed early and get up late.25.Which of the following might be the best title for the text?A.WeChat and its inventorB.How to get on well with othersC.Different emojis and different age groupsD.How to deal with communication problemsThe 24th Beijing Winter Olympics will begin on 4th February, 2022. The Winter Paralympics will begin a month later. Let's meet the mascots!I'm Bing Dwen Dwen. I'm the mascot(吉祥物)of the 2022 Winter Olympics. I am a black and white panda wearing a full-body "shell" made of ice. The red heart shape in my left palm(手心)means welcoming the friends from other countries. The bright colours of the circles around my face stand for ice and snow sport tracks, meaning connectivity and advanced technologies. I look like an astronaut(宇航员), making full use of new technologies for a future with all kinds of possibilities.Shuey Rhon Rhon is here! I'm the mascot of the 2022 Winter Paralympics(残疾人运动会).What do you think of when you see me? Does a red lantern come into your mind? That's what I look like. Take a look at my head. There are paper cuttings of doves(鸽子). They make up a circle. Follow me. I'll light the way to the Paralympics.26.When will the 2022 Winter Paralympics start?A.On 4th March, 2022.B.On 4th January, 2022.C.On 4th February, 2022.D.On 4th February, 2023.27.What does Bing Dwen Dwen look like?A.A child.B.A lantern.C.An astronaut.D.A sports track. 28.Where is the red heart?A.It's on Shuey Rhon Rhon's face.B.It's on Bing Dwen Dwen's neckC.It's on Shuey Rhon Rhon's lantern.D.It's on Bing Dwen Dwen's left palm. 29.What's on Shuey Rhon Rhon's head?A.Paper cuttings of doves.B.Paper cuttings of pandas.C.Bright colours of the circles.D.Chinese characters of Olympics. 30.What is the main idea of this passage?A.The 2022 Winter Olympic games are coming.B.The 2022 Winter Olympic games will be held in Beijing.C.Chinese culture will be used in 2022 Winter Olympic games.D.Let's see mascots of the 2022 Winter Olympics and Paralympics.Are you good with money? Do you get pocket money from your parents or do you work to earn money? Read on to find out about British teenagers and their cash!Pocket moneyMost teenagers in Britain receive pocket money from their parents. They might have to do chores to get their pocket money. These chores can include cleaning, cooking, washing dishes, and ironing (熨烫) .Part-time workA part-time job is a choice for teenagers who don't have pocket money or who want to earn extra (额外的) money. About 15 percent of teenagers have a job. Only children over the age of 13 can work. Popular part-time jobs for teens include babysitting, delivering newspapers, shop work and restaurant work.Children in Britain can work a maximum (最多) of two hours a day on a school day but not during school hours. During weekends and school holidays, they can work longer hours.Bank account (账户) .Some children and teenagers have a bank account. There is no legal (法定的) age limit (限制) at which you can open a bank account, but a bank manager can decide whether to open an account for a child or young person. Parents can put pocket money directly into their child's bank account. Most banks have a prepaid(预付的) bank card designed for youngpeople.So, many teenagers are getting experience working part-time, dealing with banks and deciding whether to save or spend their money. These are all steps towards becoming a financially (财政上) independent person and earning and looking after your own money. 31.An 8-year-old British child might get pocket money_________.A.by studying hard in school B.by doing choresC.by working in a restaurant D.by opening a bank account 32.British teenagers can work ________ during schooldays.A.less than an hour B.during school hoursC.up to two hours D.as long as they like33.Which of the following is True?A.All the British kids can do part-time job to get extra money.B.The most popular job to get pocket money is washing the dishes.C.Kids need to ask for a bank manager if they want to open a bank account.D.Kids have to ask their parents before using their money.34.The underlined word "delivering" in the passage means "________".A.sending B.discovering C.giving D.receiving 35.The story mainly tells us about _________.A.when British kids get extra moneyB.where British kids' money comes fromC.what British kids use the bank account forD.how British kids get and deal with their money三、补全对话6选5根据对话内容, 从选项中选出能填入空白处的最佳选项,使对话完整通顺,并将其选项填到答题栏内相应的位置,其中有一项为多余选项。
四川中考模拟考试《数学卷》含答案解析
四川数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________—、选择题:(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的).1.在数轴上表示数-1和2019的两点分别为点和点,则、两点之间的距离为( )A. 2018B. 2019C. 2020D. 20212.下列计算正确的是( )A ()3473a a b b = B. 2(41)82b a ab b --=--C. ()23242a a a a ⨯+=D. 22(1)1a a -=-3.如图是由六个棱长为1小正方体搭成的几何体,其俯视图的面积为( )A. 3B. 4C. 5D. 64.2019年未至2020年初全球爆发了新冠肺炎”19COVID -“,世卫组织表示国际病毒分类委员会认定引发本次全球疫情病毒是SARS 冠状病毒姊妹病毒.若某种冠状病毒的直径为120纳米,1纳米910-=米,则这种冠状病毒的直径(单位:米)用科学记数法表示为( )A. 912010-⨯米B. 61.210-⨯米C. 71.210-⨯米D. 81.210-⨯米 5.如图,若//AB EF ,//AB CD .则下列各式成立的是( )A. 231180∠+∠-∠=︒B. 12390∠-∠+∠=︒C. 123180∠+∠+∠=︒D. 123180∠+∠+-∠=︒6.2019年第七届世界军人运动会(7thCISMMilitaryWorldGames )于2019年10月18日至27日在中国武汉举行,这是中国第一次承办综合性国际军事赛事,也是继北京奥运会后,中国举办的规模最大的国际体育盛会.某射击运动员在一次训练中射击了10次,成绩如图所示.下列结论中不正确的有( )个①众数是8;②中位数是8;③平均数是8;④方差是1.6.A. 1B. 2C. 3D. 47.如图,在菱形ABCD 中,点E,F 分别在AB,CD 上,且AE CF =,连接EF 交BD 于点O 连接AO.若25DBC ∠=︒,,则OAD ∠的度数为( )A. 50°B. 55°C. 65°D. 75°8.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A. 若1a =-,函数的最大值是5B. 若1a =,当2x ≥时,y 随x 的增大而增大C. 无论a 为何值时,函数图象一定经过点(1,4)-D. 无论a 为何值时,函数图象与x 轴都有两个交点9.如图,O 与正六边形OABCDE 的边,OA OE 分别交于点,F G ,点M 为劣弧FG 的中点.若42FM =.则点到FM 的距离是( )A. B. 32 C. 6 D. 4210.已知二次函数()2340y mx mx m m =--≠的图象与轴交于、两点(点在点的左侧),与轴交于点,且90ACB ∠=︒,则的值为( )A. 4±B. 2±C. 14±D. 12±11.已知圆锥的高为AO ,母线为AB ,且518OB AB =,圆锥的侧面展开图为如图所示的扇形.将扇形沿BE 折叠,使点恰好落在BC 上的点,则弧长CF 与圆锥的底面周长的比值为( )A. 12B. 25C. 23D. 3412.如图等边ABC ∆的边长为4cm ,点,点Q 同时从点出发,点Q 沿AC 以1/cm s 的速度向点运动,点沿A B C --以2/cm s 的速度也向点运动,直到到达点时两点都停止运动,若APQ ∆的面积为2)(S cm ,点Q 的运动时间为()t s ,则下列最能反映与之间函数关系的图象是( )A. B.C. D.二、填空题:(本大题共6小题,每小题4分,共24分,请把最后结果填在答题卡对应的位置上)13.分解因式:224mx my -=_________.14.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是 ▲ 15.如图,在正方形ABCD 中,2AC =,、分别是边AD 、CD 上的点,且AE DF =,AF 、BE 交于点,为AB 的中点,则OP =_________.16.已知双曲线4y x=与O 在第一象限内交于A B ,两点,45AOB ∠=,则扇形OAB 的面积是__________.17.已知关于x 的不等式组423(){23(2)5x x a x x +>+>-+仅有三个整数解,则a 的取值范围是___________. 18.如图,已知直线334y x =-与轴、轴分别交于、两点,是以()0,1C 为圆心,1为半径的圆上一动点,连接PA 、PB ,当PAB ∆的面积最大时,点的坐标为_______.三、解答题:(本大题共7小题,共78分.解答题应写出文字说明、证明过程或演算步骤)19.计算:231183tan 301212-⎛⎫-︒++++- ⎪⎝⎭20.如图,点是菱形ABCD 对角线的交点,//CE BD ,//BE AC ,连接OE 交CB 于点.(1)求证:OE CB =;(2)若菱形ABCD 的边长为2,且60ADC ∠=︒,求四边形OCEB 的面积.21.在”五四青年节”来临之际,某校举办了以”我的青春我做主”为主题的演讲比赛.并从参加比赛的学生中随机抽取部分学生的演讲成绩进行统计(等级记为:优秀,:良好,:一般,:较差),并制作了如下统计图表(部分信息未给出).等级人数2010请根据统计图表中的信息解答下列问题:(1)这次共抽取了______名参加演讲比赛的学生,统汁图中a =________,b =_______;(2)求扇形统计图中演讲成绩等级为”一般”所对应扇形的圆心角的度数;(3)若该校学生共2000人,如果都参加了演讲比赛,请你估计成绩达到优秀的学生有多少人?(4)若演讲比赛成绩为等级的学生中恰好有2名女生,其余的学生为男生,从等级的学生中抽取两名同学参加全市演讲比赛,请用列表或画树状图的方法求出”恰好抽中—名男生和一名女生”的概率.22.如图,一次函数y=kx+b(k 、b 为常数,k≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y=n x(n 为常数,且n≠0)的图象在第二象限交于点C .CD⊥x 轴,垂足为D ,若OB=2OA=3OD=12. (1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E ,求△CDE 的面积;(3)直接写出不等式kx+b≤n x的解集.23.新冠疫情期间,某医药器材经销商计划同时购进一批甲、乙两种型号的口罩,若购进2箱甲型口罩和1箱乙型口罩,共需要资金2800元;若购进3箱甲型口罩和2箱乙型口罩,共需要资金4600元.(1)求甲、乙型号口罩每箱的进价为多少元?(2)该医药器材经销商计划购进甲、乙两种型号的口罩用于销售,预汁用不多于1.8万元且不少于1.74万元的资金购进这两种型号口罩共20箱,请问有几种进货方案?并写出具体的进货方案;(3)若销售一箱甲型口罩,利润率为40%,乙型口罩的售价为每箱1280元.为了促销,公司决定每售出一箱乙型口罩,返还顾客现金元,而甲型口罩售价不变,要使(2)中所有方案获利相同,求的值. 24.如图所示,以ABC ∆的边AB 为直径作O ,点在O 上,BD 是O 的弦,A CBD ∠=∠,过点作CF AB ⊥于点,交BD 于点,过点作//CE BD 交AB 的延长线于点.(1)求证:CE 是O 的切线;(2)求证:CG BG =;(3)若30DBA ∠=︒,CG=4,求BE 长.25.如图,已知抛物线23y ax bx =++与轴交于点(1,0)A -、(3,0)B ,顶点为M .(1)求抛物线的解析式和点M 的坐标;(2)点E 是抛物线段BC 上的一个动点,设BEC ∆的面积为S ,求出S 的最大值,并求出此时点E 的坐标;(3)在抛物线的对称轴上是否存在点P ,使得以A 、P 、C 为顶点的三角形是直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.答案与解析—、选择题:(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的).1.在数轴上表示数-1和2019的两点分别为点和点,则、两点之间的距离为( )A. 2018B. 2019C. 2020D. 2021 【答案】C【解析】【分析】根据数轴上两点之间的距离公式确定出A ,B 两点之间的距离即可.【详解】解:根据题意得:AB=|2019-(-1)|=|2019+1|=2020,故选:C .【点睛】本题考查了数轴上两点之间的距离,弄清数轴上两点间的距离公式是解本题的关键. 2.下列计算正确的是( )A. ()3473a a b b =B. 2(41)82b a ab b --=--C. ()23242a a aa ⨯+=D. 22(1)1a a -=- 【答案】C【解析】【分析】 根据整式的混合运算法则逐一进行判断即可.【详解】解:A .()34123a a b b =,此选项计算错误;B .2(41)82b a ab b --=-+,此选项计算错误;C .()2324442a a a a a a =+⨯+=,此选项计算正确;D .22(1)21a a a -=-+,此选项计算错误;故选:C .【点睛】本题考查了整式的混合运算,熟练掌握整式的混合运算的法则是解题的关键3.如图是由六个棱长为1的小正方体搭成的几何体,其俯视图的面积为( )A. 3B. 4C. 5D. 6【答案】B【解析】【分析】 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,据此解答即可.【详解】从上面看,可以看到4个正方形,面积为4.故选:B .【点睛】本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.4.2019年未至2020年初全球爆发了新冠肺炎”19COVID -“,世卫组织表示国际病毒分类委员会认定引发本次全球疫情病毒是SARS 冠状病毒的姊妹病毒.若某种冠状病毒的直径为120纳米,1纳米910-=米,则这种冠状病毒的直径(单位:米)用科学记数法表示为( )A. 912010-⨯米B. 61.210-⨯米C. 71.210-⨯米D. 81.210-⨯米【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】120纳米=120×10-9=1.2×10-7故选:C【点睛】在日常的生活和学习过程中,常常会遇到很多较小的数,如1纳米=0.000000001米.这些数字在读写时都不方便,而且很容易出现错误.但是,科学记数法的应运而生有效地解决了这一难题.用科学记数法表示较小的数,一般形式a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.如图,若//AB EF ,//AB CD .则下列各式成立的是( )A. 231180∠+∠-∠=︒B. 12390∠-∠+∠=︒C. 123180∠+∠+∠=︒D. 123180∠+∠+-∠=︒【答案】A【解析】【分析】 已知//AB EF ,//AB CD ,可得EF ∥CD ,根据平行线的性质,即可得到∠3=∠CGE ,∠2+∠BGE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵AB ∥EF ,AB ∥CD ,∴EF ∥CD ,∴∠3=∠CGE ,∴∠3−∠1=∠CGE−∠1=∠BGE ,∵AB ∥EG ,∴∠2+∠BGE=180°即∠2+∠3−∠1=180°故选:A【点睛】本题考查了平行定理,两条直线都和第三条直线平行,那么这两条直线也平行;两条直线平行内错角相等;两直线平行,同旁内角互补.6.2019年第七届世界军人运动会(7thCISMMilitaryWorldGames )于2019年10月18日至27日在中国武汉举行,这是中国第一次承办综合性国际军事赛事,也是继北京奥运会后,中国举办的规模最大的国际体育盛会.某射击运动员在一次训练中射击了10次,成绩如图所示.下列结论中不正确的有( )个①众数是8;②中位数是8;③平均数是8;④方差是1.6.A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】分别求出射击运动员的众数、中位数、平均数和方差,然后进行判断,即可得到答案.【详解】解:由图可得,数据8出现3次,次数最多,所以众数为8,故①正确;10次成绩排序后为:6,7,7,8,8,8,9,9,10,10,所以中位数是12(8+8)=8,故②正确;平均数为110(6+7×2+8×3+9×2+10×2)=8.2,故③不正确;方差为110[(6﹣8.2)2+(7﹣8.2)2+(7﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(9﹣8.2)2+(9﹣8.2)2+(10﹣8.2)2+(10﹣8.2)2]=1.56,故④不正确;不正确的有2个,故选:B.【点睛】本题考查了求方差,求平均数,求众数,求中位数,解题的关键是熟练掌握公式和定义进行解题.7.如图,在菱形ABCD中,点E,F分别在AB,CD上,且AE CF=,连接EF交BD于点O连接AO.若25DBC∠=︒,,则OAD∠的度数为()A. 50°B. 55°C. 65°D. 75°【答案】C【解析】【分析】由菱形的性质以及已知条件可证明△BOE≌△DOF,然后根据全等三角形的性质可得BO=DO,即O为BD 的中点,进而可得AO⊥BD,再由∠ODA=∠DBC=25°,即可求出∠OAD的度数.【详解】∵四边形ABCD为菱形∴AB=BC=CD=DA,AB∥CD,AD∥BC∴∠ODA=∠DBC=25°,∠OBE=∠ODF,又∵AE=CF∴BE=DF在△BOE和△DOF中,BOE=DOF OBE=ODF BE=DF ∠∠⎧⎪∠∠⎨⎪⎩∴△BOE ≌△DOF (AAS )∴OB=OD即O 为BD 的中点,又∵AB=AD∴AO ⊥BD∴∠AOD=90°∴∠OAD=90°-∠ODA=65° 故选C.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,以及等腰三角形三线合一的性质,熟练掌握菱形的性质,得出全等三角形的判定条件是解题的关键.8.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A. 若1a =-,函数的最大值是5B. 若1a =,当2x ≥时,y 随x 的增大而增大C. 无论a 为何值时,函数图象一定经过点(1,4)-D. 无论a 为何值时,函数图象与x 轴都有两个交点【答案】D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键.9.如图,O 与正六边形OABCDE 的边,OA OE 分别交于点,F G ,点M 为劣弧FG 的中点.若42FM =.则点到FM 的距离是( )A.B. 32C. 26D. 42【答案】C【解析】【分析】 连接OM ,作OH MF ⊥,交MF 与点H ,根据正六边性的性质可得出AOE 120∠=︒,AOM 60∠=︒,得出FOM 为等边三角形,再求OH 即可.【详解】解:∵六边形OABCDE 是正六边形,∴AOE 120∠=︒∵点M 为劣弧FG 的中点∴AOM 60∠=︒连接OM ,作OH MF ⊥,交MF 与点H∵FOM 为等边三角形∴FM=OM ,OMF 60∠=︒∴OH 2==故答案为:C.【点睛】本题考查的知识点有多边形的内角与外角,特殊角的三角函数值,等边三角形的性质,理解题意正确作出辅助线是解题的关键.10.已知二次函数()2340y mx mx m m =--≠的图象与轴交于、两点(点在点的左侧),与轴交于点,且90ACB ∠=︒,则的值为( )A. 4±B. 2±C. 14±D. 12± 【答案】C【解析】【分析】首先求出点A 、B 、C 的坐标,由已知条件易证△AOC ∽△COB ,再根据相似三角形的性质即可求出m 的值.【详解】设y=0,则=mx 2−3mx −4m=0,解得:m=4或m=−1,∵点A 在点B 的左侧,∴OA=1,OB=4,设x=0,则y=−4m ,∴OC=|−4m|,∵∠ACO+∠OCB=90°,∠CAO+∠ACO=90°∴∠CAO=∠BCO ,又∵∠AOC=∠BOC=90°∴△AOC ∽△COB , ∴AO OC OC OB=∴OC2=OA⋅OB 即16m2=4,解得:m=±1 4故选:C【点睛】本题已知抛物线解析式可求得函数图象与x轴,y轴截距,考查了相似三角形的判定和性质,两个三角形相似对应边成比例.11.已知圆锥的高为AO,母线为AB,且518OBAB=,圆锥的侧面展开图为如图所示的扇形.将扇形沿BE折叠,使点恰好落在BC上的点,则弧长CF与圆锥的底面周长的比值为()A. 12B.25C.23D.34【答案】B【解析】【分析】连接AF,如图,设OB=5a,AB=18a,∠BAC=n°,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到1825180n aaππ⨯⨯=,解得n得到∠BAC=100°,再根据折叠的性质得到BA=BF,则可判断△ABF为等边三角形,于是可计算出∠FAC=40°,然后根据弧长公式计算弧长CF与圆锥的底面周长的比值.【详解】连接AF,如图,设OB=5a,AB=18a,∠BAC=n°∴1825180n aaππ⨯⨯=,解得n=100即∠BAC=100°∵将扇形沿BE折叠,使A点恰好落在BC上F点,∴BA=BF而AB=AF∴△ABF为等边三角形∴∠BAF=60°∴∠FAC=40°∴CF的长度=40184180aa ππ⨯⨯=∴弧长CF与圆锥的底面周长的比值=42 255aaππ=故选:B【点睛】本题考查了圆锥侧面展开图为扇形,且扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,题中还用到了图形折叠的性质,熟练掌握弧长计算公式是解题的关键.12.如图等边ABC ∆的边长为4cm ,点,点Q 同时从点出发,点Q 沿AC 以1/cm s 的速度向点运动,点沿A B C --以2/cm s 的速度也向点运动,直到到达点时两点都停止运动,若APQ ∆的面积为2)(S cm ,点Q 的运动时间为()t s ,则下列最能反映与之间函数关系的图象是( )A. B. C D.【答案】C【解析】【分析】先计算点P 从点A 运动到点B 时APQ ∆的面积等式,再计算点P 从点B 运动到点C 时APQ ∆的面积等式,最后根据二次函数图象的性质即可得出答案.【详解】由等边三角形的性质得:4,60AB BC AC cm A C ===∠=∠=︒由题意,分点P 从点A 运动到点B 和点P 从点B 运动到点C 两段分析:(1)点P 从点A 运动到点B点P 运动到点B 时,时间为4222AB t ===,此时点Q 运动到AC 的中点处 2,AP t AQ t ==1cos 60cos 2AQ A AP ∴==︒= APQ ∴∆是直角三角形,223PQ AP AQ t =-=则APQ ∆的面积为21133(02)222S PQ AQ t t t t =⋅=⋅⋅=≤≤ (2)点P 从点B 运动到点C点P 运动到点C 时,时间为44422AB BC t ++===,此时点Q 运动到点C 处 如图,2,AB BP t AQ t +==()82,4CP AB BC AB BP t CQ AC AQ t ∴=+-+=-=-=-41cos60cos 822CQ t C CP t -∴===︒=- CPQ ∆∴是直角三角形,223(4)PQ CP CQ t =-=-则APQ ∆的面积为21133(4)23(24)222S PQ AQ t t t t t =⋅=⋅-⋅=-+<≤ 综上,223(02)2323(24)2t t S t t t ⎧≤≤⎪⎪=⎨⎪-+<≤⎪⎩根据二次函数图象的性质可得,只有C 项符合题意故选:C.【点睛】本题考查了二次函数的几何应用,依据题意分两段讨论,分别求出面积S 的表达式是解题关键.二、填空题:(本大题共6小题,每小题4分,共24分,请把最后结果填在答题卡对应的位置上)13.分解因式:224mx my -=_________.【答案】(2)(2)m x y x y +-【解析】分析】先提取公因式m ,再利用平方差公式进行因式分解.【详解】22224(4)(2)(2)mx my m x y m x y x y -=-=+-【点睛】本题考查了提取公因式和公式法结合进行因式分解,先提取公式因,再利用平方差公式进行因式分解,必须熟练掌握平方差公式.14.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是 ▲ 【答案】0.【解析】方程两边都乘以最简公分母(x -2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x 的值,然后代入进行计算即可求出m 的值:方程两边都乘以(x -2)得,2-x -m=2(x -2).∵分式方程有增根,∴x -2=0,解得x=2.∴2-2-m=2(2-2),解得m=0.15.如图,在正方形ABCD 中,2AC =,、分别是边AD 、CD 上的点,且AE DF =,AF 、BE 交于点,为AB 的中点,则OP =_________.【答案】12【解析】【分析】 证明△ADF ≌△BAE (SAS ),得出∠DAF=∠ABE ,证出∠AOB=90°,由直角三角形斜边上的中线性质即可得出答案.【详解】∵四边形ABCD 是正方形,∴AD=AB ,∠D=∠EAB=90°,2AB ,∴222=1, 在△ADF 和△BAE 中,AD BA D EAB DF AE =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BAE(SAS),∴∠DAF=∠ABE ,∵∠DAF+∠BAO=90°,∴∠ABE+∠BAO=90°,∴∠AOB=90°,∵P 为AB 的中点,∴OP=12AB=12; 故答案为:12 【点睛】本题考查了全等三角形的判定和性质,正方形的性质,以及直角三角形斜边上的中线等于斜边的一半的知识.16.已知双曲线4y x =与O 在第一象限内交于A B ,两点,45AOB ∠=,则扇形OAB 的面积是__________.【答案】2π【解析】【分析】设⊙O的半径OA=OB=r,连接AB,作直线y=x,与AB交于点C,过A作AD⊥y轴于点D,过B作BE⊥x 轴于点E,过A作AF⊥OB于点F.由圆与双曲线的对称性得△AOD≌△AOC≌△BOC≌△BOE,进而由反比例函数的比例系数的几何意义得△AOB的面积,再由三角形的面积公式求得圆的半径,最后由扇形的面积公式求得结果.【详解】设⊙O的半径OA=OB=r,连接AB,作直线y=x,与AB交于点C,过A作AD⊥y轴于点D,过B作BE⊥x轴于点E,过A作AF⊥OB于点F.∵⊙O在第一象限关于y=x对称,4yx=也关于y=x对称,∴∠AOC=∠BOC,OC⊥AB,∠AOD=∠BOE,∵∠AOB=45°,∴∠AOD=∠AOC=∠BOC=∠BOE=22.5°,由对称性知,△AOD≌△AOC≌△BOC≌△BOE,由反比例函数的几何意义知,S△AOD=S△BOE=12×4=2,∴S△AOC=S△BOC=2,∴S △AOB =2+2=4, ∵∠AOB=45°,∴OF∴AF=OF=2OA =2r , ∵S △AOB =12OB•AF ,∴4=12r×2r ,∴r 2=,∴S 扇形OAB =245360r π=45360π⨯=.【点睛】本题考查了反比例函数的性质,圆的基本性质,扇形的面积公式,解题的关键是知道反比例函数在k >0时关于y=x 对称,求得三角形的面积. 17.已知关于x 的不等式组423(){23(2)5x x a x x +>+>-+仅有三个整数解,则a 的取值范围是___________.【答案】103a -≤< 【解析】【详解】解:由4x+2>3x+3a , 解得x >3a ﹣2, 由2x >3(x ﹣2)+5, 解得3a ﹣2<x <1, 由关于x 的不等式组423()23(2)5x x a x x +>+⎧⎨>-+⎩仅有三个整数解,得﹣3≤3a ﹣2<﹣2解得103a -≤<, 故答案为:103a -≤<. 考点:一元一次不等式组的整数解 18.如图,已知直线334y x =-与轴、轴分别交于、两点,是以()0,1C 为圆心,1为半径的圆上一动点,连接PA、PB,当PAB∆的面积最大时,点的坐标为_______.【答案】(−35,95)【解析】【分析】过C作CM⊥AB于M,交x轴于E,连接AC,MC的延长线交⊙C于D,作DN⊥x轴于N,则由三角形面积公式得,12×AB×CM=12×OA×BC,可知圆C上点到直线y=34x-3的最长距离是DM,当P点在D这个位置时,△PAB的面积最大,先证得△COE∽△CMB,求得OE、CE,再通过证得△COE∽△DNE,求得DN和NE,由此求得答案.【详解】过C作CM⊥AB于M,交x轴于E,连接AC,MC的延长线交⊙C于D,作DN⊥x轴于N,∵直线334y x=-与x轴、y轴分别交于A,B两点,令x=0,得y=-3,令y=9,得x=4∴A(4,0),B(0,−3),∴OA=4,OB=3,∴5 ==则由三角形面积公式得,12×AB×CM=12×OA×BC,∴12×5×CM=12×4×(1+3),∴CM=16 5∴125 ==∴圆C上点到直线334y x=-的最大距离是DM=1+165=215当P点在D这个位置时,△PAB的面积最大,∵∠CMB=∠COE=90°,∠OCE=∠MCB,∴△COE∽△CMB,∴OE OC CE BM CM CB==∴1 1216455 OE CE==∴OE=34,CE=54,∴ED=1+54=94∵DN⊥x轴,∴DN∥OC,∴△COE∽△DNE,∴DN NE DECO OE CE==,即9435144DN NE==∴DN=95,NE=2720∴ON=NE−OE=2720−34=35∴D(−35,95)∴当△PAB的面积最大时,点P的坐标为(−35,95)故答案为:(−35,95) 【点睛】本题考查了相似三角形的判定和性质,根据两个三角形相似可得出对应边成比例,是求线段长度的方法之一,已知一次函数的解析式,可求得函数与x 轴,y 轴的截距.三、解答题:(本大题共7小题,共78分.解答题应写出文字说明、证明过程或演算步骤)19.计算:231183tan 301212-⎛⎫-︒++++- ⎪⎝⎭【答案】4232-+ 【解析】 【分析】根据二次根式运算法则,特殊角三角函数,负整数指数幂,绝对值性质,三次根式运算法则进行实数混合运算即可.【详解】231183tan 301212-⎛⎫-︒++++- ⎪⎝⎭=332321213-⨯+++- =32322-++ =4232-+故答案为:4232-+【点睛】本题考查了二次根式运算法则,特殊角三角函数,负整数指数幂,绝对值性质,三次根式运算法则,熟练掌握这些法则是运算基础.20.如图,点是菱形ABCD 对角线的交点,//CE BD ,//BE AC ,连接OE 交CB 于点. (1)求证:OE CB =;(2)若菱形ABCD 的边长为2,且60ADC ∠=︒,求四边形OCEB 的面积.【答案】(1)证明见解析;(2)3【解析】【分析】(1)通过证明四边形OCEB 是矩形来推知OE=CB ,根据ABCD 是菱形,对角线垂直平分,已知//CE BD ,//BE AC ,可得四边形OCEB 是平行四边形,由此即可推得四边形OCEB 是矩形.(2)已知四边形ABCD 是菱形,60ADC ∠=︒,根据菱形的性质即可求得OC 和OD 的长,即可求出四边形OCEB 的面积.【详解】(1)∵四边形ABCD 是菱形, ∴AC ⊥BD∵CE ∥BD ,EB ∥AC , ∴四边形OCEB 是平行四边形, ∴四边形OCEB 是矩形, ∴OE=CB ;(2)∵四边形ABCD 是菱形∴OA=OC ,OD=OB ,∠CDO=∠ODA=12∠CDA=30° ∴在Rt △COD 中,OC=12CD=1 ∴2222213OB OD CD OC ==-=-= ∵四边形OCEB 是矩形∴S 四边形OCEB =OC ×OB=1×3=3 故答案为:3【点睛】本题考查了菱形的性质,对角线互相垂直平分且平分每组对角,以及矩形的判定和性质,有一个角是直角的平行四边形是矩形.21.在”五四青年节”来临之际,某校举办了以”我的青春我做主”为主题的演讲比赛.并从参加比赛的学生中随机抽取部分学生的演讲成绩进行统计(等级记为:优秀,:良好,:一般,:较差),并制作了如下统计图表(部分信息未给出).等级 人数请根据统计图表中的信息解答下列问题:(1)这次共抽取了______名参加演讲比赛的学生,统汁图中a=________,b=_______;(2)求扇形统计图中演讲成绩等级为”一般”所对应扇形的圆心角的度数;(3)若该校学生共2000人,如果都参加了演讲比赛,请你估计成绩达到优秀的学生有多少人?(4)若演讲比赛成绩为等级的学生中恰好有2名女生,其余的学生为男生,从等级的学生中抽取两名同学参加全市演讲比赛,请用列表或画树状图的方法求出”恰好抽中—名男生和一名女生”的概率.【答案】(1)50,40,30;(2)108︒;(3)200人;(4)3 5【解析】【分析】(1)根据D等级人数和对应百分比可得抽取的人数,再分别求得等级B的人数所占百分比和等级C的人数所占百分比即可得出a,b的值;(2)扇形统计图中演讲成绩等级为”一般”的为C类,所对应扇形的圆心角的度数为:30%360108⨯︒=︒(3)用等级A的人数所占百分比乘以2000即可(4)用列表法列出所有情况,再根据概率公式即可求得【详解】(1)这次抽取的演讲比赛的学生人数为10÷20%=50(名)等级B的学生所占百分比为:2050×100%=40%∴a=40等级C的学生所占百分比为1−10%−20%−40%=30%∴b=30故答案为:50,40,30(2)扇形统计图中演讲成绩等级为”一般”的为C类,所对应扇形的圆心角的度数为:30%360108⨯︒=︒故答案为:108︒(3)估计成绩达到优秀的人数为:2000×10%=200(人)故答案为:200人(4)A等级的学生共有50×10%=5(名),其中有2名女生,那么男生有3名,列表分析如下:由上表可知,一共有20种等可能的结果,其中抽中一名男生和一名女生的结果有12种,则P(抽中一名男生和一名女生)=123 205故答案为:3 5【点睛】本题考查了扇形统计图,用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,据此可求出扇形统计图的圆心角,用所占百分比乘以360°即可,本题还考查了用列表法求概率,某一事件发生的概率等于某一事件发生的次数除以各种情况出现的次数.22.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=nx(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤nx的解集.【答案】(1)y=﹣80x,y=﹣2x+12(2)S △CDE =140;(3)x≥10,或﹣4≤x<0 【解析】 【分析】(1)根据三角形相似,可求出点坐标,可得一次函数和反比例函数解析式; (2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系. 【详解】(1)由已知,OA=6,OB=12,OD=4 ∵CD ⊥x 轴 ∴OB ∥CD ∴△ABO ∽△ACD∴OA OB=AD CD ∴612=10CD∴CD=20∴点C 坐标为(﹣4,20) ∴n=xy=﹣80∴反比例函数解析式为:y=80x-把点A (6,0),B (0,12)代入y=kx+b 得:0=612k bb +⎧⎨=⎩ 解得:212k b =-⎧⎨=⎩∴一次函数解析式为:y=﹣2x+12 (2)当80x-=﹣2x+12时,解得 x 1=10,x 2=﹣4当x=10时,y=﹣8 ∴点E 坐标为(10,﹣8) ∴S △CDE =S △CDA +S △EDA =112010810=14022⨯⨯+⨯⨯ (3)不等式kx+b≤nx,从函数图象上看,表示一次函数图象不低于反比例函数图象 ∴由图象得,x≥10,或﹣4≤x<0【点睛】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.23.新冠疫情期间,某医药器材经销商计划同时购进一批甲、乙两种型号的口罩,若购进2箱甲型口罩和1箱乙型口罩,共需要资金2800元;若购进3箱甲型口罩和2箱乙型口罩,共需要资金4600元. (1)求甲、乙型号口罩每箱的进价为多少元?(2)该医药器材经销商计划购进甲、乙两种型号的口罩用于销售,预汁用不多于1.8万元且不少于1.74万元的资金购进这两种型号口罩共20箱,请问有几种进货方案?并写出具体的进货方案;(3)若销售一箱甲型口罩,利润率为40%,乙型口罩的售价为每箱1280元.为了促销,公司决定每售出一箱乙型口罩,返还顾客现金元,而甲型口罩售价不变,要使(2)中所有方案获利相同,求的值.【答案】(1)甲型号口罩每箱进价为1000元,乙型号口罩每箱进价为800元;(2)共4种方案:方案一:购进甲型口罩7箱、乙型口罩13箱,方案二:购进甲型口罩8箱、乙型口罩12箱,方案三:购进甲型口罩9箱、乙型口罩11箱,方案四:购进甲型口罩10箱、乙型口罩10箱;(3)80 【解析】 【分析】(1)设甲型号口罩每箱进价为x 元,乙型号口罩每箱进价为y 元,根据题意建立方程组求解就可以求出答案; (2)设购进甲型号口罩a 箱,则购进乙型号口罩(20-a )箱,根据”用不多于1.8万元且不少于1.74万元的资金购进这两种型号口罩共20台”建立不等式组,求出其解就可以得出结论;(3)由题意得出w=400a+(1280-800-m )(20-a )=(m-80)a+9600-20m ,根据”(2)中所有方案获利相同”知w 与a 的取值无关,据此解答可得.【详解】设甲型号口罩每箱进价为x 元,乙型号口罩每箱进价为y 元,22800324600x y x y +=⎧⎨+=⎩解得1000800x y =⎧⎨=⎩答:甲型号口罩每箱进价为1000元,乙型号口罩每箱进价为800元.。
【中考冲刺】2023年四川省绵阳市中考模拟英语试卷(附答案)
2023年四川省绵阳市中考模拟英语试题学校:___________姓名:___________班级:___________考号:___________一、完形填空As a parent trainer I am now dealing with helicopter parents—the ones who___1___all the difficulties and make it smooth sailing for their kids. Sometimes watching kids__2__without jumping in to fix it for them is the__3__thing parents can do. I appreciate someone who knows when it is time to let kids struggle a little___4___that’s real life and Mom( or Dad) won’t always be there give help. So, lets kids___5___real life and grow up by failing, keeping on trying, never giving up and sometimes___6___learning from making mistakes.___7___other words, parents have to be comfortable with the idea of allowing kids to fail as part of the learning____8____ What matters in learning? It isn’t about whether or not it is perfect or correct. It matters whether or not kids have___9___to go to places, to see things, to play, to inquire and so on. That is what I think__10__should do for kids: give them time to be kids; give them chances to grow up and experience life themselves. 1.A.take away B.bring in C.put off D.give out 2.A.succeed B.study C.fail D.play 3.A.happiest B.hardest C.easiest D.luckiest 4.A.because B.but C.so D.and 5.A.know B.learn C.get D.experience 6.A.actually B.simply C.hardly D.gradually 7.A.From B.With C.By D.In 8.A.result B.process C.goal D.cost 9.A.abilities B.money C.chances D.energy 10.A.parent trainers B.adults C.teachers D.parents Daisy was in the bathroom. She was brushing her teeth and the tap(水龙头) was on. Water was running.“Turn that tap off,” a voice said loudly. Daisy was shocked. She ___11___, but saw no one. “Turn that tap off. You are wasting water!” Someone shouted ___12___.This time Daisy turned off the tap and asked, “Who---who are you?”“I am a drop of water. It's not ___13___ for me to get here. Do you know where I'm from?” “From the tap?" said Daisy.“No. A few days ago, I was flying comfortably in a cloud , enjoying the view from thesky. Then I ___14___ into a river and that river carried me to a lake. Then it was time for me to get cleaned up.” “Really?” Daisy doubted. “Yes. I was ___15___ after my journey. So in order to make me safe to drink, people gave me a complete ___16___. After that, I travelled in the pipes(管道)under the streets. I waited there ___17___ you called me, and here I am.”Daisy said, “So this is the end of your ___18___?”“No. When you've finished with me, I will be back in the sea again. That's where I came from in the first place. Remember not to waste me or pollute me. I'm ___19___, like gold. See you.”“Wait a minute. What do you mean by gold?” But there was no ___20___. The water had gone.11.A.looked out B.looked up C.looked around D.looked back 12.A.impatiently B.impolitely C.happily D.kindly 13.A.lucky B.comfortable C.easy D.fast 14.A.moved B.stepped C.broke D.dropped 15.A.pleased B.dirty C.dangerous D.tired 16.A.training B.check C.holiday D.cleaning 17.A.until B.though C.because D.if 18.A.history B.life C.chance D.journey 19.A.expensive B.important C.valuable D.different 20.A.gold B.reply C.noise D.time二、阅读单选阅读理解Josh and Amy are like many teenagers these days. They have jobs to do to help out around the home. Josh washes cars for his neighbors while Amy helps their neighbor’s kids with their homework. Like many families, both of Josh and Amy’s parents work outside the home.Everyone in Josh and Amy’s family is busy. Their mom works in an office and often has to stay late for meetings. Their father owns his own small business and stays late to finish his work. Josh and Amy go to school. Both belong to clubs and sports teams. They also have lots of friends with whom they want to spend time.Josh and Amy’s mom leaves for work at 7:00 in the morning and does not get home most days until 6:30 pm. The same is true for their dad, but he leaves home in the morningeven earlier.Josh and Amy’s parents work to be able to provide for their family. They need money to pay for their home and to pay their bills. Next year they want to buy a new car. The family also wants to go on a vacation to California. Josh and Amy need clothes, books, and other things for school. Their parents are also saving money so Josh and Amy can go to college when they finish high school.21.How many people are there in the family?A.One.B.Two.C.Three.D.Four. 22.What does the father do?A.Work in an office.B.Run his own business.C.Plan vacations to California.D.Drive kids to school.23.What do the kids do to help their parents?A.Take part-time jobs.B.Join clubs and sports teams.C.Spend time with their friends.D.Go to school early.24.Where do the parents spend most of their daytime?A.At home.B.At workplace.C.In their kids’ school.D.On business trips.25.What’s the best title for this passage?A.Lovely kids B.Hard-working parentsC.Family wishes D.A busy familyMany years ago, there lived an old man with his three sons, Dharma, Harrison and Keith, in a village. The man worked hard when he was young, soon he had the largest farmyard and the most beautiful house in the village. However, his sons were all born to be lazy, which mad him disappointed. He was worried that his sons would use up his money and starve to death.One day, the old man came up with a plan. He called his sons and said to them, “Look,my dear sons: in the land we have at the farmyard, there is lots of hidden gold. If you should work together, you may find it.”In a wish to find out the gold, his sons worked hard from the morning to the evening digging and digging all through the land. The days had passed, but they didn’t find what were they were looking for. They got frustrated and angry. They decided to give up and returned to ask their father.“There is no gold in the land. We are cheated.”“Since the land has been dup soft. Why don’t you pant some crops there?” was the reply of the father to the sons.Off went the sons. Soon the whole once-useless land was rich crops.“This if the real gold, my sons.” said the now proud father.26.What do we know about the old man?A.He was the richest in his village.B.He was unable to feed his family.C.He loved daughters more than sons.D.He was quite successful as a farmer.27.Why did the old man ask his sons to dig the land?A.He was too old to do it himself.B.He didn’t have money to pay workers.C.He decided to teach his sons an important lesson.D.He didn’t want other people to set foot on his land.28.Why did his sons agree to dig the land?A.They wanted to help their father.B.They wanted to grow their own crops.C.They didn’t want to be lazy any more.D.They wanted to find the hidden gold.29.After they dug the land, his sons found ________________.A.lots of gold B.nothingC.seeds of crops D.the value of work30.What can we learn from the end of the story?A.The old man had achieved his goal.B.The three sons were still as lazy as before.C.The sons were quite angry with their father.D.The old man was still worried about his sons.The other day, I told Connie that I’d rather take the bus to work than ride in my comfortable limousine, because of the high cost of gasoline. But today, I discovered how wrong I was.When I got into my limousine this morning, my driver told me that the motor didn’t sound like it was running well.“Look,” I said, “I have an important meeting at 9:00. I have to be on time!”We drove about three blocks—then the motor died.“Sorry, Mr. Foster. I thought this might happen. But look! There’s the downtown bus. Maybe you should take it. So you don’t miss your meeting.”“Well, I…I…Oh! I suppose I have to.”I got on the bus and gave the driver my money.“Mister, are you serious? We can’t make change for a $100 bill!”“I AM CHARLES K. FOSTER. AND I ORDER THAT YOU SHOULD MAKE CHANGE!”“Mister,” said the driver, “I don’t care who you are. You will have to get off the bus.”Well. I was so mad when I got off that bus that I didn’t watch where I was going, and I was almost hit by a car! So now, all I have to say is this: My business may be killing me, but riding the bus certainly will.31.The word “limousine” in Paragraph 1 most probably means a ______. A.motorbike B.truck C.car D.bus 32.Why did the writer’s driver suggest him taking the bus?A.The bus would stop at the meeting-room.B.The limousine completely broke down. C.The driver had an important meeting.D.The motor was not running very well. 33.The writer failed to catch the bus because _______.A.there were too many passengers B.it was heading in the wrong direction C.the driver couldn’t change his money D.he was rude in the bus driver 34.How did the writer feel when he had to get off the bus?A.Angry.B.Uneasy.C.Shameful.D.Funny. 35.What can we guess from the last paragraph?A.The writer was doing well in his business.B.Connie would lose his job as thewriter’s driver.C.The writer was sure that he would be killed by a bus.D.The writer wouldn’t take a bus to work after that.There were two fishermen named Tom and Jack. They were close pals. One day they went out to catch fish together and have a fish meal in the field. They sat at a distance and started hunting for fish. Tom got a big and beautiful fish in a few minutes. He was so happy and placed the fish in the ice box. He decided to cook the fish in the noon. He spent some more time and caught a few more fish. He decided to make a grand meal with the fish. Also, he froze a few fish to take them back home.After an hour or so, Tom went to Jack to see if he needed any help. Jack said no. In a few minutes, Jack caught a large fish. However, he put it back into the lake. Tom was surprised at his act, but he remained silent. Jack caught more big fish, and put them all back into the lake. Very frustrated, Tom angrily asked him, “Are you mad? Why do you put your fish back into the water? They are beautiful and big!” Jack replied, I know they are big, but I don’t have the big pan(锅) to cook the big fish! So I’m looking for a smaller fish that fits my cooking pan! God is troubling me today.”36.What did Tom and Jack go out for?A.To catch fish.B.To have a joy ride.C.To eat out together.D.To feed the fish in the lake.37.Why did Tom put his fish in an ice box?A.To keep it alive.B.To keep it fresh for his meal.C.To keep it from going away.D.To keep it away from his friend. 38.What did Tom want to do when he went to his friend?A.To give him some fish.B.To offer some help.C.To ask him to cook his fish.D.To take some of Jack’s fish for himself. 39.Why was Tom angry with his friend?A.He couldn’t understand his act.B.He was fond of eating big fish.C.He thought it was unfair for small fish.D.He didn’t catch any big fish himself. 40.What would be Tom’s advice for his friend at the end of the story?A.Ask God to send him only small fish,B.Take a bigger pan with him next time.C.Change his fishing pole to catch small fish.D.Cut the big fish into small pieces to fit his pan.三、阅读填表You can read up your favorite skateboard star, email or test your friends. You can do a lot of wonderful things online. That’s why the Internet is amazing! If you’re a kid who likes to have fun and chat with friends online, here’re the things you need to watch carefully in order to stay safe and avoid problems.Not all websites are safe for students. Luckily, your parents can guide you to some websites. And you can also visit the websites your teachers suggest. Stick to these safe websites and don’t go out to try something new. Some websites don’t allow kids under a certain age to visit them. You may find it inviting and fun to lie about your age. It’s safer to tell the truth and avoid those websites until you’re older.The loss of Internet ID can cause big problems. So it is important to make your Internet ID safe. If someone can get on the Internet in your username, you have no control over what they do or say. And everyone will think it’s you! So don’t ever let anyone know your username for the Internet. And don’t share your passwords with anyone except your parents.Take good care of your private information. Never tell an online stranger where you live. Your address can make it much easier for bad people to find you. Your phone number is another important piece of personal information. Once it’s out online, it can bring you a lot of trouble. Many online cheatings are carried out with the help of people’s phone numbers. Your parents’ names are also private information. It is risky if they are let out online.四、语法填空The topic of this programme is environmental protection.We human beings ___46___ (do) a lot of things at the cost of the environment to develop economy quickly in the past few years.I do think it is time for us to understand the ___47___ (important) of protecting the environment and do something about it.And today I would like ____48____ (introduce) some simple but useful ways that we can follow ___49___ (easy) in our daily life.Firstly, turn___50___ lights if it is unnecessary.Then,go out in environment-friendly ways such as by bus, by subway or by bike.We can even walk to work when possible, ___51___ it is really helpful for both of our budget and health.Thirdly, try best to ___52___ (use) things like books, paper, magazines and so on.And we can also take a cloth bag when we go ____53____ (shop).Please don’t use plastic ones.Of course the public should raise environmental awareness and realize it is ___54___ (everyone) duty to protect the st but not least, the government should make laws to guide people’s ____55____ (behave).五、电子邮件56.假定你是李华,请回复笔友Mike的邮件,给他至少3条建议并说明理由。
【解析版】成都市青羊区中考数学模拟试卷(一)
四川省成都市青羊区中考数学模拟试卷(一)一、选择题:(每小题3分,共30分)1.﹣3的绝对值是()A.﹣3 B. 3 C.±3 D.﹣2.下列运算正确的是()A. 3a+2a=a5 B. a2•a3=a6 C.(a+b)(a﹣b)=a2﹣b2 D.(a+b)2=a2+b23.下列图中,可能是三棱锥的三视图的是()A. B. C. D.4.经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是()美元.A. 1.5×104 B. 1.5×105 C. 1.5×1012 D. 1.5×10135.如果要用正三角形和正方形两种图案进行密铺,那么至少需要()A.三个正三角形,两个正方形 B.两个正三角形,三个正方形C.两个正三角形,两个正方形 D.三个正三角形,三个正方形6.下列命题是真命题的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.两边及一边的对角对应相等的两个三角形全等C.三点确定一个圆D.若a>b,c>0,则ac>bc7.在如图的方格纸中,每个小方格都是边长为1的正方形,点A、B是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C使△ABC的面积为2个平方单位,则满足条件的格点C的个数是()A. 5 B. 4 C. 3 D. 28.若A()、B(﹣)、C()三点都在函数(k<0)的图象上,则y1、y2、y3的大小关系为()A. y2>y3>y1 B. y2>y1>y3 C. y3>y1>y2 D. y3>y2>y19.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥DC,交BC于点E,AD=6cm,则OE的长为()A. 6cm B. 4cm C. 3cm D. 2cm10.如图,正方形MNEF的四个顶点在直径为4的大圆上,小圆与正方形各边都相切,AB与CD 是大圆的直径,AB⊥CD,CD⊥MN,则图中阴影部分的面积是()A. 4π B. 3π C. 2π D.π二、填空题:(每小题4分,共16分)11.分解因式:x2﹣5x=.12.如图,已知点A在反比例函数图象上,AM⊥x轴于点M,且△AOM的面积为1,则反比例函数的解析式为.13.在Rt△ABC中,∠C=90°,2a=c,则∠A=.14.如图,AB是半圆O的直径,弦AD,BC相交于点P,且CD,AB的长分别是一元二次方程x2﹣7x+12=0的两根,则cos∠DPB=.三、解答题:(本大题共6个小题,共54分)15.(1)计算:﹣22×+|﹣2|+12sin60°解不等式组,并把解集在数轴上表示出来.16.化简:+÷.17.已知:如图,在△ABC中,AB=BC=2,∠ABC=120°,BC∥x轴,点B的坐标是(﹣3,1).(1)画出△ABC关于y轴对称的△A′B′C′;求以点A、B、B′、A′为顶点的四边形的面积.18.为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为,喜欢“戏曲”活动项目的人数是人;若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.19.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.20.如图,正方形ABCD的边长为8,M、N分别是边BC、CD上的两个动点,当M点在BC上运动时,始终保持AM和MN垂直.(1)证明:Rt△ABM∽Rt△MCN;设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,梯形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时,Rt△ABM∽Rt△AMN?一、填空题(每小题4分,共20分)21.已知,则x+y=.22.如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是.23.如图是四张全等的矩形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a,b的恒等式.24.如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD 相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是.(只需填上正确结论的序号)25.如图,在一单位为1cm的方格纸上,依右图所示的规律,设定点A1、A2、A3、A4…A n、连接点A1、A2、A3组成三角形,记为△1,连结点A2、A3、A4组成三角形,记为△2…,连结点A n、A n+1、A n+2组成三角形,记为△n(n为正整数)请你推断,当△n的面积为225cm2时,n=.二、解答题26.今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48000㎡和B种板材24000㎡的任务.(1)如果该厂安排210人生产这两种材,每人每天能生产A种板材60㎡或B种板材40㎡,请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:板房 A种板材(m2) B种板材(m2)安置人数甲型 108 61 12乙型 156 51 10问这400间板房最多能安置多少灾民?27.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.28.如图,抛物线m:y=﹣(x+h)2+k与x轴的交点为A、B,与y轴的交点为C,顶点为M (3,),将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为D;(1)求抛物线n的解析式;设抛物线n与x轴的另一个交点为E,点P是线段ED上一个动点(P不与E、D重合),过点P作y轴的垂线,垂足为F,连接EF.如果P点的坐标为(x,y),△PEF的面积为S,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值;(3)设抛物线m的对称轴与x轴的交点为G,以G为圆心,A、B两点间的距离为直径作⊙G,试判断直线CM与⊙G的位置关系,并说明理由.四川省成都市青羊区中考数学模拟试卷(一)参考答案与试题解析一、选择题:(每小题3分,共30分)1.﹣3的绝对值是()A.﹣3 B. 3 C.±3 D.﹣考点:绝对值.专题:计算题.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:根据负数的绝对值是它的相反数,得|﹣3|=3.故选B.点评:考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列运算正确的是()A. 3a+2a=a5 B. a2•a3=a6 C.(a+b)(a﹣b)=a2﹣b2 D.(a+b)2=a2+b2考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式.专题:计算题.分析:根据合并同类项对A进行判断;根据同底数幂的乘法法则对B进行判断;根据平方差公式对C进行判断;根据完全平方公式对D进行判断.解答:解:A、3a+2a=5a,所以A选项错误;B、a2•a3=a5,所以B选项错误;C、(a+b)(a﹣b)=a2﹣b2,所以C选项正确;D、(a+b)2=a2+2ab+b2,所以D选项错误.故选C.点评:本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了合并同类项和平方差公式.3.下列图中,可能是三棱锥的三视图的是()A. B. C. D.考点:简单几何体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:三棱锥的主视图是三角形,左视图是三角形,俯视图是,故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是()美元.A. 1.5×104 B. 1.5×105 C. 1.5×1012 D. 1.5×1013考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于15000亿有13位,所以可以确定n=13﹣1=12.解答:解:15000亿=1 500 000 000 000=1.5×1012.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.5.如果要用正三角形和正方形两种图案进行密铺,那么至少需要()A.三个正三角形,两个正方形 B.两个正三角形,三个正方形C.两个正三角形,两个正方形 D.三个正三角形,三个正方形考点:平面镶嵌(密铺).分析:分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.解答:解:正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴至少需要三个正三角形,两个正方形.故选:A.点评:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.本题需注意题中包含的至少2个字.6.下列命题是真命题的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.两边及一边的对角对应相等的两个三角形全等C.三点确定一个圆D.若a>b,c>0,则ac>bc考点:确定圆的条件;不等式的性质;全等三角形的判定;平行四边形的判定.分析:根据平行四边形的判定定理,三角形全等的判定方法,确定圆的条件以及不等式的性质即可解决.解答:解:A、一组对边相等,另一组对边平行的四边形有可能是等腰梯形,故原命题错误;B、符合SSA的两个三角形不一定全等,故命题错误;C、不在同一直线上的三点确定一个圆,故错误;D、若a>b,c>0,则ac>bc,故正确.故选D.点评:本题综合考查了各个易错点,应在做题过程中熟练掌握.7.在如图的方格纸中,每个小方格都是边长为1的正方形,点A、B是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C使△ABC的面积为2个平方单位,则满足条件的格点C的个数是()A. 5 B. 4 C. 3 D. 2考点:三角形的面积.专题:压轴题;网格型.分析:首先分别在AB的两侧找到一个使其面积是2个平方单位的点,再分别过这两点作AB的平行线.找到所有的格点即可.即有5个.解答:解:满足条件的C点有5个,如图平行于AB的直线上,与网格的所有交点就是.故选:A.点评:此题主要是注意:根据两条平行线间的距离处处相等,只需在两侧各找一个符合条件的点,再作平行线,即可找到所有符合条件的点.8.若A()、B(﹣)、C()三点都在函数(k<0)的图象上,则y1、y2、y3的大小关系为()A. y2>y3>y1 B. y2>y1>y3 C. y3>y1>y2 D. y3>y2>y1考点:反比例函数图象上点的坐标特征.分析:首先根据反比例函数的性质画出草图,再利用图象比较大小即可.解答:解:如图所示:y2>y1>y3,故选:B.点评:此题主要考查了反比例函数图象上点的坐标特点,关键是画出图形,这样比较直观地得到答案.9.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥DC,交BC于点E,AD=6cm,则OE的长为()A. 6cm B. 4cm C. 3cm D. 2cm考点:菱形的性质;三角形中位线定理.分析:根据已知可得OE是△ABC的中位线,从而求得OE的长.解答:解:∵OE∥DC,AO=CO,∴OE是△ABC的中位线,∵四边形ABCD是菱形,∴AB=AD=6cm,∴OE=3cm.故选C.点评:本题考查了菱形的性质及三角形的中位线定理,属于基础题,关键是得出OE是△ABC的中位线,难度一般.10.如图,正方形MNEF的四个顶点在直径为4的大圆上,小圆与正方形各边都相切,AB与CD 是大圆的直径,AB⊥CD,CD⊥MN,则图中阴影部分的面积是()A. 4π B. 3π C. 2π D.π考点:扇形面积的计算;轴对称的性质.专题:探究型.分析:由AB⊥CD,CD⊥MN可知阴影部分的面积恰好为正方形MNEF外接圆面积的,再根据圆的面积公式进行解答即可.解答:解:∵AB⊥CD,CD⊥MN,∴阴影部分的面积恰好为正方形MNEF外接圆面积的,∵正方形MNEF的四个顶点在直径为4的大圆上,∴S阴影=π×()2=π.故选D.点评:本题考查的是扇形的面积及轴对称的性质,根据题意得出阴影部分的面积恰好为正方形MNEF外接圆面积的是解答此题的关键.二、填空题:(每小题4分,共16分)11.分解因式:x2﹣5x=x(x﹣5).考点:因式分解-提公因式法.分析:直接提取公因式x分解因式即可.解答:解:x2﹣5x=x(x﹣5).故答案为:x(x﹣5).点评:此题考查的是提取公因式分解因式,关键是找出公因式.12.如图,已知点A在反比例函数图象上,AM⊥x轴于点M,且△AOM的面积为1,则反比例函数的解析式为y=﹣.考点:反比例函数系数k的几何意义.分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.解答:解:由于A是图象上任意一点,则S△AOM=|k|=1,又反比例函数的图象在二、四象限,k<0,则k=﹣2.所以这个反比例函数的解析式是y=﹣.故答案为:y=﹣.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义13.在Rt△ABC中,∠C=90°,2a=c,则∠A=60°.考点:特殊角的三角函数值.分析: sinA=,得出sinA的值即可得出∠A.解答:解:由题意,得:=∴sinA==,∴∠A=60°.故答案为:60°.点评:本题考查了特殊角的三角函数值,解答本题的关键是熟练记忆一些特殊角的三角函数值.14.如图,AB是半圆O的直径,弦AD,BC相交于点P,且CD,AB的长分别是一元二次方程x2﹣7x+12=0的两根,则cos∠DPB=.考点:圆周角定理;相似三角形的判定与性质;锐角三角函数的定义.专题:计算题.分析:先利用因式分解法解方程得到AB=4,CD=3,再根据圆周角定理得∠C=∠ABP,∠CDP=∠A,则可判断△PCD∽△PBA,利用相似的性质得==,连接BD,如图,由AB是半圆O的直径得到∠ADB=90°,然后在Rt△PDB中根据余弦的定义求解.解答:解:解方程x2﹣7x+12=0得x1=3,x2=4,则AB=4,CD=3,∵∠C=∠ABP,∠CDP=∠A,∴△PCD∽△PBA,∴==,连接BD,如图,∵AB是半圆O的直径,∴∠ADB=90°,在Rt△PDB中,cos∠DPB==.故答案为.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了相似三角形的判定与性质和锐角三角函数.三、解答题:(本大题共6个小题,共54分)15.(1)计算:﹣22×+|﹣2|+12sin60°解不等式组,并把解集在数轴上表示出来.考点:实数的运算;在数轴上表示不等式的解集;解一元一次不等式组;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项利用乘方的意义及二次根式的性质化简,第二项利用绝对值的代数意义化简,第三项利用特殊角的三角函数值计算即可得到结果;分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:(1)原式=﹣4×2+2+12×=﹣8+2+6=0;由①得,x>﹣1;由②得,x≤4,则不等式组的解集为:﹣1<x≤4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.化简:+÷.考点:分式的混合运算.专题:计算题.分析:原式利用除法法则变形,约分后两项通分并利用通分分式的加法法则计算即可得到结果.解答:解:原式=+•=+===﹣.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.已知:如图,在△ABC中,AB=BC=2,∠ABC=120°,BC∥x轴,点B的坐标是(﹣3,1).(1)画出△ABC关于y轴对称的△A′B′C′;求以点A、B、B′、A′为顶点的四边形的面积.考点:作图-轴对称变换.分析:(1)根据图形关于y轴的对称特点,找出相应的点,把相应的点连接起来即可;分别求出各点的坐标,利用梯形的性质求解.解答:解:(1)如图所示;过A点作AD⊥BC,交CB的延长线于点D,则∠ABD=180°﹣∠ABC=180°﹣120°=60°在Rt△ABD中,BD=AB•cos∠ABD=2×=1AD=AB•sin∠ABD=2×又知点B的坐标为(﹣3,1)∴点A的坐标为(﹣4,1+)∵AA′⊥y轴,BB′⊥y轴∴AA′⊥BB′∵AB与A′B′不平行∴以点A,B,B′,A′为顶点的四边形是等腰梯形由点A,B的坐标可求得AA′=2×4=8,BB′=2×3=6∴梯形ABB′A′的面积=(AA′+BB′)•AD=×(8+6)×=7.点评:解答此题要明确轴对称的性质:1、对称轴是一条直线;2、垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线.线段垂直平分线上的点到线段两端的距离相等;3、在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等;4、在轴对称图形中,对称轴把图形分成完全相等的两份;5、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.18.为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了50名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为24%,喜欢“戏曲”活动项目的人数是4人;若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.考点:条形统计图;扇形统计图;列表法与树状图法.分析:(1)总人数=参加某项的人数÷所占比例,用喜欢“舞蹈”活动项目的人数除以总人数再乘100%,即可求出喜欢“舞蹈”活动项目的人数占抽查总人数的百分比,用总人数减去其他4个小组的人数求出喜欢“戏曲”活动项目的人数;根据频率的计算方法,用选中“舞蹈、声乐”这两项活动的数除以总数计算即可解答.解答:解:(1)根据喜欢声乐的人数为8人,得出总人数=8÷16%=50,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为:×100%=24%,喜欢“戏曲”活动项目的人数是:50﹣12﹣16﹣8﹣10=4,故答案为:50,24%,4;(用树状图)设舞蹈、乐器、声乐、戏曲的序号依次是①②③④,故恰好选中“舞蹈、声乐”两项活动的概率是;(用列表法)舞蹈乐器声乐戏曲舞蹈舞蹈、乐器舞蹈、声乐舞蹈、戏曲乐器乐器、舞蹈乐器、声乐乐器、戏曲声乐声乐、舞蹈声乐、乐器声乐、戏曲戏曲戏曲、舞蹈戏曲、乐器戏曲、声乐故恰好选中“舞蹈、声乐”两项活动的概率是.点评:本题主要考查条形统计图与扇形统计图的综合运用,用到的知识点为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.总体数目=部分数目÷相应百分比.19.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.考点:反比例函数综合题.专题:数形结合.分析:(1)根据菱形的性质可得菱形的边长,进而可得点C的坐标,代入反比例函数解析式可得所求的解析式;设出点P的坐标,易得△COD的面积,利用点P的横坐标表示出△PAO的面积,那么可得点P的横坐标,就求得了点P的坐标.解答:解:(1)由题意知,OA=3,OB=4在Rt△AOB中,AB=∵四边形ABCD为菱形∴AD=BC=AB=5,∴C(﹣4,﹣5).设经过点C的反比例函数的解析式为(k≠0),则=﹣5,解得k=20.故所求的反比例函数的解析式为.设P(x,y)∵AD=AB=5,OA=3,∴OD=2,S△COD=即,∴|x|=,∴当x=时,y==,当x=﹣时,y==﹣∴P()或().点评:综合考查反比例函数及菱形的性质,注意:根据菱形的性质得到点C的坐标;点P的横坐标的有两种情况.20.如图,正方形ABCD的边长为8,M、N分别是边BC、CD上的两个动点,当M点在BC上运动时,始终保持AM和MN垂直.(1)证明:Rt△ABM∽Rt△MCN;设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,梯形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时,Rt△ABM∽Rt△AMN?考点:相似形综合题.专题:综合题.分析:(1)由四边形ABCD为正方形,得到一对直角相等,再由AM垂直于MN,得到∠AMN 为直角,利用同角的余角相等得到一对角相等,利用两对角相等的三角形相似即可得证;由(1)得出的相似三角形,可得对应边成比例,根据BM=x与AB=8,表示出CN,由CN为上底,AB为下底,BC为高,利用梯形的面积公式列出y与x的函数关系式,利用二次函数的性质确定出梯形ABCN面积最大时M的位置,并求出最大面积即可;(3)由一对直角相等,要使Rt△ABM∽Rt△AMN,必须有=,表示出BM,由(1)的结论表示出CM,可得出BM=CM,即此时M为BC的中点.解答:(1)证明:在正方形ABCD中,∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠CMN+∠AMB=90°.在Rt△ABM中,∠BAM+∠AMB=90°,∴∠BAM=∠CMN,∴Rt△ABM∽Rt△MCN;∵Rt△ABM∽Rt△MCN,BM=x,∴=,即=,整理得:CN=,∴y=S梯形ABCN=×(+8)×8=﹣x2+4x+32=﹣(x﹣4)2+40(0<x<8),则当x=4,即M点运动到BC的中点时,梯形ABCN的面积最大,最大值为40;(3)∵∠B=∠AMN=90°,∴要使Rt△ABM∽Rt△AMN,必须有=,即BM=,由(1)知=,即MC=,∴BM=MC,则当点M运动到BC的中点时,Rt△ABM∽Rt△MCN.点评:此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,二次函数的性质,梯形的面积求法,以及正方形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.一、填空题(每小题4分,共20分)21.已知,则x+y=1.考点:非负数的性质:算术平方根;非负数的性质:偶次方.专题:计算题;压轴题.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答:解:∵,∴,解得,则x+y=﹣1+2=1,故答案为1.点评:本题考查了非负数的性质,利用该性质建立关于x、y的方程组是解题的关键.22.如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是.考点:列表法与树状图法.专题:压轴题.分析:列举出所有情况,让桌面相接触的边上的数字都是奇数的情况数除以总情况数即为所求的概率.解答:解:列表得:(4,6)(5,6)(6,6)(7,6)(8,6)(9,6)(4,5)(5,5)(6.5)(7,5)(8,5)(9,5)(4,4)(5,4)(6,4)(7,4)(8,4)(9,4)(4,3)(5,3)(6,3)(7,3)(8,3)(9,3)(4,2)(5,2)(6,2)(7,2)(8,2)(9,2)(4,1)(5,1)(6,1)(7,1)(8,1)(9,1)∴一共有36种情况,与桌面相接触的边上的数字都是奇数的有9种情况,∴与桌面相接触的边上的数字都是奇数的概率是,所以答案:.点评:列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.23.如图是四张全等的矩形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a,b的恒等式(a﹣b)2=(a+b)2﹣4ab.考点:完全平方公式的几何背景.专题:压轴题.分析:从图中可以得出,大正方形的边长为a+b,大正方形的面积就为(a+b)2,4个矩形的边长相同,且长为a,宽为b,则4个矩形的面积为4ab,中间空心的正方形的边长为a﹣b,面积等于(a﹣b)2,大正方形面积减去4个阴影矩形的面积就等于中间空白部分的面积.解答:解:∵四周阴影部分都是全等的矩形,且长为a,宽为b∴四个矩形的面积为4ab∵大正方形的边长为a+b∴大正方形面积为(a+b)2∴中间小正方形的面积为(a+b)2﹣4ab而中间小正方形的面积也可表示为:(a﹣b)2∴(a﹣b)2=(a+b)2﹣4ab.故答案为:(a﹣b)2=(a+b)2﹣4ab.点评:本题考查了完全平方公式几何意义,利用大正方形面积减去阴影部分的面积就是中间的正方形的面积.24.如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD 相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是①②⑤.(只需填上正确结论的序号)考点:切线的性质;相似三角形的判定与性质.专题:计算题.分析:连接OE,利用切线长定理得到AD=ED,CE=CB,且OD、OC分别为角平分线,利用平角的定义及等式性质得到∠COD为直角,进而确定出三角形ODE与三角形COD相似,由相似得比例列出关系式,根据CD=DE+EC,等量代换得到AD+BC=CD,即可得到正确的选项.解答:解:连接OE,∵DA、DE为圆O的切线,∴AD=ED,∠AOD=∠EOD,∵CE、CB为圆O的切线,∴CE=CB,∠EOC=∠BOC,∴CD=DE+EC=AD+BC,选项②正确;∵∠AOD+∠DOE+∠EOC+∠BOC=180°,∴∠DOE+∠EOC=90°,即∠DOC=90°,选项⑤正确;∵OE⊥CD,∴∠OED=∠COD=90°,∵∠EDO=∠ODC,∴△DOE∽△CDE,∴OD2=DE•CD,选项①正确;故答案为:①②⑤.点评:此题考查了切线的性质,相似三角形的判定与性质,熟练掌握切线的性质是解本题的关键.25.如图,在一单位为1cm的方格纸上,依右图所示的规律,设定点A1、A2、A3、A4…A n、连接点A1、A2、A3组成三角形,记为△1,连结点A2、A3、A4组成三角形,记为△2…,连结点A n、A n+1、A n+2组成三角形,记为△n(n为正整数)请你推断,当△n的面积为225cm2时,n=14.考点:规律型:点的坐标.分析:根据图形计算发现:第一个三角形的面积是×4×2=4,第二个三角形的面积是×6×3=9,第三个图形的面积是×8×4=16,即第n个图形的面积是×2(n+1)×(n+1)=(n+1)2,即可求得面积是225时,n的值.解答:解:由题意可得规律:第n个图形的面积是:n(n+1),所以当面积是225cm2时,(n+1)2=225.解得n=14.故答案是:14.点评:此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键.二、解答题。
2022年四川省广安市中考数学模拟试卷(1)
2022年四川省广安市中考数学模拟试卷(1)一.选择题(共10小题,满分30分,每小题3分)1.(3分)16的平方根为()A.2B.±2C.4D.±42.(3分)下列运算正确的是()A.x3+x5=x8B.x4x3=x7C.(x3)2=x9D.(x+3)2=x2+93.(3分)据报道:2020年安徽高考报名人数约为562000人,再创历史新高,其中数据562000用科学记数法表示为()A.0.562×106B.5.62×105C.5.62×104D.562×1044.(3分)下列图形:圆,等腰三角形,正方形,菱形,正六边形,既是轴对称图形又是中心对称图形的有()A.2B.3C.4D.55.(3分)若一元二次方程x2﹣2x﹣a=0有实数根,则a的取值范围是()A.a≥﹣1B.a>﹣1C.a≤﹣1D.a<﹣16.(3分)下列说法正确的是()A.了解江苏卫视“非诚勿扰”节目的收视率用普查的方式B.在同一年出生的367名学生中,至少有两人的生日是同一天是必然事件C.某市6月上旬前五天的最高温如下(单位:℃):28、29、31、29、33,对这组数据众数和中位数都是29D.若甲组数据的方差S甲2=0.32,乙组数据的方差S乙2=0.04,则甲组数据比乙组数据稳定7.(3分)已知反比例函数y=,当x<0时,y随x的增大而增大,则a的值可能是()A.3B.2C.1D.﹣18.(3分)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为()A.18°B.20°C.24°D.28°9.(3分)如图,在⊙O中,弦AB⊥AC,且AB=AC=2cm,OD⊥AB,OE⊥AC,垂足分别为D、E,则AB所对的劣弧长为()A.cm B.cm C.cm D.cm 10.(3分)如图,抛物线y1=ax2+bx+c(a≠0),其顶点坐标为A(﹣1,3),抛物线与x 轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a﹣b=0,②abc>0,③方程ax2+bx+c=3有两个相等的实数根,④抛物线与x 轴的另一个交点是(1,0),⑤当﹣3<x<﹣1时,有y2<y1.其中正确结论的个数是()A.5B.4C.3D.2二.填空题(共6小题,满分18分,每小题3分)11.(3分)在函数y=+中,自变量x的取值范围是.12.(3分)如果一个多边形的内角和是1440°,那么这个多边形是边形.13.(3分)△ABC的两边长分别为1和3,第三边的长是方程x2﹣7x+12=0的根,则△ABC 的周长是.14.(3分)已知x、y满足方程组,那么代数式x2﹣y2的值为.15.(3分)如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为cm.16.(3分)如图,AB⊥y轴,垂足为B,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=﹣x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=﹣x上,依次进行下去…若点B的坐标是(0,1),则点O12的横坐标为.三.解答题(共4小题,满分23分)17.(5分)(1)计算:.(2)解方程:+1=.18.(6分)先化简,再求值:(+)÷,其中a=﹣3,b=2.19.(6分)已知:如图,在菱形ABCD中,F为边AB的中点,FC与对角线BD交于点G,过G作GE⊥BC于点E,∠ADB=∠FCB.(1)求证:AB=2BE;(2)求证:DG=CF+GE.20.(6分)如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3),BE⊥x轴,垂足为E.(1)确定k的值:;(2)计算△OAB的面积;(3)若点D(3,b)在双曲线y=(x>0)上,直线AD的解析式为y=mx+n,请直接写出不等式mx+n<的解集:.四.解答题(共4小题,满分30分)21.(6分)某市一研究机构为了了解10~60岁年龄段市民对创建文明城市的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚未完整的频数分布直方图和扇形统计图,如图所示:(1)请直接写出m=;(2)请补全上面的频数分布直方图;(3)若从第1组的3个女士A,B,C,和2个男士M,N中分别随机抽取1人进行创建文明城市专题访谈,请用树状图或列表法求出恰好抽到女士A的概率.22.(8分)3月12日是植树节,重庆市第一实验中学开展了“我与自然﹣﹣一实农场”的活动:初一、初二年级以班级为单位,各开辟了一块菜园种植蔬菜,初二某班学生经商量计划买番茄苗和茄子苗共100株,经了解茄子苗的单价是番茄苗单价的,若花80元购进番茄苗,则购买茄子苗需要90元.(1)求番茄苗和茄子苗的单价;(2)班长在购买菜苗时了解到,在当前种植条件下,番茄的成活率为75%,一株番茄苗大约能结8个番茄,茄子的存活率为90%,一株茄子苗大约能结5个茄子,班长决定再多购买番茄和茄子苗共20株,但是不能超过预算210元,且番茄苗的总数量不低于茄子苗总数量的,班长最终应该如何购买,才能使所结的果实数量最多.23.(8分)学校运动场的四角各有一盏探照灯,其中一盏探照灯B的位置如图所示,已知坡长AC=12m,坡角α为30°,灯光受灯罩的影响,最远端的光线与地面的夹角β为27°,最近端的光线恰好与地面交于坡面的底端C处,且与地面的夹角为60°,A、B、C、D在同一平面上.(结果精确到0.1m.参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51,≈1.73.)(1)求灯杆AB的高度;(2)求CD的长度.24.(8分)如图,等边△ABC中,D为BC的中点.(1)只利用圆规在AC边上找一点E,使∠EDC=15°,不写作法,保留作图痕迹;(2)利用你的作图证明∠EDC=15°.五.解答题(共1小题,满分9分,每小题9分)25.(9分)如图,AB为⊙O的直径,点C,D是⊙O上的点,AD平分∠BAC,过点D作AC的垂线,垂足为点E.(1)求证:DE是⊙O的切线;(2)延长AB交ED的延长线于点F,若⊙O半径的长为3,tan∠AFE=,求CE的长.六.解答题(共1小题,满分10分,每小题10分)26.(10分)如图,二次函数y=ax2+4ax﹣12a的图象与x轴交于A、B两点(点A在点B 的右边),与y轴交于点C.(1)请直接写出A、B两点的坐标:A,B;(2)若以AB为直径的圆恰好经过这个二次函数图象的顶点.①求这个二次函数的表达式;②若P为二次函数图象位于第二象限部分上的一点,过点P作PQ平行于y轴,交直线BC于点Q.连接OQ、AQ,是否存在一个点P,使tan∠OQA=?如果存在,请求出点P的坐标;如果不存在,请说明理由.2022年四川省广安市中考数学模拟试卷(1)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)16的平方根为()A.2B.±2C.4D.±4【解答】解:∵(±4)2=16,∴16的平方根是±4.故选:D.2.(3分)下列运算正确的是()A.x3+x5=x8B.x4x3=x7C.(x3)2=x9D.(x+3)2=x2+9【解答】解:A、x3与x5不是同类项不能合并,故本选项错误;B、x4x3=x4+3=x7,正确;C、应为(x3)2=x3×2=x6,故本选项错误;D、应为(x+3)2=x2+6x+9,故本选项错误;故选:B.3.(3分)据报道:2020年安徽高考报名人数约为562000人,再创历史新高,其中数据562000用科学记数法表示为()A.0.562×106B.5.62×105C.5.62×104D.562×104【解答】解:将562000用科学记数法表示为:5.62×105.故选:B.4.(3分)下列图形:圆,等腰三角形,正方形,菱形,正六边形,既是轴对称图形又是中心对称图形的有()A.2B.3C.4D.5【解答】解:圆既是轴对称图形又是中心对称图形;等腰三角形是轴对称图形,不是中心对称图形;正方形既是轴对称图形又是中心对称图形;菱形既是轴对称图形又是中心对称图形;正六边形既是轴对称图形又是中心对称图形;综上所述,既是轴对称图形又是中心对称图形的有4个.故选:C.5.(3分)若一元二次方程x2﹣2x﹣a=0有实数根,则a的取值范围是()A.a≥﹣1B.a>﹣1C.a≤﹣1D.a<﹣1【解答】解:根据题意得Δ=(﹣2)2+4a≥0,解得a≥﹣1.故选:A.6.(3分)下列说法正确的是()A.了解江苏卫视“非诚勿扰”节目的收视率用普查的方式B.在同一年出生的367名学生中,至少有两人的生日是同一天是必然事件C.某市6月上旬前五天的最高温如下(单位:℃):28、29、31、29、33,对这组数据众数和中位数都是29D.若甲组数据的方差S甲2=0.32,乙组数据的方差S乙2=0.04,则甲组数据比乙组数据稳定【解答】解:A、了解江苏卫视“非诚勿扰”节目的收视率,人数众多,应采用抽样调查的方式,故原说法错误;B、在同一年出生的367名学生中,至少有两人的生日是同一天是必然事件,说法错误;C、某市6月上旬前五天的最高温如下(单位:℃):28、29、31、29、33,对这组数据众数和中位数都是29,说法正确;D、若甲组数据的方差S甲2=0.32,乙组数据的方差S乙2=0.04,则乙组数据比甲组数据稳定,故原说法错误;故选:C.7.(3分)已知反比例函数y=,当x<0时,y随x的增大而增大,则a的值可能是()A.3B.2C.1D.﹣1【解答】解:∵反比例函数y=,当x<0时,y随x的增大而增大,∴2﹣a<0,解得:a>2.故选:A.8.(3分)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为()A.18°B.20°C.24°D.28°【解答】解:∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB'C',∴∠C=∠C',AB=AB',∴∠B=∠AB'B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣108°,∴∠C=24°,∴∠C'=∠C=24°,故选:C.9.(3分)如图,在⊙O中,弦AB⊥AC,且AB=AC=2cm,OD⊥AB,OE⊥AC,垂足分别为D、E,则AB所对的劣弧长为()A.cm B.cm C.cm D.cm【解答】解:如图:连接AO,BO∵AB⊥AC,OE⊥AC,OD⊥AB,∴ADOE是矩形.∵AB=AC=2,∴AD=AE=1,∴ADOE是正方形.∴AO=,∠AOB=90°,==cm.故选:D.10.(3分)如图,抛物线y1=ax2+bx+c(a≠0),其顶点坐标为A(﹣1,3),抛物线与x 轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a﹣b=0,②abc>0,③方程ax2+bx+c=3有两个相等的实数根,④抛物线与x 轴的另一个交点是(1,0),⑤当﹣3<x<﹣1时,有y2<y1.其中正确结论的个数是()A.5B.4C.3D.2【解答】解:由抛物线对称轴为直线x=﹣b=2a,则①正确;由图象,ab同号,c>0,则abc>0,则②正确;方程ax2+bx+c=3可以看作是抛物线y=ax2+bx+c与直线y=3求交点横坐标,由抛物线顶点为(﹣1,3)则直线y=3过抛物线顶点.∴方程ax2+bx+c=3有两个相等的实数根.故③正确;由抛物线对称轴为直线x=﹣1,与x轴的一个交点(﹣3,0)则有对称性抛物线与x轴的另一个交点为(1,0)则④正确;∵A(﹣1,3),B(﹣3,0),直线y2=mx+n与抛物线交于A,B两点∴当当﹣3<x<﹣1时,抛物线y1的图象在直线y2上方,则y2<y1,故⑤正确.故选:A.二.填空题(共6小题,满分18分,每小题3分)11.(3分)在函数y=+中,自变量x的取值范围是x≥3且x≠5.【解答】解:由题可得,,解得,∴自变量x的取值范围是x≥3且x≠5,故答案为:x≥3且x≠5.12.(3分)如果一个多边形的内角和是1440°,那么这个多边形是十边形.【解答】解:设它的边数为n,根据题意,得(n﹣2)•180°=1440°,所以n=10.所以这是一个十边形.13.(3分)△ABC的两边长分别为1和3,第三边的长是方程x2﹣7x+12=0的根,则△ABC 的周长是7.【解答】解:∵(x﹣3)(x﹣4)=0,∴x﹣3=0或x﹣4=0,∴x1=3,x2=4,∵1+3=4,∴三角形的第三边长为3,∴△ABC的周长为1+3+3=7.故答案为7.14.(3分)已知x、y满足方程组,那么代数式x2﹣y2的值为﹣15.【解答】解:由题意得:(x﹣y)(x+y)=3×(﹣5).∴x2﹣y2=﹣15.故答案为:﹣15.15.(3分)如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为2 cm.【解答】解:在Rt△ABC中,∵∠C=90°,AC=8cm,BC=6cm,∴AB==10cm,根据折叠的性质可知:AE=AB=10cm,∵AC=8cm,∴CE=AE﹣AC=2cm,即CE的长为2cm,故答案为:2.16.(3分)如图,AB⊥y轴,垂足为B,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=﹣x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=﹣x上,依次进行下去…若点B的坐标是(0,1),则点O12的横坐标为﹣9﹣9.【解答】解:观察图象可知,O12在直线y=﹣x上时,OO12=6•OO2=6(1++2)=18+6,∴O12的横坐标=﹣(18+6)•cos30°=﹣9﹣9,故答案为﹣9﹣9.三.解答题(共4小题,满分23分)17.(5分)(1)计算:.(2)解方程:+1=.【解答】解:(1)原式=2×+1﹣3+﹣1==;(2),去分母,得:(x﹣1)2+(x+1)(x﹣1)=2x2,去括号,得:x2﹣2x+1+x2﹣1=2x2,移项,得:x2﹣2x2﹣2x+x2=1﹣1,合并同类项,得:﹣2x=0,系数化1,得:x=0,检验:当x=0时,(x+1)(x﹣1)≠0,∴x=0是原分式方程的解.18.(6分)先化简,再求值:(+)÷,其中a=﹣3,b=2.【解答】解:(+)÷====,当a=﹣3,b=2时,原式==.19.(6分)已知:如图,在菱形ABCD中,F为边AB的中点,FC与对角线BD交于点G,过G作GE⊥BC于点E,∠ADB=∠FCB.(1)求证:AB=2BE;(2)求证:DG=CF+GE.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=BC,AD∥BC,∴∠ADB=∠DBC,∵∠ADB=∠FCB,∴∠FCB=∠DBC,∴GB=GC,又∵GE⊥BC,∴BC=2BE,∴AB=2BE;(2)如图,延长CF,DA交于点H,∵四边形ABCD是菱形,∴AD∥BC,∠ABD=∠DBC,∴∠H=∠FCB,∴∠H=∠ADB,∴DG=HG,∵点F是AB的中点,∴AF=BF,AB=2BF,∴BF=BE,在△AFH和△BFC中,,∴△AFH≌△BFC(AAS),∴CF=FH,在△BGF和△BGE中,,∴△BGF≌△BGE(SAS),∴FG=GE,∴DG=HG=HF+FG=FC+GE.20.(6分)如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3),BE⊥x轴,垂足为E.(1)确定k的值:6;(2)计算△OAB的面积;(3)若点D(3,b)在双曲线y=(x>0)上,直线AD的解析式为y=mx+n,请直接写出不等式mx+n<的解集:0<x<2或x>3.【解答】解:(1)将点A(2,3)代入y=(x>0)得:k=6,故答案为6;(2)过点C作CF⊥x轴,垂足为F,∴CF∥BE,∴△OCF∽△OBE,∵C为OB的中点,即=,∴CF=BE=,∵C在双曲线y=上,∴C(4,),∴OF=4,OE=8,∴AB=8﹣2=6,得:S△AOB=×6×=9;(3)将D(3,b)代入反比例解析式y=,得:b==2,∴点D坐标为(3,2),∴不等式mx+n<的解集是0<x<2或x>3,故答案为0<x<2或x>3.四.解答题(共4小题,满分30分)21.(6分)某市一研究机构为了了解10~60岁年龄段市民对创建文明城市的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚未完整的频数分布直方图和扇形统计图,如图所示:(1)请直接写出m=20;(2)请补全上面的频数分布直方图;(3)若从第1组的3个女士A,B,C,和2个男士M,N中分别随机抽取1人进行创建文明城市专题访谈,请用树状图或列表法求出恰好抽到女士A的概率.【解答】解:(1)20÷100=20%,∴m=20,故答案为:20;(2)第2组的人数为:100×25%=25(人),补全频数分布直方图如图所示:(3)画树状图如图:共有6个等可能的结果,恰好抽到女士A的结果有2个,∴恰好抽到女士A的概率为=.22.(8分)3月12日是植树节,重庆市第一实验中学开展了“我与自然﹣﹣一实农场”的活动:初一、初二年级以班级为单位,各开辟了一块菜园种植蔬菜,初二某班学生经商量计划买番茄苗和茄子苗共100株,经了解茄子苗的单价是番茄苗单价的,若花80元购进番茄苗,则购买茄子苗需要90元.(1)求番茄苗和茄子苗的单价;(2)班长在购买菜苗时了解到,在当前种植条件下,番茄的成活率为75%,一株番茄苗大约能结8个番茄,茄子的存活率为90%,一株茄子苗大约能结5个茄子,班长决定再多购买番茄和茄子苗共20株,但是不能超过预算210元,且番茄苗的总数量不低于茄子苗总数量的,班长最终应该如何购买,才能使所结的果实数量最多.【解答】解:(1)设番茄苗的单价为x元,茄子苗的单价为x元,依题意得:+=100,解得:x=2,经检验,x=2是原方程的解,且符合题意,∴x=×2=.答:番茄苗的单价为2元,茄子苗的单价为元.(2)原计划购进番茄苗80÷2=40(株),原计划购进茄子苗90÷=60(株).设再多购买番茄苗m株,则购进番茄苗的总数量为(40+m)株,购进茄子苗的总数量为60+(20﹣m)=(80﹣m)株,依题意得:,解得:≤m≤20.设所结的果实数量为w个,则w=8×75%(40+m)+5×90%(80﹣m)=m+600.∵>0,∴w随m的增大而增大,∴当m=20时,w取得最大值,此时40+m=40+20=60,80﹣m=80﹣20=60.答:当购买番茄苗60株,茄子苗60株时,所结的果实数量最多.23.(8分)学校运动场的四角各有一盏探照灯,其中一盏探照灯B的位置如图所示,已知坡长AC=12m,坡角α为30°,灯光受灯罩的影响,最远端的光线与地面的夹角β为27°,最近端的光线恰好与地面交于坡面的底端C处,且与地面的夹角为60°,A、B、C、D在同一平面上.(结果精确到0.1m.参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51,≈1.73.)(1)求灯杆AB的高度;(2)求CD的长度.【解答】解:(1)延长BA交CG于点E,则BE⊥CG,在Rt△ACE中,∠ACE=30°,AC=12m,∴AE=AC=×12=6(m),CE=AC•cosα=12×=6(m),在Rt△BCE中,∠BCE=60°,∴BE=CE•tan∠BCE=6×=18(m),∴AB=BE﹣AE=18﹣6=12(m);(2)在Rt△BDE中,∠BDE=27°,∴CD=DE﹣CE=﹣6≈24.9(m).24.(8分)如图,等边△ABC中,D为BC的中点.(1)只利用圆规在AC边上找一点E,使∠EDC=15°,不写作法,保留作图痕迹;(2)利用你的作图证明∠EDC=15°.【解答】(1)解:如图,点E为所作;(2)证明:连接DE,如图,∵等边△ABC中,D为BC的中点,∴∠BAC=60°,AD⊥BC,AD平分∠BAC,∴∠DAC=30°,∠ADC=90°,∵AD=AE,∴∠ADE=∠AED=(180°﹣30°)=75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.五.解答题(共1小题,满分9分,每小题9分)25.(9分)如图,AB为⊙O的直径,点C,D是⊙O上的点,AD平分∠BAC,过点D作AC的垂线,垂足为点E.(1)求证:DE是⊙O的切线;(2)延长AB交ED的延长线于点F,若⊙O半径的长为3,tan∠AFE=,求CE的长.【解答】(1)证明:连接OD.∵AD平分∠BAC,∴∠OAD=∠DAE,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠DAE,∴OD∥AE,∵AC⊥DE,∴OD⊥DE,∵OD是⊙O半径,∴DE是⊙O的切线.(2)解:连接BC,交OD于点M.∵AB是⊙O的直径,∴∠ACB=90°,∵∠AED=∠ODE=90°,∴∠ACB=∠AED=∠ODE=90°,∴四边形CEDM是矩形,∴CE=MD,CM∥DE,∴∠F=∠ABC,在Rt△OBM中,OB=3,tan∠ABC=,设OM=3x,BM=4x,∴(3x)2+(4x)2=32,解得x=,负值舍去,∴OM=∴CE=MD=3﹣=.六.解答题(共1小题,满分10分,每小题10分)26.(10分)如图,二次函数y=ax2+4ax﹣12a的图象与x轴交于A、B两点(点A在点B 的右边),与y轴交于点C.(1)请直接写出A、B两点的坐标:A(2,0),B(﹣6,0);(2)若以AB为直径的圆恰好经过这个二次函数图象的顶点.①求这个二次函数的表达式;②若P为二次函数图象位于第二象限部分上的一点,过点P作PQ平行于y轴,交直线BC于点Q.连接OQ、AQ,是否存在一个点P,使tan∠OQA=?如果存在,请求出点P的坐标;如果不存在,请说明理由.【解答】(1)在y=ax2+4ax﹣12a中,令y=0得ax2+4ax﹣12a=0,解得:x1=2,x2=﹣6,∴A(2,0),B(﹣6,0),故答案为:A(2,0),B(﹣6,0).(2)①∵A(2,0),B(﹣6,0),∴抛物线的对称轴为直线x==﹣2,AB=6﹣(﹣2)=8,∴抛物线的顶点坐标为(﹣2,﹣16a),∵以AB为直径的圆经过这个二次函数图象的顶点,∴﹣16a=,∴,∴这个二次函数的表达式为.②如图所示:当x=0时,y=3,∴C(0,3),∴OC=3,∵==,∴tan∠ABQ=,∴∠OQA=∠QBA,∴△AQO∽△ABQ,∴AQ2=AO×AB=2×8=16,∵C(0,3),∴CQ解析式为y=+3,设点P(x,﹣x2﹣x+3),则Q(x,x+3),∴(2﹣x)2+(x+3)2=16,解得x=﹣或x=2(不合题意,舍去),∴点P的坐标为(﹣,).。
2024年四川省成都中考数学模拟试题
2024年四川省成都中考数学模拟试题一、单选题1.中国是最早采用正负数表示相反意义的量的国家.成都实行的“新中考”中“引体向上”项目男生满分标准为15次,若在平时训练时小成把18次记为3+,则应把14次记为( ) A .1-B .0C .1+D .2+2.2024年3月20日-22日,第110届全国糖酒商品交易会在成都举办,本届糖酒会展览总面积达 32.5万平方米,创糖酒会历届之最.将数据32.5万用科学记数法表示为( ) A .3.2510⨯B .43.2510⨯C .53.2510⨯D .63.2510⨯3.如图所示的几何体是由6个大小相同的小立方块搭成,从三个不同方向观察该几何体得到的视图面积相等的是( )A .主视图与左视图B .主视图与俯视图C .俯视图与左视图D .主视图,俯视图,左视图4.下列计算正确的是( ) A .32xy y x -= B .()326328x y x y -=C .()2211x x -=-D .()()2339x x x +-=-5.郑板桥有诗《山中雪后》云:“晨起开门雪满山,雪晴云淡日光寒”描绘了一幅冬日山居雪景图.想感受冬日山居雪景的小颖密切关注寒假期间成都某山区一周的最低气温(℃)以便出行,该山区某周的最低气温预报如下:则最低气温的众数、中位数分别是( ) A .4,4--B .4,5--C .5,3--D .5,4--6.如图,点E 、F 、C 、B 在同一直线上,AB DE =,B E ∠=∠,添加下列一个条件,不能判定ABC DEF ≌△△的条件是( )A .BF EC =B .AC DF = C .AD ∠=∠ D .ACB DFE ∠=∠7.我国古代著作《九章算术》中记载了这样一题:“今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?”题目大意是:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,则可列方程组为( ) A .911616x y x y -=⎧⎨-=⎩B .911616x y x y -=⎧⎨+=⎩C .911616x y x y +=⎧⎨-=⎩D .911616x y x y -=⎧⎨+=⎩8.如图,二次函数2y ax bx c =++的图象与x 轴交于()1,0A ,()4,0B -两点,下列说法正确的是( )A .0c <B .抛物线的对称轴是直线2x =-C .当1x >-时,y 的值随x 值的增大而减小D .420a b c -+<二、填空题9.在平面直角坐标系中,点()1,2A 向右平移3个单位长度,再向下平移2个单位长度后的对应点A '的坐标是 .10.已知1x =是分式方程3122x ax x--=---的解,则实数a 的值为. 11.如图,在矩形ABCD 中,连接,AC BD ,过点A 作AE BD ⊥于点E .若6AB =,8AD =,则BE 的长为.12.若点19,2A x ⎛⎫⎪⎝⎭,()2,4B x 都在一次函数31y x =+的图象上,则1x 2x (填“>”或“<”).13.如图,在ABC V 中,120BAC ∠=︒,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交,AB BC 于点,M N ;②分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点P ;③作射线BP ,交AC 于点D ;④过点D 作DE BC ⊥于点E .若2AD =,则DE 的长为.三、解答题14.(1)计算:()0π 3.142cos303︒-. (2)解不等式组:()32213115x x x x ⎧+-≥-⎪⎨-<+⎪⎩①② 15.成都大运会闭幕式上,最后出场的“花花”流下的两滴“泪水”表达了不舍的情绪,让人非常感动.花花作为成都大熊猫繁育研究基地的“顶流明星”,无数游客前去成都大熊猫繁育研究基地看花花,园区采用单循环的观赏模式,每30名左右游客看熊猫时间3分钟,保证不会有人群杂音、闪光灯等干扰到幼年熊猫的休息.某中学为了解学生对花花的喜爱程度,随机调查了部分学生,并将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的学生总人数为______人,扇形统计图中“喜欢”对应的扇形圆心角度数为______; (2)若该校共有1200名学生,请你估计对花花的喜爱程度为“一般”的学生人数;(3)本次调查中,“很喜欢”的4人中有一名男生和三名女生,若从中随机抽取两人前往成都大熊猫繁育研究基地观看花花,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.16.《无人驾驶航空器飞行管理暂行条例》自2024年1月1日起实施,填补了无人驾驶航空器管理法规空白.有飞行操控梦的佳佳爸爸购买了一款无人机,该款无人机的部分信息如下表:如图,佳佳爸爸想了解该款无人机的最大飞行高度是否达到信息介绍的最低标准,佳佳打算用测角仪和卷尺解决爸爸的困惑,她让爸爸把无人机飞到其能飞行的最大高度A 点处,佳佳站在地面上B 点处用测角仪观测到无人机的仰角为60︒,佳佳向后退30步到达D 点处用测角仪观测到无人机的仰角为55︒,已知佳佳的步长为47cm ,测角仪的高度为1.6m (点,B D 在一条直线上,点,E C 在一条直线上).请帮佳佳解决爸爸的困惑.(结果精确到1m ,参考数据:sin550.82︒≈,cos550.57︒≈,tan55 1.43︒≈ 1.73≈)17.如图,O e 是ABC V 的外接圆,AB 为直径,BD 平分ABC ∠交O e 于点D ,交AC 于点E ,连接OD 交AC 于点F ,连接CD .(1)求证:OD AC ⊥; (2)若2OF =,4cos 5OBD ∠=,求EF 和CD 的长. 18.如图,在平面直角坐标系xOy 中,直线43y x =与反比例函数k y x =的图象交于()3,A m ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)过点A 的直线交反比例函数图象于点C ,交y 轴于点D ,连接BD ,当AD BD ⊥时,求ABC V 的面积;(3)在(2)的条件下,当点D 在y 轴负半轴上时,在射线BD 上有一点Q 满足22AB BD BQ =⋅,求点Q 的坐标.四、填空题19.若2230x x +-=,则代数式114222x x x x ⎛⎫-÷⎪+--⎝⎭的值为. 20.如图,在等边ABC V 中,,,,,,D E F G M N 分别是边,,AB BC CA 的三等分点,连接,,EF GM ND ,随机在ABC V 内取一点,则这个点恰好在阴影部分的概率为.21.我国古代直至20世纪六七十年代,民间航海主要依靠海图指引航行,海图上有详尽数据,包括岛屿,灯塔,暗礁,水深等,船长结合灯塔的位置,通过测定角度来确定是否会遇到暗礁.如图,A B ,表示灯塔,暗礁分布在经过A B ,两点的一个圆形区域内,C 是有触礁危险的临界点,ACB ∠就是“危险角”,船P 与暗礁在AB 的同侧,若AB =5AC =,7BC =,当船P 位于安全区域时,它与两个灯塔的夹角APB ∠的取值范围是.22.定义:在平面直角坐标系xOy 中,若点(),P a b 满足a b ab +=,则称点P 为“积和点”.例如:()0,0,()2,2就是“积和点”.若直线y x m =-+上所有的点中只有唯一一个“积和点”,则m =.23.如图,在Rt ABC △中,90BAC ∠=︒,3AB =,4AC =,AD BC ⊥于点D ,点P 是线段AD 上一动点,以CP 为直角边作Rt CPE △,且∠=∠P E C A B C ,连接DE ,则当DE AB ∥时,AP 的长为;点P 在运动过程中,DE 的最小值为 .五、解答题24.近年来,盲盒备受潮玩商家关注.某潮玩商家推出2024年生肖龙公仔,并将A 类毛绒玩具和B 类毛绒挂件放在一起采用盲盒模式销售,一个盲盒内随机装一个A 类毛绒玩具和一个B 类毛绒挂件(不同盲盒内所装的玩具与挂件仅颜色不同),已知一个盲盒成本为22元/个.该商家销售该盲盒一段时间后,发现该盲盒的周销售量y (个)和盲盒单价x (元)满足一次函数关系的图象如图所示.(1)求该盲盒周销售量y (个)和盲盒单价x (元)的函数表达式;(2)该商家应如何定价才能使盲盒的周销售利润最大?并求出此时的最大利润.25.如图,在平面直角坐标系xOy 中,已知抛物线21y ax bx =++与x 轴交于()3,0A ,()1,0B -两点,与y 轴交于点C ,直线():2l y k x =-与抛物线交于点D ,与x 轴交于点P ,连接CP .(1)求抛物线的函数表达式; (2)若1tan 2CPD ∠=,求点D 的坐标;(3)直线l 交抛物线对称轴于点Q ,过点P 作PM PQ ⊥,交过点C 且平行于x 轴的直线于点M .试探究:无论()0k k ≠取何值,PM PQ =始终成立.26.探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究. 【尝试初探】(1)如图①,在四边形ABCD 中,若90ABC ADC ∠=∠=︒,5AB AD ==,120BAD ∠=︒,求AC 的长; 【深入探究】(2)如图②,在四边形ABCD 中,若90ABC ADC ∠=∠=︒,45BCD ∠=︒,AC =BD 的长;【拓展延伸】(3)如图③,在四边形ABCD 中,若180ABC ADC ∠+∠=︒,60ADC ∠=︒,AD AB ==延长,DA CB 相交于点E ,DE CE ⊥,P 是线段AC 上一动点,连接PD ,求2DP CP +的最小值.。
四川省2023年中考化学模拟试题及答案汇总(一)
四川省2023年中考化学模拟试题及答案汇总(一)一、单选题1.成语蕴含丰富的中华文化。
下列成语的本义一定体现化学变化的是()A.盲人摸象B.南辕北辙C.火中取栗D.绳锯木断2.成都以“碳达峰、碳中和”为目标,引领城市绿色低碳发展。
下列做法利于实现此目标的是()A.石油炼制B.太阳能发电C.燃煤脱硫D.酒精作燃料3.为了打赢蓝天保卫战,我们要加强大气质量监测。
下列气体属于空气污染物的是()A.氧气B.二氧化硫C.氮气D.水蒸气4.下列有关加热高锰酸钾制取氧气的实验操作正确的是()A.组装仪器B.检查气密性C.加热固体D.氧气验满5.铑被用于汽车催化转化器,使氮氧化物转化成无害气体。
铑元素在元素周期表中的相关信息如图所示,下列说法错误的是()A.铑的原子序数为45B.铑的元素符号为RhC.铑是一种金属元素D.一个铑原子的质量为102.9g6.下列灭火方法错误的是()A.汽油着火——用水浇灭B.油锅起火——用锅盖盖灭C.森林起火——砍伐树木形成隔离带D.图书馆内图书起火——用二氧化碳灭火器灭火7.下列关于氢氧化钠的描述中错误的是()A.其水溶液能使石蕊溶液变红B.对皮肤有强烈的腐蚀作用C.能去除油污,可作炉具清洁剂D.易溶于水,溶解后溶液中有OH-8.碳酸氢钠(NaHCO3)是焙制糕点所用发酵粉的主要成分之一。
下列有关说法正确的是A.NaHCO3中的阳离子为Na+2B.NaHCO3中碳元素的化合价为+2价C.氧原子的结构示意图为D.NaHCO3中含有一种金属元素9.下列化学方程式正确的是A.点燃天然气:CH4+2O2点燃__2H2O+CO2↑B.铜粉中加入稀盐酸:Cu+2HCl=CuCl2+H2↑C.硫在空气中燃烧:S+O2点燃__SO2D.高炉炼铁:Fe2O3+CO 高温__2Fe+CO210.一定条件下物质间可以转化。
结合如下转化过程和初中知识,下列说法错误的是()C→CO-→CO2→H2CO3→CaCO3→CaOA.CO是有毒气体B.CO2不是空气污染物C.H2CO3受热易分解D.CaCO3可直接转化为Ca(OH)211.现有质量相等的X、Y、Z三种金属,分别放入三份溶质质量分数相等的足量稀硫酸中,X不发生反应,Y、Z在生成物中均显+2价,Y、Z反应生成氢气的质量与反应时间的关系如图所示,则下列说正确的是A.相对原子质量:Y>Z B.Y与H2SO4反应,生成YSO4和H2C.完全反应生成氢气的质量:Y<Z D.X、Y、Z的金属活动性顺序为:Y>Z>X12.配制10%的稀硫酸并与碳酸钠粉末反应的部分操作如下,其中操作规范的是()A.读取浓硫酸的体积B.稀释浓硫酸C.加入碳酸钠D.倾倒稀硫酸13.水是生命之源。
2024年四川省泸州市泸县中考一模语文试题(含答案)
泸县初中2021 级第一次学业水平模拟考试语文试题注意事项:1.本试题分第一部分和第二部分。
第一部分1至7页,第二部分7至8页。
2.考生作答时,选择题用2B 铅笔将答案填涂在答题卡对应题目标号的位置上,其余各题用0.5毫米黑色墨迹签字笔将答案写在答题卡上,在本试卷、草稿纸上答题无效。
3.全卷满分120分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
第一部分阅读题(63分)一、现代文阅读(25分)(一)(10分)阅读下面实用文, 完成下面小题。
【材料一】①12月13日,我国今冬第二场雨雪寒潮天气拉开帷幕。
中央气象台暴雪、冰冻、寒潮三预警齐发。
②寒潮天气将自西向东、自北向南影响我国,大部地区会出现降温或者雨雪天气,华北、东北等地的降雪将持续两天以上。
不仅是强降雪,部分地区还有雨夹雪以及冻雨天气,内蒙古、吉林、辽宁等地部分地区日降雪量具有一定极端性。
全国大部地区降温幅度达8至12℃,西北地区、内蒙古中西部、华北西部及江南、华南北部、贵州等地的部分地区降温幅度可达14℃以上。
本轮过程过后,华北、黄淮北部等地部分地区最低气温将接近或跌破历史同期极值。
③针对此次大范围雨雪和寒潮天气,中国气象局于12日18时启动重大气象灾害二级应急响应。
专家提示,由于本轮雨雪寒潮过程持续时间长,强降雪落区重叠,需防范叠加影响。
雨雪、寒潮易造成能见度下降、路面湿滑,建议及时做好除雪除冰工作;积雪可能导致设施农业大棚、简易搭建物垮塌,建议做好除雪、加固;低温天气电力、供暖等能源需求量大幅增加,公众居家做好保暖的同时,也应注意防范火灾和一氧化碳中毒。
2023年12月13 日《中国科技网》,有删改【材料二】①为什么全球变暖,我们冬天的气温还在持续打破纪录,“极寒”天气反而变多了呢?②这是因为随着人类活动的干预,加速了全球变暖的进程,全球气候变暖改变了全球的大气环流形势,通过海洋和大气、陆地和大气的相互作用影响到局地的气候。
2022——2023学年四川省乐山市中考数学专项提升仿真模拟试题(一模二模)含答案
2022-2023学年四川省乐山市中考数学专项提升仿真模拟试题(一模)一、选一选(每小题3分,共24分)1.下列各式结果是负数的是()A.﹣(﹣3)B.﹣|﹣3|C.3﹣2D.(﹣3)22.下列函数中,自变量的取值范围是x >3的是()A.y=x ﹣3B.13y x =- C.y =D.y =3.已知反比例函数y =﹣3x,下列结论没有正确的是()A.图象必点(﹣1,3)B.若x >1,则﹣3<y <0C.图象在第二、四象限内D.y 随x 的增大而增大4.下列说法中,正确的是()A.对载人航天器“神舟十号”的零部件的检查适合采用抽样的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.掷一枚硬币,正面朝上的概率为12D.若2=S 甲0.1,2=S 乙0.01,则甲组数据比乙组数据稳定5.一个几何体的三视图如图所示,则这个几何体是()A. B. C. D.6.如图,在平面直角坐标系中,菱形OACB 的顶点O 在原点,点C 的坐标为(4,0),点B 的纵坐标是−1,则顶点A 坐标是A.(2,1)B.(1,−2)C.(1,2)D.(2,-1)7.如图,RtΔOAB 的顶点O 与坐标原点重合,AOB ∠=90°,AO 2BO =,当点A 在反比例函数2y x=(x >0)的图像上移动时,点B B 的坐标满足的函数解析式为()A.1y (x 0)x=-< B.1y (x 0)2x=-< C.1y (x 0)4x=-< D.1y (x 0)8x=-<8.如图,在正方形ABCD 中,AD=5,点E、F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为()A.32B.C.75D.二、填空题(每小题3分,共30分)9.16的平方根是.10.南海资源丰富,其面积约为35000002km ,相当于我国渤海、黄海和东海总面积的3倍.该面积可用科学记数法表示为____________2km .11.如果有理数x,y满足方程组4221x yx y+=⎧⎨-=⎩那么x2-y2=________.12.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______.13.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是_____.14.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.15.如图,△ABC的三个顶点都在⊙O上,AD是直径,且∠CAD=56°,则∠B的度数为______°.16.如图,在△ABC中,AB=AC,CD=CB,若∠ACD=42°,则∠BAC=__________.17.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是▲(结果保留π).18.如图,在平面直角坐标系中,直线y=kx(k≠)(a>0),线段BC的两个端点分别在x轴与直线y=kx上(点B、C均与原点O没有重合)滑动,且BC=2,分别作BP⊥x轴,CP⊥直线y=kx,交点为P.经探究,在整个滑动过程中,P、O两点间的距离为定值______.三、解答题(本大题共有10小题,共86分)19.(1)计算:21()12---;(2)化简:232(1)121x x x x x ---÷--+.20.(1)解方程:x 2-x-3=0;(2)解没有等式组:()523113822x x x x ⎧->+⎪⎨≤-⎪⎩,.21.某中学初三(1)班共有40名同学,在30秒跳绳测试中他们的成绩统计如下表:跳绳数/个818590939598100人数128115将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(没有完整).(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次跳绳成绩的众数是个,中位数是个;(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳没有能得满分.22.甲、乙、丙、丁四位同学进行羽毛球单打比赛,要从中选出两位同学打场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.23.已知:如图,在菱形ABCD 中,点E 、F 分别在边BC 、CD ,∠BAF=∠DAE ,AE 与BD 交于点G .(1)求证:BE=DF;(2)当DF ADFC DF时,求证:四边形BEFG是平行四边形.24.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.25.某班数学兴趣小组利用数学课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.26.甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA 表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD 对应的函数表达式;(2)求E 点的坐标,并解释E 点的实际意义;(3)若已知轿车比货车晚出发2分钟,且到达乙地后在原地等待货车,则当x=小时,货车和轿车相距30千米.27.阅读下面材料:小明遇到这样一个问题:如图1,在边长为()2a a >的正方形ABCD 各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ 的面积.小明发现:分别延长QE、MF 、NG 、PH 交FA、GB 、HC 、ED 的延长线于点R、S 、T 、W 可得△RQF、△G 、△TNH 、△WPE 是四个全等的等腰直角三角形(如图2)请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,没有重叠),则这个新的正方形的边长为__________;(2)求正方形MNPQ 的面积.参考小明思考问题的方法,解决问题:如图3,在等边△ABC 各边上分别截取AD=BE=CF,再分别过点D、E、F 作BC、AC、AB 的垂线,得到等边△RPQ,若33RPQ S =,则AD 的长为__________.28.在平面直角坐标系中,抛物线24y ax bx =++A(-3,0)、B(4,0)两点,且与y 轴交于点C,点D 在x 轴的负半轴上,且BD=BC,有一动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时另一个动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动.(1)求该抛物线的表达式;(2)若t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;(3)该抛物线的对称轴上是否存在一点M,使MQ+MA 的值最小?若存在,求出点M 的坐标;若没有存在,请说明理由.2022-2023学年四川省乐山市中考数学专项提升仿真模拟试题(一模)一、选一选(每小题3分,共24分)1.下列各式结果是负数的是()A.﹣(﹣3)B.﹣|﹣3|C.3﹣2D.(﹣3)2【正确答案】B【分析】根据相反数、值、乘方,进行化简,即可解答.【详解】A 、(3)3--=,故错误.B 、33--=-,正确.C 、2139-=,故错误.D 、()239-=,故错误.所以B 选项是正确的.本题考查了相反数、值、乘方,解决本题的关键是熟记相反数、值、乘方的法则.2.下列函数中,自变量的取值范围是x >3的是()A .y=x ﹣3B.13y x =- C.y =D.y =【正确答案】D【详解】试题分析:A 、x 为全体实数,故本选项错误;B 、x-3≠0,解得x≠3,故本选项错误;C 、x-3≥0,解得x≥3,故本选项错误;D 、x-3>0,解得x >3,故本选项正确.故选D.考点:函数自变量的取值范围.3.已知反比例函数y =﹣3x,下列结论没有正确的是()A.图象必点(﹣1,3)B.若x >1,则﹣3<y <0C.图象在第二、四象限内D.y 随x 的增大而增大【正确答案】D【详解】A .∵(−1)×3=−3,∴图象必点(−1,3),故正确;B .∵k =−3<0,∴函数图象的两个分支分布在第二、四象限,故正确;C .∵x =1时,y =−3且y 随x 的增大而而增大,∴x >1时,−3<y <0,故正确;D.函数图象的两个分支分布在第二、四象限,在每一象限内,y 随x 的增大而增大,故错误.故选D.4.下列说法中,正确的是()A.对载人航天器“神舟十号”的零部件的检查适合采用抽样的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.掷一枚硬币,正面朝上的概率为12D.若2=S 甲0.1,2=S 乙0.01,则甲组数据比乙组数据稳定【正确答案】C【详解】分析:根据普查和抽样的意义可判断出A 的正误;根据概率的意义可判断出B 、C 的正误;根据方差的意义,方差大则数据没有稳定可判断出D 的正误.详解:A .对载人航天器“神舟十号”的零部件的检查,因为意义重大,适合采用全面的方式,故此选项错误;B .某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的可能降水,故此选项错误;C .一枚硬币,正面朝上的概率为12,故此选项正确;D .若甲组数据的方差2S 甲=0.1,乙组数据的方差2S 乙=0.01,则乙组数据比甲组数据稳定,故此选项错误.故选C .点睛:本题主要考查了方差、概率、全面和抽样,关键是掌握概率是频率(多个)的波动稳定值,是对发生可能性大小的量的表现;方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.一个几何体的三视图如图所示,则这个几何体是()A. B. C. D.【正确答案】C【分析】根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱.【详解】解:A的俯视图是圆,故没有符合题意;B的俯视图是正方形,没有符合题意;C的主视图是两个矩形,俯视图是三角形,左视图是矩形,故符合题意;D的左视图是三角形,故没有符合题意;故选C.6.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是−1,则顶点A坐标是A.(2,1)B.(1,−2)C.(1,2)D.(2,-1)【正确答案】A【详解】∵点C的坐标为(4,0),∴OC=4,∴点B的纵坐标是-1,∴A(2,1).故选A.7.如图,RtΔOAB 的顶点O 与坐标原点重合,AOB ∠=90°,AO 2BO =,当点A 在反比例函数2y x=(x >0)的图像上移动时,点B B 的坐标满足的函数解析式为()A.1y (x 0)x=-< B.1y (x 0)2x=-< C.1y (x 0)4x=-< D.1y (x 0)8x=-<【正确答案】B【详解】分析:过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ,设B 点坐标满足的函数解析式是y =kx,易得△AOC ∽△OBD ,然后由相似三角形面积比等于相似比的平方,求得S △AOC :S △BOD =4,继而求得答案.详解:如图,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ,设B 点坐标满足的函数解析式是y =kx ,∴∠ACO =∠BDO =90°,∴∠AOC +∠OAC =90°.∵∠AOB =90°,∴∠AOC +∠BOD =90°,∴∠BOD =∠OAC ,∴△AOC ∽△OBD ,∴S △AOC :S △BOD =(AO BO)2.∵AO =2BO ,∴S △AOC :S △BOD =4.∵当A 点在反比例函数y =2x(x >0)的图象上移动,∴S △AOC =12OC •AC =12•x •2x=1,∴S △BOD =12DO •BD =12(﹣x •k x )=﹣12k ,∴1=4×(﹣12k ),解得:k =﹣12∴B 点坐标满足的函数解析式y =﹣12x(x <0).故选B .点睛:本题考查了相似三角形的判定与性质以及反比例函数的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形思想的应用是解题的关键.8.如图,在正方形ABCD 中,AD=5,点E、F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为()A.32B.C.75D.【正确答案】D【分析】延长AE 交DF 于G ,再根据全等三角形的判定得出△AGD 与△ABE 全等,得出AG =BE =4,由AE =3,得出EG =1,同理得出GF =1,再根据勾股定理得出EF 的长.【详解】解:延长AE 交DF 于G .如图,∵四边形ABCD 为正方形∴AB=AD=DC=5,∠BAD=∠ADC=90°,∵AE =3,BE =4,∴△ABE 是直角三角形,∴同理可得△DFC 是直角三角形,∵AE=FC ,BE=DF ,AB =DC,∴△ABE ≌△CDF ,∴∠BAE=∠DCF ,∵∠FCD+∠CDF=90°,∴∠BAE+∠CDF=90°,∴∠DAG+∠ADG=90°,∴△AGD 是直角三角形,∴∠ABE +∠BAE =∠DAE +∠BAE ,∴∠GAD =∠EBA ,同理可得:∠ADG =∠BAE .在△AGD 和△BAE 中,∵EAB GDA AD AB ABE DAG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGD ≌△BAE (ASA ),∴AG =BE =4,DG =AE =3,∴EG =4﹣3=1,同理可得:GF =1,∴EF=.故选D .本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG =FG =1,再利用勾股定理计算.二、填空题(每小题3分,共30分)9.16的平方根是.【正确答案】±4【详解】由(±4)2=16,可得16的平方根是±4,故±4.10.南海资源丰富,其面积约为35000002km ,相当于我国渤海、黄海和东海总面积的3倍.该面积可用科学记数法表示为____________2km .【正确答案】63.510⨯【详解】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同.当原数值≥1时,n是正数;当原数的值<1时,n是负数.详解:3500000用科学记数法表示为3.5×106.故答案为3.5×106.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.如果有理数x,y满足方程组4221x yx y+=⎧⎨-=⎩那么x2-y2=________.【正确答案】2【分析】把个方程乘以2,然后利用加减消元法求解得到x、y的值,然后代入代数式进行计算即可得解.【详解】4221x yx y+=⎧⎨-=⎩①②,①×2得,2x+2y=8③,②+③得,4x=9,解得x=9 4,把x=94代入①得,94+y=4,解得y=7 4,∴方程组的解是94 {74 xy==,∴x2-y2=(94)2-(74)2=32216=.考点:解二元方程组.12.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______.【分析】根据降价前后的价格,列式计算即可.【详解】解:设该药品平均每次降价的百分率是x ,根据题意得25×(1-x )(1-x )=16,整理得()225116x -=,解得x =0.2或1.8(没有合题意,舍去);即该药品平均每次降价的百分率是20%,故20%.本题考查一元二次方程的应用.根据题意正确列出方程是解题的关键.13.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是_____.【正确答案】0.3.【详解】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.14.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.【正确答案】9【分析】此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.【详解】∵正多边形的一个内角是140°,∴它的一个外角是:180°-140°=40°,∵多边形的外角和为360°,∴这个正多边形的边数是:360°÷40°=9.故9.15.如图,△ABC 的三个顶点都在⊙O 上,AD 是直径,且∠CAD=56°,则∠B 的度数为______°.【详解】连接CD,AD为直径∴∠ACD=90°,∠CAD=56°∴∠ADC=34°,根据同弧所对的圆周角相等可得:∠B=∠ADC=34°.故34考点:圆的基本性质16.如图,在△ABC中,AB=AC,CD=CB,若∠ACD=42°,则∠BAC=__________.【正确答案】32°【详解】试题解析:设∠BAC=x,则∠BDC=42°+x.∵CD=CB,∴∠B=∠BDC=42°+x.∵AB=AC,∴∠ACB=∠B=42°+x,∴∠BCD=∠ACB-∠ACD=x,∴∠ADC=∠B+∠BCD=42°+x+x=42°+2x.∵∠ADC+∠BDC=180°,∴42°+2x+42°+x=180°,解得x=32°,所以∠BAC=32°.考点:等腰三角形的性质.17.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是▲(结果保留π).【正确答案】1 33π-【详解】过D点作DF⊥AB于点F.∵AD=2,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=2.∴阴影部分的面积=平行四边形ABCD的面积-扇形ADE面积-三角形CBE的面积=230211 4121336023ππ⨯⨯⨯--⨯⨯=-.故答案为.1 33π-18.如图,在平面直角坐标系中,直线y=kx(k≠)(a>0),线段BC的两个端点分别在x轴与直线y=kx上(点B、C均与原点O没有重合)滑动,且BC=2,分别作BP⊥x轴,CP⊥直线y=kx,交点为P.经探究,在整个滑动过程中,P、O两点间的距离为定值______.【正确答案】3【详解】试题分析:根据题意可得:COB=60°,当△OCB 为等边三角形时求出OP的长度.考点:勾股定理.三、解答题(本大题共有10小题,共86分)19.(1)计算:21()12---;(2)化简:232(1)121x x x x x ---÷--+.【正确答案】(1)5;(2)22x x --+【详解】分析:(1)先化简二次根式、计算负整数指数幂、去掉值符号,然后进行加减运算即可;(2)首先计算括号内的式子,通分相加,把除法转化为乘法,然后进行约分即可.详解:(1)原式=41)+-=41+-=5+;(2)原式=[31x -﹣111x x x +--()()]•212x x --()=241x x --•212x x --()=221x x x ()()+---•212x x --()=﹣(x +2)(x ﹣1)=﹣x 2﹣x +2.点睛:主要考查分式的混合运算,通分、因式分解和约分是解答的关键.20.(1)解方程:x 2-x-3=0;(2)解没有等式组:()523113822x x x x ⎧->+⎪⎨≤-⎪⎩,.【正确答案】(1)112x +=,212x -=;(2)542x <≤【详解】分析:(1)利用公式法解方程即可;(2)分别解两个没有等式得到x >2.5和x ≤4,然后根据大小小大中间找确定没有等式组的解集.详解:(1)a =1,b =-1,c =-3,△=b 2-4ac =2(1)41(3)--⨯⨯-=13>0,∴x=12,∴112x =,212x =;(2)解①得x >2.5,解②得x ≤4,所以没有等式组的解集为2.5<x ≤4.点睛:本题考查了解一元二次方程﹣公式法:将一元二次方程化成一般形式,再利用求根公式求解.也考查了解一元没有等式组.21.某中学初三(1)班共有40名同学,在30秒跳绳测试中他们的成绩统计如下表:跳绳数/个818590939598100人数128115将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(没有完整).(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次跳绳成绩的众数是个,中位数是个;(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳没有能得满分.【正确答案】(1)见解析;(2)95;95;(3)54人.【分析】(1)首先根据直方图得到95.5﹣100.5小组共有13人,由统计表知道跳100个的有5人,从而求得跳98个的人数;(2)根据众数和中位数的定义填空即可;(3)用样本估计总体即可.【详解】解:(1)根据直方图得到95.5﹣100.5小组共有13人,由统计表知道跳100个的有5人,∴跳98个的有13﹣5=8(人),跳90个的有40﹣1﹣2﹣8﹣11﹣8﹣5=5(人),故统计表为:跳绳数/个818590939598100人数12581185直方图为:(2)观察统计表知:众数为95个,中位数为95个;(3)估计该中学初三年级没有能得满分的有720×1240=54(人).本题考查了频数分布表以及频率分布直方图的知识,解题的关键是读懂题目意思并读懂两个统计图,难度中等.22.甲、乙、丙、丁四位同学进行羽毛球单打比赛,要从中选出两位同学打场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.【正确答案】16【详解】画树状图:∴共有12个等可能的结果,其中恰好是甲乙的占2个,∴P (甲乙)=21126=本题考查了树状图求概率,解决此题的关键是认真审题,找到总的情况和分类的情况.23.已知:如图,在菱形ABCD 中,点E 、F 分别在边BC 、CD ,∠BAF=∠DAE ,AE 与BD 交于点G .(1)求证:BE=DF ;(2)当DF AD FC DF=时,求证:四边形BEFG 是平行四边形.【正确答案】(1)证明见解析;(2)证明见解析.【分析】(1)由菱形的性质和∠BAF=∠DAE ,证得△ABF 与△AFD 全等后即可证得结论.(2)由AD ∥BC 证得△ADG ∽△EBG ,从而AD DG BE BG =;由DF AD FC DF=和BE=DF 即可得证得DF AD DG FC BE BG==.从而根据平行线分线段成比例定理证得FG ∥BC ,进而得到∠DGF=∠DBC=∠BDC,根据等腰三角形等角对等边的判定和BE=DF,证得BE=GF.利用一组对边平行且相等即可判定平行四边形.【详解】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠ABC=∠ADF,∵∠BAF=∠DAE,∴∠BAF﹣∠EAF=∠DAE﹣∠EAF,即:∠BAE=∠DAF.∴△BAE≌△DAF(ASA).∴BE=DF.(2)∵四边形ABCD是菱形,∴AD∥BC.∴△ADG∽△EBG.∴AD DG BE BG=.又∵BE=DF,DF AD FC DF=,∴DF AD DG FC BE BG==.∴GF∥BC.∴∠DGF=∠DBC=∠BDC.∴DF=GF.又∵BE=DF,∴BE=GF.∴四边形BEFG是平行四边形.24.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.【正确答案】甲、乙两个工厂每天分别能加工40件、60件新产品【分析】设甲工厂每天能加工x件产品,表示8出乙工厂每天加工1.5x件产品,然后根据甲加工产品的时间比乙加工产品的时间多10天列出方程求解即可.【详解】解:设甲工厂每天能加工x件产品,则乙工厂每天加工1.5x件产品,根据题意得,12001200101.5x x-=,解得x=40.经检验,x=40是原方程的解,并且符合题意.1.5x=1.5×40=60.答:甲、乙两个工厂每天分别能加工40件、60件新产品.本题考查的是分式方程的应用题,读懂题意列出方程时解决此题的关键.25.某班数学兴趣小组利用数学课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.【正确答案】雕像AB的高度为95尺.【详解】试题分析:过点E作EF⊥AC,EG⊥CD,在Rt△DEG中,求得EG的长,即可得BF的长;在Rt△BEF中,可得,在Rt△AEF中,∠AEF=60°,设AB=x,根据锐角三角函数求得x即可.试题解析:如图,过点E作EF⊥AC于F,EG⊥CD于G,∵AC⊥CD,∴四边形EFCG是矩形,∴CF=EG,在Rt△DEG中,∵DE=1620,∠D=30°,∴EG=DEsin∠D=1620×12=810,∵BC=857.5,CF=EG,∴BF=BC﹣CF=47.5,∵EF∥DC,∴∠BEF=30°,在Rt△BEF中,tan∠BEF=BF EF,∴,在Rt△AEF中,∠AEF=60°,设AB=x,∵tan∠AEF=AF EF,∴AF=EF×tan∠AEF=3BF,∴x+47.5=3×47.5,∴x=95,答:雕像AB的高度为95尺.考点:解直角三角形的应用.26.甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA 表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD对应的函数表达式;(2)求E点的坐标,并解释E点的实际意义;(3)若已知轿车比货车晚出发2分钟,且到达乙地后在原地等待货车,则当x=小时,货车和轿车相距30千米.【正确答案】(1)y=120x-140(2≤x≤4.5);(2)E点的坐标为(3.5,280),即表示当货车出发3.5小时时货车和轿车相遇;(3)12、114、174、378.【详解】试题分析:(1)设线段CD对应的函数解析式为y=kx+b,由待定系数法求出其解即可;(2)根据两图象相交的交点指的是两车相遇解答即可.(3)先由货车和轿车相距30千米列出方程解答即可.试题解析:(1)设线段CD对应的函数解析式为y=kx+b,可得:1002{400 4.5k bk b=+=+,解得:120{140 kb==-.所以线段CD对应的函数表达式为:y=120x-140(2≤x≤4.5);(2)由图象可得:直线OA的解析式为:y=80x,根据两图象相交的交点指的是两车相遇,可得:80x=120x-140,解得:x=3.5,把x=3.5代入y=80x,得:y=280;所以E点的坐标为(3.5,280),即表示当货车出发3.5小时时货车和轿车相遇;(3)设货车出发xh后,可得:120x-140-30=80x,解得:x=4.25.故答案为4.25.(3)由题意知,B(13,0),∴BC段解析式为y=60x-20(13≤x≤2),货车与轿车相距30km有四种情况:1)当13≤x≤2时,80x-(60x-20)=30,解得x=12;2)当2<x≤72时,80x-(120x-140)=30,解得x=114;3)当72<x≤92时,120x-140-80x=30,解得x=174;4)当92<x≤5时,400-80x=30,解得x=378;∴x=12、114、174、378.考点:函数的应用.27.阅读下面材料:小明遇到这样一个问题:如图1,在边长为()2a a>的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.小明发现:分别延长QE、MF、NG、PH交FA、GB、HC、ED的延长线于点R、S、T、W可得△RQF、△G、△TNH、△WPE是四个全等的等腰直角三角形(如图2)请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,没有重叠),则这个新的正方形的边长为__________;(2)求正方形MNPQ的面积.参考小明思考问题的方法,解决问题:如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D、E、F作BC、AC、AB的垂线,得到等边△RPQ,若33RPQS=,则AD的长为__________.【正确答案】(1)a(2)2(3)2 3【详解】试题分析:(1)四个等腰直角三角形的斜边长为a,其拼成的正方形面积为a2,边长为a;(2)如题图2所示,正方形MNPQ的面积等于四个虚线小等腰直角三角形的面积之和,据此求出正方形MNPQ的面积;(3)参照小明的解题思路,对问题做同样的等积变换.如答图1所示,三个等腰三角形△RSF,△QET,△PDW的面积和等于等边三角形△ABC的面积,故阴影三角形△PQR的面积等于三个虚线等腰三角形的面积之和.据此列方程求出AD的长度.试题解析:(1)四个等腰直角三角形的斜边长为a,则斜边上的高为12 a,每个等腰直角三角形的面积为:12a•12a=14a2,则拼成的新正方形面积为:4×14a2=a2,即与原正方形ABCD面积相等,∴这个新正方形的边长为a;(2)∵四个等腰直角三角形的面积和为a2,正方形ABCD的面积为a2,∴S正方形MNPQ=S△ARE+S△DWH+S△GCT+S△F=4S△ARE=4×12×12=2;(3)如答图1所示,分别延长RD,QF,PE,交FA,EC,DB的延长线于点S,T,W.由题意易得:△RSF,△QET,△PDW均为底角是30°的等腰三角形,其底边长均等于△ABC的边长.没有妨设等边三角形边长为a,则SF=AC=a.如答图2所示,过点R作RM⊥SF于点M,则MF=12SF=12a,在Rt △RMF 中,RM=MF•tan30°=12a×36=36a,∴S △RSF =12a•36a=34a 2.过点A 作AN ⊥SD 于点N,设AD=AS=x,则AN=AD•sin30°=12x,∴S △ADS =12SD•AN=12x•12x=34x 2.∵三个等腰三角形△RSF,△QET,△PDW 的面积和=3S △RSF =3×34a 2=34a 2,∴S +S △CFT +S △BEW =3S △ADS ,4x 2,得x 2=23,解得x=23或x=(没有合题意,舍去)∴x=23,即AD 的长为23.考点:四边形综合题.28.在平面直角坐标系中,抛物线24y ax bx =++A(-3,0)、B(4,0)两点,且与y 轴交于点C,点D 在x 轴的负半轴上,且BD=BC,有一动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时另一个动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动.(1)求该抛物线的表达式;(2)若t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;(3)该抛物线的对称轴上是否存在一点M,使MQ+MA 的值最小?若存在,求出点M 的坐标;若没有存在,请说明理由.【正确答案】(1)211433y x x =-++(2)线段PQ 被CD 垂直平分时,t 的值为177(3)在抛物线211433y x x =-++的对称轴上存在一点M 12218,使得MQ+MA 的值最小【详解】解:(1)∵抛物线A (-3,0),B (4,0)两点,∴9340164b+40a b a -+=⎧⎨+=⎩解得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线的解析式为.211433y x x =-++(2)如图,依题意知AP =t ,连接DQ ,由A (-3,0),B (4,0),C (0,4),可得AC =5,BC =42,AB =7.∵BD =BC ,∴742AD AB BD =-=-.∵CD 垂直平分PQ ,∴QD =DP ,∠CDQ =∠CDP .∵BD =BC ,∴∠DCB =∠CDB .∴∠CDQ =∠DCB .∴DQ ∥BC .∴△ADQ ∽△ABC .∴AD DQ AB BC =.∴AD DP AB BC =.∴7427-=.解得327P =-.∴177AP AD DP =+=.∴线段PQ 被CD 垂直平分时,t 的值为177.(3)设抛物线211433y x x =-++的对称轴12x =与x 轴交于点E .点A 、B 关于对称轴12x =对称,连接BQ 交该对称轴于点M .则MQ MA MQ MB +=+,即MQ MA BQ +=.当BQ ⊥AC 时,BQ 最小.此时,∠EBM =∠ACO .∴3tan tan 4EBM ACO ∠=∠=.∴34ME BE =.∴3742ME =,解得ME=218.∴M 12218.即在抛物线211433y x x =-++的对称轴上存在一点M (12,218),使得MQ +MA 的值最小.2022-2023学年四川省乐山市中考数学专项提升仿真模拟试题(二模)一、选一选;(每小题3分,共计36分)1.3--的倒数是()A.13- B.-3 C.3 D.132.下列计算正确的是()A. B. C.=6 D.=43.有三张正面分别标有数字-2,3,4的没有透明卡片,它们除数字没有同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(没有放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49 B.112 C.13 D.164.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.88152.5x x+= B.8184 2.5x x+= C.88152.5x x=+ D.8812.54x x=+5.已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC 的周长为()A.13B.11或13C.11D.126.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.正确..的个数是()。
四川中考一模考试《数学卷》含答案解析
四川数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________A卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在实数2,2,﹣12,0.2中,无理数 ( )A. 2B. 2C. ﹣12D. 022. 用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是( )A. B. C. D.3. 在成都市66个产业功能区中,青白江区欧洲产业城”最年轻”,但极具”天赋”和极其”努力”,仅用两年多的时间就实现了”平地立城”的愿望,集聚起总投资410亿元的重大产业化项目,请用科学记数法表示410亿为( )A. 41×102B. 4.1×108C. 4.1×109D. 4.1×10l04. 下列函数关系式:(1)y=﹣x;(2)y=x﹣1;(3)y=1x;(4)y=x2,其中一次函数的个数是( )A. 1B. 2C. 3D. 45. 已知二元一次方程组2224x yx y+=⎧⎨+=⎩,则x+y=( )A. 2B. 3C. 6D. 86. 如图,在△ABC中,分别以点A,B为圆心,大于12AB长为半径画弧,两弧分别交于点D,E,则直线DE是( )A. ∠A 的平分线B. AC 边的中线C. BC 边的高线D. AB 边的垂直平分线7. 如图,已知AC 是⊙O 的直径,过点C 的弦CD 平行于半径OB ,若∠C 的度数是40°,则∠B 的度数是( )A 15° B. 20° C. 30° D. 40°8. 如图,在Rt △ABC 中,直角边BC 的长为m ,∠A =40°,则斜边AB 的长是( )A. m sin40°B. m cos40°C. sin 40m ︒D. cos 40m ︒9. 在平面直角坐标系中,点P (﹣4,2)向右平移7个单位长度得到点P 1,则点P 1关于x 轴对称的点P 2的坐标是( )A. (﹣3,2)B. (﹣2,3)C. (3,﹣2)D. (2,﹣3)10. 如图,在平面直角坐标系中,有四个点A (﹣1,0),B (﹣2,0),点C (0,1),D (0,2)分别以A 、B 、C 、D 其中的任意两点与点O 为顶点作三角形,所作三角形是等腰直角三角形的概率是( )A. 12B. 13C. 23D. 34二、填空题(本大题共4个小题,每小题4分,共16分答案写在答题卡上)11. 分解因式:22a4a2-+=_____.12. 正五边形的内角和等于______度.13. 函数1xyx-=的自变量x的取值范围是______.14. 如图,已知∠AOB=72°,点C为∠AOB平分线上的一点,点D为OB上一点,OD=CD.则∠OCD 等于_____°.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15. (1)计算:6sin30°+(﹣13)﹣2﹣20200﹣|﹣6|.(2)先化简,再求值:21xx--÷(x+1﹣31x-),其中x=﹣3.16. 已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根x1、x2.(1)求m的取值范围;(2)当x1=1时,求另一个根x2的值.17. 垃圾分类问题受到全社会的广泛关注,我区某校学生会向全校2100名学生发起了”垃圾要回家,请你帮助它”的捐款活动,用于购买垃圾分类桶.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图1中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为5元的学生人数.18. 青白江凤凰湖湿地公园是一处具有国际水准的旅游度假区,以生态、休闲、水景环境及具有多国风情的建筑为特色.如图为凤凰湖湿地公园三个景点A,B,C的平面示意图,景点C在B的正北方向4千米处,景点A在B的东北方向,在C的北偏东75°方向上,求景点A、B之间的距离.(结果保留根号)19. 如图,反比例函数y=kx(k≠0,x>0)的图象与直线y=4x相交于点C,过直线上点A(2,a)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=4BD.(1)求a的值;(2)求k的值;(3)连接OD,CD,求△OCD的面积.20. 如图,在△ABC中,AB=AC,以边AB为直径的⊙O交边BC于点D,交边AC于点E.过D点作DF⊥AC 于点F.(1)求证:DF是⊙O的切线;(2)求证:CF=EF;(3)延长FD交边AB的延长线于点G,若EF=3,BG=9时,求⊙O的半径及CD的长.B卷一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 比较大小:﹣2505_____3673-⨯.22. 下列四个图案中,具有一个共有的性质,那么在222,606,808,609下面四个数中,满足上述性质的一个是_____.23. 如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴的负半轴、y轴的正半轴上,点D在边BC上,将该矩形沿AD折叠,点B恰好落在边OC上的E处,且△CDE为等腰直角三角形,若OA=4,则点D的坐标是_____.24. 如图,在△ABC中,已知AB=AC=6,BC=8,P是BC边上的一动点(P不与点B、C重合),∠B=∠APE,边PE与AC交于点D,当△APD为等腰三角形时,则PB的长为_____.25. 已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①2a+b<0;②﹣1≤a≤﹣23;③对于任意实数m,a(m2﹣1)+b(m﹣1)≤0总成立;④关于x的方程ax2+bx+c=n+1有两个不相等的实数根.其中结论正确的序号是_____.二、解答题(本小题共三个小题,共30分,答案写在答题卡上)26. 2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有256人患新冠肺炎,求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病? 27. 已知正方形ABCD ,过点B 有一条直线1与正方形ABCD 的对角线AC 所在直线相交于点G ,过点C 、A 分别作直线1的垂线段CE 、AF 于点E 、F ,对角线AC 、BD 相交于点O ,连接OE 、OF .(1)如图1,猜测OE 、OF 有怎样的数量关系和位置关系,并说明理由;(2)若正方形边长为10.①若直线1在如图1的位置,当2OE CE =时,求EG 的长; ②若直线1在如图2的位置,当22OE CE =时,请直接写出EG 的长. 28. 如图,抛物线y =ax 2+bx +c (a ≠0)与直线y =﹣x ﹣2相交于A (﹣2,0),B (m ,﹣6)两点,且抛物线经过点C (5,0).点P 是直线下方的抛物线上异于A 、B 的动点.过点P 作PD ⊥x 轴于点D ,交直线于点E .(1)求抛物线的解析式;(2)连结P A、PB、BD,当S△ADB23S△P AB时,求S△P AB;(3)是否存在点P,使得△PBE为直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.答案与解析A卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在实数2,2,﹣12,0.2中,无理数 ( )A. 2B. 2C. ﹣12D. 0.2【答案】A【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A.2是无理数;B.2 是整数,属于有理数;C.12是分数,属于有理数;D.0.2是有限小数,属于有理数.故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2. 用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是( )A. B. C. D.【答案】C【解析】【分析】根据主视图的定义,找到从正面看所得到的图形即可.【详解】从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选C.3. 在成都市66个产业功能区中,青白江区欧洲产业城”最年轻”,但极具”天赋”和极其”努力”,仅用两年多的时间就实现了”平地立城”的愿望,集聚起总投资410亿元的重大产业化项目,请用科学记数法表示410亿为( )A. 4.1×102B. 4.1×108C. 4.1×109D. 4.1×10l0【答案】D【解析】【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数.10的指数n=原来的整数位数-1.【详解】解:410亿=410 0000 0000=4.1×10l0,故选:D.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4. 下列函数关系式:(1)y=﹣x;(2)y=x﹣1;(3)y=1x;(4)y=x2,其中一次函数的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据一次函数的定义条件进行逐一分析即可.【详解】解:(1)y=﹣x是正比例函数,是特殊的一次函数,故正确;(2)y=x﹣1符合一次函数的定义,故正确;(3)y=1x属于反比例函数,故错误;(4)y=x2属于二次函数,故错误.综上所述,一次函数的个数是2个.故选:B.【点睛】本题主要考查了一次函数的定义.本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.5. 已知二元一次方程组2224x yx y+=⎧⎨+=⎩,则x+y=( )A. 2B. 3C. 6D. 8 【答案】A【解析】【分析】将方程组①+②,然后化简求解.【详解】解:2224x yx y+=⎧⎨+=⎩①②,①+②得:3(x+y)=6,则x+y=2.故选:A.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6. 如图,在△ABC中,分别以点A,B 为圆心,大于12AB长为半径画弧,两弧分别交于点D,E,则直线DE是( )A. ∠A的平分线B. AC边的中线C. BC边的高线D. AB边的垂直平分线【答案】D【解析】由尺规作图的方法可知,线DE是AB边的垂直平分线.故选D7. 如图,已知AC是⊙O的直径,过点C的弦CD平行于半径OB,若∠C的度数是40°,则∠B的度数是( )A. 15°B. 20°C. 30°D. 40°【答案】B首先根据平行线的性质以及等边对等角证得∠BOC=∠C=40°,∠B=∠A ,利用三角形的外角的性质,得出答案.【详解】解:∵CD ∥BO ,∴∠BOC =∠C =40°,∵AO =BO ,∴∠A =∠B ,∵∠A+∠B =∠BOC =40°,∴∠A =∠B =20°.故选:B .【点睛】本题考查了等边对等角、以及三角形的外角的性质、平行线的性质定理,正确理解定理是关键. 8. 如图,在Rt △ABC 中,直角边BC 的长为m ,∠A =40°,则斜边AB 的长是( )A. m sin40°B. m cos40°C. sin 40m ︒D. cos 40m ︒【答案】C【解析】【分析】 利用三角函数的定义即可求解.【详解】解:∵sin A =BC AB , ∴AB =sin sin 40A BC π︒=, 故选:C .【点睛】本题考查了三角函数,正确理解三角函数的定义是关键.9. 在平面直角坐标系中,点P (﹣4,2)向右平移7个单位长度得到点P 1,则点P 1关于x 轴对称的点P 2的坐标是( )A. (﹣3,2)B. (﹣2,3)C. (3,﹣2)D. (2,﹣3)【答案】C先根据点P向右平移7个单位,横坐标加7,纵坐标不变,求出点P1的坐标;再根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出点P2的坐标即可.【详解】因为点P(﹣4,2)向右平移7个单位长度得到点P1,所以P1的坐标为(﹣4+7,2),即P1(3,2);因为点P1关于x轴对称的点P2,所以P2的坐标为(3,﹣2),故选:C.【点睛】此题考查了坐标与图形变化-平移与对称,熟练掌握对称与平移性质是解本题的关键.10. 如图,在平面直角坐标系中,有四个点A(﹣1,0),B(﹣2,0),点C(0,1),D(0,2)分别以A、B、C、D其中的任意两点与点O为顶点作三角形,所作三角形是等腰直角三角形的概率是( )A. 12B.13C.23D.34【答案】B【解析】【分析】列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可. 【详解】列表得:A B C DA AB AC ADB BA BC BDC CA CB CD由列表可见,所有可能出现的结果共有12种,这些结果出现的可能性相等,其中所作三角形是等腰直角三角形的有4种结果,所以所作三角形是等腰直角三角形的概率为412=13, 故选:B .【点睛】本题主要考查列表法与树状图法,列表的目的在于不重不漏地列出所有可能的结果,再从中选出符合事件A 或B 的结果数目,求出概率.当一个事件涉及三个或多个元素时,为不重不漏地列出所有结果,通常采用树状图. 二、填空题(本大题共4个小题,每小题4分,共16分答案写在答题卡上)11. 分解因式:22a 4a 2-+=_____.【答案】()22a 1-【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:()()2222a 4a 22a 2a 12a 1-+=-+=-. 12. 正五边形的内角和等于______度.【答案】540【解析】【详解】过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形∴正五边形的内角和=3180=540°13. 函数y=x 的取值范围是______. 【答案】x >0【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:根据题意得,x≥0且x≠0,解得x >0,故答案为x>0【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.14. 如图,已知∠AOB=72°,点C为∠AOB平分线上的一点,点D为OB上一点,OD=CD.则∠OCD 等于_____°.【答案】36.【解析】【分析】先根据角平分线的定义求出∠DOC的度数,再根据等腰三角形的性质得出∠OCD=∠DOC,即可得到结论.【详解】解:∵∠AOB=72°,点C为∠AOB平分线上的一点,∴∠DOC=12∠AOB=36°,∵OD=CD,∴∠OCD=∠DOC=36°,故答案为:36.【点睛】本题考查了等腰三角形的性质,角平分线的定义,熟练掌握等腰三角形的性质是解题的关键.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15. (1)计算:6sin30°+(﹣13)﹣2﹣20200﹣|﹣6|.(2)先化简,再求值:21xx--÷(x+1﹣31x-),其中x=﹣3.【答案】(1)5;(2)12x+,﹣1.【解析】【分析】(1)先根据特殊角的三角函数值,负整数指数幂的运算法则,零次幂的运算法则以及绝对值的意义进行化简,再进行加减运算即可;(2)先根据分式的运算法则进行化简,再将x的值代入计算即可.【详解】解:(1)6sin30°+(﹣13)﹣2﹣20200﹣|﹣6| =6×12+9﹣1﹣6 =3+9﹣1﹣6=5;(2)21x x --÷(x +1﹣31x -) =2(1)(1)311x x x x x -+--÷-- =22114x x x x --⋅-- =2(2)(2)x x x -+- =12x +, 当x =﹣3时,原式=132-+=﹣1. 【点睛】本题主要考查了特殊角的三角函数值,负整数指数幂,零次幂,含绝对值的混合运算以及分式的化简求值,掌握基本运算法则是解题的关键.16. 已知关于x 的一元二次方程x 2﹣2x +m =0有两个不相等的实数根x 1、x 2.(1)求m 的取值范围;(2)当x 1=1时,求另一个根x 2的值.【答案】(1)m <1;(2)x 2=1.【解析】【分析】(1)根据题意可得根的判别式△>0,再代入可得4-4m>0,再解即可;(2) 根据根与系数的关系可得12b x x a+=-, 再代入可得答案. 【详解】(1)△=4﹣4m >0,∴m <1.(2)根据根与系数的关系可知:x 1+x 2=2,因为x 1=1,所以x 2=1.【点睛】本题考查根与系数的关系及根的判别式,解题的关键是掌握根与系数的关系及根的判别式. 17. 垃圾分类问题受到全社会的广泛关注,我区某校学生会向全校2100名学生发起了”垃圾要回家,请你帮助它”的捐款活动,用于购买垃圾分类桶.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图1中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为5元的学生人数.【答案】(1)50;32;(2)平均数为6.56元,众数为5元;中位数为5元;(3)该校本次活动捐款金额为5元的学生人数为672人.【解析】【分析】(1)根据条形图可得接受随机抽样调查的学生人数,用5元的人数除以总数可得m%,进而可得m的值;(2)根据平均数、众数和中位数定义进行计算即可;(3)利用样本估计总体的方法进行计算.详解】(1)接受随机抽样调查的学生人数为:4+12+16+10+8=50(人),m%=1650×100%=32%,则m=32,故答案为:50;32;(2)平均数:(4×1+12×2+16×5+10×10+15×8)÷50=6.56(元),众数:5元;中位数:5元;(3)2100×32%=672(人)答:该校本次活动捐款金额为5元的学生人数为672人.【点睛】此题主要考查了条形统计图和扇形统计图的综合应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.18. 青白江凤凰湖湿地公园是一处具有国际水准的旅游度假区,以生态、休闲、水景环境及具有多国风情的建筑为特色.如图为凤凰湖湿地公园三个景点A,B,C的平面示意图,景点C在B的正北方向4千米处,景点A在B的东北方向,在C的北偏东75°方向上,求景点A、B之间的距离.(结果保留根号)【答案】景点A,B的距离约为(22+26)千米.【解析】【分析】作CD⊥AB于D,则∠CDB=∠CDA=90°,∠BAC=75°﹣45°=30°,分别解Rt△BCD和Rt△ACD求得BD 和AD,即可求出景点A,B的距离.【详解】解:作CD⊥AB于D,如图所示,则∠CDB=∠CDA=90°,由三角形的外角性质得:∠BAC=75°﹣45°=30°,在Rt△BCD中,∵BC=5,∠B=45°,∴△BCD等腰直角三角形,∴BD=CD=22BC=2(千米),在Rt△ACD中,∵∠A=30°,∴AD3=6(千米),∴AB=BD+AD=(26)(千米),答:景点A,B的距离约为(26)千米.【点睛】本题主要考查解直角三角形问题,方位角等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.19. 如图,反比例函数y=kx(k≠0,x>0)的图象与直线y=4x相交于点C,过直线上点A(2,a)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=4BD.(1)求a的值;(2)求k的值;(3)连接OD,CD,求△OCD的面积.【答案】(1)a=8;(2)k=4;(3)△OCD的面积=3.【解析】【分析】(1)根据A在直线y=4x上,即可求出a的值;(2)把A点的坐标代入反比例函数解析式y=kx(k≠0,x>0),即可求得k的值;(3)因为C是直线和双曲线的交点,联立成方程组,即可求出C点的坐标;再利用面积的割补法即可求出答案.【详解】(1)把A(2,a)代入y=4x得a=4×2=8;(2)∵AB=4BD,∴BD=2,AD=6∴D(2,2),把D(2,2)代入y=kx得k=2×2=4,∴反比例函数解析式为y=4x;(3)解方程组44 y x yx=⎧⎪⎨=⎪⎩得44xx=,得14xy=⎧⎨=⎩或14xy=-⎧⎨=-⎩(舍),则C(1,4),∴△OCD的面积=S△AOB﹣S△ACD﹣S△BOD=12×2×8﹣12×6×1﹣12×2×2=3.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也得考查了待定系数法求函数解析式.20. 如图,在△ABC中,AB=AC,以边AB为直径的⊙O交边BC于点D,交边AC于点E.过D点作DF⊥AC 于点F.(1)求证:DF是⊙O的切线;(2)求证:CF=EF;(3)延长FD交边AB的延长线于点G,若EF=3,BG=9时,求⊙O的半径及CD的长.【答案】(1)见解析;(2)见解析;(3)⊙O的半径是92,CD3【解析】【分析】(1)首先连接OD,通过等量互换,得出OD∥AC,进而得出DF⊥OD,即可得证;(2)首先根据圆内接四边形的性质得出∠CED=∠ABC,进而得出∠CED=∠C,CD=DE,然后根据等腰三角形的性质即可得出CF=EF;(3)首先根据圆和等腰三角形的性质得出CD=BD,然后根据平行判定△GOD∽△GAF,利用相似成比例构建方程即可得出⊙O的半径,利用△CED∽△CBA,即可得出CD.【详解】(1)证明:如图1,连接OD,∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠C=∠ODB,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线;(2)证明:如图2,连接DE,∵四边形AEDB为圆内接四边形,∴∠CED=∠ABC,∵∠ABC=∠C,∴∠CED=∠C,∴CD=DE,∵DF⊥CE,∴CF=EF;(3)解:如图3,连接AD,∵AB为⊙O的直径,∴∠ADB=90°,∵AB=AC,∴CD=BD,∵OD∥AC,∴△GOD∽△GAF,∴OD OG AF AG=,∴设⊙O的半径是r,则AB=AC=2r,∴AF=2r﹣3,OG=9+r,AG=9+2r,∴9 2392r rr r+=-+,∴r=92,即⊙O的半径是92.∴AC=AB=9,∵∠CED=∠ABC,∠ECD=∠ACB,∴△CED∽△CBA,∴CD CE AC BC=,∴692CDCD=,∴CD3【点睛】此题主要考查圆性质的综合运用以及等腰三角形、相似三角形的性质,熟练掌握,即可解题.B卷一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 比较大小:﹣2505_____3673-⨯.【答案】<.【解析】【分析】先把根号外面数的变形根号里面,再根据两个负实数绝对值大的反而小进行比较即可.【详解】﹣2505=﹣2020,﹣3×673=﹣2019,因为2020>2019,所以﹣2020<﹣2019,即﹣2505<﹣3×673.故答案为:<.【点睛】本题考查了实数大小比较,解题的关键是掌握实数大小的比较方法:任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.22. 下列四个图案中,具有一个共有的性质,那么在222,606,808,609下面四个数中,满足上述性质的一个是_____.【答案】808.【解析】【分析】根据轴对称图形的概念解答即可.【详解】四个图案都是轴对称图形,在222,606,808,609四个数中,808是轴对称图形,故答案为:808.点睛】本题考查的是轴对称图形的概念,掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合是解题的关键.23. 如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴的负半轴、y轴的正半轴上,点D在边BC上,将该矩形沿AD折叠,点B恰好落在边OC上的E处,且△CDE为等腰直角三角形,若OA=4,则点D的坐标是_____.【答案】(﹣2,424).【解析】【分析】由题意根据勾股定理以及折叠的性质,即可得到CO和CD的长,进而即可得到点D的坐标.【详解】解:由折叠可得,∠B=∠AED=90°,∵△CDE是等腰直角三角形,∴∠DEC=45°,∴∠AEO=45°,又∵∠AOE=90°,∴∠EAO=∠AEO,∴AO=EO=4,∴AE=42由折叠可得,AB=AE=2∵四边形ABCO的矩形,∴CO=42∴CE=CO﹣EO=424,∴CD=424,∵点D在第二象限,∴D(﹣42424),故答案为:(﹣2,424).【点睛】本题主要考查折叠问题和矩形的性质以及勾股定理的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.24. 如图,在△ABC中,已知AB=AC=6,BC=8,P是BC边上的一动点(P不与点B、C重合),∠B=∠APE,边PE与AC交于点D,当△APD为等腰三角形时,则PB的长为_____.【答案】2或72.【解析】【分析】需要分类讨论:①当AP=PD时,易得△ABP≌△PCD.②当AD=PD时,根据等腰三角形的性质,勾股定理以及三角形的面积公式求得答案.③当AD=AP时,点P与点B重合.【详解】①当AP=PD时,则△ABP≌△PCD,则PC=AB=6,故PB=2.②当AD=PD时,△ABC∽△DAP,∴APPD=ACBC=68,即PC=92,∴PB=72.③当AD=AP时,点P与点B重合,不合题意.综上所述,PB的长为2或72.故答案为:2或72.【点睛】此题考查了相似三角形的判定与性质、全等三角形的判定和性质、等腰三角形的性质,熟练掌握性质定理是解题的关键.25. 已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①2a+b<0;②﹣1≤a≤﹣23;③对于任意实数m,a(m2﹣1)+b(m﹣1)≤0总成立;④关于x的方程ax2+bx+c=n+1有两个不相等的实数根.其中结论正确的序号是_____.【答案】②③.【解析】【分析】由对称轴、顶点坐标和y轴交点坐标代入可得b=-2a,c=-3a可判断①②,对函数图像得最大值进行分析可以判断③④.【详解】如图,∵抛物线的顶点坐标为(1,n),∴抛物线的对称性为直线x=﹣b2a=1,∴b=﹣2a,∴2a+b=0,所以①错误;∵抛物线与x轴交于点A(﹣1,0),∴a﹣b+c=0,∴c=b﹣a=﹣2a﹣a=﹣3a,∵抛物线与y轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,即2≤﹣3a≤3,∴﹣1≤a≤﹣23,所以②正确;∵当x=1时,y有最大值,∴a+b+c≥am2+bm+c(m为任意实数),即a(m2﹣1)+b(m﹣1)≤0,所以③正确;∵抛物线的顶点坐标为(1,n),∴直线y=n与抛物线只有一个交点,∴直线y=n+1与抛物线没有公共点,∴关于x的方程ax2+bx+c=n+1没有实数根,所以④错误.故答案为②③.【点睛】本题考查了函数的系数与对称轴,顶点坐标及与坐标轴的的关系.同时考查顶点与直线的比较来判断函数与直线交点的情况,代入特殊点和利用顶点坐标是解决本类题的常用方法.二、解答题(本小题共三个小题,共30分,答案写在答题卡上)26. 2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有256人患新冠肺炎,求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?【答案】(1)每轮传染中平均每个人传染了15个人;(2)按照这样的传染速度,第三轮传染后,共有4096人患病.【解析】【分析】(1)设每轮传染中平均每个人传染了x个人,根据一人患病后经过两轮传染后共有256人患病,即可得出关于x的一元二次方程,解之即可得出结论;(2)根据经过三轮传染后患病人数=经过两轮传染后患病人数×(1+15),即可求出结论.【详解】(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=256,解得:x1=15,x2=﹣17(不合题意,舍去).答:每轮传染中平均每个人传染了15个人.(2)256×(1+15)=4096(人).答:按照这样的传染速度,第三轮传染后,共有4096人患病.【点睛】此题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.27. 已知正方形ABCD,过点B有一条直线1与正方形ABCD的对角线AC所在直线相交于点G,过点C、A分别作直线1的垂线段CE、AF于点E、F,对角线AC、BD相交于点O,连接OE、OF.(1)如图1,猜测OE 、OF 有怎样的数量关系和位置关系,并说明理由;(2)若正方形边长为10.①若直线1在如图1的位置,当2OE CE =时,求EG 的长; ②若直线1在如图2的位置,当22OE CE=时,请直接写出EG 的长. 【答案】(1)OE =OF ,OE ⊥OF .理由见解析;(2)①EG =102;②EG =210. 【解析】【分析】(1)根据题意设OB 交AF 于J .证明△AFB ≌△BEC (AAS ),可得结论OE=OF ,OE ⊥OF ;(2)①根据题意作OH ⊥BE 于H .想办法证明EH=EC=FH=OH ,设EC=a ,在Rt △EBC 中,利用勾股定理求出a ,再证明EG=GH 即可解决问题;②根据题意作OH ⊥BE 于H .首先证明OH-EH=HF=2EC ,设EC=m ,在Rt △BCE 中,利用勾股定理求出m ,再证明EG=EH 即可解决问题.【详解】解:(1)结论:OE =OF ,OE ⊥OF .理由:如图1中,设OB 交AF 于J .∵四边形ABCD 是正方形,∴AB =BC ,AC ⊥BD ,OB =OC =OD =OA ,∠ABC =90°,∴∠BOC =90°,∵CE ⊥BE ,AF ⊥BF ,∴∠CEB =∠AFB =90°,∴∠ABF+∠CBE =90°,∠CBE+∠ECB =90°,∴∠ABF =∠ECB ,∴△AFB ≌△BEC (AAS ),∴CE =BF ,∵EC ⊥BE ,AF ⊥BE ,∴EC ∥AF ,∴∠ECO =∠OAF ,∵∠OAF+∠AJO =90°,∠BJF+∠OBF =90°,∠AJO =∠BJF ,∴∠OAF =∠OBF =∠OCE ,∴△ECO ≌△FBO (SAS ),∴OE =OF ,∠EOC =∠FOB ,∴∠EOF =∠COB =90°,∴OE ⊥OF .(2)①如图1中,作OH ⊥BE 于H .∵OE =OF ,∠EOF =90°,∴EH =FH ,∴OH =EH =FH ,∴OE EH ,∵OE CE ,∴EC =FH =BF ,设EC =a ,则BE =3a ,在Rt △BCE 中,∵BC 2=CE 2+BE 2,∴10a 2=100,∴a ,∴EC =EH ,∵∠CEG =∠OHG =90°,∠EGC =∉OGH ,EC =OH ,∴△CEG ≌△OHG (AAS ),∴EG =GH =12EH =2. ②如图2中,作OH ⊥BE 于H .∵OE=OF,∠EOF=90°,∴EH=FH,∴OH=EH=FH,∴OE2EH,∵OE=2CE,∴EH=OH=FH=2CE,∵∠AFB=∠BEC=∠ABC=90°,∴∠ABF+∠CBE=90°,∠CBE+∠BCE=90°,∴∠ABF=∠BCE,∵AB=BC,∴△BEC≌△AFB(AAS),∴EC=BF,∴BF=BH,设EC=m,则BE=3m,在Rt△BCE中,∵BC2=CE2+BE2,∴10m2=100,∴m10,∴EC10,EH=10∵CE⊥OH,∴△GEC∽△GHO,∴EGGH=ECOH=12,∴EG=GH=10【点睛】本题属于四边形综合题,考查正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题.28. 如图,抛物线y=ax2+bx+c(a≠0)与直线y=﹣x﹣2相交于A(﹣2,0),B(m,﹣6)两点,且抛物线经过点C(5,0).点P是直线下方的抛物线上异于A、B的动点.过点P作PD⊥x轴于点D,交直线于点E.(1)求抛物线的解析式;(2)连结P A、PB、BD,当S△ADB23=S△P AB时,求S△P AB;(3)是否存在点P,使得△PBE为直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【答案】(1)y=x2﹣3x﹣10;(2)S△P AB=814;(3)存在,满足条件点P的坐标为(0,﹣10)或(﹣1,6).【解析】分析】(1)因为抛物线经过A(-2,0),C(5,0),可以假设抛物线的解析式y=a(x+2)(x-5),把B(4,-6)代入y=a(x+2)(x-5),可得a=1解决问题;(2)设P(x,x2-3x-10),根据S△ADB23=S△P AB,构建方程解决问题即可;(3)分两种情形:①∠PBE=90°.②∠BPE=90°.分别求解即可解决问题.【详解】(1)将B(m,﹣6)代入y=﹣x﹣2得-6=﹣m﹣2,解得m=4 ,∴B(4,﹣6),∵抛物线经过A(﹣2,0),C(5,0),∴可以假设抛物线的解析式y=a(x+2)(x﹣5),把B(4,﹣6)代入y=a(x+2)(x﹣5),可得a=1,∴抛物线的解析式为y=x2﹣3x﹣10.(2)设P(x,x2﹣3x﹣10),。
【中考冲刺】2023年四川省攀枝花市中考数学模拟试卷(附答案)
2023年四川省攀枝花市中考数学模拟试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在﹣π,0,﹣2,2这四个数中,是负整数的是( )A .﹣πB .﹣2C .0D .2 2.若212448m m ++=,则m 的值是( )A .4B .3C .2D .8 3.实数,a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a b <B .a b <C .0a b +>D .0a b -> 4.如图是由若干个棱长为1的小正方体搭成的一个几何体的三视图,则这个几何体的体积是( )A .5B .6C .8D .12 5.寻乌是中国脐橙之乡,去年销售脐橙27万吨,将数27万用科学记数法表示为( ).A .2.7×106B .2.7×105C .0.27×106D .27×104 6.已知f(1)=2(取12⨯的末位数字),f(2)=6(取2?3的末位数字),f(3)=2(取34⨯的末位数字) …,则()()()()f 1f 2f 3f 2021++++的值为( ) A .6 B .4028 C .4042 D .4048 7.一位射击运动员在一次训练效果测试中射击了10次,成绩如图所示,对于这10次射击的成绩有如下结论,其中不正确的是( )A .众数是8B .中位数是8C .平均数是8D .方差是1 8.小刚把一块三角形玻璃打碎成了如图所示的三块,现要到玻璃店取配一块完全一样的玻璃,那么最省事的办法是( )A .带①去B .带②去C .带③去D .带①和②去 9.在平面直角坐标系中,点A 的坐标是()1,3-,将原点O 绕点A 顺时针旋转90︒得到点O ',则点O '的坐标是( )A .()3,1B .()3,1--C .()4,2-D .()2,4 10.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少12元.”乙说“至多10元.”丙说“至多8元.”小明说:“你们三个人都说错了.”则这本书的价格x (元)所在的范围为( )A .8<x <10B .9<x <11C .8<x <12D .10<x <12 11.如图,OA 是⊙O 的半径,B 为OA 上一点(且不与点O 、A 重合),过点B 作OA 的垂线交⊙O 于点C .以OB 、BC 为边作矩形OBCD ,连结BD .若BD =10,BC =8,则AB 的长为( )A .8B .6C .4D .212.二次函数2y ax bx c =++的部分图象如图所示,则下列结论中正确的是( ).A .0a >B .不等式20ax bx c ++>的解集是15x -<<C .0a b c -+>D .当2x >时,y 随x 的增大而增大二、填空题13.设α,β是关于4x 2﹣4mx +m +2=0的两个实数根,当α2+β2有最小值时,则m 的值为_____.14.若(3﹣2x ):2=(3+2x ):5,则x =_____.15.如图,一张圆形纸片中,画出7个同样大小的圆并涂上颜色.若一只蚂蚁(蚂蚁视为一点)随机的停留在该纸片上,则蚂蚁停留在涂有颜色部分的概率为__________.16.如图,已知正方形ABCD 的边长为5,E 为CD 边上一点(点E 不与端点C ,D 重合,将ADE 沿AE 对折至AFE △,延长EF 交边BC 于点G ,连接AG ,CF .以下结论:⊙DE BG EG +=;⊙若CF FG =,则GEC 是等腰直角三角形;⊙若//AG CF ,则52DE =;⊙25BG DE AF GE ⋅+⋅=.正确的有_____.(填序号)三、解答题17.解下列方程:(1)153x x =+; (2)32122x x x =---; (3)2212141x x =--; (4)2231022x x x x-=+-; (5)131x x x x +=--; (6)33122x x x -+=--; (7)221566x x x x +=++; (8)31523162x x -=--. 18.我市为加快推进生活垃圾分类工作,对分类垃圾桶实行统一的外型、型号、颜色等,其中,可回收物用蓝色收集桶,有害垃圾用红色收集桶,厨余垃圾用绿色收集桶,其他垃圾用灰色收集桶.为了解学生对垃圾分类知识的掌握情况,某校宣传小组就“用过的餐巾纸应投放到哪种颜色的收集桶”在全校随机采访了部分学生,根据调查结果,绘制了如图所示的两幅不完整的统计图.用过的餐巾纸投放情况统计图根据图中信息,解答下列问题:(1)此次调查一共随机采访了________名学生,在扇形统计图中,“灰”所在扇形的圆心角的度数为________度;(2)补全条形统计图(要求在条形图上方注明人数);(3)若该校有3600名学生,估计该校学生将用过的餐巾纸投放到红色收集桶的人数;(4)李老师计划从A ,B ,C ,D 四位学生中随机抽取两人参加学校的垃圾分类知识抢答赛,请用树状图法或列表法求出恰好抽中A ,B 两人的概率.19.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC 中,∠ACB =90°,BC =a ,AC =b ,AB =c ,正方形IECF 中,IE =EC =CF =FI =x(1)小明发明了求正方形边长的方法:由题意可得BD =BE =a ﹣x ,AD =AF =b ﹣x因为AB =BD +AD ,所以a ﹣x +b ﹣x =c ,解得x =2a b c +- (2)小亮也发现了另一种求正方形边长的方法:利用S △ABC =S △AIB +S △AIC +S △BIC 可以得到x 与a 、b 、c 的关系,请根据小亮的思路完成他的求解过程:(3)请结合小明和小亮得到的结论验证勾股定理.20.如图,AC 是我市某大楼的高,在地面上B 点处测得楼顶A 的仰角为45,沿BC 方向前进18米到达D 点,测得5tan 3ADC ∠=.现打算从大楼顶端A 点悬挂一幅庆祝建国60周年的大型标语,若标语底端距地面15m ,请你计算标语AE 的长度应为多少?21.如图,直线y =ax ﹣a 与双曲线y =k x(k >0)交于A 、B 两点,与x 轴交于点D ,与y 轴交于点E ,AC⊙y 轴,垂足为点C .已知S △ACD =2,B(﹣1,m)(1)直接写出a 与k 的值.(2)求⊙ABC 的面积.22.如图,在梯形ABCD 中,AD ∥BC ,AB =DC =8,∠B =60°,BC =12,连接AC .(1)求tan ∠ACB 的值;(2)若M 、N 分别是AB 、DC 的中点,连接MN ,求线段MN 的长.23.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,AB ⊥AC ,AB =6cm ,BC =10cm ,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ 的长(用含t 的代数式表示);(2)当四边形ABQP 是平行四边形时,求t 的值;(3)当325t =时,点O 是否在线段AP 的垂直平分线上?请说明理由. 24.如图,已知抛物线23y ax bx =+-与x 轴交于()2,0A -、()6,0B 两点,与y 轴交于C 点,设抛物线的顶点为D .过点D 作DE x ⊥轴,垂足为E .P 为线段DE 上一动点,(),0F m 为x 轴上一点,且PC PF ⊥.(1)求抛物线的解析式:(2)⊙当点P 与点D 重合时,求m 的值;⊙在⊙的条件下,将COF 绕原点按逆时针方向旋转90 并平移,得到111C O F △,点C ,O ,F 的对应点分别是点1C ,1O ,1F ,若COF 的两个顶点恰好落在抛物线上,直接写出点1F 的坐标;(3)当点P 在线段DE 上运动时,求m 的变化范围.参考答案:1.B【解析】【分析】弄清正数和负数,整数和分数,即可判断.【详解】解:在﹣π,0,﹣2,2这四个数中,﹣2是负整数.故选:B .【点睛】本题考查了有理数,弄清有理数的分类是解题的关键.2.C【解析】【分析】根据幂的乘方与积的乘方解答即可.【详解】解:因为212448m m ++=,可得:()42434241m m m m ⨯+⨯+==⨯23168344=⨯=⨯,可得:2m =,故选:C .【点睛】此题考查幂的乘方与积的乘方,关键是根据幂的乘方与积的乘方的法则解答. 3.A【解析】【分析】根据数轴得a<0<b ,且a b >,再根据实数的加法法则,减法法则依次判断即可.【详解】由数轴得a<0<b ,且a b >,⊙a+b<0,a-b<0,故A 正确,B 、C 、D 错误,故选:A.【点睛】此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则. 4.B【解析】【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数.【详解】解:综合三视图,我们可以得出,这个几何模型的底层有3+2=5个小正方体,第二层有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是5+1=6个.⊙这个几何体的体积是6×13=6,故选:B .【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键. 5.B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:27万=2.7×105故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中110a ≤<,n 为整数.表示时关键是要正确确定a 的值以及n 的值.6.C【解析】【分析】先计算部分数的乘积,观察运算结果,发相规律,每运算5次后结果重复出现,求出f(1)+f(2)+f(3)+f(4)+f(5)和,再求2021次运算重复的次数,用除数5,商和余数表示2021=5×404+1,说明重复404次和f(2021)=2的结果,(f(1)+f(2)+f(3)+f(4)+f(5))×10+2计算结果即可.【详解】f(1)=2, f(2)=6,f(3)=2,f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,f(10)=0,f(11)=2,每5次运算一循环,f(1)+f(2)+f(3)+f(4)+f(5)=2+6+2+0+0=10,2021=5×404+1,()()()()f 1f 2f 3f 2021++++=10×404+2=4040+2=4042.故选:C .【点睛】 本题考查新定义运算,读懂题目的含义与要求,掌握运算的方法,观察部分运算结果,从中找出规律,用规律解决问题是解题关键.7.D【解析】【分析】分别根据众数、中位数、平均数和方差的定义计算各项,进而可得答案.【详解】解:由题意得:这10次成绩的环数为:6,7,7,8,8,8,8,9,9,10(已按照从小到大的顺序排列);所以这10个数据的众数是8环,中位数是8环,平均数=672849210810+⨯+⨯+⨯+=环, 方差=()()()()()2222216878288982108 1.210⎡⎤-+-⨯+-+-⨯+-=⎣⎦环2. 所以在以上4个选项中,D 选项是错误的.故选:D .本题考查了众数、中位数、平均数和方差的定义,属于基础题型,熟练掌握基本知识是解题关键.8.C【解析】【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点睛】此题主要考查全等三角形的应用,熟练掌握全等三角形的判定定理是解题的关键.9.C【解析】【分析】根据旋转变换的性质画出图象即可解决问题.【详解】解:观察图象可知O′(−4,2),故选:C.【点睛】本题考查坐标与图形的性质,旋转变换等知识,解题的关键是理解题意,学会用图象法解10.D【解析】【分析】根据甲乙丙说法列出不等书组,再由三个人都错了列出正确的不等式组解答即可.【详解】由甲乙丙三人说法可得:12108xxx≥⎧⎪≤⎨⎪≤⎩,⊙三个人都说错了,⊙12108 xxx<⎧⎪>⎨⎪>⎩⊙这本书的价格x(元)所在的范围为10<x<12.故选:D.【点睛】本题考查不等式简单实际应用,怎么由题意列不等式是解题的关键. 11.C【解析】【分析】如图,连接OC.在Rt⊙OBC中,求出OB即可解决问题.【详解】解:如图,连接OC.⊙四边形OBCD是矩形,⊙⊙OBC=90°,BD=OC=OA=10,,⊙AB=OA﹣OB=4.【点睛】本题考查的知识点利用勾股定理求解,根据题意利用矩形的性质得出BD=OC=OA=10是解此题的关键.12.B【解析】【分析】根据二次函数的图像和性质逐项分析可得.【详解】选项A .⊙图象开口向下,⊙0a <,故A 错;选项B .⊙抛物线与x 轴交点(5,0),又⊙对称轴2x =,⊙抛物线与x 轴另一交点(1,0)-,⊙20ax bx c ++>,⊙15x -<<.故B 正确;选项C ,当1x =-时,0a b c -+=,故C 错;选项D ,当2x >时,y 随x 增大而减小,故D 错.故选B .13.-1【解析】【分析】由已知中α,β是方程4x 2-4mx+m+2=0,,x,R,,,,,,,,,,,,,,≥0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,α2+β2的表达式,然后根据二次函数的性质,即可得到出m 为何值时,α2+β2有最小值,进而得到这个最小值.【详解】解:⊙关于4x 2﹣4mx +m +2=0的两个实数根,⊙b 2﹣4ac =(-4m )2-4×4(m +2)≥0,⊙m 2﹣m ﹣2≥0,即21924m ⎛ ⎪⎝⎭≥⎫-, ⊙m ≥2或m ≤﹣1,⊙α+β=﹣44m -=m ,α•β=14(m +2), ⊙α2+β2=(α+β)2﹣2αβ=m 2﹣2×14(m +2)=m 2﹣12m -1=(m -14)2-1716, ⊙当m =-1时,α2+β2有最小值,故答案为-1.【点睛】本题考查的知识点是一元二次方程根的颁布与系数的关系,二次函数的性质,其中易忽略,方程有两个根时△≥0的限制,直接利用韦达定理和二次函数的性质求解,14.914x = 【解析】【分析】由两内项之积等于两外项之积进行求解即可.【详解】解:由题意可得,2(3+2x )=5(3﹣2x ),解得x =914. 【点睛】本题考查了比例的性质, 正确掌握内外项积的关系是解题的关键.15.79【解析】【分析】首先确定阴影部分的面积在整个圆中占的比例,根据这个比例即可求出蚂蚁停留在阴影部分的概率.【详解】解:设小圆的半径为r ,则大圆的半径R=3r⊙大圆的面积=229R r ππ=,涂有颜色部分圆的面积27r π=,⊙涂有颜色部分的面积在整个圆中占的比例为:79⊙蚂蚁停留在涂有颜色部分的概率为:79故答案为:79【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.16.⊙⊙⊙.【解析】【分析】⊙ADE ∆折叠到AFE ∆,求证()Rt ABG Rt AFG HL ∆∆≌,BG FG =,即可求证,根据CF FG =,得到FGC FCG ∠=∠,EGC ∆为等腰三角形,即可得出结论,设DE x =,则5EC x =-,EF x =,依次进行判定即可.【详解】如图所示:⊙ADE ∆折叠到AFE ∆,⊙190D ∠=∠=︒,AD AF =,DE EF =,⊙四边形ABCD 为正方形ABCD ,⊙AD AB =,90B ∠=︒,⊙AB AF =,290B ∠=∠=︒,⊙()Rt ABG Rt AFG HL ∆∆≌,⊙BG FG =,⊙EG EF FG DE BG =+=+,故⊙正确,⊙CF FG =,⊙FGC FCG ∠=∠,⊙90FGC FEC FCG FCE ∠+∠=∠+∠=︒,⊙FEC FCE ∠=∠,⊙EF CF GF ==,⊙BG GF EF DE ===,⊙2EG DE =,CG CE =,⊙EGC ∆为等腰三角形,故⊙正确,⊙//AG CF ,⊙AGB FCG ∠=∠,⊙AGB AGF GFC FCG ∠+∠=∠+∠,BGA AGF ∠=∠⊙FCG GFC ∠=∠,⊙CG FG =,⊙BG FG =, ⊙52CG BG ==, 设DE x =,则5EC x =-,EF x =,在Rt GCE ∆中,222CG CE GE +=, ⊙22255()(5)()22x x +-=+, ⊙53x =, ⊙53DE =, 故⊙不正确,⊙设BG GF b ==,DE EF c ==则5CG b =-,5CE c =-,由勾股定理得:222()(5)(5)b c b c +=-+-,得2555bc b c =--,⊙1(5)(5)2CEG S b c ∆=-- 1(2555)2b c bc =---,将2555bc b c =--代入 1()2bc bc =+ bc =⊙CEG S BG DE ∆=⋅,⊙ABG AFG S S ∆∆=,AEF ADE S S ∆∆=,1222AGE ABGED S S AF EG ∆==⨯⋅五, ⊙+CEG ABGED ABCD S S S ∆=五正⊙25BG DE AF EG ⋅+⋅=,故⊙正确,故答案为:⊙⊙⊙.【点睛】本题主要考查了全等三角形的证明,股股定理等知识点,正确读懂题意是解题的关键. 17.(1)34x =;(2)76x =;(3)14x =-;(4)4x =;(5)3x =-;(6)1x =;(7)67x =-;(8)109x = 【解析】【分析】根据分式方程的求解方法,先去分母化成整式方程计算即可;【详解】(1)两边同时乘以()3x x +得,35x x +=, 解得:34x =, 经检验:()31545304416x x +=⨯=≠, ⊙34x =是分式方程的解; (2)两边同时乘以()21x -得,()23222x x =--,整理得:67x =, 解得:76x =, 经检验:7111066x -=-=≠, ⊙76x =是分式方程的解; (3)两边同时乘以()()2121x x +-得,()2211x +=, 解得:14x =-,经检验:()()113212*********x x ⎛⎫⎛⎫+-=-⨯+⨯-⨯-=-≠ ⎪ ⎪⎝⎭⎝⎭, ⊙14x =-是分式方程的解;(4)两边同时乘以()()22x x x +-得, ()()3220x x --+=,整理得:280x -=,解得:4x =,经检验:()()22462480x x x +-=⨯⨯=≠,⊙4x =是分式方程的解;(5)两边同时乘以()()31x x --得,()()()113x x x x -=+-,整理得:3x =-,经检验:()()()3164240x x --=-⨯-=≠,⊙3x =-是分式方程的解;(6)两边同时乘以()2x -得,3230x x -+-+=,解得:1x =,经检验:210x -=-≠,⊙1x =是分式方程的解;(7)两边同时乘以()61x x +得,()6215x x +=, 解得:67x =-, 经检验:()616107749x x +=-⨯=-≠, ⊙67x =-是分式方程的解; (8)两边同时乘以()231x -得,()33125x --=, 解得:109x =, 经检验:1013131093x -=⨯-=≠, ⊙109x =是分式方程的解; 【点睛】本题主要考查了分式方程的求解,准确计算是解题的关键.18.(1)200,198;(2)图见详解;(3)该校学生将用过的餐巾纸投放到红色收集桶的人数为288名;(4)恰好抽中A ,B 两人的概率为16. 【解析】【分析】(1)根据统计图可得投放到蓝色收集桶的人数为44名,所占总人数的百分比为22%,然后问题可求解;(2)由(1)可得投放到绿色收集桶的人数,然后条形统计图即可完成;(3)根据题意及(1)可直接进行求解;(4)由题意画出树状图,然后问题可求解.【详解】解:(1)由统计图及题意得:此次调查一共采访的学生总数为4422200÷=%(名);“灰”所在扇形的圆心角的度数为110360198200︒⨯=︒;故答案为200,198;(2)由(1)可得被采访的学生总数为200名,⊙投放到绿色收集桶的人数为200-110-44-16=30(名),补全条形统计图如图所示:(3)由(1)及题意得:163600288200⨯=(名);答:该校学生将用过的餐巾纸投放到红色收集桶的人数为288名.(4)由题意可得树状图如下:⊙恰好抽中A,B两人的概率为21126P==.【点睛】本题主要考查统计与调查及概率,熟练掌握统计与调查及概率的求法是解题的关键.19.(2)见解析;(3)见解析.【解析】【分析】(2)根据题意,结合图形可得S △ABC =S △ABI +S △BIC +S △AIC ,利用三角形面积公式得出等式,然后化简即可得;(3)根据(1)(2)结论化简即可证明.【详解】解:(2)∵S △ABC =S △ABI +S △BIC +S △AIC , ∴11112222ab cx ax bx =++ 化简可得:ab x a b c=++. 答:x 与a 、b 、c 的关系为ab x a b c =++. (3)根据(1)和(2)得:2ab a b c x a b c +-==++, 即()()2ab a b c a b c =+++-化简得a 2+b 2=c 2.【点睛】题目主要考查三角形的面积及勾股定理的证明,理解题意,将等式化简求解是解题关键. 20.标语AE 的长度应为30米.【解析】【分析】首先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形,即△ABC 和△ADC .根据已知角的正切函数,可求得BC 与AC 、CD 与AC 之间的关系式,利用公共边列方程求AC 后,AE 即可解答.【详解】解:在Rt △ABC 中,⊙ACB=90°,⊙ABC=45°,⊙Rt △ABC 是等腰直角三角形,AC=BC .在Rt △ADC 中,⊙ACD=90°,tan⊙ADC=AC DC =53,⊙DC=35 AC,⊙BC-DC=BD,即AC-35AC=18,⊙AC=45,则AE=AC-EC=45-15=30.答:标语AE的长度应为30米.【点睛】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.21.(1)a=2,k=4;(2)6【解析】【分析】(1)由知S△ACD=2,可得矩形OMAC的面积为4,进而确定k的值,从而确定反比例函数的关系式,把点B坐标代入可求出m的值,确定点B的坐标,代入一次函数的关系式确定a的值;(2)一次函数、反比例函数的关系式联立方程组求出解即可确定点A的坐标,根据三角形的面积公式进行计算即可.【详解】(1)过点A作AM⊙x轴,垂足为M,则S矩形OMAC=2S△ACD=4=k,⊙反比例函数的关系式为y=4x,把x=﹣1代入得y=﹣4,因此点B(﹣1,﹣4),代入y=ax﹣a得,﹣4=﹣a﹣a,解得,a=2,答:a =2,k =4;(2)由题意得,422y x y x ⎧=⎪⎨⎪=-⎩,解得,1122x y =⎧⎨=⎩,2214x y =-⎧⎨=-⎩, ⊙A (2,2),⊙S △ABC =12×2×(2+4)=6. 【点睛】考查一次函数、反比例函数图象上点的坐标特征,把点的坐标代入是常用的方法,将点的坐标转化为三角形的底和高是解决问题的关键.22.(1(2)8 【解析】【分析】(1)作梯形的一条高AE ,发现30°的直角三角形ABE ,根据锐角三角函数求得BE ,AE 的长,再进一步求得CE 的长,从而完成求解过程;(2)显然MN 是梯形的中位线,主要是求得上底的长即可.再作梯形的另一条高,根据全等三角形和矩形的性质求得梯形的上底.【详解】(1)如图,作AE ⊙BC 于点E .在Rt △ABE 中,BE =AB •cos B =8×cos60°=4,AE =AB •sin B =8×sin60°=⊙CE =BC ﹣BE =12﹣4=8.在Rt △ACE 中,tan⊙ACB=AE EC ==. (2)作DF ⊙BC 于F ,则四边形AEFD 是矩形.⊙AD=EF,DF=AE.⊙AB=DC,⊙AEB=⊙DFC=90°,⊙Rt△ABE⊙Rt△DCF(HL)⊙CF=BE=4,EF=BC﹣BE﹣CF=12﹣4﹣4=4,⊙AD=4.又⊙M、N分别是AB、DC的中点,⊙MN是梯形ABCD的中位线,⊙MN=12(AD+BC)=12(4+12)=8.【点睛】(1)结合等腰梯形的特点,构造直角三角形,然后根据三角函数的定义来求⊙ACB的正切值.(2)在等腰梯形上添加辅助线,将等腰梯形划分为两个全等的直角三角形和一个矩形,然后求得AD的长,再由梯形的中位线的性质求线段MN的长.23.(1)BQ=10﹣t.(2)5秒(3)在,理由见解析【解析】【分析】(1)证明△APO⊙⊙CQO(ASA),可得结论.(2)当AP=BQ时,四边形ABQP是平行四边形,构建方程求解即可.(3)如图2,在Rt△AEO中,根据勾股定理得:AE2+OE2=AO2,列方程可得t的值.(1)⊙四边形ABCD是平行四边形,⊙OA=OC,AD//BC,⊙⊙P AO=⊙QCO,⊙⊙POA=⊙COQ,⊙⊙APO⊙⊙CQO(ASA),⊙AP=CQ=t,⊙BQ=10﹣t.(2)⊙AP//BQ,当AP=BQ时,四边形ABQP是平行四边形,即t=10﹣t,解得:t=5,⊙当t为5秒时,四边形ABQP是平行四边形.(3)结论:点O在线段AP的垂直平分线上.理由:过点O作直线EF⊙AP,垂足为E,与BC交于F,在Rt△ABC中,AB=6,BC=10,⊙8AC,⊙1122ABCS AB AC BC EF=⋅=⋅,⊙AB⋅AC=BC⋅EF,⊙6×8=10×EF,⊙245EF=,⊙12 OE5=,⊙16 AE,5=,当325t=时,32AP5=,⊙2AE=AP,即点E是AP的中点,⊙点O在线段AP的垂直平分线上.本题考查四边形综合题、平行四边形的性质、三角形中位线定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题. 24.(1)2134y x x =--;(2)⊙4;⊙1(2,9)16或13(6-,49)144;(3)748m ≤≤ 【解析】【分析】(1)将A 、B 两点坐标代入即可,(2)讨论点坐标得变化,找到变化规律分情况讨论,即可找出1F 得坐标.(3)当P 点在DE 方向运动时,通过数形结合分别找到最大值和最小值即可找到m 的取值范围.【详解】解:(1)将(2,0)A -、(6,0)B 代入抛物线解析式23y ax bx =+-中得:423036630a b a b --=⎧⎨+-=⎩,解得:141a b ⎧=⎪⎨⎪=-⎩, ∴该抛物线的解析式为:2134y x x =--, (2)⊙D 为抛物线的顶点,(2,4)D ∴-,当点P 与点D 重合时,如图所示:过点D 作//GD x 轴,过F 点作y 轴平行线交GD 延长线于点H ,由题意易得:1CG =,2GD =,4FH =,而PC PF ⊥,即90CDF ∠=︒,90CGD DHF ∠=∠=︒,CDG DFH ∠=∠,CGD DHF ∴∆∆∽, ∴CG GD DH HF =,即124DH =, 2DH ∴=,而四边形EDFH 为矩形,2EF DH ∴==,4OF ∴=,即(4,0)F ,4m ∴=,⊙按题意,将COF ∆绕原点按逆时针方向旋转90︒得到⊙C O F ''',如图所示:显然此时C '、O '、F '三点都不在抛物线上,故需要将⊙C O F '''平移才能得到两个顶点恰好落在抛物线上,根据C '、O '、F '三点特点,可设:1(,)O x y ,则1(3,)C x y +,1(,4)F x y +,当11O C 经平移后在抛物线上,把10(,)x y ,1(3,)C x y +代入2134y x x =--中: 221341(3)(3)34y x x y x x ⎧=--⎪⎪⎨⎪=+-+-⎪⎩, 解得:12x =, 故11(2F ,9)16, 当11F C 经平移后在抛物线上,把1(,4)F x y +,1(3,)C x y +代入2134y x x =--中: 2214341(3)(3)34y x x y x x ⎧+=--⎪⎪⎨⎪=+-+-⎪⎩, 解得:136x =-,故113(6F -,49)144, 当11O F 经平移后在抛物线上,因为1O 、1F 在竖直方向,故不成立. 综上所述:11(2F ,9)16或13(6-,49)144, (3)(2,4)D -,(2,0)E ,(0,3)C -,点P 为线段DE 上一动点,(,0)F m 为x 轴上一点,且PC PF ⊥,如(2)⊙中当点P 与点D 重合时,4m =,取得最大,随着P 向E 移动,m 随之变化,设存在一点P 使m 最小,如图所示:设OF m =,则2FE m =-;设EP y =,则3PQ y =-,根据FEP PQC ∆∆∽得:FE EP PQ QC =即:232m y y -=-, 可得关系式:2137()228m y =-+102>,当32y =时,m 取得最小值78, 综上所述:748m ≤≤.【点睛】本题考查二次函数的综合性质,属于二次函数的综合大题,是中考压轴题形,从题干中筛选出有用条件,二次函数的综合性质,坐标的变化规律以及相似三角形知识点灵活运用是解决本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年四川中考模拟试题(一)(考试时间:120分钟满分:120分)第Ⅰ卷(单项选择题,共21分)一、基础知识及运用。
(每小题3分,共12分)1.下列词语中加点字的注音完全正确的一项是( )A.感慨.(kǎi) 铁锹.(qiāo) 叱咤.风云(chà) 瞠.目结舌(chēn)B.屏.息(píng) 稽.首(qǐ) 鳞次栉.比(zhì) 相形见绌.(chù)C.荣膺.(yīng) 慰藉.(jiè) 戛.然而止(jiá) 丢三落.四(là)D.炽.痛(zhì) 黄晕.(yùn) 吹毛求疵.(cī) 锲.而不舍(qì)2.下列词语中,没有错别字的一项是( )A.寒喧甘拜下风矫揉造作一筹莫展B.既然委曲求全销声匿迹草菅人命C.松弛自命不凡无精打彩走投无路D.赝品循序渐进翻云覆雨变本加利3.下列加点词语运用不恰当的一项是( )A.长江江畔,泸州渡口,花红柳绿,碧波荡漾,人们在这里或漫步,或对弈,或垂钓,或舞蹈,怡然自得....,其乐融融。
B.就像建筑师要精心设计才能打造出令人叹为观止....的作品一样,我们的人生也需要用心经营才能有所成就。
C.在利益的驱使下,一些不法厂商大肆仿冒名牌,各种“山寨名牌”如雨后春笋....般不断涌现,严重扰乱了市场的正常秩序。
D.在柔和舒缓的乐曲声中,老人们行云流水....般的太极扇舞表演,引来阵阵喝彩。
4.下列语句中没有语病的一项是( )A.汪国真的诗作曾点燃了一代人的青春梦想,他猝然长逝,怎不让人扼腕叹息?B.通过我市举办的“名师好课”系列送教活动,促进了全市城乡教育的均衡发展。
C.“川剧进校园”的成效并不显著,原因是对地方文化的重要性认识不足造成的。
D.实施“校园足球计划”,旨在普及足球运动,进一步培养青少年足球运动水平。
二、文言文阅读。
(每小题3分,共9分)【甲】余幼时即嗜学。
家贫,无从致书以观,每假借于藏书之家,手自笔录,计日以还。
天大寒,砚冰坚,手指不可屈伸,弗之怠。
录毕,走送之,不敢稍逾约。
以是人多以书假余,余因得遍观群书。
既加冠,益慕圣贤之道,又患无硕师、名人与游,尝趋百里外,从乡之先达执经叩问。
先达德隆望尊,门人弟子填其室,未尝稍降辞色。
余立侍左右,援疑质理,俯身倾耳以请;或遇其叱咄,色愈恭,礼愈至,不敢出一言以复;俟其欣悦,则又请焉。
故余虽愚,卒获有所闻。
——节选自《送东阳马生序》宋濂【乙】古之学者必有师。
师者,所以传道受业解惑也。
人非生而知之者,孰能无惑?惑而不从师,其为惑也,终不解矣。
生乎吾前,其闻道也固先乎吾,吾从而师之;生乎吾后,其闻道也亦先乎吾,吾从而师之。
吾师道也,夫庸知其年之先后生于吾乎?是故无贵无贱,无长无少,道之所存,师之所存也。
——节选自《师说》韩愈5.对下列句子中加点字的解释,不正确的是( )A.余幼时即嗜.学 (嗜:喜欢)B.援疑质.理 (质:总结)C.是故..无贵无贱 (是故:因此)D.夫庸.知其年之先后生于吾乎 (庸:难道)6.下列各组句子中,加点词的意义和用法正确的是( )A.无从致书以.观以.土砾凸者为丘,凹者为壑(《童趣》沈复)B.人非生而知之.者鸣之.而不能通其意(《马说》韩愈)C.故余虽愚,卒.或有所闻卒.皆夜惊恐(《陈涉世家》司马迁)D.余.因得遍观群书余.强饮三大白而别(《湖心亭看雪》张岱)7.下列几句话中,分别体现宋濂诚信、明礼的是( )①录毕,走送之,不敢稍逾约。
②手指不可屈伸,弗之怠。
③或遇其叱咄,色愈恭,礼愈至,不敢出一言以复。
④余立侍左右,援疑质理,俯身倾耳以请。
A.①④ B.②③ C.①② D.③④第Ⅱ卷(非选择题共99分)三、翻译断句。
(10分)8.把文中画横线的句子翻译成现代汉语。
(6分)(1)先达德隆望尊,门人弟子填其室,未尝稍降辞色。
(3分)(2)生乎吾后,其闻道也亦先乎吾,吾从而师之。
(3分)9.阅读语段,用“/”为画横线的句子断句,只断8处。
(4分)曾子之妻之市,其子随之而泣。
其母曰:“汝还,顾反,为汝杀彘。
”妻适市来,曾子欲捕彘杀之。
妻止之曰:“特与婴儿戏耳。
”曾子曰:“婴儿非与戏也婴儿非有知也待父母而学者也听父母之教今子欺之是教子欺也母欺子子而不信其母非以成教也。
”遂烹彘也。
四、古诗文默写。
(6分)10.根据课文,用规范汉字在下面的横线上补写出相应的句子。
(任选6句作答,6分)(1)_________,_________烈士暮年,壮心不已。
(曹操《龟虽寿》)(2)问渠那得清如许,_________。
(朱熹《观书有感》)(3) _________,江入大荒流。
(李白《渡荆门送别》)(4)故天将降大任于是人也,_________,_________,饿其体肤。
(《生于忧患,死于安乐》)(5)塞下秋来风景异,_________。
(范仲淹《渔家傲》)(6) _________,波撼岳阳城。
(孟浩然《望洞庭湖赠张丞相》)(7)人生自古谁无死?_________。
(文天祥《过零丁洋》)(8) _________,_________,_________。
彼竭我盈,故克之。
《曹刿论战》五、阅读下面这首古诗,完成11~12题。
(8分)雨晴【唐】王驾雨前初见花间蕊,雨后全无叶底花。
蜂蝶纷纷过墙去,却疑春色在邻家。
11.这首小诗的一二句描写了哪两种景致?(4分)12.这首小诗的最后一句可谓神来之笔,尤其是“疑”字,用得极妙,请简析该字的表达效果。
(4分)六、名著及现代文阅读。
(29分)(一)名著阅读(6分)如果你喜欢探索,建议你阅读凡尔纳的《海底两万里》(填作品),因为它可以开启你的科学与幻想之旅;如果你追求更高的生活境界,建议你阅读夏洛蒂·勃朗特(填作者)的《简·爱》,因为它是人生追求的二重奏;如果你渴望再回童年,建议你阅读冰心的《繁星》《春水》,因为它歌颂了母爱、童真、自然(填主题);如果你想高举理想主义的旗帜,建议你阅读《钢铁是怎样炼成的》,因为具有献身精神、钢铁意志和顽强奋斗品质的保尔·柯察金(填主人公)将伴你同行……13.请在以上横线处填写相应的内容。
(4分)14.请从以上作家作品中,选择你喜欢的一部,针对其中的一点写一段鉴赏性文字。
(不少于50字,不能出现错别字和病句,2分)(二)阅读下文,完成15~18题。
(9分)独一无二的你①全球有70亿人口分布在世界各地,而在过去的5万年间,据估计共有1000亿人口在地球上生息过。
每个人都会是独一无二的吗?随着生命科学对人体认识的日益深入,人类个体的独特性被越来越多地揭示出来。
除了我们熟知的DNA和面相外,人类个体的独特性和不可取代性究竟还表现在哪里呢?②早在20世纪70年代,人们就已经意识到,步态足以帮助我们辨别一个人,且准确率至少可以达到90%。
研究显示,人的步态在童年期一直在变化,但当身体的发育停止时,步态就稳定了下来。
许多因素使我们的步态变得和别人不一样,这些因素包括腿的长度、臀部的宽度等身体因素,也包括一些人为因素,如体育锻炼导致的肌肉生长等等。
步态的神奇之处还在于,尽管我们一眼就能发现人们步态的不同,但却难以用语言描述其中的差别。
③就目前的技术而言,依据步态识别身份还是存在难度,相比之下,也许眼睛和耳朵更可靠一些。
耳朵的形状非常独特,不仅每个人不一样,即使是同一个人,两只耳朵也各不相同。
为什么会这样呢?原来,胎儿耳朵的成形开始于母体怀孕大约..5周以后,这时,在胚胎头部两侧的地方会分别出现6个发育成耳朵的“起点”,它们最终“会合”成形。
在这个过程中,虽然基因引导它们形成完美的耳朵,但子宫里的环境也使它们变得特别。
耳朵一旦成形,它们的形状便大致不会变化了,正因为这个原因,有科学家便试图发展利用耳朵的形状识别身份的技术。
在美国和荷兰,甚至出现过根据耳朵留下的“耳纹”破获案件的实例。
然而“耳纹”的作用也有限,它们的形状受压力和方向的影响太大,所以眼睛是更好的选择。
④眼睛中的虹膜是人眼构造的一部分,虹膜的结构还非常复杂,每一个虹膜都有复杂的皱纹和条纹,有独特的血管和色素细胞,它们决定虹膜的颜色、纹路、斑点和明暗。
从遗传学的角度看,虹膜的颜色和纹理是由基因决定的,所以在一个家庭中,或者在一个人的左右眼中,颜色和纹理看上去会很相似。
然而,人们发明的虹膜识别系统并不专注虹膜的颜色和纹理,而是更多地去发现一些不受基因影响的细节之处,如斑点、皱纹等等,它们在胎儿出生前就发育成形了,其形态由韧带、肌肉和色素细胞综合决定,因而是完全偶然的,所以,每个人的虹膜都是独一无二的。
⑤所有这一切都证明你是唯一的,没有人可以取代你。
亘古至今,天地间只出了一个现在的你,同样的事情以前没有发生过,未来也不会发生。
15.第①段说“人类个体的独特性和不可取代性究竟还表现在哪里呢?”请联系全文,回答这个问题。
(2分)16.第②段在介绍人的步态时,主要讲到了步态的哪几个特点?(2分)17.第③段两处画横线的句子分别运用了______、______的说明方法。
(2分)18.第③段加点的词语“大约”一词能否删去,为什么?(3分)(三)阅读下面的文字,完成19~22题。
(14分)村里通了公交车吴敬贤①老高要去一趟乡下亲戚家,听说村里通了公交车,很方便,就动了心。
②老高来到车站,一眼就找到了写有村名的大客车。
可走近了仔细一瞧,傻眼了:“这哪算是公交车!”明明是一辆不知哪个单位淘汰下来的旧客车,漆皮都泛黄起皱了,车座的靠背歪歪扭扭,有的底座裂开了大缝,露出暗黄色的海绵。
车厢地板上飞舞着浅黄色的浮土,处处可见杂乱的泥土鞋印。
老高不满地嘟囔着,好不容易找了个稍微干净的地方坐下,女售票员看了看老高,拿起笤帚用力扫了几下,愤愤地说:“天天跑乡下,想找干净也不容易。
”③发车的时间到了,可司机稳稳地坐在驾驶座上,一点儿也不着急。
老高不耐烦了,连声催促着。
司机回头一笑,说:“咱这车出发可没个准点,乡下人没有时间观念,都不会卡着钟点回来,可总不能把他们撂在这城里过夜吧,再耐心等等。
”④“真是的,哪见过这样的公交车?连个时刻表都没有!”老高心里又一阵埋怨。
正想着,几个人背着编织袋气咻咻地赶了过来,跳上车,司机一拧钥匙,客车屁股冒出一股黑烟,终于出了城。
⑤出了城,老高的气更大了。
原料想大客车会顺风顺水直奔目的地,却不料为了多串几个村子,放着平坦的沥青公路不走,专走颠簸不平的土路,颠得老高满肚子的茶叶水直想喷出来。
⑥车厢里站满了人,一个站立的老汉,身子随着车的摇摆扭着秧歌,为防止跌倒,他把手扶在了老高的肩上。
老高紧捂着自己的钱包,大声对老汉说:“快把手拿开,素不相识,抓住我干什么?”老汉一脸的委屈,说:“这周围哪儿有手扶的地方,我离你最近,当然只有抓着你才能站稳了。