潞城镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
七年级下册期中数学试卷(含答案)
七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)在平面直角坐标系中,点A(2,﹣3)在第()象限.A.一B.二C.三D.四2.(3分)4的平方根是()A.±2 B.2 C.±D.3.(3分)在实数﹣,0.31,,0.1010010001,3中,无理数有()个A.1 B.2 C.3 D.44.(3分)如图,已知∠1=60°,∠2=60°,∠3=68°,则∠4的大小()A.68°B.60°C.102°D.112°5.(3分)如图,在4×8的方格中,建立直角坐标系E(﹣1,﹣2),F(2,﹣2),则G 点坐标为()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)6.(3分)在直角坐标系中,A(0,1),B(3,3)将线段AB平移,A到达C(4,2),B 到达D点,则D点坐标为()A.(7,3)B.(6,4)C.(7,4)D.(8,4)7.(3分)如图AB∥CD,BC∥DE,∠A=30°,∠BCD=110°,则∠AED的度数为()A.90°B.108°C.100°D.80°8.(3分)下列说法错误的是()A.B.64的算术平方根是4C.D.,则x=19.(3分)一只跳蚤在第一象限及x、y轴上跳动,第一次它从原点跳到(0.1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2018次跳到点()A.(6,44)B.(7,45)C.(44,7)D.(7,44)10.(3分)下列命题是真命题的有()个①两条直线被第三条直线所截,同位角的平分线平行②垂直于同一条直线的两条直线互相平行③过一点有且只有一条直线与已知直线平行④对顶角相等,邻补角互补A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)11.(3分)实数的绝对值是.12.(3分)x、y是实数,,则xy=.13.(3分)已知,A(0,4),B(﹣2,0),C(3,﹣1),则S△ABC=.14.(3分)若2n﹣3与n﹣1是整数x的平方根,则x=.15.(3分)在平面坐标系中,A(1,﹣1),B(2,3),M是x轴上一点,要使MB+MA的值最小,则M的坐标为.16.(3分)如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.三、解答题(共8小题,72分)17.(8分)计算:(1)(2)18.(8分)求下列各式中的x值(1)16(x+1)2=49(2)8(1﹣x)3=12519.(8分)完成下面的推理填空如图,已知,F是DG上的点,∠1+∠2=180°,∠3=∠B,求证:∠AED=∠C.证明:∵F是DG上的点(已知)∴∠2+∠DFE=180°()又∵∠1+∠2=180°(已知)∴∠1=∠DFE()∴BD∥EF()∴∠3=∠ADE()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠AED=∠C()20.(8分)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.21.(8分)已知:a是9+的小数部分,b是9﹣的小数部分.①求a、b的值;②求4a+4b+5的平方根.22.(10分)①如图1,O是直线AB上一点,OE平分∠AOC,OF平分∠BOC,求证:OE⊥OF.②如图2,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE23.(10分)(1)①如图1,AB∥CD,则∠B、∠P、∠D之间的关系是;②如图2,AB∥CD,则∠A、∠E、∠C之间的关系是;(2)①将图1中BA绕B点逆时针旋转一定角度交CD于Q(如图3).证明:∠BPD=∠1+∠2+∠3②将图2中AB绕点A顺时针旋转一定角度交CD于H(如图4)证明:∠E+∠C+∠CHA+∠A=360°(3)利用(2)中的结论求图5中∠A+∠B+∠C+∠D+∠E+∠F的度数.24.(12分)如图1,D在y轴上,B在x轴上,C(m,n),DC⊥BC且+(n﹣b)2+|b ﹣4|=0.(1)求证:∠CDO+∠OBC=180°;(2)如图2,DE平分∠ODC,BF平分∠OBC,分别交OB、CD、y轴于E、F、G.求证:DE∥BF;(3)在(2)问中,若D(0,2),G(0,5),B(6,0),求点E、F的坐标.七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)在平面直角坐标系中,点A(2,﹣3)在第()象限.A.一B.二C.三D.四【解答】解:点A(2,﹣3)在第四象限.故选:D.2.(3分)4的平方根是()A.±2 B.2 C.±D.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.3.(3分)在实数﹣,0.31,,0.1010010001,3中,无理数有()个A.1 B.2 C.3 D.4【解答】解:在实数﹣(无理数),0.31(有理数),(无理数),0.1010010001(有理数),3(无理数)中,无理数有3个,故选:C.4.(3分)如图,已知∠1=60°,∠2=60°,∠3=68°,则∠4的大小()A.68°B.60°C.102°D.112°【解答】解:∵∠1=60°,∠2=60°,∴a∥b,∴∠5+∠4=180°,∵∠3=68°=∠5,∴∠4=112°.故选:D.5.(3分)如图,在4×8的方格中,建立直角坐标系E(﹣1,﹣2),F(2,﹣2),则G 点坐标为()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)【解答】解:如图所示:G点坐标为:(﹣3,1).故选:C.6.(3分)在直角坐标系中,A(0,1),B(3,3)将线段AB平移,A到达C(4,2),B 到达D点,则D点坐标为()A.(7,3)B.(6,4)C.(7,4)D.(8,4)【解答】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4),故选:C.7.(3分)如图AB∥CD,BC∥DE,∠A=30°,∠BCD=110°,则∠AED的度数为()A.90°B.108°C.100°D.80°【解答】解:如图,延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=70°,又∵∠A=30°,∴∠AED=∠A+∠AFE=100°,故选:C.8.(3分)下列说法错误的是()A.B.64的算术平方根是4C.D.,则x=1【解答】解:A、,正确;B、64的算术平方根是8,错误;C、,正确;D、,则x=1,正确;故选:B.9.(3分)一只跳蚤在第一象限及x、y轴上跳动,第一次它从原点跳到(0.1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2018次跳到点()A.(6,44)B.(7,45)C.(44,7)D.(7,44)【解答】解:跳蚤运动的速度是每秒运动一个单位长度,(0,1)用的秒数分别是1(12)秒,到(0,2)用8(2×4)秒,到(0,3)用9(32)秒,到(0,4)用24(4×6)秒,到(0,5)用25(52)秒,到(0,6)用48(6×8)秒,依此类推,到(0,45)用2025秒.2025﹣1﹣6=2018,故第2018秒时跳蚤所在位置的坐标是(6,44).故选:A.10.(3分)下列命题是真命题的有()个①两条直线被第三条直线所截,同位角的平分线平行②垂直于同一条直线的两条直线互相平行③过一点有且只有一条直线与已知直线平行④对顶角相等,邻补角互补A.1 B.2 C.3 D.4【解答】解:两条平行线被第三条直线所截,同位角的平分线平行,①是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,②是假命题;过直线外一点有且只有一条直线与已知直线平行,③是假命题;对顶角相等,邻补角互补,④是真命题;故选:A.二、填空题(每小题3分,共18分)11.(3分)实数的绝对值是.【解答】解:|﹣|=,故答案为:.12.(3分)x、y是实数,,则xy=﹣6 .【解答】解:由题意可知:x+2=0,y﹣3=0,∴x=﹣2,y=3∴xy=﹣6故答案为:﹣6=11 .13.(3分)已知,A(0,4),B(﹣2,0),C(3,﹣1),则S△ABC【解答】解:如图:S=.△ABC故答案为:1114.(3分)若2n﹣3与n﹣1是整数x的平方根,则x= 1 .【解答】解:当2n﹣3=n﹣1 时,解得n=2,所以x=(n﹣1)2=(2﹣1)2=1;当2n﹣3+n﹣1=0,解得n=,所以x=(n﹣1)=(﹣1)2=.∵x是整数,∴x=1,故答案为1.15.(3分)在平面坐标系中,A(1,﹣1),B(2,3),M是x轴上一点,要使MB+MA的值最小,则M的坐标为(,0).【解答】解:连接AB交x轴于M,则MB+MA的值最小.设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=4x﹣5,令y=0,得到x=,∴M(,0)故本题答案为:(,0);16.(3分)如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有 4 个.【解答】解:到l1的距离是2的点,在与l1平行且与l1的距离是2的两条直线上;到l2的距离是1的点,在与l2平行且与l2的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.三、解答题(共8小题,72分)17.(8分)计算:(1)(2)【解答】解:(1)原式=4+4×2=12;(2)原式=﹣++﹣1=2.18.(8分)求下列各式中的x值(1)16(x+1)2=49(2)8(1﹣x)3=125【解答】解:(1)16(x+1)2=49(x+1)2=x+1=,∴.(2)8(1﹣x)3=1251﹣x=x=﹣.19.(8分)完成下面的推理填空如图,已知,F是DG上的点,∠1+∠2=180°,∠3=∠B,求证:∠AED=∠C.证明:∵F是DG上的点(已知)∴∠2+∠DFE=180°(邻补角的定义)又∵∠1+∠2=180°(已知)∴∠1=∠DFE(等量代换)∴BD∥EF(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等)【解答】解:∵F是DG上的点(已知)∴∠2+∠DFE=180°(邻补角的定义)又∵∠1+∠2=180°(已知)∴∠1=∠DFE(等量代换)∴BD∥EF(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等)故答案为:邻补角的定义;等量代换;内错角相等,两直线平行;等量代换;同位角相等,两直线平行;两直线平行,同位角相等.20.(8分)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)描点如图;(2)依题意,得AB∥x轴,且AB=3﹣(﹣2)=5,=×5×2=5;∴S△ABC(3)存在;=10,∵AB=5,S△ABP∴P点到AB的距离为4,又点P在y轴上,∴P点的坐标为(0,5)或(0,﹣3).21.(8分)已知:a是9+的小数部分,b是9﹣的小数部分.①求a、b的值;②求4a+4b+5的平方根.【解答】解:①由题意可知:9+的整数部分为12,9﹣的整数部分为5,∴9+=12+a,9﹣=5+b∴a=﹣3,b=4﹣,②原式=4(a+b)+5=4×1+5=9∴9的平方根为:±322.(10分)①如图1,O是直线AB上一点,OE平分∠AOC,OF平分∠BOC,求证:OE⊥OF.②如图2,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE【解答】①证明:∵OE平分∠AOC,OF平分∠BOC,∴∠EOC=∠AOC,∠FOC=BOC,∵∠AOC+∠BOC=180°,∴∠EOF=∠EOC+∠FOC=90°,∴OE⊥OF;②证明:∵AB∥CD,∴∠A+∠C=180°,∵∠2+∠D+∠C=180°,∠1+∠A+∠B=180°,∠1=∠B,∠2=∠D,∴2∠1+2∠2=180°+180°﹣180°=180°,∴∠1+∠2=90°,∴∠BED=90°,∴BE⊥DE.23.(10分)(1)①如图1,AB∥CD,则∠B、∠P、∠D之间的关系是∠B+∠D=∠P;②如图2,AB∥CD,则∠A、∠E、∠C之间的关系是∠A+∠E+∠C=360°;(2)①将图1中BA绕B点逆时针旋转一定角度交CD于Q(如图3).证明:∠BPD=∠1+∠2+∠3②将图2中AB绕点A顺时针旋转一定角度交CD于H(如图4)证明:∠E+∠C+∠CHA+∠A=360°(3)利用(2)中的结论求图5中∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:(1)①如图1中,作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠B=∠1,∠D=∠2,∴∠B+∠D=∠1+∠2=∠BPD.②作EH∥AB,∵AB∥CD,∴EH∥CD,∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠1+∠2+∠C=360°,∴∠A+∠AEC+∠C=360°.故答案为∠B+∠D=∠P,∠A+∠E+∠C=360°.(2)①如图3中,作BE∥CD,∵∠EBQ=∠3,∠EBP=∠EBQ+∠1,∴∠BPD=∠EBP+∠2=∠1+∠3+∠2.②如图4中,连接EH.∵∠A+∠AEH+∠AHE=180°,∠C+∠CEB+∠CBE=180°,∴∠A+∠AEH+∠AHE+∠CEH+∠CHE+∠C=360°,∴∠A+∠AEC+∠C+∠AHC=360°.(3)如图5中,设AC交BG于H.∵∠AHB=∠A+∠B+∠F,∵∠AHB=∠CHG,在五边形HCDEG中,∠CHG+∠C+∠D+∠E+∠G=540°,∴∠A+∠B+∠F+∠C+∠D+∠E+∠G=540°,∴∠A+∠B+∠C+∠D+∠E+∠F=540°24.(12分)如图1,D在y轴上,B在x轴上,C(m,n),DC⊥BC且+(n﹣b)2+|b ﹣4|=0.(1)求证:∠CDO+∠OBC=180°;(2)如图2,DE平分∠ODC,BF平分∠OBC,分别交OB、CD、y轴于E、F、G.求证:DE∥BF;(3)在(2)问中,若D(0,2),G(0,5),B(6,0),求点E、F的坐标.【解答】解:(1)∵DC⊥BC,∴∠BCD=90°,∵∠BOD=90°,∴∠OBC+∠ODC=360°﹣∠BOD﹣∠BCD=180°;(2)∵DE平分∠ODC,BF平分∠OBC,∴∠ODE=∠ODC,∠OBF=∠OBC,∵∠OBC+∠ODC=180°,∴∠ODE+∠OBF=90°,∵∠ODE+∠OED=90°,∴∠OED=∠OBF,∴DE∥BF,(3)∵+(n﹣b)2+|b﹣4|=0,∴m﹣3=0,n﹣b=0,b﹣4=0,∴m=3,b=4,n=4,∴C(3,4),∵D(0,2),∴直线CD的解析式为y=x+2①,∵G(0,5),B(6,0),∴直线BG的解析式为y=﹣x+5②,联立①②解得,,∴F(2,),∵DE∥BF,D(0,2),∴直线DE的解析式为y=﹣x+2,令y=0,得,﹣x+2=0,∴x=2.4,∴E(2.4,0).。
人教版2019学年七年级数学下册期中试卷含其答案(共10套)
人教版2019学年七年级数学下期期中试卷(一)一、选择题(本题共10个小题,每题4分,共40分)1.在﹣1.414,﹣,,,3.142,2﹣,2.121121112中的无理数的个数是()A.1 B.2 C.3 D.42.三个实数﹣,﹣2,﹣之间的大小关系是()A.﹣>﹣>﹣2 B.﹣>﹣2>﹣C.﹣2>﹣>﹣D.﹣<﹣2<﹣3.下列叙述中正确的是()A.(﹣11)2的算术平方根是±11B.大于零而小于1的数的算术平方根比原数大C.大于零而小于1的数的平方根比原数大D.任何一个非负数的平方根都是非负数4.若a<0,则关于x的不等式|a|x<a的解集是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣15.下列关系不正确的是()A.若a﹣5>b﹣5,则a>b B.若x2>1,则x>C.若2a>﹣2b,则a>﹣b D.若a>b,c>d,则a+c>b+d6.关于x的方程5x﹣2m=﹣4﹣x的解在2与10之间,则m的取值范围是()A.m>8 B.m<32 C.8<m<32 D.m<8或m>327.不等式组的解集在数轴上表示为()A.B.C.D.8.已知9x2﹣30x+m是一个完全平方式,则m的值等于()A.5 B.10 C.20 D.259.下列四个算式:(1)(x4)4=x4+4=x8;(2)[(y2)2]2=y2×2×2=y8;(3)(﹣y2)3=y6;(4)[(﹣x)3]2=(﹣x)6=x6.其中正确的有()A.0个B.1个C.2个D.3个10.﹣x n与(﹣x)n的正确关系是()A.相等B.互为相反数C.当n为奇数时它们互为相反数,当n为偶数时相等D.当n为奇数时相等,当n为偶数时互为相反数二、填空题(本题共4小题,每题5分,共20分)11.分解因式9(a+b)2﹣(a﹣b)2=.12.不等式3x﹣2≥4(x﹣1)的所有非负整数解的和等于.13.已知a=﹣(0.3)2,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,用“<”连接a、b、c、d为.14.不等式组的解集是0<x<2,那么a+b的值等于.三、计算(本题共1小题,每题8分,共16分)15.(1)(﹣)﹣2+()0+(﹣5)3÷(﹣5)2(2)(x3)2÷x2÷x+x3•(﹣x)2•(﹣x2)四、解不等式(组)(本题共1小题,每题8分,共16分)16.解不等式(组)(1)(2).五、(本题共2小题,每题10分,共20分)17.已知不等式5x﹣2<6x+1的最小整数解是方程﹣=6的解,求a的值.18.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.六、(本题共2小题,每题12分,共24分)19.已知关系x、y的方程组的解为正数,且x的值小于y的值.(1)解这个方程组(2)求a的取值范围.20.阅读下列材料:一般地,n个相同的因数a相乘记为a n,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a 为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.七、(本题共1小题,共14分)21.某公司有员工50人,为了提高经济效益,决定引进一条新的生产线并从现有员工中抽调一部分员工到新的生产线上工作,经调查发现:分工后,留在原生产线上工作的员工每月人均产值提高40%;到新生产线上工作的员工每月人均产值为原来的3倍,设抽调x人到新生产线上工作.(1)填空:若分工前员工每月的人均产值为a元,则分工后,留在原生产线上工作的员工每月人均产值是元,每月的总产值是元;到新生产线上工作的员工每月人均产值是元,每月的总产值是元;(2)分工后,若留在原生产线上的员工每月生产的总产值不少于分工前原生产线每月生产的总产值;而且新生产线每月生产的总产值又不少于分工前生产线每月生产的总产值的一半.问:抽调的人数应该在什么范围?人教版2019学年七年级数学下期期中试卷(二)一、选择题:每小题2分,共20分1.(﹣x2)3的结果应为()A.﹣x5 B.x5C.﹣x6 D.x62.下列计算正确的是()A.x6÷x2=x3B.(﹣x)2•(﹣x)3=﹣x5C.(x3)2=x5D.(﹣2x3y2)2=4x8y43.如果(4a2﹣3ab2)÷M=﹣4a+3b2,那么单项式M等于()A.ab B.﹣ab C.﹣a D.﹣b4.如图,4块完全相同的长方形围成一个正方形.图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的式子是()A.(a+b)2﹣(a﹣b)2=4ab B.(a+b)2﹣(a2+b2)=2abC.(a+b)(a﹣b)=a2﹣b2D.(a﹣b)2+2ab=a2+b25.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角6.将一直角三角尺与两边平行的纸条按如图所示放置,下列结论中不一定成立的是()A.∠1=∠2 B.∠2=∠4 C.∠2+∠4=90°D.∠4+∠5=180°7.某地海拔高度h与温度T的关系可用T=21﹣6h来表示(其中温度单位为℃,高度单位为千米),则该地区海拔高度为2000米的山顶上的温度是()A.15℃B.3℃C.﹣1179℃D.9℃8.如图,∠1与∠2是对顶角的是()A.B.C.D.9.一蓄水池有水40m3,如果每分钟放出2m3的水,水池里的水量y(m3)与放水时间t(分)有如下关系:下列结论中正确的是()A.y随t的增加而增大B.放水时为20分钟时,水池中水量为8m3C.y与t之间的关系式为y=40﹣tD.放水时为18分钟时,水池中水量为4m310.如图所示,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第9分到第12分,汽车速度从60千米/时减少到0千米/时D.从第3分到第6分,汽车行驶了120千米二、填空题:每小题3分,共30分11.计算:﹣b3•b2=.12.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是m.13.若m+n=6,m2﹣n2=18,则(n﹣m)÷2=.14.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为.15.如图,由NO⊥l,MO⊥l,可以得出MO与NO重合,其中的理由是.16.如图所示,已知∠C=100°,若增加一个条件,使得AB∥CD,试写出符合要求的一个条件.17.如图,已知AB∥CD,若∠A=110°,∠EDA=60°,则∠CDO=.18.一个梯形的下底长是上底长的5倍,高是4cm,则梯形的面积y与上底x之间的关系式为.19.日常生活中,“老人”是一个模糊概念.可用“老人系数”表示一个人的老年化程度.“老人系数”的计算方法如下表:按照这样的规定,“老人系数”为0.6的人的年龄是岁.20.某型号汽油的数量与相应金额的关系如图所示,那么这种汽油的单价是每升元.三、解答题:共70分21.(12分)计算:(1)(﹣2)7×(﹣2)6(2)(﹣3x3)2﹣[(2x)2]3(3)a2m+2÷a2(4)(3a2b﹣ab2+ab)÷(﹣ab)22.(6分)计算:(1)|﹣8|﹣2﹣1+20150﹣2×24÷22(2)1002×998.23.(10分)先化简,再求值:(1)(x﹣2y)2+(x﹣y)(x﹣2y)﹣2(x﹣3y)(x﹣y),其中x=﹣4,y=2.(2)(a+b)(a﹣b)+(4ab2﹣8a2b2)÷4ab,其中a=2,b=1.24.(6分)已知:∠AOB求作:∠A′O′B′使∠A′O′B′=∠AOB(不写作法,保留作图痕迹)25.(8分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.26.(8分)地表以下岩层的温度与它所处的深度有表中的关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)岩层的深度h每增加1km,温度t是怎样变化的?试写出岩层的温度t与它的深度h之间的关系式;(3)估计岩层10km深处的温度是多少.27.(10分)如图,已知AD⊥BC于点D,EF⊥BC于点F,且AD平分∠BAC.请问:(1)AD与EF平行吗?为什么?(2)∠3与∠E相等吗?试说明理由.28.(10分)已知动点P以每秒2cm的速度沿如图(1)所示的边框按从B→C→D→E→F→A的路径移动,相应的三角形ABP的面积S(cm2)关于时间t(s)的函数图象如图(2)所示,若AB=6cm,试回答下列问题:(1)如图(1),BC的长是多少?图形面积是多少?(2)如图(2),图中的a是多少?b是多少?人教版2019学年七年级数学下期期中试卷(三)一、选择题(每小题3分,共18分)1.下列式子正确的是()A.(x﹣y)2=x2﹣xy+y2 B.﹣x(x2﹣x+1)=﹣x3﹣x2﹣xC.(2ab2)3=6a3b6 D.9x3y2÷(﹣3x3y)=﹣3y2.如图,AB⊥AC,AD⊥BC,如果AB=4cm,AC=3cm,AD=2.4cm,那么点C到直线AB的距离为()A.3cm B.4cm C.2.4cm D.无法确定3.在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中说法正确的是()A.①②⑤ B.①②④ C.①③⑤ D.①④⑤4.已知a=255,b=344,c=433,则a、b、c的大小关系是()A.b>c>a B.a>b>c C.c>a>b D.a<b<c5.如图,已知∠1=∠2=∠3=55°,则∠4的度数是()A.55° B.95° C.115° D.125°6.若36x2﹣mxy+49y2是完全平方式,则m的值为()A.±42 B.42 C.84 D.±84二、填空题(每小题3分,共24分)7.已知a=()﹣2,b=(﹣2)3,c=(π﹣2)0,则a、b、c从小到大的排列顺序为.8.一个等腰三角形的两边长为4cm、9cm,则这个三角形的周长为cm.9.若3m=6,9n=2,则32m﹣4n+1=.10.如图,AD是△ABC的中线,AB=8cm,△ABD与△ACD的周长差为2cm,则AC=cm.11.如图,一条公路修到湖边时,需要拐弯绕湖而过,如果第一次拐的角∠A=120°,第二次拐的角150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C等于.12.对于任意两个实数对(a,b)和(c,d),规定:当且仅当a=c且b=d时,(a,b)=(c,d).定义运算“⊕”:(a,b)⊕(c,d)=(ac﹣bd,ad+bc).若(1,2)⊕(p,q)=(5,0),则p=,q=.13.(3+a)(3﹣a)+a2=.14.已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为.三、(每小题6分,共24分)15.已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.16.如图,在△ABC,∠ABC和∠ACB的角平分线相交于I,问∠BIC与∠A有什么关系?利用上述关系,计算:(1)当∠A=50°时,求∠BIC;(2)当∠BIC=130°时,求∠A.17.已知:如图,已知∠B+∠BCD=180°,∠B=∠D.那么∠E=∠DFE成立吗?为什么?.下面是彬彬同学进行的推理,请你将彬彬同学的推理过程补充完整.解:∵∠B+∠BCD=180°(已知),∴(同旁内角互补,两直线平行).∴∠B=∠DCE().又∵∠B=∠D(已知),∴∠DCE=∠D (等量代换).∴AD∥BE().∴∠E=∠DFE().18.如图所示,OA∥O′A′,OB∥O′B′.(1)试说明∠AOB=∠A′O′B′;(2)反向延长OA到C,试说明∠COB+∠A′O′B′=180°.四、(每小题8分,共24分)19.如图,已知点P为∠AOB一边OB上的一点.(1)请利用尺规在∠AOB内部作∠BPQ,使∠BPQ=∠AOB;(不写作法,保留作图痕迹)(2)根据上面的作图,判断PQ与OA是否平行?若平行,请说明理由.20.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠ACB=∠AED=105°,∠CAD=10°,∠B=∠D=25°,求∠DFB、∠DGB的度数.21.某机动车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据如图回答问题:(1)机动车行驶几小时后加油?加了多少油?(2)试求加油前油箱余油量Q与行驶时间t之间的关系式;(3)如果加油站离目的地还有230km,车速为40km/h,要到达目的地,油箱中的油是否够用?请说明理由.五、(每小题9分,共18分)22.甲、乙两家体育器材商店出售同样的乒乓球拍和乒乓球,球拍一副定价60元,乒乓球每盒定价10元.今年世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买一副乒乓球拍赠两盒乒乓球;乙商店规定所有商品9折优惠.某校乒乓球队需要买2副乒乓球拍,乒乓球若干盒(不少于4盒).设该校要买乒乓球x盒,所需商品在甲商店购买需要y1元,在乙商店购买需要y2元.(1)请分别写出y1、y2与x之间的函数关系式(不必注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案.23.图a是由4个长为m,宽为n的长方形拼成的,图b是由这四个长方形拼成的正方形,中间的空隙,恰好是一个小正方形.(1)用m、n表示图b中小正方形的边长为.(2)用两种不同方法表示出图b中阴影部分的面积;(3)观察图b,利用(2)中的结论,写出下列三个代数式之间的等量关系,代数式(m+n)2,(m﹣n)2,mn;(4)根据(3)中的等量关系,解决如下问题:已知a+b=7,ab=5,求(a﹣b)2的值.六、(本大题共12分)24.(12分)(2015春•吉安校级期中)如图:已知AB∥CD,EF⊥AB于点O,∠FGC=125°,求∠EFG的度数.下面提供三种思路:(1)过点F作FH∥AB;(2)延长EF交CD于M;(3)延长GF交AB于K.请你利用三个思路中的两个思路,将图形补充完整,求∠EFG的度数.解(一):解(二):人教版2019学年七年级数学下期期中试卷(四)一、选择题:本大题共14个小题,1-6小题每小题2分,7-16小题每小题2分,共42分,在每小题给出的四个选项中,只有一项符合题目要求的1.在平面直角坐标系中,点P(6,﹣5)在()A.第一象限B.第二象限C.第三象限D.第四象限2.观察下面图案在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.3.的算术平方根是()A.B.C.D.4.在以下实数,﹣,3.1415926,中无理数有()A.4个 B.3个 C.2个 D.1个5.如果点A的坐标满足xy=0,则点A必在()A.x轴上B.y轴上C.原点D.坐标轴上6.如图,已知AB∥CD,∠A=70°,则∠1度数是()A.70°B.100° C.110° D.130°7.下列说法正确的是()A.﹣5是25的平方根B.25的平方根是﹣5C.﹣5是(﹣5)2的算术平方根D.±5是(﹣5)2的算术平方根8.已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于()A.30°B.35°C.40°D.45°9.线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣7)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,﹣4)D.(﹣9,﹣4)10.下列四个命题中是真命题的是()A.相等的角是对顶角B.两条直线被第三条直线所截,同位角相等C.实数与数轴上的点是一一对应的D.垂直于同一条直线的两条直线互相平行11.一个正方形的面积为17,估计它的边长大小为()A.2与3之间B.3与4之间C.4与5之间D.5与6之间12.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.413.如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点()A.(1,3)B.(﹣2,1)C.(﹣1,2)D.(﹣2,2)14.将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED∥BC,则∠CEF的度数为()A.5°B.10°C.15°D.20°15.设|x﹣3|+=0,则(x+y)2015的值为()A.﹣1 B.3 C.22015 D.﹣2201516.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定;正方形内部不包括边界上的点,如果如图所示的中心在原点,一边平行于x轴的正方形,边长为1的正方形内部有1个整点,边长为2的正方形内部有3个整数点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内的整点个数为()A.42 B.40 C.36 D.49二、填空题:本大题共4个小题,每小题3分,共12分,把答案写在题中的横线上17.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.18.已知|x﹣2|+4=0,则=.19.如图,线段AB,CD相交于点O,OT⊥AB于O,CE∥AB交CD于点C.若∠ECO=30°,则∠DOT等于.20.如图所示,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0),…,那么点A2015的坐标为.三、简答题:本大题共7个小题,共66分,解答应写出文字说明、推理过程或演算步骤21.(12分)计算:(1)化简:||+||﹣|3﹣|(2)解方程:2x2=18.22.(8分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,那么DF∥AC,请完成它成立的理由.∵∠1=∠2,∠2=∠3,∠1=∠4()∴∠3=∠4()∴∥,(),∴∠C=∠ABD()∵∠C=∠D()∴∠D=∠ABD()∴DF∥AC().23.(10分)如图,AD平分∠EAC,且AD∥BC,请说明∠B=∠C的理由.24.(12分)在直角坐标系中,△ABC的三个顶点的位置如图所示,现将△ABC沿AA′的方向平移,使得点A移至图中的点A′的位置.(1)在直角坐标系中,画出平移后所得△A′B′C′(其中B′、C〃分别是B、C的对应点).(2)(1)中所得的点B′,C′的坐标分别是,.(3)直接写出△ABC的面积为.25.(12分)如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|a+2|+=0.(1)求a,b的值;(2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积恒成立?若存在,请直接写出符合条件的点M的坐标.26.(12分)如图,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,l4和l1,l2相交于C,D两点,点P在直线AB上,(1)当点P在A,B两点间运动时,问∠1,∠2,∠3之间的关系是否发生变化?并说明理由;(2)如果点P在A,B两点外侧运动时,试探究∠ACP,∠BDP,∠CPD之间的关系,并说明理由.人教版2019学年七年级数学下期期中试卷(五)一、精心选一选,没有你不会做的!(本题共12小题,每小题3分,共36分.下列各题每题四个答案中只有一个结论是正确的,请把正确答案的番号填入表格内.)1.在实数﹣,0.,,,0.70107中,其中无理数的个数为( )A.1 B.2 C.3 D.42.把不等式组的解集表示在数轴上,正确的是( )A.B.C.D.3.如图,若AB∥CD,EF⊥CD,∠1=54°,则∠2为( )A.54°B.46°C.44°D.36°4.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A.SSS B.SAS C.AAS D.ASA5.若a<b,则下列各式中一定成立的是( )A.a﹣1<b﹣1 B.>C.﹣a<﹣b D.ac<bc6.如图,a,b,c分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是( )A.a>c>b B.b>a>c C.a>b>c D.c>a>b7.下列条件中,不能判定△ABC≌△A1B1C1的是( )A.AB=A1B1,∠A=∠A1,AC=A1C1B.AB=A1B1,BC=B1C1,AC=A1C1C.AB=A1B1,∠B=∠B1,∠C=∠C1D.AC=A1C1,AB=A1B1,∠B=∠B18.已知与都是方程y=kx+b的解,则k与b的值为( )A.,b=﹣4 B.,b=4 C.,b=4 D.,b=﹣49.如果不等式组无解,那么m的取值范围是( )A.m>8 B.m≥8 C.m<8 D.m≤810.某中学计划租用若干辆汽车运送2014-2015学年七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x辆车,共有y名学生.则根据题意列方程组为( )A.B.C.D.11.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,如图,则下列说法正确的有几个,大家一起热烈地讨论交流,小英第一个得出正确答案,是( ) (1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE;(5)AB∥CD.A.1个B.2个C.3个D.4个12.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( ) A.7,6,1,4 B.6,4,1,7 C.4,6,1,7 D.1,6,4,7二、填空题(本题共10小题;每小题2分,共20分.请把正确结果填在题中横线上)13.计算:+﹣﹣|﹣2|=__________.14.若=9,|b|=4,且ab<0,则a﹣b=__________.15.当x__________时,代数式的值是非负数.16.如图,AB⊥AC,且AB=AC,BN⊥AN,CM⊥AN,若BN=3,CM=5,则MN=__________.17.不等式2x+9≥3(x+2)的正整数解是__________.18.已知关于x的方程2x﹣a=x﹣1的解是非正数,则a__________.19.已知某数的平方根为a+3和2a﹣5,求这个数的是__________.20.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD=__________.21.若关于x的不等式(1﹣a)x>2的解集为,则|1﹣a|﹣|a+2|=__________.22.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB于点E,若△BDE的周长是5cm,则AB的长为__________.三、解答题(本题共44分,解答时应写出必要的计算或文字说明过程.)23.解方程组:.24.解不等式组,并把解集在数轴上表示出来.25.如果二元一次方程组的解x与y的值都不大于1,求m的取值范围.26.如图所示,已知DC平分∠ACB,∠B=70°,∠ACB=50°,DE∥BC,求∠EDC与∠BDC的度数.27.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.28.如图所示,E为AB延长线上的一点,AC⊥BC,AD⊥BD,AC=AD求证:(1)△ABC≌△ABD;(2)∠CEA=∠DEA.29.某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?人教版2019学年七年级数学下期期中试卷(六)一、选择题(共12小题,每小题3分,满分36分)1.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()A.B.C.D.2.下列运算正确的是()A.5m+2m=7m2B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3D.(b+2a)(2a﹣b)=b2﹣4a23.下列说法:①对顶角相等;②过直线外一点有且只有一条直线与这条直线平行;③直线外一点与直线上各点连接的所有线段中,垂线段最短;④一个角的余角比它的补角大90°.其中正确的个数为()A.4个B.3个C.2个D.1个4.在时刻8:30时,时钟上的时针与分针之间的所成的夹角是()A.60°B.70°C.75°D.85°5.如图,下列推理中正确的是()A.∵∠2=∠4,∴AD∥BC B.∵∠4+∠D=180°,∴AD∥BCC.∵∠1=∠3,∴AD∥BC D.∵∠4+∠B=180°,∴AB∥CD6.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°7.如图,能表示点到直线的距离的线段共有()A.2条B.3条C.4条D.5条8.如图,已知直线a∥b,点A、B、C在直线a上,点D、E、F在直线b上,AB=EF=2,若△CEF的面积为5,则△ABD的面积为()A.2 B.4 C.5 D.109.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣110.根据如图提供的信息,可知一个热水瓶的价格是()A.7元B.35元C.45元D.50元11.若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定12.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1 B.2 C.3 D.4二、填空题(本大题共有5小题,每小题3分,共15分)13.计算:()﹣1+()2×(﹣2)3﹣(π﹣3)0=______.14.如图,把长方形纸片ABCD沿EF对折,若∠1=40°,则∠AEF=______.15.已知方程组的解满足x+y=3,则k的值为______.16.已知α=80°,β的两边与α的两边分别垂直,则β等于______.17.已知2x=3,2y=5,则22x+y﹣1=______.三、解答题(共69分)18.计算:(1)x3•x5﹣(2x4)2+x10÷x2;(2)先化简,再求值:(5x﹣y)(y+2x)﹣(3y+2x)(3y﹣x),其中x=1,y=2.19.解下列方程组:(1);(2).20.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求∠EOF的度数.21.如图,AB∥CD,EF分别交AB、CD与M、N,∠EMB=50°,MG平分∠BMF,MG交CD 于G,求∠MGC的度数.22.莹莹在做“化简(3x+k)(2x+2)﹣6x(x﹣3)+6x+11,并求x=2时的值”一题时,错将x=2看成了x=﹣2,但结果却和正确答案一样.由此你能推算出k的值吗?23.一张方桌由一个桌面和四条桌脚组成,如果一立方米木材可制作方桌的桌面50个,或制作桌腿300条,现有5立方米木料,那么用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张?1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?25.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.人教版2019学年七年级数学下期期中试卷(七)一.选择题(本大题共10小题,每小题4分,满分40分)1.4的算术平方根是()A.B.C.±2 D. 22.﹣125开立方,结果是()A.±5 B.5 C.﹣5 D.±3.在实数0.3,0,,,0.123456…中,无理数的个数是()A.2 B. 3 C. 4 D. 54.实数和的大小关系是()A.B.C.D.5.a,b都是实数,且a<b,则下列不等式的变形正确的是()A.a+x>b+x B.﹣a+1<﹣b+1 C.3a<3b D.>6.不等式﹣>1的解是()A.x<﹣5 B.x>﹣10 C.x<﹣10 D.x<﹣87.把不等式组:的解集表示在数轴上,正确的是()A.B.C.D.8.下列运算中,结果正确的是()A.2a+3b=5ab B.a2•a3=a6 C.(a+b)2=a2+b2 D.2a﹣(a+b)=a﹣b9.下列式子加上a2﹣3ab+b2可以得到(a+b)2的是()A.ab B.3ab C.5ab D.7ab10.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是()A.40 B.45 C.51 D.56二.填空题(本大题共4小题,每小题5分,满分20分)11.若实数a、b满足|a+2|,则=.12.5﹣的小数部分是.13.不等式2x+9≥3(x+2)的正整数解是.14.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则这个长方形的周长是.三.(本大题共2小题,每小题8分,满分16分)15.计算:9×(﹣)++|﹣3|16.解不等式>1+,并将解集在数轴上表示出来.四.(本大题共2小题,每小题8分,满分16分)17.化简:(x+1)2﹣(x+2)(x﹣2).18.求不等组的整数解.五.(本大题共2小题,每小题10分,满分20分)19.一个正数x的平方根是a+3和2a﹣18,求x的立方根.20.某人计划20天内至少加工400个零件,前5天平均每天加工了33个零件,此后,该工人平均每天至少需加工多少个零件,才能在规定的时间内完成任务?六.(本大题满分12分)21.已知代数式(mx2+2mx﹣1)(x m+3nx+2)化简以后是一个四次多项式,并且不含二次项,请分别求出m,n的值,并求出一次项系数.七.(本大题满分12分)22.某校为了奖励获奖的学生,买了若干本课外读物,如果每人送3本,还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本,请求出获奖人数及所买课外读物的本数.八.(本大题满分14分)23.图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)请写出图2中阴影部分的面积:;(2)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m﹣n)2,mn.;(3)根据(2)中的等量关系,解决如下问题:若a+b=7,ab=5,求a﹣b的值.人教版2019学年七年级数学下期期中质量检测试卷(八)考试时间100分钟,满分100分(卷面分5分)一. 你很聪明,一定能选对(每小题3分,共30分)1. 点P (﹣2,5)在A .第一象限B .第二象限C .第三象限D .第四象限2. 在同一平面内,互不重合的两条直线的位置关系是A .平行B .相交C .相交或平行D .相交、平行或垂直3. 数学课上,李老师将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如图所示,如果∠2=60°,那么∠1的度数为 A .60° B .50°C .40°D .30°第3题 第4题4. 如图,下列说法不正确的是A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角 5.25-)(化简的结果是A .﹣5B . 5C . ±5D .±56.若x 使(x -1)2=4成立,则x 的值是A .3B .﹣1C .3或﹣1D .±27.下面的每组图形中,左面的平移后可以得到右面的是( )A B C D8.在平面直角坐标系中,已知点A (2,4),点B 的坐标为(6,2).则三角形ABO 的面积为 A .8B .10C .12D .无法确定9.下列命题是真命题的是A .如果两条直线被第三条直线所截,那么同位角相等;B .如果两个数的平方相等,那么这两个数也相等;C .平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;D .从直线外一点到这条直线的垂线段,叫做这点到直线的距离. 10.下列说法正确的是①0是绝对值最小的实数; ②相反数大于本身的数是负数; ③数轴上原点两侧的数互为相反数; ④带根号的数是无理数. A .①② B .①③ C .①②③ D .①②③④二. 用心填一填,一定能填对(每小题3分,共18分)11的相反数是 .12.数学中的命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是题设,“那么”后接的部分是结论.请你将命题“同角的补角相等”改写成“如果……那么……”的形式: . 13.用“※”定义新运算:对于任意实数a 、b ,都有a ※b =2a 2+b .例如3※4=2×32+4=22,那么3※2= .14.如图是益阳市行政区域图,如果市区所在地用坐标表示为(1,0 ),安化县城所在地用坐标表示为(﹣3,﹣1),那么南县县城所在地用坐标表示为 .15.有一个英文单词的字母顺序对应如图中的有序数对分别为(6,2),(1,1),(6,3), (1,2),(5,3),请你把这个英文单词写出来或者翻译成中文为 .第13题 第14题16.已知:OA ⊥OC ,∠AOB :∠AOC =2:3.则∠BOC 的度数为 .三. 试试看,你是最棒的(共52分)17.(4分)如图,点P 是∠AOB 的边OB 上的一点. (1)过点P 画OA 的垂线,垂足为H ; (2)过点P 画OB 的垂线,交OA 于点C ;(3)猜想:线段PC 、PH 、OC 这三条线段大小关系是 .(用“<”号连接)18.(6分)把下列各数分别填入相应的集合里.。
最新冀教版七年级数学下册期中测试题及答案解析一-精品试卷
2018—2019学年冀教版七年级(下)期中检测数学试卷一、选择题(本大题共10个小题,每题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确选项的代码填在括号内.)1.(2分)下列方程中,是二元一次方程的是()A.3x﹣2y=4z B.6xy+9=0 C.+4y=6 D.4x=2.(2分)下面四个图形中,∠1与∠2为对顶角的图形是()A.B.C.D.3.(2分)下列各式计算正确的是()A.2a+2=3a2B.(﹣b2)2=﹣b4 C.a2•a3=a5D.(m﹣n)2=m2﹣n24.(2分)把351000进行科学记数法表示正确的是()A.0.351×105B. 3.51×105 C. 3.51×106D.35.1×1045.(2分)下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C. D.6.(2分)方程x+3y=5与下列哪个方程组合,使得方程组的解是()A.3x+2y=7 B.﹣2x+y=﹣3 C.6x+y=8 D.以上都不对7.(2分)+(b+1)2=0,则ab的值是()A.B. C.D.8.(2分)把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A.130°B.140°C.120°D.125°9.(2分)如果是方程组的解,那么,下列各式中成立的是()A.a+4c=2 B.4a+c=2 C.a+4c+2=0 D.4a+c+2=010.(2分)为迎接2013年“亚青会”,学校组织了一次游戏:每位选手朝特制的靶子上各投三以飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是()A.31分B.33分C.36分D.38分二、填空题(本大题共10个小题;每小题3分,共30分.)11.(3分)如图,如果AB∥CD,则角α、β、γ之间的关系为.12.(3分)解方程组时,一学生把c看错而得,而正确的解是,那么a=,b=,c=.13.(3分)若(x﹣5y)(x﹣by)=x2﹣3xy+ay2,则a、b的值为.14.(3分)信息技术的存储设备常用B,K,M,G等作为存储量的单位,例如,我们常说某计算机硬盘容量是320G,某移动硬盘的容量是80G,某个文件的大小是88K等,其中1G=210M,1M=210K,1K=210B,对于一个存储量为64G 的闪存盘,其容量有个B.15.(3分)甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%,结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则用方程组解可列式为:.16.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是.17.(3分)已知﹣2x m﹣1y3和x n y m+n是同类项,则(n﹣m)2012=.18.(3分)如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为.19.(3分)若2x+5y﹣3=0,则4x•32y的值为.20.(3分)如图,∠B、∠D的两边分别平行.(1)在图①中,∠B与∠D的数量关系为.(2)在图②中,∠B与∠D的数量关系为.(3)用一句话归纳的结论为.试选一说明理由.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)21.(12分)(1)(2).22.(12分)(1)(﹣5a2b2)•(﹣4b2c)(2)先化简再求值:4a(a+1)﹣(2a+1)(2a﹣1),其中a=2.23.(10分)北京时间2013年4月20日8时02分四川省雅安市芦山县发生7.0级地震.给当地人民造成了巨大的损失.“一方有难,八方支援”,某中学全体师生积极捐款,其中2014-2015学年七年级的四个班学生的捐款金额如下表:马小哈统计时不小心把墨水滴到了其中三个班级的捐款金额上,但通过小芳和小明对话,很快确定了相关信息.请你根据下面对话信息,帮马小哈求出(2)班与(3)班(4)班的捐款金额各是多少元?24.(12分)如图,请完成下列各题:(1)如果∠1=,那么DF∥AC();(2)如果∠1=,那么EF∥BC();(3)如果∠FED+=180°,那么AC∥ED();(4)如果∠2+=180°,那么AB∥DF().25.(12分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a 辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.26.(12分)如图有下面三个判断:①∠A=∠F,②∠C=∠D,③∠1=∠2,请你用其中两个作为条件,余下一个作为结论,编一道证明题并写出证明过程.参考答案与试题解析一、选择题(本大题共10个小题,每题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确选项的代码填在括号内.)1.(2分)下列方程中,是二元一次方程的是()A.3x﹣2y=4z B.6xy+9=0 C.+4y=6 D.4x=考点:二元一次方程的定义.分析:根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.解答:解:A、3x﹣2y=4z,不是二元一次方程,因为含有3个未知数;B、6xy+9=0,不是二元一次方程,因为其最高次数为2;C、+4y=6,不是二元一次方程,因为不是整式方程;D、4x=,是二元一次方程.故本题选D.点评:二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.2.(2分)下面四个图形中,∠1与∠2为对顶角的图形是()A.B.C.D.考点:对顶角、邻补角.分析:根据对顶角的定义,对顶角的两边互为反向延长线,可以判断.解答:解:因为A、B、D中,∠1与∠2的两边不互为反向延长线,所以都不表示对顶角,只有C中,∠1与∠2为对顶角.故选C.点评:本题考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.3.(2分)下列各式计算正确的是()A.2a+2=3a2B.(﹣b2)2=﹣b4 C.a2•a3=a5D.(m﹣n)2=m2﹣n2考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项,可判断A,根据积的乘方,可判断B,根据同底数幂的乘法,可判断C,根据完全平方公式,可判断D.解答:解:A、合并同类项系数相加字母部分不变,故A错误;B、积的乘方等于乘方的积,故B错误;C、同底数幂的乘法底数不变指数相加,故C正确;D、差的平方等于平方和减积的二倍,故D错误;故选:C.点评:本题考查了完全平方公式,熟记法则并根据法则计算是解题关键.4.(2分)把351000进行科学记数法表示正确的是()A.0.351×105B. 3.51×105 C. 3.51×106D.35.1×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将351 000用科学记数法表示为3.51×105.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(2分)下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C. D.考点:平行线的判定与性质.分析:根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.解答:解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.点评:此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.6.(2分)方程x+3y=5与下列哪个方程组合,使得方程组的解是()A.3x+2y=7 B.﹣2x+y=﹣3 C.6x+y=8 D.以上都不对考点:二元一次方程组的解.分析:把代入A、B、C中的方程中,可使B左右相等,因此B正确.解答:解:A、当时,3x+2y≠7,故此选项错误;B、当时,﹣2x+y=﹣3,故此选项正确;C、当时,6x+y≠8,故此选项错误;D、因为B正确,故此选项错误;故选:B.点评:此题主要考查了二元一次方程组的解,能同时使两个方程左右相等的方程的解就是方程组的解.7.(2分)+(b+1)2=0,则ab的值是()A.B. C.D.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:由题意得,a﹣=0,b+1=0,解得a=,b=﹣1,所以,ab=×(﹣1)=﹣.故选A.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.(2分)把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A.130°B.140°C.120°D.125°考点:平行线的性质.分析:根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.解答:解:∵∠1=40°,∴∠3=90°﹣∠1=90°﹣40°=50°,∴∠4=180°﹣50°=130°,∵直尺的两边互相平行,∴∠2=∠4=130°.故选:A.点评:本题考查了平行线的性质,直角三角形两锐角互余的性质,邻补角的定义,是基础题,准确识图是解题的关键.9.(2分)如果是方程组的解,那么,下列各式中成立的是()A.a+4c=2 B.4a+c=2 C.a+4c+2=0 D.4a+c+2=0考点:二元一次方程组的解.分析:把代入方程组可得:,然后②×2+①可得:﹣a﹣4c=2,再整理可得答案.解答:解:把代入方程组可得:,②×2得:﹣2b﹣4c=2③,①+③得:﹣a﹣4c=2,a+4c+2=0,故选:C.点评:此题主要考查了二元一次方程组的解,关键是掌握二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.10.(2分)为迎接2013年“亚青会”,学校组织了一次游戏:每位选手朝特制的靶子上各投三以飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是()A.31分B.33分C.36分D.38分考点:三元一次方程组的应用.分析:先设飞镖投到最小的圆中得x分,投到中间的圆中得y 分,投到最外面的圆中得z分,再根据小明、小君、小红的成绩分别是29分、43分和33分,列出方程组,求出x,y,z的值,再根据小华所投的飞镖,列出式子,求出结果即可.解答:解:设飞镖投到最小的圆中得x分,投到中间的圆中得y分,投到最外面的圆中得z分,根据题意得:,解得:.则小华的成绩是18+11+7=36(分).故选C.点评:此题考查了三元一次方程组的应用,解题的关键是根据图形设出相应的未知数,再根据各自的得分列出相应的方程.二、填空题(本大题共10个小题;每小题3分,共30分.)11.(3分)如图,如果AB∥CD,则角α、β、γ之间的关系为∠α+∠β﹣∠γ=180°.考点:平行线的性质.分析:过E作EF∥AB,由平行线的质可得EF∥CD,∠α+∠AEF=180°,∠FED=∠γ,由∠β=∠AEF+∠FED即可得∠α、∠β、∠γ之间的关系.解答:解:过点E作EF∥AB,∴∠α+∠AEF=180°(两直线平行,同旁内角互补),∵AB∥CD,∴EF∥CD,∴∠FED=∠EDC(两直线平行,内错角相等),∵∠β=∠AEF+∠FED,又∵∠γ=∠EDC,∴∠α+∠β﹣∠γ=180°,故答案为:∠α+∠β﹣∠γ=180°.点评:本题主要考查了平行线的性质,正确作出辅助线是解答此题的关键.12.(3分)解方程组时,一学生把c看错而得,而正确的解是,那么a=4,b=5,c=﹣2.考点:二元一次方程组的解.分析:首先把和代入ax+by=2,再把代入cx﹣7y=8可得,再解即可.解答:解:由题意得:,解③得:c=﹣2;①+②得:a=4,把a=4代入①得:﹣8+2b=2,解得:b=5,故答案为:4;5;﹣2.点评:此题主要考查了二元一次方程组的解,关键是掌握二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.13.(3分)若(x﹣5y)(x﹣by)=x2﹣3xy+ay2,则a、b的值为a=﹣10,b=﹣2.考点:多项式乘多项式.分析:直接利用多项式乘以多项式运算法则进而化简,得出各项系数对应相等,进而得出答案.解答:解:∵(x﹣5y)(x﹣by)=x2﹣bxy﹣5xy+5by2=x2﹣(b+5)xy+5by2=x2﹣3xy+ay2,∴b+5=3,5b=a,解得:b=﹣2,a=﹣10.故答案为:a=﹣10,b=﹣2.点评:此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键.14.(3分)信息技术的存储设备常用B,K,M,G等作为存储量的单位,例如,我们常说某计算机硬盘容量是320G,某移动硬盘的容量是80G,某个文件的大小是88K等,其中1G=210M,1M=210K,1K=210B,对于一个存储量为64G 的闪存盘,其容量有592704000个B.考点:整式的混合运算.专题:应用题.分析:直接利用1G=210M,1M=210K,1K=210B,进而将64G转化为B.解答:解:64G=64×210×210×210B=592704000B.故答案为:592704000.点评:此题主要考查了有理数的乘法,根据题意正确转化单位是解题关键.15.(3分)甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%,结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则用方程组解可列式为:.考点:由实际问题抽象出二元一次方程组.分析:根据题意可得等量关系:①甲仓库存粮+乙仓库存粮=450吨;②乙仓库运出存粮的40%后剩余粮食﹣甲仓库运出存粮的60%后的剩余粮食=30吨,根据等量关系列出方程组即可.解答:解:由题意得:,故答案为:.点评:此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.16.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是(a﹣b)2.考点:完全平方公式的几何背景.分析:先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.解答:解:∵图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a+b,∵由题意可得,正方形的边长为(a+b),∴正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故答案为(a﹣b)2.点评:此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键.17.(3分)已知﹣2x m﹣1y3和x n y m+n是同类项,则(n﹣m)2012=1.考点:同类项.专题:计算题.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程求出m,n的值,再代入代数式计算即可.解答:解:∵﹣2x m﹣1y3和x n y m+n是同类项,∴m﹣1=n,3=m+n,解得m=2,n=1,所以(n﹣m)2012=(1﹣2)2012=1.故答案为:1.点评:本题考查了同类项的定义,注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了2015届中考的常考点.解题时注意运用二元一次方程组求字母的值.18.(3分)如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为15.考点:平移的性质.分析:设点A到BC的距离为h,根据平移的性质用BC表示出AD、CE,然后根据三角形的面积公式与梯形的面积公式列式进行计算即可得解.解答:解:设点A到BC的距离为h,则S△ABC=BC•h=5,∵平移的距离是BC的长的2倍,∴AD=2BC,CE=BC,∴四边形ACED的面积=(AD+CE)•h=(2BC+BC)•h=3×BC•h=3×5=15.故答案为:15.点评:本题考查了平移的性质,三角形的面积,主要用了对应点间的距离等于平移的距离的性质.19.(3分)若2x+5y﹣3=0,则4x•32y的值为8.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据同底数的乘法和幂的乘方的性质,先都化成以2为底数的幂相乘的形式,再代入已知条件计算即可.解答:解:∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8.故答案为:8.点评:本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.20.(3分)如图,∠B、∠D的两边分别平行.(1)在图①中,∠B与∠D的数量关系为相等.(2)在图②中,∠B与∠D的数量关系为互补.(3)用一句话归纳的结论为如果两个角的两边分别平行,那么这两个角相等或互补.试选一说明理由.考点:平行线的性质.分析:本题主要利用两直线平行,同位角相等,两直线平行,同旁内角互补及两直线平行内错角相等进行解答.解答:解:(1)相等;(2)互补;(3)如果两个角的两条边分别平行,那么这两个角的关系是相等或互补.图(1)中,∵AB∥CD,∴∠B=∠1,∵BE∥DF,∴∠1=∠D,∴∠B=∠D.图(2)中,∵AB∥CD,∴∠B=∠2,∵BE∥DF,∴∠2+∠D=180°,∴∠B+∠D=180°.点评:本题主要考查对平行线的性质的理解和掌握,根据平行线的性质进行证明是解此题的关键.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)21.(12分)(1)(2).考点:解二元一次方程组.分析:(1)根据加减消元法,可得方程组的解;(2)根据去分母、去括号、合并同类项,可化简方程组,根据加减消元法,可得方程组的解.解答:解:(1)①+②×2,得5x=10,解得x=2,把x=2代入①,得2﹣2y=4,解得y=﹣1,方程组的解为;(2)化简,得①+②×5,得46y=46,解得y=1,把y=1代入①得5x+1=36,解得x=7,原方程组的解为.点评:本题考查了解二元一次方程组,加减消元法是解题关键.22.(12分)(1)(﹣5a2b2)•(﹣4b2c)(2)先化简再求值:4a(a+1)﹣(2a+1)(2a﹣1),其中a=2.考点:整式的混合运算—化简求值;单项式乘单项式.分析:(1)直接利用单项式乘以单项式运算法则化简求出即可;(2)首先利用平方差公式以及单项式乘以多项式运算法则化简求出即可.解答:解:(1)(﹣5a2b2)•(﹣4b2c)=20a2b4c;(2)4a(a+1)﹣(2a+1)(2a﹣1),=4a2+4a﹣4a2+1=4a+1,将a=2代入得:原式=4×2+1=9.点评:此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.23.(10分)北京时间2013年4月20日8时02分四川省雅安市芦山县发生7.0级地震.给当地人民造成了巨大的损失.“一方有难,八方支援”,某中学全体师生积极捐款,其中2014-2015学年七年级的四个班学生的捐款金额如下表:马小哈统计时不小心把墨水滴到了其中三个班级的捐款金额上,但通过小芳和小明对话,很快确定了相关信息.请你根据下面对话信息,帮马小哈求出(2)班与(3)班(4)班的捐款金额各是多少元?考点:二元一次方程组的应用.专题:图表型.分析:设(2)班捐款为x元,(3)班,(4)班捐款为y元,题中有两个相等关系:①(2)班捐款额﹣(3)班捐款额=300元;②四个班的捐款金额之和=10400元,据此列出方程组,解方程组即可.解答:解:设(2)班捐款为x元,(3)班,(4)班捐款为y 元,根据题意,列方程组得,解得:.答:(2)班的捐款金额为3000元,(3)班,(4)班的捐款金额为2700元.点评:本题考查了二元一次方程组的应用,解题关键是弄清题意,找到合适的等量关系,从而列出方程组.24.(12分)如图,请完成下列各题:(1)如果∠1=∠C,那么DF∥AC(同位角相等,两直线平行);(2)如果∠1=∠FED,那么EF∥BC(内错角相等,两直线平行);(3)如果∠FED+∠EFC=180°,那么AC∥ED(同旁内角互补,两直线平行);(4)如果∠2+∠AED=180°,那么AB∥DF(同旁内角互补,两直线平行).考点:平行线的判定.分析:根据平行线的判定定理对各选项进行逐一分析即可.解答:解:(1)∵∠1=∠C,∴DF∥AC.故答案为:∠C,同位角相等,两直线平行;(2)∵∠1=∠FED,∴EF∥BC.故答案为:∠FED,内错角相等,两直线平行;(3)∵∠FED+∠EFC=180°,∴AC∥ED.故答案为:∠EFC,同旁内角互补,两直线平行;(4)∵∠2+∠AED=180°,∴AB∥DF.故答案为:∠AED,同旁内角互补,两直线平行.点评:本题考查的是平行线的判定,用到的知识点为:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.25.(12分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a 辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.考点:二元一次方程组的应用;二元一次方程的应用.分析:(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.解答:解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,∴方案一需租金:9×100+1×120=1020(元)方案二需租金:5×100+4×120=980(元)方案三需租金:1×100+7×120=940(元)∵1020>980>940∴最省钱的租车方案是方案三:A型车1辆,B型车7辆,最少租车费为940元.点评:本题主要考查了二元一次方程组和二元一次方程的实际应用,此题型是各地2015届中考的热点,同学们在平时练习时要加强训练,属于中档题.26.(12分)如图有下面三个判断:①∠A=∠F,②∠C=∠D,③∠1=∠2,请你用其中两个作为条件,余下一个作为结论,编一道证明题并写出证明过程.考点:平行线的判定与性质;对顶角、邻补角.专题:证明题.分析:根据平行线的判定推出DF∥AC,推出∠C=∠DBA,推出DB∥CE,根据平行线的性质和对顶角的性质推出即可.解答:已知:如图:∠A=∠F,∠C=∠D,求证:∠1=∠2,证明:∵∠A=∠F,∴DF∥AC,∴∠D=∠DBA,∵∠D=∠C,∴∠C=∠DBA,∴DB∥CE,∴∠1=∠AMC,∵∠2=∠AMC,∴∠1=∠2.点评:本题综合考查了对顶角的性质和平行线的性质和判定等知识点,解此题的关键是根据性质进行推理,题型较好,难度适中.。
2018初一数学下册期中考试试题与答案(2021年整理精品文档)
(完整版)2018初一数学下册期中考试试题与答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2018初一数学下册期中考试试题与答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2018初一数学下册期中考试试题与答案的全部内容。
2016年七年级数学下册期中测试卷一、选择题。
(每空3分,共18分)1. 如图,直线AB 、CD 相交于点O,若∠1+∠2=120°,则∠BOC 等于 ( )A 。
120°B 。
140° C.150° D.160° 2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2等于( )A .30° B.25° C.20° D.15° 3.如图,若在中国象棋盘上建立平面直角坐标系,使“帅"位于点(-1,—2),“马”位于点(2,—2),则“兵”位于点( )A .(-1,1)B .(-2,-1)C .(-3,1)D .(1,—2) 4.下列现象属于平移的是( )A .冷水加热过程中小气泡上升成为大气泡B 急刹车时汽车在地面上的滑动C .投篮时的篮球运动D .随风飘动的树叶在空中的运动 5.下列各数中,是无理数的为( )A .39 B 。
3。
14 C. 4 D 。
722-6。
若a 2=9, 3b =-2,则a+b=( )A. —5B. —11C. —5 或 -11D. ±5或±11 二、填空。
(每小题3分,共27分)7.把命题“平行于同一条直线的两条直线平行”改成如果……那么形式:_________________________________________________________8.一大门的栏杆如右图所示,BA ⊥AE ,若CD ∥AE ,则∠ABC+密 封 线∠BCD=____度。
2018-2019年七年级下期中考试数学试卷(含答案)
第二学期期中考试 初一年级数学试卷一、选择题(每小题2分,共30分) 1、 计算327的结果是( )A. 33±B. 33C. ± 3D. 32、 如图,四个图形中的∠1和∠2,不是同位角的是( )A. B. C. D.3、 在平面直角坐标系中,点(﹣1,m 2+1)一定在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4、 在下面各数中无理数的个数有( )﹣3.14,722,0.1010010001……,+1.99,3π-。
A. 1个B. 2个C. 3个D. 4个5、 如图,直线AB ∥CD ,AF 交CD 于点E ,∠CEF =140°,则∠A 等于( )A. 35°B. 40°C. 45°D. 50° 6、 下列说法正确的是( )A. ﹣5是25的平方根B. 25的平方根是﹣5C. ﹣5是 (﹣5)2的算术平方根D. ±5是(﹣5)2的算术平方根7、 若方程组⎩⎨⎧=-+=+6)1(1434y k kx y x 的解中x 与y 的值相等,则k 为( )A. 4B. 3C. 2D. 18、 线段CD 是由线段AB 平移得到的,点A (﹣1,4)的对应点为C (4,7),则点D (1,2)的对应点B 的坐标为( ) A. (2,9) B. (5,3) C. (﹣4,﹣1) D. (﹣9,﹣4) 9、 在实数范围内,下列判断正确的是( )A. 若n m = ,则m =nB. 若22b a >,则a >b C. 若22)(b a =,则a =bD. 若33b a =,则a =b10、在平面直角坐标系中,若A 点坐标为(﹣3,3),B 点坐标为(2,0),则△ABO 的面积为( )A. 15B. 7.5C. 6D. 311、如图所示,下列条件中,不能..判断l 1∥l 2的是( ) A. ∠1=∠3 B. ∠2=∠3 C. ∠4=∠5 D. ∠2+∠4=180° 12、有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③等角的补角相等;④同一平面内,垂直于同一条直线的两条直线互相平行。
人教版2018-2019学年七年级下册期中数学试题(含答案解析)
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=42.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣13.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x54.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.105.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.26.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b27.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.29.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣210.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.1211.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A .B .C .D . 12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.你根据图乙能得到的数学公式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab +b 2C .a (a +b )=a 2+abD .a (a ﹣b )=a 2﹣ab二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104= .14.当a =2时,代数式a 2+2a +1的值为 .15.把多项式9a 3﹣ab 2因式分解的结果是 .16.已知a +=2,求a 2+= .17.已知|5x ﹣y +9|与|3x +y ﹣1|互为相反数,则x +y = .18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为 .三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x 2﹣6x .(2)(x 2+16y 2)2﹣64x 2y 2.20.(5分)先化简,再求值:[(a +b )2﹣(a ﹣b )2]•a ,其中a =﹣1,b =3.21.(7分)已知:a +b =3,ab =2,求下列各式的值:(1)a 2b +ab 2;(2)a 2+b 2.22.(8分)解下列二元一次方程组:(1)(2)23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y426.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=4【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得答案.【解答】解:A、未知数的次数是2,错误;B、不符合二元一次方程的条件,错误;C、只有一个未知数,错误;D、符合二元一次方程的条件,正确;故选:D.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.2.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣1【分析】本题考查公因式的定义.找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【解答】解:8x2n﹣4x n=4x n(2x n﹣1),∴4x n是公因式.故选:A.【点评】本题考查公因式的定义,难度不大,要根据找公因式的要点进行.3.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x5【分析】根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质计算即可.【解答】解:(﹣3x2)•2x3,=﹣3×2x2•x3,=﹣6x2+3,=﹣6x5.故选:A.【点评】本题主要考查单项式的乘法法则,同底数的幂的乘法的性质,熟练掌握性质是解题的关键.4.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.10【分析】根据(ab)m=a m•b m得到2×(2×0.5)100,即可得到答案.【解答】解:原式=2×2100×0.5100=2×(2×0.5)100=2.故选:B.【点评】本题考查了同底数幂的运算:(ab)m=a m•b m;a m•a n=a m+n;(a m)n=a mn;a>0,b>0,m、n为正整数.5.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.2【分析】由a2﹣b2=(a+b)(a﹣b)与a2﹣b2=,a﹣b=,即可得(a+b)=,继而求得a+b的值.【解答】解:∵a2﹣b2=,a﹣b=,∴a2﹣b2=(a+b)(a﹣b)=(a+b)=,∴a+b=.故选:B.【点评】此题考查了平方差公式的应用.此题比较简单,注意掌握公式变形与整体思想的应用.6.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b2【分析】分别根据合并同类项、平方差公式、同底数幂的乘法及完全平方公式进行逐一计算即可.【解答】解:A、错误,应该为3a+2a=5a;B、(2a+b)(2a﹣b)=4a2﹣b2,正确;C、错误,应该为2a2•a3=2a5;D、错误,应该为(2a+b)2=4a2+4ab+b2.故选:B.【点评】此题比较简单,解答此题的关键是熟知以下概念:(1)同类项:所含字母相同,并且所含字母指数也相同的项叫同类项;(2)同底数幂的乘法:底数不变,指数相加;(3)平方差公式:两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式.(4)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式.7.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除【分析】将该多项式分解因式,其必能被它的因式整除.【解答】解:(4m+5)2﹣9=(4m+5)2﹣32,=(4m+8)(4m+2),=8(m+2)(2m+1),∵m是整数,而(m+2)和(2m+1)都是随着m的变化而变化的数,∴该多项式肯定能被8整除.故选:A.【点评】本题考查了因式分解的应用,难度一般.8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.2【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可.【解答】解:∵(x+1)(x+n)=x2+(1+n)x+n=x2+mx﹣2,∴1+n=m,n=﹣2,解得:m=1﹣2=﹣1.故选:A.【点评】本题考查了多项式乘以多项式的法则,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.9.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣2【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选:B.【点评】根据同类项的定义列出方程组,是解本题的关键.10.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.12【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值.【解答】解:根据题意得:,把(3)代入(1)解得:x=y=,代入(2)得:a+(a﹣1)=3,解得:a=11.故选:C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.11.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A.B.C.D.【分析】根据此题的等量关系:①共36人;②挑水人数是植树人数的2倍列出方程解答即可.【解答】解:设有x人挑水,y人植树,可得:,故选:C.【点评】此题考查方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.a(a+b)=a2+ab D.a(a﹣b)=a2﹣ab【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:大正方形的面积=(a﹣b)2,还可以表示为a2﹣2ab+b2,∴(a﹣b)2=a2﹣2ab+b2.故选:B.【点评】正确列出正方形面积的两种表示是得出公式的关键,也考查了对完全平方公式的理解能力.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104=107.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:103×104=107.故答案为:107.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.14.当a=2时,代数式a2+2a+1的值为9.【分析】把a的值代入原式计算即可求出值.【解答】解:当a=2时,原式=4+4+1=9,故答案为:9【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.把多项式9a3﹣ab2因式分解的结果是a(3a+b)(3a﹣b).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(9a2﹣b2)=a(3a+b)(3a﹣b),故答案为:a(3a+b)(3a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.已知a+=2,求a2+=2.【分析】根据完全平方公式把已知条件两边平方,然后整理即可.【解答】解:∵(a+)2=a2+2+=4,∴a2+=4﹣2=2.【点评】本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是常数是解题的关键.17.已知|5x﹣y+9|与|3x+y﹣1|互为相反数,则x+y=3.【分析】利用互为相反数两数之和为0列出方程组,求出方程组的解得到x与y的值,即可求出x+y 的值.【解答】解:根据题意得:|5x﹣y+9|+|3x+y﹣1|=0,可得,①+②得:8x=﹣8,解得:x=﹣1,把x=﹣1代入①得:y=4,则x+y=﹣1+4=3,故答案为:3【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n 个等式为(2n+1)2﹣12=4n(n+1).【分析】通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).【解答】解:通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).故答案为:(2n+1)2﹣12=4n(n+1).【点评】此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x2﹣6x.(2)(x2+16y2)2﹣64x2y2.【分析】(1)直接提取公因式3x,进而分解因式得出答案;(2)直接利用平方差公式以及结合完全平方公式分解因式得出答案.【解答】解:(1)3x2﹣6x=3x(x﹣2);(2)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20.(5分)先化简,再求值:[(a+b)2﹣(a﹣b)2]•a,其中a=﹣1,b=3.【分析】根据完全平方公式可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:[(a+b)2﹣(a﹣b)2]•a=(a2+2ab+b2﹣a2+2ab﹣b2)•a=4a2b,当a=﹣1,b=3时,原式=4×(﹣1)2×3=12.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.21.(7分)已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2;(2)a2+b2.【分析】(1)把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;(2)利用完全平方公式把代数式化为已知的形式求解.【解答】解:(1)a2b+ab2=ab(a+b)=2×3=6;(2)∵(a+b)2=a2+2ab+b2∴a2+b2=(a+b)2﹣2ab,=32﹣2×2,=5.【点评】本题考查了提公因式法分解因式,完全平方公式,关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.22.(8分)解下列二元一次方程组:(1)(2)【分析】各方程组利用加减消元法求出解即可.【解答】解:(1)①+②得:3x=15,解得:x=5,把x=5代入①得:y=1,则方程组的解为;(2)①×3+②×2得:11x=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?【分析】设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据“乘坐这种出租车走了9km,付了14元;乘坐这种出租车走了13千米,付了20元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据题意得:,解得:.答:这种出租车的起步价是5元,超过3km后,每千米的车费是1.5元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.【分析】先找出规律22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,进而22+42+62+…+502=22×(12+22+32+…+252即可得出结论.【解答】解:∵22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,∴22+42+62+…+502=22×12+22×22+22×32+…+22×252=22×(12+22+32+…+252)=4××25×26×51=22100.【点评】此题主要考查了数字的变化类,公式的应用,将22+42+62+…+502转化成22×(12+22+32+…+252是解本题的关键.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y4【分析】(1)代数式加16x2再减去,先用完全平方公式再用平方差公式因式分解;(2)代数式加上x2y2,先用完全平方公式再用平方差公式因式分解.【解答】解:(1)原式=x4+16x2+64﹣16x2=(x2+8)2﹣16x2=(x2+8+4x)(x2+8﹣4x);(2)原式=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy)【点评】本题考查了完全平方公式和平方差公式,解决本题的关键是看懂题目给出的例子.26.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【分析】(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据共支出公路运输费15000元、铁路运输费97200元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据利润=销售收入﹣成本﹣运费,即可求出结论.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据题意得:,解得:.答:工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)300×8000﹣400×1000﹣15000﹣97200=1887800(元).答:这批产品的销售款比原料费与运输费的和多1887800元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据利润=销售收入﹣成本﹣运费,列式计算.。
2018-2019学年苏科版七年级下期中数学试卷(含答案解析)
2018-2019学年七年级(下)期中数学试卷一、选择题(每题3分,共24分)1.如图,不一定能推出a∥b的条件是()A.∠1=∠3B.∠2=∠4C.∠1=∠4D.∠2+∠3=180°2.已知三角形的两边分别为3和9,则此三角形的第三边可能是()A.5B.6C.9D.133.下列计算正确的是()A.x2+x2=2x4B.x2•x3=x6C.(2x3)2=2x6D.(﹣x)8÷x2=x64.下列各式从左到右的变形,是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6xB.(x+5)(x﹣2)=x2+3x﹣10C.x2﹣8x+16=(x﹣4)2D.6ab=2a•3b5.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5B.6C.7D.86.如图,直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为()A.15°B.20°C.25°D.30°7.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需130元钱,购甲1件、乙2件、丙3件共需210元钱,那么购甲、乙、丙三种商品各一件共需()A.105元B.95元C.85 元D.88元8.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°二、填空题(每空2分,共20分)9.将数0.000000076用科学记数法表示为.10.若(a﹣2)x|a|﹣1+3y=1是二元一次方程,则a=.11.若3x=24,3y=6,则3x﹣y的值为.12.若多项式x2+(m+1)x+9是一个完全平方式,则m=.13.在△ABC中,∠C=80°,∠B﹣∠A=40°,则∠A=.14.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n=.15.计算:若(2x﹣y+7)2+|x+y﹣1|=0,则y x=.16.学生问老师:“您今年多大?”教师风趣地说:“我像你这么大时,你才5岁;你到我这么大时,我已经44岁了.”教师今年岁.17.如图,有三种卡片,其中边长为a的正方形卡片1张,边长分别为a、b的矩形卡片6张,边长为b的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为.18.如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF的度数是.三、解答题19.(10分)化简或计算(1)(2﹣π)0+()﹣2+(﹣2)3(2)(﹣3a6)2﹣a2•2a10+(﹣2a2)3•a3(3)(x+1)2﹣(1﹣2x)(1+2x)(4)(x+2)(x﹣3)﹣x(x+1)20.(6分)把下列各式因式分解:(1)4a2﹣16;(2)(x2+4)2﹣16x2.21.(8分)解方程组:(1)(2)22.(6分)已知x+y=4,xy=1,求下列各式的值:(1)x2y+xy2;(2)(x2﹣1)(y2﹣1).23.(6分)在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移后得△DEF,使点A的对应点为点D,点B 的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.24.(6分)如图,∠1=80°,∠2=100°,∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.25.(8分)列方程组解应用题,为了保护环境,深圳某公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万汽油,求购买这批混合动力公交车需要多少万元?26.(6分)(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行,并说明理由;(2)如图2,直线EF上有两点A、C,分别引两条射线AB、CD.已知∠BAF=150°,∠DCF=80°,射线AB、CD分别绕点A、点C以1度/秒和3度/秒的速度同时顺时针转动,设时间为t秒,当射线CD转动一周时,两条射线同时停止.则当直线CD 与直线AB互相垂直时,t=秒.参考答案与试题解析一、选择题(每题3分,共24分)1.如图,不一定能推出a∥b的条件是()A.∠1=∠3B.∠2=∠4C.∠1=∠4D.∠2+∠3=180°【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∵∠1和∠3为同位角,∠1=∠3,∴a∥b,故A选项正确;B、∵∠2和∠4为内错角,∠2=∠4,∴a∥b,故B选项正确;C、∵∠1=∠4,∠3+∠4=180°,∴∠3+∠1=180°,不符合同位角相等,两直线平行的条件,故C选项错误;D、∵∠2和∠3为同位角,∠2+∠3=180°,∴a∥b,故D选项正确.故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2.已知三角形的两边分别为3和9,则此三角形的第三边可能是()A.5B.6C.9D.13【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:9﹣3=6,而小于:3+9=12.则此三角形的第三边可能是:9.故选:C.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.3.下列计算正确的是()A.x2+x2=2x4B.x2•x3=x6C.(2x3)2=2x6D.(﹣x)8÷x2=x6【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减分别计算.【解答】解:A、x2+x2=2x2,故A选项错误;B、x2•x3=x5,故B选项错误;C、(2x3)2=4x6,故C选项错误;D、(﹣x)8÷x2=x6,故D选项正确;故选:D.【点评】此题主要考查了合并同类项,同底数幂的乘法,积的乘方,同底数幂的除法,关键是掌握计算法则.4.下列各式从左到右的变形,是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6xB.(x+5)(x﹣2)=x2+3x﹣10C.x2﹣8x+16=(x﹣4)2D.6ab=2a•3b【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义,利用排除法求解.【解答】解:A、右边不是积的形式,故A选项错误;B、是多项式乘法,不是因式分解,故B选项错误;C、是运用完全平方公式,x2﹣8x+16=(x﹣4)2,故C选项正确;D、不是把多项式化成整式积的形式,故D选项错误.故选:C.【点评】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.这类问题的关键在于能否正确应用因式分解的定义来判断.5.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5B.6C.7D.8【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n 的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:B.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.6.如图,直线AB∥CD,∠A=115°,∠E=80°,则∠CDE的度数为()A.15°B.20°C.25°D.30°【分析】先延长AE交CD于F,根据AB∥CD,∠A=115°,即可得到∠AFD=65°,再根据∠AED是△DEF的外角,∠E=80°,即可得到∠CDE=80°﹣65°=15°.【解答】解:延长AE交CD于F,∵AB∥CD,∠A=115°,∴∠AFD=65°,又∵∠AED是△DEF的外角,∠E=80°,∴∠CDE=80°﹣65°=15°.故选:A.【点评】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.7.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需130元钱,购甲1件、乙2件、丙3件共需210元钱,那么购甲、乙、丙三种商品各一件共需()A.105元B.95元C.85 元D.88元【分析】设出购甲、乙、丙三种商品各一件的未知数,建立方程组,整体求解.【解答】解:设购甲、乙、丙三种商品各一件,分别需要x元、y元、z元,根据题意有:,把这两个方程相加得:4x+4y+4z=340,4(x+y+z)=340,x+y+z=85.即购甲、乙、丙三种商品各一件共需85元钱.故选:C.【点评】本题考查了三元一次方程组的应用,解题时认真审题,弄清题意,再列方程组解答,此题难度不大,考查方程思想.8.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°【分析】设∠GBC=x,∠DCB=y,在△BFC和△BGC中,根据三角形内角和定理列方程,相加可得:3x+3y的值,即可求得∠A的度数.【解答】解:设∠GBC=x,∠DCB=y,在△BFC中,2x+y=180°﹣120°=60°①,在△BGC中,x+2y=180°﹣102°=78°②,解得:①+②:3x+3y=138°,∴∠A=180°﹣(3x+3y)=180°﹣138°=42°,故选:C.【点评】本题考查了三角形的内角和定理、三等分线的定义,利用整体的思想解决问题比较简便.二、填空题(每空2分,共20分)9.将数0.000000076用科学记数法表示为7.6×10﹣8.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000076=7.6×10﹣8,故答案为:7.6×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.若(a﹣2)x|a|﹣1+3y=1是二元一次方程,则a=﹣2.【分析】根据二元一次方程的定义知,未知数x的次数|a|﹣1=1,且系数a﹣2≠0.【解答】解:∵(a﹣2)x|a|﹣1+3y=1是二元一次方程,∴|a|﹣1=1且a﹣2≠0,解得,a=﹣2;故答案是:﹣2.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.11.若3x=24,3y=6,则3x﹣y的值为4.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:∵3x=24,3y=6,∴3x﹣y=3x÷3y=24÷6=4.故答案为:4.【点评】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.12.若多项式x2+(m+1)x+9是一个完全平方式,则m=5或﹣7.【分析】根据完全平方公式即可求出答案.【解答】解:∵(x±3)2=x2±6x+9,∴﹣(m+1)=±6解得:m=5或﹣7故答案为:5或﹣7;【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.在△ABC中,∠C=80°,∠B﹣∠A=40°,则∠A=30°.【分析】先根据三角形内角和等于180°求出∠B+∠A的度数,然后与∠B﹣∠A=40°两式相加即可求出∠A.【解答】解:∵∠C=80°,∴∠B+∠A=180°﹣80°=100°①,∵∠B﹣∠A=40°②,∴①﹣②得,2∠A=140°,解得∠A=30°.故答案为:30°.【点评】本题考查了三角形的内角和定理与加减消元法,先求出∠B+∠C的度数是解题的关键.14.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n=3.【分析】把m﹣n=﹣1看作一个整体,代入代数式(m﹣n)2﹣2m+2n求得数值即可.【解答】解:∵m﹣n=﹣1,∴(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n)=(﹣1)2﹣2×(﹣1)=1+2=3.故答案为:3.【点评】此题考查代数式求值,注意整体代入求得问题.15.计算:若(2x﹣y+7)2+|x+y﹣1|=0,则y x=.【分析】先根据绝对值与平方的非负性,求出x与y的值,然后代入求值即可.【解答】解:∵(2x﹣y+7)2+|x+y﹣1|=0,∴,解得,∴y x=3﹣2=.故答案为:.【点评】此题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.16.学生问老师:“您今年多大?”教师风趣地说:“我像你这么大时,你才5岁;你到我这么大时,我已经44岁了.”教师今年31岁.【分析】设教师今年x岁,学生今年y岁,根据“我像你这么大时,你才5岁;你到我这么大时,我已经44岁了”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设教师今年x岁,学生今年y岁,根据题意得:,解得:.故答案为:31.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.如图,有三种卡片,其中边长为a的正方形卡片1张,边长分别为a、b的矩形卡片6张,边长为b的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为a+3b.【分析】1张边长为a的正方形卡片的面积为a2,6张边长分别为a、b的矩形卡片的面积为6ab,9张边长为b的正方形卡片面积为9b2,∴16张卡片拼成一个正方形的总面积=a2+6ab+9b2=(a+3b)2,∴大正方形的边长为:a+3b.【解答】解:由题可知,16张卡片总面积为a2+6ab+9b2,∵a2+6ab+9b2=(a+3b)2,∴新正方形边长为a+3b.【点评】本题考查了完全平方公式几何意义的理解,利用完全平方公式分解因式后即可得出大正方形的边长.18.如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF的度数是20°.【分析】先根据平行线的性质,设∠DEF=∠EFB=a,图2中根据图形折叠的性质得出∠AEF的度数,再由平行线的性质得出∠GFC,图3中根据∠CFE=∠GFC﹣∠EFG即可列方程求得a的值.【解答】解:∵AD∥BC,∴设∠DEF=∠EFB=a,图2中,∠GFC=∠BGD=∠AEG=180°﹣2∠EFG=180°﹣2a,图3中,∠CFE=∠GFC﹣∠EFG=180°﹣2a﹣a=120.解得a=20.即∠DEF=20°,故答案为:20°.【点评】本题考查图形的翻折变换以及平行线的性质,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.三、解答题19.(10分)化简或计算(1)(2﹣π)0+()﹣2+(﹣2)3(2)(﹣3a6)2﹣a2•2a10+(﹣2a2)3•a3(3)(x+1)2﹣(1﹣2x)(1+2x)(4)(x+2)(x﹣3)﹣x(x+1)【分析】(1)先计算零指数幂、负整数指数幂和乘方,再计算加减可得;(2)先计算乘方,再计算乘法,最后合并同类项即可得;(3)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(4)先根据多项式乘多项式、单项式乘多项式法则计算,再合并同类项即可得.【解答】解:(1)原式=1+4﹣8=﹣3;(2)原式=9a12﹣2a12﹣8a9=7a12﹣8a9;(3)原式=x2+2x+1﹣(1﹣4x2)=x2+2x+1﹣1+4x2=5x2+2x;(4)原式=x2﹣3x+2x﹣6﹣x2﹣x=﹣2x﹣6.【点评】本题主要考查实数和整式的混合运算,解题的关键是掌握实数和整式的混合运算顺序和运算法则.20.(6分)把下列各式因式分解:(1)4a2﹣16;(2)(x2+4)2﹣16x2.【分析】(1)先提取公因式4,再对余下的多项式利用平方差公式继续分解;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解.【解答】解:(1)4a2﹣16,=4(a2﹣4),=4(a+2)(a﹣2);(2)(x2+4)2﹣16x2,=(x2+4+4x)(x2+4﹣4x),=(x﹣2)2(x+2)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.21.(8分)解方程组:(1)(2)【分析】(1)利用加减消元法求解可得;(2)利用加减消元法求解可得.【解答】解:(1),将①代入②,得:﹣6y+4y=6,解得:y=﹣3,将y=﹣3代入①,得:x=6,则方程组的解为;(2),①+②×2,得:4x=16,解得:x=4,将x=4代入②,得:2+y=6,解得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(6分)已知x+y=4,xy=1,求下列各式的值:(1)x2y+xy2;(2)(x2﹣1)(y2﹣1).【分析】(1)将x+y、xy的值代入x2y+xy2=xy(x+y)计算可得;(2)将原式变形为(xy)2﹣(x+y)2+2xy+1,再把x+y、xy的值代入计算可得.【解答】解:(1)当x+y=4、xy=1时,x2y+xy2=xy(x+y)=1×4=4;(2)当x+y=4、xy=1时,原式=x2y2﹣x2﹣y2+1=x2y2﹣(x2+y2)+1=(xy)2﹣(x+y)2+2xy+1=1﹣16+2+1=﹣12.【点评】本题主要考查代数式的求值,解题的关键是熟练掌握多项式乘多项式运算法则、因式分解及完全平方公式.23.(6分)在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移后得△DEF,使点A的对应点为点D,点B 的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是平行且相等;(3)求△DEF的面积.【分析】(1)将点B、C均向右平移4格、向上平移1格,再顺次连接可得;(2)根据平移的性质可得;(3)割补法求解即可.【解答】解:(1)如图所示,△DEF即为所求;(2)由图可知,线段AD与BE的关系是:平行且相等,故答案为:平行且相等;=3×3﹣×2×3﹣×1×2﹣×1×3=.(3)S△DEF【点评】本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.24.(6分)如图,∠1=80°,∠2=100°,∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.【分析】(1)根据平行线的性质得出∠ABD=∠C,求出∠D=∠ABD,根据平行线的判定得出AC∥DF;(2)根据平行线的性质和三角形内角和解答即可;【解答】解:(1)AC∥DF,理由如下:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF;(2)∵AC∥DF,∴∠A=∠F,∠ABD=∠D,∵∠C=∠D,∠1=80°,∴∠A+∠ABD=180°﹣80°=100°,即∠A+∠C=100°,∵∠C比∠A大20°,∴∠A=40°,∴∠F=40°.【点评】本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.25.(8分)列方程组解应用题,为了保护环境,深圳某公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万汽油,求购买这批混合动力公交车需要多少万元?【分析】(1)根据“购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.”即可列出关于a、b的二元一次方程组,解之即可得出结论;(2)设A型车购买x台,则B型车购买(10﹣x)台,根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量即可得出关于x的一元一次方程,解之即可得出x 值,再根据总费用=120×A型车购买的数量+100×B型车购买的数量即可算出购买这批混合动力公交车的总费用.【解答】解:(1)根据题意得:,解得:.(2)设A型车购买x台,则B型车购买(10﹣x)台,根据题意得:2.4x+2(10﹣x)=22.4,解得:x=6,∴10﹣x=4,∴120×6+100×4=1120(万元).答:购买这批混合动力公交车需要1120万元.【点评】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)根据A、B型车价格间的关系列出关于a、b的二元一次方程组;(2)根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量列出关于x的一元一次方程.26.(6分)(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行,并说明理由;(2)如图2,直线EF上有两点A、C,分别引两条射线AB、CD.已知∠BAF=150°,∠DCF=80°,射线AB、CD分别绕点A、点C以1度/秒和3度/秒的速度同时顺时针转动,设时间为t秒,当射线CD转动一周时,两条射线同时停止.则当直线CD 与直线AB互相垂直时,t=20或110秒.【分析】(1)依据题意得出∠1+∠5=∠2+∠6,即可得到a∥b;(2)分两种情况讨论:当BA⊥CD于G时,∠BAE=30°+t°=∠CAG,∠ACG=180°﹣80°﹣3t°=100°﹣3t°;当D'C⊥AB于H时,∠BAE=30°+t°,∠ACH =3t°﹣180°﹣100°,分别依据角的和差关系进行计算即可.【解答】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b;(2)如图,当BA⊥CD于G时,∠BAE=30°+t°=∠CAG,∠ACG=180°﹣80°﹣3t°=100°﹣3t°,∵∠CAG+∠ACG=90°,∴30°+t°+100°﹣3t°=90°,解得t=20;如图,当D'C⊥AB于H时,∠BAE=30°+t°,∠ACH=3t°﹣180°﹣100°,∵∠BAE=∠ACH+∠AHC,∴30°+t°=3t°﹣180°﹣100°+90°,解得t=110,综上所述,当直线CD与直线AB互相垂直时t的值为20或110.故答案为:20或110.【点评】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.。
七年级下学期期中考试数学试卷及答案
2018-2019 学年度七年级数学期中考试卷一、 (本 共 8 小 ,每小3 分,共 24 分)1、以下四 段中,能 成三角形的是⋯⋯⋯⋯⋯()A 、 2cm , 3 cm ,4 cmB 、 3 cm , 4 cm , 7 cmC 、 4 cm , 6 cm , 2 cmD 、 7 cm , 10 cm , 2 cm2、以下生活中的 象,属于平移的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A 、抽屉的拉开B 、汽车刮雨器的运动C 、坐在秋千上人的运动D 、投电影的文字经投影变换到屏幕3、 以下各方程中,是二元一次方程的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A 、x2 y 5xB 、 3x 2 y 2 x 2 y3yC 、 1xy 21D 、y3x 5y5464、一只小狗在如 的方 上走来走去,最 停在阴影方 上的概率是⋯⋯⋯()A 、4B 、1C 、1D 、215 3 5 15(第 7 )(第 4 )5 、任何一个三角形的三个内角中最少有⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (、一个角大于) A60° B 、两个 角 C 、一个 角 D 、一个直角6、已知以下条件, 不能够作出三角形的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯() A. 两 及其 角 B 、两角及其 C 、三 D 、两 及除 角外的另一个角7、如 ,∠ AOP=∠BOP ,PD ⊥OB ,PC ⊥OA , 以下 正确的选项是⋯⋯⋯⋯⋯()A 、PD=PCB 、PD ≠PC C 、有 相等,有 不等D 、PD >PC8、已知 x +4y -3z = 0,且 4x -5y + 2z =0,x :y :z ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯() A 、1:2:3;B 、 1:3:2;C 、2:1:3;D 、 3:1:2二、填空 (本 共8 小 ,每小3 分,共 24 分)9、工人 傅在做完 框后. 防范 形常常像 中所示的那上两条斜拉的木条(即4 中的 AB ,CD 两根木条),依照的数学道理是 _____________________________.10、在 y = 2x - 4 中,若是 x = ,那么 y = _______;3若是 y =0,那么 x =__________.11、由3x-2y=5,获取用 x 表示 y 有式子为y=______________.12、10名学生计划“五一”这天去郊游,任选其中的一人带20 根腊肠,则10 人中的小亮被选中的概率是_________.13、角和线段都是轴对称图形,其中线段有___________条对称轴.x214、已知是方程 5 x- ( k- 1)y - 7 = 0 的一个解,则 k =______.y315、已知方程组x y53x 2 y0 的解,则 k = . 4x3y的解也是方程k 016、如图, AD 是△ ABC的中线,若是△ ABC 的面积是 18cm2, 则△ ADC的A 面积是____ cm 2.三、解答题(共 52 分)17、(每题 5 分,共 10 分)解以下方程组:BCD(1)x y 1(2)3x 2 y 62x y42x 3 y1718、(5分)尺规作图:(不写作法,保留作图印迹)已知:、,求作:∠ ABC,使∠ ABC=+。
巡检镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
巡检镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列计算不正确的是()A. |-3|=3B.C.D.【答案】D【考点】实数的运算【解析】【解答】A、|-3|=3,不符合题意;B、,不符合题意;C、,不符合题意;D、,符合题意.故答案为:D.【分析】(1)由绝对值的性质可得原式=3;(2)由平方的意义可得原式=;(3)根据有理数的加法法则可得原式=-;(4)由算术平方根的意义可得原式=2.2、(2分)学校买来一批书籍,如图所示,故事书所对应的扇形的圆心角为()A. 45°B. 60°C. 54°D. 30°【答案】C【考点】扇形统计图【解析】【解答】解:15÷(30+23+15+32)×360°=54°.故答案为:C【分析】计算故事书所占的百分比,然后乘以360°可得对应的圆心角的度数.3、(2分)已知方程组,则(x﹣y)﹣2=()A. 2B.C. 4D.【答案】D【考点】代数式求值,解二元一次方程组【解析】【解答】解:,①﹣②得:x﹣y=2,则原式=2﹣2= .故答案为:D【分析】观察方程组中同一未知数的系数特点及所求代数式的底数,由①﹣②得出x-y的值,再整体代入求值即可。
4、(2分)若26m>2x>23m,m为正整数,则x的值是()A.4mB.3mC.3D.2m【答案】A【考点】不等式及其性质【解析】【解答】解:根据合并同类项法则和不等式的性质,然后根据6m>x>3m,由m为正整数,可知A 符合题意.故答案为:A.【分析】根据不等式的性质和有理数大小的比较可得6m>x>3m,再结合选项可得答案.5、(2分)下列是方程组的解的是()A.B.C.D.【答案】D【考点】解二元一次方程组【解析】【解答】解:根据代入消元法,把2x-y=-5变形为y=2x+5,把其代入方程x+2y=5,解得x=-1,代入y=2x+5=3,所以方程组的解为.故答案为:D.【分析】利用代入消元法,将方程组中的②方程变形为用含x的式子表示y得出③方程,再将③方程代入原方程组中的①方程消去y即可求出x的值,再将x的值代入③方程进而算出y的值,从而得出原方程组的解。
人教版2018-2019学年初一下册期中数学试题(含答案解析)
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=42.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣13.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x54.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.105.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.26.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b27.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.29.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣210.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.1211.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A .B .C .D . 12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.你根据图乙能得到的数学公式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab +b 2C .a (a +b )=a 2+abD .a (a ﹣b )=a 2﹣ab二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104= .14.当a =2时,代数式a 2+2a +1的值为 .15.把多项式9a 3﹣ab 2因式分解的结果是 .16.已知a +=2,求a 2+= .17.已知|5x ﹣y +9|与|3x +y ﹣1|互为相反数,则x +y = .18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为 .三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x 2﹣6x .(2)(x 2+16y 2)2﹣64x 2y 2.20.(5分)先化简,再求值:[(a +b )2﹣(a ﹣b )2]•a ,其中a =﹣1,b =3.21.(7分)已知:a +b =3,ab =2,求下列各式的值:(1)a 2b +ab 2;(2)a 2+b 2.22.(8分)解下列二元一次方程组:(1)(2)23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y426.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选、或多选均得零分)1.下列方程中,是二元一次方程的是()A.x2﹣y=3B.xy=5C.8x﹣2x=1D.3x+2y=4【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程可得答案.【解答】解:A、未知数的次数是2,错误;B、不符合二元一次方程的条件,错误;C、只有一个未知数,错误;D、符合二元一次方程的条件,正确;故选:D.【点评】此题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.2.多项式8x2n﹣4x n的公因式是()A.4x n B.2x n﹣1C.4x n﹣1D.2x n﹣1【分析】本题考查公因式的定义.找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【解答】解:8x2n﹣4x n=4x n(2x n﹣1),∴4x n是公因式.故选:A.【点评】本题考查公因式的定义,难度不大,要根据找公因式的要点进行.3.化简(﹣3x2)•2x3的结果是()A.﹣6x5B.﹣3x5C.2x5D.6x5【分析】根据单项式的乘法法则,同底数幂相乘,底数不变,指数相加的性质计算即可.【解答】解:(﹣3x2)•2x3,=﹣3×2x2•x3,=﹣6x2+3,=﹣6x5.故选:A.【点评】本题主要考查单项式的乘法法则,同底数的幂的乘法的性质,熟练掌握性质是解题的关键.4.2101×0.5100的计算结果正确的是()A.1B.2C.0.5D.10【分析】根据(ab)m=a m•b m得到2×(2×0.5)100,即可得到答案.【解答】解:原式=2×2100×0.5100=2×(2×0.5)100=2.故选:B.【点评】本题考查了同底数幂的运算:(ab)m=a m•b m;a m•a n=a m+n;(a m)n=a mn;a>0,b>0,m、n为正整数.5.若a2﹣b2=,a﹣b=,则a+b的值为()A.B.C.1D.2【分析】由a2﹣b2=(a+b)(a﹣b)与a2﹣b2=,a﹣b=,即可得(a+b)=,继而求得a+b的值.【解答】解:∵a2﹣b2=,a﹣b=,∴a2﹣b2=(a+b)(a﹣b)=(a+b)=,∴a+b=.故选:B.【点评】此题考查了平方差公式的应用.此题比较简单,注意掌握公式变形与整体思想的应用.6.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b2【分析】分别根据合并同类项、平方差公式、同底数幂的乘法及完全平方公式进行逐一计算即可.【解答】解:A、错误,应该为3a+2a=5a;B、(2a+b)(2a﹣b)=4a2﹣b2,正确;C、错误,应该为2a2•a3=2a5;D、错误,应该为(2a+b)2=4a2+4ab+b2.故选:B.【点评】此题比较简单,解答此题的关键是熟知以下概念:(1)同类项:所含字母相同,并且所含字母指数也相同的项叫同类项;(2)同底数幂的乘法:底数不变,指数相加;(3)平方差公式:两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式.(4)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式.7.对于任何整数m,多项式(4m+5)2﹣9都能()A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除【分析】将该多项式分解因式,其必能被它的因式整除.【解答】解:(4m+5)2﹣9=(4m+5)2﹣32,=(4m+8)(4m+2),=8(m+2)(2m+1),∵m是整数,而(m+2)和(2m+1)都是随着m的变化而变化的数,∴该多项式肯定能被8整除.故选:A.【点评】本题考查了因式分解的应用,难度一般.8.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.2【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可.【解答】解:∵(x+1)(x+n)=x2+(1+n)x+n=x2+mx﹣2,∴1+n=m,n=﹣2,解得:m=1﹣2=﹣1.故选:A.【点评】本题考查了多项式乘以多项式的法则,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.9.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣2【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选:B.【点评】根据同类项的定义列出方程组,是解本题的关键.10.若方程组的解x与y相等,则a的值等于()A.4B.10C.11D.12【分析】理解清楚题意,运用三元一次方程组的知识,解出a的数值.【解答】解:根据题意得:,把(3)代入(1)解得:x=y=,代入(2)得:a+(a﹣1)=3,解得:a=11.故选:C.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.11.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A.B.C.D.【分析】根据此题的等量关系:①共36人;②挑水人数是植树人数的2倍列出方程解答即可.【解答】解:设有x人挑水,y人植树,可得:,故选:C.【点评】此题考查方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.a(a+b)=a2+ab D.a(a﹣b)=a2﹣ab【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【解答】解:大正方形的面积=(a﹣b)2,还可以表示为a2﹣2ab+b2,∴(a﹣b)2=a2﹣2ab+b2.故选:B.【点评】正确列出正方形面积的两种表示是得出公式的关键,也考查了对完全平方公式的理解能力.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:103×104=107.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:103×104=107.故答案为:107.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.14.当a=2时,代数式a2+2a+1的值为9.【分析】把a的值代入原式计算即可求出值.【解答】解:当a=2时,原式=4+4+1=9,故答案为:9【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.把多项式9a3﹣ab2因式分解的结果是a(3a+b)(3a﹣b).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(9a2﹣b2)=a(3a+b)(3a﹣b),故答案为:a(3a+b)(3a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.已知a+=2,求a2+=2.【分析】根据完全平方公式把已知条件两边平方,然后整理即可.【解答】解:∵(a+)2=a2+2+=4,∴a2+=4﹣2=2.【点评】本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是常数是解题的关键.17.已知|5x﹣y+9|与|3x+y﹣1|互为相反数,则x+y=3.【分析】利用互为相反数两数之和为0列出方程组,求出方程组的解得到x与y的值,即可求出x+y 的值.【解答】解:根据题意得:|5x﹣y+9|+|3x+y﹣1|=0,可得,①+②得:8x=﹣8,解得:x=﹣1,把x=﹣1代入①得:y=4,则x+y=﹣1+4=3,故答案为:3【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n 个等式为(2n+1)2﹣12=4n(n+1).【分析】通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).【解答】解:通过观察可发现两个连续奇数的平方差是4的倍数,第n个等式为:(2n+1)2﹣12=4n(n+1).故答案为:(2n+1)2﹣12=4n(n+1).【点评】此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三、解答题(本大题共8小题,满分66分)19.(10分)分解因式:(1)3x2﹣6x.(2)(x2+16y2)2﹣64x2y2.【分析】(1)直接提取公因式3x,进而分解因式得出答案;(2)直接利用平方差公式以及结合完全平方公式分解因式得出答案.【解答】解:(1)3x2﹣6x=3x(x﹣2);(2)(x2+16y2)2﹣64x2y2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20.(5分)先化简,再求值:[(a+b)2﹣(a﹣b)2]•a,其中a=﹣1,b=3.【分析】根据完全平方公式可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:[(a+b)2﹣(a﹣b)2]•a=(a2+2ab+b2﹣a2+2ab﹣b2)•a=4a2b,当a=﹣1,b=3时,原式=4×(﹣1)2×3=12.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.21.(7分)已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2;(2)a2+b2.【分析】(1)把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;(2)利用完全平方公式把代数式化为已知的形式求解.【解答】解:(1)a2b+ab2=ab(a+b)=2×3=6;(2)∵(a+b)2=a2+2ab+b2∴a2+b2=(a+b)2﹣2ab,=32﹣2×2,=5.【点评】本题考查了提公因式法分解因式,完全平方公式,关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.22.(8分)解下列二元一次方程组:(1)(2)【分析】各方程组利用加减消元法求出解即可.【解答】解:(1)①+②得:3x=15,解得:x=5,把x=5代入①得:y=1,则方程组的解为;(2)①×3+②×2得:11x=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(8分)某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?【分析】设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据“乘坐这种出租车走了9km,付了14元;乘坐这种出租车走了13千米,付了20元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据题意得:,解得:.答:这种出租车的起步价是5元,超过3km后,每千米的车费是1.5元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.(8分)已知12+22+32+…+n2=n(n+1)•(2n+1)(n为正整数).求22+42+62+…+502的值.【分析】先找出规律22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,进而22+42+62+…+502=22×(12+22+32+…+252即可得出结论.【解答】解:∵22=(2×1)2=22×12,42=(2×2)2=22×22,62=(2×3)2=22×32,…,502=(2×25)2=22×252,∴22+42+62+…+502=22×12+22×22+22×32+…+22×252=22×(12+22+32+…+252)=4××25×26×51=22100.【点评】此题主要考查了数字的变化类,公式的应用,将22+42+62+…+502转化成22×(12+22+32+…+252是解本题的关键.25.(10分)先阅读,再因式分解:x4+4=(x4+4x2+4)﹣4x2=(x2+2)2﹣(2x)2=(x2﹣2x+2)(x2+2x+2),按照这种方法把下列多项式因式分解.(1)x4+64(2)x4+x2y2+y4【分析】(1)代数式加16x2再减去,先用完全平方公式再用平方差公式因式分解;(2)代数式加上x2y2,先用完全平方公式再用平方差公式因式分解.【解答】解:(1)原式=x4+16x2+64﹣16x2=(x2+8)2﹣16x2=(x2+8+4x)(x2+8﹣4x);(2)原式=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy)【点评】本题考查了完全平方公式和平方差公式,解决本题的关键是看懂题目给出的例子.26.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【分析】(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据共支出公路运输费15000元、铁路运输费97200元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据利润=销售收入﹣成本﹣运费,即可求出结论.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据题意得:,解得:.答:工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)300×8000﹣400×1000﹣15000﹣97200=1887800(元).答:这批产品的销售款比原料费与运输费的和多1887800元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据利润=销售收入﹣成本﹣运费,列式计算.。
2018-2019学年七年级(下)期中数学试卷及答案解析
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是()A.2±B.2C.2-D.16±2.点(5,4)A-在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,//∠的大小为()∠=︒,则2⊥,若134a b,点B在直线b上,且AB BCA.34︒B.54︒C.56︒D.66︒∆通过平移得到,且点B,E,C,F在同一条直线4.如图,DEF∆是由ABCEC=.则BE的长度是()上.若14BF=,6A.2B.4C.5D.35.将点(1,2)A-向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是( )A.(3,1)B.(3,1)--D.(3,1)--C.(3,1)a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.7.64-的立方根是( )A .8-B .4-C .2-D .不存在 8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .413.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( ) A .2 B .2- C .1 D .12- 14.已知点(1,0)A ,(0,2)B ,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标是( )A .(4,0)-B .(6,0)C .(4,0)-或(6,0)D .(0,12)或(0,8)-二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个 命题(填“真”或“假” )16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l ∠= 度.17.在平面直角坐标系中,点(21,32)A t t -+在y 轴上,则t 的值为 .18102.0110.1= 1.0201= .19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 .三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补) Q ,(已知)AGD ∴∠= (等式性质)23.(7分)已知,如图,直线AB 和CD 相交于点O ,COE ∠是直角,OF 平分AOE ∠,34COF ∠=︒,求AOC ∠和BOD ∠的度数.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.25.(9分)如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 ;(3)求出ABC ∆的面积.26.(11分)【问题情境】:如图1,//∠的度数.PCD∠=︒,求APCAB CD,130PAB∠=︒,120小明的思路是:过P作//∠.PE AB,通过平行线性质来求APC(1)按小明的思路,求APC∠的度数;【问题迁移】:如图2,//∠=,当点P在B、D∠=,PCDβAB CD,点P在射线OM上运动,记PABα两点之间运动时,问APC∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出APC∠与α、β之间的数量关系.参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是( )A .2±B .2C .2-D .16±【分析】依据算术平方根的定义解答即可.【解答】解:224=Q ,4∴的算术平方根是2.故选:B .【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.点(5,4)A -在第几象限( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:Q 点A 的横坐标为正数、纵坐标为负数,∴点(5,4)A -在第四象限,故选:D .【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.3.如图,//a b ,点B 在直线b 上,且AB BC ⊥,若134∠=︒,则2∠的大小为( )A .34︒B .54︒C .56︒D .66︒【分析】先根据平行线的性质,得出1334∠=∠=︒,再根据AB BC ⊥,即可得到2903456∠=︒-︒=︒.【解答】解://a b Q ,1334∴∠=∠=︒,又AB BC ⊥Q ,2903456∴∠=︒-︒=︒,故选:C .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.如图,DEF ∆是由ABC ∆通过平移得到,且点B ,E ,C ,F 在同一条直线上.若14BF =,6EC =.则BE 的长度是( )A .2B .4C .5D .3【分析】根据平移的性质可得BE CF =,然后列式其解即可.【解答】解:DEF ∆Q 是由ABC ∆通过平移得到,BE CF ∴=,1()2BE BF EC ∴=-, 14BF =Q ,6EC =,1(146)42BE ∴=-=. 故选:B .【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE CF =是解题的关键.5.将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A .(3,1)B .(3,1)--C .(3,1)-D .(3,1)-【分析】直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【解答】解:将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(14,23)-,-+-,即(3,1)故选:C.【点评】本题主要考查了平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:由被开方数越大算术平方根越大,得49911<<,得4<<,3 3.5a故选:C.【点评】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出4991147.64-()A.8-B.4-C.2-D.不存在【分析】先根据算术平方根的定义求出64【解答】解:648Q,-=-∴-的立方根是2-.64故选:C.【点评】本题考查了立方根的定义,算术平方根的定义,先化简64-8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个【分析】根据无理数的定义求解即可.【解答】解:2π,0.454455444555⋯,0.9-是无理数, 故选:B .【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008⋯(每两个8之间依次多1个0)等形式.9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒【分析】由平行线的判定定理可证得,选项A ,B ,D 能证得//AC BD ,只有选项C 能证得//AB CD .注意掌握排除法在选择题中的应用.【解答】解:A 、34∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故A 错误;B 、D DCE ∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故B 错误;C 、12∠=∠Q ,//AB CD ∴.本选项能判断//AB CD ,故C 正确;D 、180D ACD ∠+∠=︒Q ,//AC BD ∴.故本选项不能判断//AB CD ,故D 错误.故选:C .【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒【分析】根据题意分两种情况画出图形, 再根据平行线的性质解答 .【解答】解: 如图 (1) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//AE BF Q ,1B ∴∠=∠,60A B ∴∠=∠=︒.如图 (2) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//DF AE Q ,1180B ∴∠+∠=︒,180A B ∴∠+∠=︒,180********B A ∴∠=︒-∠=︒-︒=︒.∴一个角是60︒,则另一个角是60︒或120︒.故选:D .【点评】本题考查的是平行线的性质, 解答此题的关键是要分两种情况讨论, 不要漏解 .11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选:A .【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .4【分析】跟据方程组的解满足方程,可得关于m ,n 的方程,根据解方程,可得答案.【解答】解:由题意,得3421m n -+=⎧⎨--=⎩, 解得13m n =⎧⎨=-⎩, 1(3)4m n -=--=,故选:D .【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程得出关于m ,n 的方程是解题关键.13.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( )A.2B.2-C.1D.1 2 -【分析】根据方程组的特点,①+②得到1x y k+=+,组成一元一次方程求解即可.【解答】解:23x y kx y k-=+⎧⎨+=⎩①②,①+②得,1x y k+=+,由题意得,12k+=,解答,1k=,故选:C.【点评】本题考查的是二元一次方程组的解,掌握加减消元法解二次一次方程组的一般步骤是解题的关键.14.已知点(1,0)A,(0,2)B,点P在x轴上,且PAB∆的面积为5,则点P的坐标是() A.(4,0)-B.(6,0)C.(4,0)-或(6,0)D.(0,12)或(0,8)-【分析】根据B点的坐标可知AP边上的高为2,而PAB∆的面积为5,点P在x轴上,说明5AP=,已知点A的坐标,可求P点坐标.【解答】解:(1,0)AQ,(0,2)B,点P在x轴上,AP∴边上的高为2,又PAB∆的面积为5,5AP∴=,而点P可能在点(1,0)A的左边或者右边,(4,0)P∴-或(6,0).故选:C.【点评】本题考查了直角坐标系中,利用三角形的底和高及面积,表示点的坐标.二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个假命题(填“真”或“假”)【分析】根据平行线的性质判断命题的真假.【解答】解:两直线平行,同旁内角互补,所以命题“同旁内角互补”是一个假命题;故答案为:假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l∠=52度.【分析】从折叠图形的性质入手,结合平行线的性质求解.【解答】解:由折叠图形的性质,结合两直线平行,同位角相等可知,221180∠+∠=︒,可得152∠=︒,故答案为:52.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.17.在平面直角坐标系中,点(21,32)A t t-+在y轴上,则t的值为12.【分析】根据y轴上的点横坐标为0,列式可得结论.【解答】解:Q点(21,32)A t t-+在y轴上,210t∴-=,12t=,故答案为:12.【点评】本题考查了平面直角坐标系中坐标轴上的点的特征,明确:①x轴上的点:纵坐标为0;②y轴上的点横坐标为0.18102.0110.1= 1.0201= 1.01.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:Q102.0110.1=,∴ 1.0201 1.01=;故答案为:1.01.【点评】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 9 .【分析】根据正数的两个平方根互为相反数列方程求出a ,再求出一个平方根,然后平方即可.【解答】解:Q 一正数的两个平方根分别是21a -与25a +,21250a a ∴-++=,解得1a =-,21213a ∴-=--=-,∴这个正数等于2(3)9-=.故答案为:9.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=【分析】(1)变形为2(x a a =为常数)的形式,根据平方根的定义计算可得;(2)变形为3(x a a =为常数)的形式,再根据立方根的定义计算可得.【解答】解:(1)方程变形得:2121x =,开方得:11x =±;(2)方程变形得:3(5)8x -=-,开立方得:52x -=-,解得:3x =.【点评】本题主要考查立方根和平方根,解题的关键是将原等式变形为3x a =或2(x a a =为常数)的形式及平方根、立方根的定义.21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.【分析】方程组利用加减消元法求出解即可.【解答】解:(1)211312x y x y +=⎧⎨+=⎩①②, ②-①得:1x =,把1x =代入①得:9y =,∴原方程组的解为:19x y =⎧⎨=⎩; (2)232491a b a b +=⎧⎨-=-⎩①②,①3⨯得:696a b +=③,②+③得:105a =,12a =, 把12a =代入①得:13b =, ∴方程组的解为:1213a b ⎧=⎪⎪⎨⎪=⎪⎩. 【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= 3∠ ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补)Q,(已知)∴∠=(等式性质)AGD【分析】由EF与AD平行,利用两直线平行同位角相等得到23∠=∠,利用∠=∠,再由12等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与BA平行,利用两直线平行同旁内角互补即可求出AGD∠度数.【解答】解://Q,(已知)EF AD∴∠=∠(两直线平行同位角相等)2312Q,(已知)∠=∠∴∠=∠(等量代换)13∴,(内错角相等两直线平行)//DG BA∴∠+∠=︒,(两直线平行,同旁内角互补)AGD CAB180Q,(已知)∠=︒CAB70∴∠=︒(等式性质).AGD110故答案为:3∠;等量代换;DG;BA;内错角相等两直线∠;两直线平行同位角相等;3平行;CAB∠;70︒;110︒∠;CAB【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.(7分)已知,如图,直线AB和CD相交于点O,COE∠,∠是直角,OF平分AOE∠和BOD∠的度数.∠=︒,求AOCCOF34【分析】利用图中角与角的关系即可求得.【解答】解:因为90∠=︒,COFCOE∠=︒,34所以56∠=∠-∠=︒,EOF COE COF因为OF 是AOE ∠的平分线,所以2112AOE EOF ∠=∠=︒,所以1129022AOC ∠=︒-︒=︒,18011268EOB ∠=︒-︒=︒,因为EOD ∠是直角,所以22BOD ∠=︒.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.【分析】由//AD BC ,可得EAD B ∠=∠,DAC C ∠=∠,根据角平分线的定义,证得EAD DAC ∠=∠,等量代换可得B ∠与C ∠的大小关系.【解答】解:B C ∠=∠.理由如下://AD BC Q ,EAD B ∴∠=∠,DAC C ∠=∠.AD Q 平分EAC ∠,EAD DAC ∴∠=∠,B C ∴∠=∠.【点评】本题考查的是平行线的性质以及角平分线的性质,解题时注意:两直线平行,同位角相等.25.(9分)如图是一个被抹去x 轴、y 轴及原点O 的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 (3,2)a b +- ;(3)求出ABC ∆的面积.【分析】(1)根据题意画出平面直角坐标系即可;(2)根据坐标平移的规律解决问题即可;(3)利用分割法求出三角形的面积即可;【解答】解:(1)平面直角坐标系,如图所示:O 点即为所求;(2)如图所示:△111A B C ,即为所求;1(3,2)P a b +-; 故答案为:(3,2)a b +-;(3)111455223248222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=.【点评】本题考查作图-平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(11分)【问题情境】:如图1,//AB CD ,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;【问题迁移】:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.【分析】(1)过P 作//PE AB ,通过平行线性质可得180A APE ∠+∠=︒,180C CPE ∠+∠=︒再代入130PAB ∠=︒,120PCD ∠=︒可求APC ∠即可;(2)过P 作//PE AD 交AC 于E ,推出////AB PE DC ,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案;(3)分两种情况:P 在BD 延长线上;P 在DB 延长线上,分别画出图形,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案.【解答】(1)解:过点P 作//PE AB ,//AB CD Q ,////PE AB CD ∴,180A APE ∴∠+∠=︒,180C CPE ∠+∠=︒,130PAB ∠=︒Q ,120PCD ∠=︒,50APE ∴∠=︒,60CPE ∠=︒,110APC APE CPE ∴∠=∠+∠=︒.(2)APC αβ∠=∠+∠,理由:如图2,过P 作//PE AB 交AC 于E ,//AB CD Q ,////AB PE CD ∴,APE α∴∠=∠,CPE β∠=∠,APC APE CPE αβ∴∠=∠+∠=∠+∠;(3)如图所示,当P 在BD 延长线上时,CPA αβ∠=∠-∠;如图所示,当P 在DB 延长线上时,CPA βα∠=∠-∠.【点评】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库 一、选择题 1.4的平方根是()A .2B .2±C .2D .2±2.下列四幅图案中,通过平移能得到图案E 的是( )A .AB .BC .CD .D 3.点(﹣4,2)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.以下命题是真命题的是( )A .相等的两个角一定是对顶角B .过直线外一点有且只有一条直线与已知直线平行C .两条平行线被第三条直线所截,内错角互补D .在同一平面内,垂直于同一条直线的两条直线互相垂直5.下列几个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等;②如果1∠和2∠是对顶角,那么12∠=∠;③一个角的余角一定小于这个角的补角;④三角形的一个外角大于它的任一个内角.A .1个B .2个C .3个D .46.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④116的算术平方根为14.正确的是( ) A .①②③B .①②④C .①③④D .②③④ 7.如图,直线AB ∥CD ,BE 平分∠ABD ,若∠DBE =20°,∠DEB =80°,求∠CDE 的度数是( )A .50°B .60°C .70°D .80°8.如图,在平面直角坐标系中,将边长为3,4,5的Rt ABO 沿x 轴向右滚动到11AB C △的位置,再到112A B C 的位置…依次进行下去,发现()3,0A ,()112,3A ,()215,0A …那么点10A 的坐标为( )A .()60,3B .()60,0C .()63,3D .()63,0二、填空题9.36的平方根是_________10.已知点()12P m -,与点()1,2Q 关于y 轴对称,那么m =________. 11.如图,在△ABC 中,∠ACB =90°,AD 是△ABC 的角平分线,BC =10cm ,BD :DC =3:2,则点D 到AB 的距离为_____.12.如图,已知AB //EF ,∠B =40°,∠E =30°,则∠C -∠D 的度数为________________.13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.14.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 15.点()2,28M a a +-是第四象限内一点,若点M 到两坐标轴的距离相等,则点M 的坐标为__________.16.在平面直角坐标系中,已知点A (﹣4,0),B (0,3),对△AOB 连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______三、解答题17.(1)已知2(1)4x -=,求x 的值;(2)计算:23112(2)8--+-. 18.求下列各式中的x 的值:(1)2810x -=;(2)()3164x -=.19.已知一个角的两边与另一个角的两边分别平行,结合图1,探索这两个角之间的关系.(1)如图1,已知ABC ∠与DEF ∠中,//AB FE ,//BC DE ,AB 与DE 相交于点G .问:ABC ∠与DEF ∠有何关系?①请完成下面的推理过程.理由://AB FE ,AGE DEF ∴∠+∠= ( ).//BC DE ,AGE ABC ∴∠=∠( ).ABC DEF ∴∠+∠= .②结论:ABC ∠与DEF ∠关系是 .(2)如图2,已知//AB FE ,//BC ED ,则ABC ∠与DEF ∠有何关系?请直接写出你的结论.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么 .20.如图,在平面直角坐标系中,三角形OBC 的顶点都在网格格点上,一个格是一个单位长度.(1)将三角形OBC 先向下平移3个单位长度,再向左平移2个单位长度(点1C 与点C 是对应点),得到三角形111O B C ,在图中画出三角形111O B C ;(2)直接写出三角形111O B C 的面积为____________.21.已知:a 是173-的整数部分,b 是173-的小数部分.求:(1)a ,b 值(2)()()224a b -++的平方根.22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a ,b 的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.23.如图,直线HD //GE ,点A 在直线HD 上,点C 在直线GE 上,点B 在直线HD 、GE 之间,∠DAB =120°.(1)如图1,若∠BCG =40°,求∠ABC 的度数;(2)如图2,AF 平分∠HAB ,BC 平分∠FCG ,∠BCG =20°,比较∠B ,∠F 的大小;(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N 的数量关系,并说明理由.【参考答案】一、选择题1.D解析:D【分析】依据平方根的定义、算术平方根的定义进行解答即可.【详解】解:∵2=,∴故选D.【点睛】本题主要考查的是算术平方根、平方根的定义,熟练掌握相关概念是解题的关键.2.B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.3.B【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答.【详解】解:点(-4,2)所在的象限是第二象限.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】利用对顶角的定义、平行线的性质等知识分别判断后即可确定正确的选项.【详解】解:A、相等的两个角不一定是对顶角,故原命题错误,是假命题,不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,正确,是真命题,符合题意;C、两条平行线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;D、在同一平面内,垂直于同一条直线的两条直线互相平行,故原命题错误,是假命题,不符合题意,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、平行线的性质等知识,难度不大.5.B【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断.【详解】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;一个角的余角一定小于这个角的补角,所以③正确;三角形的外角大于任何一个与之不相邻的一个内角,所以④错误.故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.D【分析】分别求出每个数的立方根、平方根和算术平方根,再判断即可.【详解】∵1的立方根为1,∴①错误;∵4的平方根为±2,∴②正确;∵−8的立方根是−2,∴③正确; ∵116的算术平方根是14,∴④正确; 正确的是②③④,故选:D .【点睛】本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义.7.B【分析】延长DE ,交AB 于点F ,根据角平分线的定义以及已知条件可得20EBF ∠=︒,由三角形的外角性质可求EFB ∠,最后由平行线的性质即可求解.【详解】延长DE ,交AB 于点F ,BE 平分∠ABD ,20DBE ∠=︒,20EBF DBE ∴∠=∠=︒,DEB DFB EBF ∠=∠+∠,∠DEB =80°,802060EFB DEB EBF ∴∠=∠-∠=︒-︒=︒,//AB CD ,60CDE EFB ∴∠=∠=︒,故选B .【点睛】本题考查了角平分线的定义,平行线的性质,三角形的外角性质,掌握以上知识是解题的关键.8.D【分析】根据旋转的过程寻找规律即可求解.【详解】解:根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继续旋转得A3(24,3),A4(解析:D【分析】根据旋转的过程寻找规律即可求解.【详解】解:根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继续旋转得A3(24,3),A4(27,0);…发现规律:A9(5×12,3),A10(5×12+3,0),即(63,0).故选:D.【点睛】本题考查了规律型:点的坐标,解决本题的关键是灵活运用旋转的知识.二、填空题9..【详解】【分析】先确定,再根据平方根定义可得的平方根是±.【详解】因为,6的平方根是±,所以的平方根是±.故正确答案为±.【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示解析:【详解】=.6=,6的平方根是6故正确答案为.【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示的意义. 10.0;【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可.【详解】解:根据对称的性质,得,解得.故答案为:0.【点睛】考查了关于轴、轴对称的点的坐标,解析:0;【分析】平面直角坐标系中任意一点(,)P x y ,关于y 轴的对称点的坐标是(,)x y -,依此列出关于m 的方程求解即可.【详解】解:根据对称的性质,得11m -=-,解得0m =.故答案为:0.【点睛】考查了关于x 轴、y 轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆.11.4cm【详解】∵BC=10cm ,BD :DC=3:2,∴BD=6cm ,CD=4cm ,∵AD 是△ABC 的角平分线,∠ACB=90°,∴点D 到AB 的距离等于DC ,即点D 到AB 的距离等于4cm .解析:4cm【详解】∵BC=10cm ,BD :DC=3:2,∴BD=6cm ,CD=4cm ,∵AD 是△ABC 的角平分线,∠ACB=90°,∴点D 到AB 的距离等于DC ,即点D 到AB 的距离等于4cm .12.10°【分析】过点C 作CG ∥AB ,过点D 作DH ∥EF ,根据平行线的性质可得AB ∥CG ∥DH ∥EF ,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH ,即可求解.【详解】解析:10°【分析】过点C 作CG ∥AB ,过点D 作DH ∥EF ,根据平行线的性质可得AB ∥CG ∥DH ∥EF ,从而可得∠BCG =∠B =40°,∠EDH =∠E =30°,∠DCG =∠CDH ,即可求解.【详解】解:如图,过点C 作CG ∥AB ,过点D 作DH ∥EF ,∵AB//EF,∴AB∥CG∥DH∥EF,∵∠B=40°,∠E=30°,∴∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,∴∠BCD-∠CDE=∠BCG-∠EDH=40°-30°=10°.故答案为:10°.【点睛】本题主要考查了平行线的性质,准确作出辅助线是解题的关键.13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵AB//DE,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.8【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b ++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.【分析】根据点是第四象限内一点且到两坐标轴距离相等,点M 的横坐标与纵坐标互为相反数列方程求出a 的值,再求解即可.【详解】∵点是第四象限内一点且到两坐标轴距离相等,∴点M 的横坐标与纵坐标互为解析:()4,4-【分析】根据点()2,28M a a +-是第四象限内一点且到两坐标轴距离相等,点M 的横坐标与纵坐标互为相反数列方程求出a 的值,再求解即可.【详解】∵点()2,28M a a +-是第四象限内一点且到两坐标轴距离相等,∴点M 的横坐标与纵坐标互为相反数∴()228a =a +--解得,2a =∴M 点坐标为(4,-4).故答案为(4,-4)【点睛】本题考查了点的坐标,理解点M 是第四象限内一点且到两坐标轴距离相等,则点M 的横坐标与纵坐标互为相反数是解题的关键.16.(8052,0).【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O 的距离,然后写出坐标即可.【详解解析:(8052,0).【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O 的距离,然后写出坐标即可.【详解】解:∵点A (﹣4,0),B (0,3),∴OA =4,OB =3,∴AB5,∴第(3)个三角形的直角顶点的坐标是()12,0;观察图形不难发现,每3个三角形为一个循环组依次循环,∴一次循环横坐标增加12,∵2013÷3=671∴第(2013)个三角形是第671组的第三个直角三角形,其直角顶点与第671组的第三个直角三角形顶点重合,∴第(2013)个三角形的直角顶点的坐标是()67112,0⨯即()8052,0.故答案为:()8052,0.【点睛】本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键.三、解答题17.(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵;∴∴x=3或x=-1(2)原式=,【解析:(1)x=3或x=-1;(212(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵()214x -=;∴12x -=±∴x=3或x=-1(2)原式1122-+ 12=, 【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键. 18.(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1),或.(2),.【点睛】此题考查了解析:(1)9x =或9x =-;(2)5x =【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1)2810x -=2x =81,9x =或9x =-.(2)()3164x -= 14x -=,5x =.此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键.19.(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据,,即可得与的关系;(2)如图2,根据解析:(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)ABC DEF ∠=∠(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(2)如图2,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(3)由(1)(2)即可得出结论.【详解】解:(1)①理由://AB FE ,180AGE DEF ∴∠+∠=︒(两直线平行,同旁内角互补),//BC DE ,AGE ABC ∴∠=∠ (两直线平行,同位角相等),180ABC DEF ∴∠+∠=︒.②结论:ABC ∠与DEF ∠关系是互补.故答案为:①180︒;两直线平行,同旁内角互补;两直线平行,同位角相等;180︒;②相等.(2)ABC DEF ∠=∠,理由如下://AB FE ,DGA DEF ∴∠=∠,//BC DE ,DGA ABC ∴∠=∠,ABC DEF ∴∠=∠.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等,故答案为:这两个角互补或相等.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握平行线的性质定理.20.(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积解析:(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O 1、B 1、C 1的坐标,然后顺次连接O 1、B 1、C 1即可;(2)根据111O B C 的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.【详解】解:(1)如图所示,111O B C 即为所求;(2)由题意得:11111143421313=5222O B C S =⨯-⨯⨯-⨯⨯-⨯⨯△. 【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法. 21.(1),.(2).【分析】(1)首先得出接近的整数,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】,∴整数部分,小数部分.(2)原式,则的平方根为.【点睛】此题解析:(1)1a =,174b =.(2)32±【分析】(1接近的整数,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】 1754<<∴ 132<<,∴整数部分1a =,小数部分314b -=.(2)()()224a b -++原式())22144=-++ 11718=+=,则()()224a b -++的平方根为±【点睛】此题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键. 22.(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x ,宽为2x ,根据长方形的面积为30列方程,解方程即可; (2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程解析:(1)长为,宽为2)正确,理由见解析【分析】(1)设长为3x ,宽为2x ,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a 即可得到大正方形的面积.【详解】解:(1)设长为3x ,宽为2x ,则:3x •2x =30,∴x∴3x =,2x =答:这个长方形纸片的长为(2)正确.理由如下:根据题意得:()()2504230a b a b a b ⎧⎡⎤++=⎪⎣⎦⎨+-=⎪⎩, 解得:105a b =⎧⎨=⎩, ∴大正方形的面积为102=100.【点睛】本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.23.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后∠HAP;理由见解解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣12析.【分析】(1)过点B作BM//HD,则HD//GE//BM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;(2)过B作BP//HD//GE,过F作FQ//HD//GE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果;(3)过P作PK//HD//GE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.【详解】解:(1)过点B作BM//HD,则HD//GE//BM,如图1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)过B作BP//HD//GE,过F作FQ//HD//GE,如图2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)过P作PK//HD//GE,如图3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=12∠HAP+12∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣12∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣12∠HAP﹣12∠PCG﹣90°+12∠PCG=90°﹣12∠HAP,即:∠N=90°﹣12∠HAP.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.。
完整版七年级数学下册期中考试试卷及答案 - 百度文库
完整版七年级数学下册期中考试试卷及答案 - 百度文库一、选择题1.36的平方根是()A .6-B .6C .6±D .4±2.下列各组图形可以通过平移互相得到的是( )A .B .C .D .3.在平面直角坐标系中,点P (﹣5,4)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中是假命题的是( )A .对顶角相等B .8的立方根是±2C .实数和数轴上的点是一一对应的D .平行于同一直线的两条直线平行5.如图,直线////AB CD EF ,点O 在直线AB 上,下列结论正确的是( )A .12390∠+∠-∠=︒B .12390∠+∠+∠=︒C .321180∠+∠-∠=︒D .132180∠+∠-∠=︒ 6.下列计算正确的是( )A .2(3)3-=-B .366=±C .393=D .382--= 7.如图:AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =40°,则下列结论:①OF 平分∠BOD ;②∠POE =∠BOF ;③∠BOE =70°;④∠POB =2∠DOF ,其中结论正确的序号是( )A .①②③B .①②④C .①③④D .①②③④ 8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…,第n 次移动到n A ,则22021OA A △的面积是( )A .2504mB .21009m 2C .21011m 2D .21009m二、填空题9.计算:36的结果为_____.10.点(m ,1)和点(2,n)关于x 轴对称,则mn 等于_______.11.三角形ABC 中,∠A=60°,则内角∠B ,∠C 的角平分线相交所成的角为_____. 12.如图,直线//AB CD ,若30ABE ∠=︒,150BEC ∠=︒,ECD ∠=______.13.如图,把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若56EFG ∠=︒,则1∠=____________,2∠=____________.14.“⊗”定义新运算:对于任意的有理数a 和b ,都有21a b b ⊗=+.例如:2955126⊗=+=.当m 为有理数时,则(3)m m ⊗⊗等于________.15.如图,直角坐标系中A 、B 两点的坐标分别为()3,1-,()2,1,则该坐标系内点C 的坐标为__________.16.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P 1(2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2021的坐标为______.三、解答题17.计算:(1)23272-; (2)432+-.18.求下列各式中x 的值.(1)4x 2﹣25=0;(2)(2x ﹣1)3=﹣64.19.完成下面推理过程,并在括号中填写推理依据:如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3,试说明:AD 平分∠BA C . 证明:∵AD ⊥BC ,EG ⊥BC∴∠ADC = =90°(垂直定义)∴ ∥EG (同位角相等,两直线平行)∴∠1= ( )∠2=∠3( )又∵∠3=∠E (已知)∴ =∠2∴AD 平分∠BAC20.ABC ∆与A B C '''∆在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A ' ; B ' ;C ' ;(2)说明A B C '''∆由ABC ∆经过怎样的平移得到?答:_______________.(3)若点(),P a b 是ABC ∆内部一点,则平移后A B C '''∆内的对应点P '的坐标为_________; (4)求ABC ∆的面积.21.计算:(1)239(6)27----; (2)﹣12+(﹣2)3×31127()89--⨯-; (3)已知实数a 、b 满足1a -+|b ﹣1|=0,求a 2017+b 2018的值.(4)已知5+1的整数部分为a ,5﹣1的小数部分为b ,求2a+3b 的值.22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:2 1.414≈,3 1.732≈)23.如图①,将一张长方形纸片沿EF 对折,使AB 落在''A B 的位置;(1)若1∠的度数为a ,试求2∠的度数(用含a 的代数式表示);(2)如图②,再将纸片沿GH 对折,使得CD 落在''C D 的位置.①若//'EF C G ,1∠的度数为a ,试求3∠的度数(用含a 的代数式表示); ②若''B F C G ⊥,3∠的度数比1∠的度数大20︒,试计算1∠的度数.【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义求解即可.【详解】解:∵2(6)36=±,∴36的平方根是6±,故选:C .【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.2.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C 通过平移后可以得到.故选:C .【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C 通过平移后可以得到.故选:C .【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.3.B【分析】根据各象限内点的坐标特征解答.【详解】解:点P (﹣5,4)位于第二象限.故选:B .【点睛】本题主要考查点的坐标,熟练掌握点的坐标象限的符合特征:第一象限为“+、+”,第二象限为“-,+”,第三象限为“-,-”,第四象限为“+,-”是解题的关键.4.B【分析】根据平行线的判定、对顶角、立方根和实数与数轴关系进行判断即可.【详解】解:A、对顶角相等,是真命题;B、8的立方根是2,原命题是假命题;C、实数和数轴上的点是一一对应的,是真命题;D、平行于同一直线的两条直线平行,是真命题;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的判定、对顶角、立方根和实数与数轴,属于基础题,难度不大.5.D【分析】根据两直线平行,同旁内角互补可得∠1+∠AOF=180°,再根据两直线平行,内错角相等可得∠3=∠AOC,而通过∠AOF=∠AOC-∠2,整理可得∠1+∠3-∠2=180°.【详解】解:∵AB∥EF,∴∠1+∠AOF=180°,∵CD∥AB,∴∠3=∠AOC,又∵∠AOF=∠AOC−∠2=∠3-∠2,∴∠1+∠3-∠2=180°.故选:D.【点睛】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.6.D【分析】分别根据算术平方根的定义以及立方根的定义逐一判断即可.【详解】解:A3,故本选项不合题意;B6=,故本选项不合题意;C3≠,故本选项不合题意;D、2=,故本选项符合题意;故选:D.【点睛】本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键.7.A【分析】根据AB∥CD可得∠BOD=∠ABO=40°,利用平角得到∠COB=140°,再根据角平分线的定义得到∠BOE=70°,则③正确;利用OP⊥CD,AB∥CD,∠ABO=40°,可得∠POB=50°,∠BOF=20°,∠FOD=20°,进而可得OF平分∠BOD,则①正确;由∠EOB=70°,∠POB=50°,∠POE=20°,由∠BOF=∠POF-∠POB=20°,进而可得∠POE=∠BOF,则②正确;由②可知∠POB=50°,∠FOD=20°,则④不正确.【详解】③∵AB∥CD,∴∠BOD=∠ABO=40°,∴∠COB=180°-40°=140°,又∵OE平分∠BOC,∴∠BOE=12∠COB=12×140°=70°,故③正确;①∵OP⊥CD,∴∠POD=90°,又∵AB∥CD,∴∠BPO=90°,又∵∠ABO=40°,∴∠POB=90°-40°=50°,∴∠BOF=∠POF-∠POB=70°-50°=20°,∠FOD=40°-20°=20°,∴OF平分∠BOD,故①正确;②∵∠EOB=70°,∠POB=90°-40°=50°,∴∠POE=70°-50°=20°,又∵∠BOF=∠POF-∠POB=70°-50°=20°,∴∠POE=∠BOF,故②正确;④由①可知∠POB=90°-40°=50°,∠FOD=40°-20°=20°,故∠POB≠2∠DOF,故④不正确.故结论正确的是①②③,故选A.【点睛】本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答.8.C【分析】每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.【详解析:C【分析】每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,每四次一循环,每个循环,点向x轴的正方向前进2cm,∴OA4n=2n,∵2021=505×4+1,∴点A2021在x轴上,且OA2021=505×2+1=1011,∴△OA2A2021的面积=12×1×1011=10112(cm2).故选:C.【点睛】本题主要考查了点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半.二、填空题9.6【分析】根据算术平方根的定义即可求解.【详解】解:的结果为6.故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数解析:6【分析】根据算术平方根的定义即可求解.【详解】6.故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.10.-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题解析:-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握关于x轴对称点的性质是解题关键.11.120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),解析:120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,再代入∠DFE=∠BFC=180°-(∠FBC+∠FCB),即可解答.试题解析:∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,∠DFE=180°-(∠FBC+∠FCB),=180°-60°,=120°;∠DFE 的邻补角的度数为:180°-120°=60°.考点:角的度量.12.60°.【分析】过点E 作EF ∥AB ,由平行线的性质,先求出∠CEF=120°,即可求出的度数.【详解】解:过点E 作EF ∥AB ,如图:∴,∴,,∵,∴∠CEF=120°,∴;故答解析:60°.【分析】过点E 作EF ∥AB ,由平行线的性质,先求出∠CEF =120°,即可求出ECD ∠的度数.【详解】解:过点E 作EF ∥AB ,如图:∴////EF AB CD ,∴30BEF ABE ∠=∠=︒,180ECD CEF ∠+∠=︒,∵150BEC ∠=︒,∴∠CEF =120°,∴18012060ECD ∠=︒-︒=︒;故答案为:60°.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质,正确的作出辅助线,从而进行解题.13.68°; 112°.【分析】首先根据折叠的性质和平行线的性质求∠FED 的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数.【详解】解:∵延折叠得到,解析:68°; 112°.【分析】首先根据折叠的性质和平行线的性质求∠FED 的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数.【详解】解:∵EDCF 延EF 折叠得到EMNF ,∴DEF MEF ∠=∠,∵//AD BC ,56EFG ∠=︒,∴56DEF EFG ∠=∠=︒(两直线平行,内错角相等),∴56MEF DEF ∠=∠=︒,∴1180180565668DEF MEF ∠=︒-∠-∠=︒-︒-︒=︒,又∵//AD BC ,∴12180∠+∠=︒,∴2180118068112∠=︒-∠=︒-︒=︒.综上168∠=︒,2112∠=︒.故答案为:68°;112°.【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键. 14.101【分析】根据“”的定义进行运算即可求解.【详解】解:=== =101.故答案为:101.【点睛】本题考查了新定义运算,理解新定义的法则是解题关键.解析:101【分析】根据“⊗”的定义进行运算即可求解.【详解】解:(3)m m ⊗⊗=2(31)m ⊗+=10m ⊗=2101+ =101.故答案为:101.【点睛】本题考查了新定义运算,理解新定义的法则是解题关键.15.【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正解析:()1,3-【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正确建立坐标系.16.(4,3)【分析】按照反弹规律依次画图即可.【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P 点解析:(4,3)【分析】按照反弹规律依次画图即可.【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2021÷6=336…5,即点P2021的坐标是(4,3).故答案为:(4,3).【点睛】本题考查了生活中的轴对称现象,点的坐标.解题的关键是能够正确找到循环数值,从而得到规律.三、解答题17.(1)-1;(2).【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.【详解】解:(1)原式.(2)原式.【点解析:(1)-1;(2)43.【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.【详解】=-=-.解:(1)原式341(2)原式22343=+【点睛】本题考查的是立方根,乘方,算术平方根,绝对值的运算,实数的加减运算,掌握运算法则是解题关键.18.(1)x=;(2)x=.【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解.【详解】解:(1)4x2﹣25=0,4x2=25,x2=,x =;(2)(2x ﹣1)3=﹣64解析:(1)x =52±;(2)x =32-. 【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解.【详解】解:(1)4x 2﹣25=0,4x 2=25,x 2=254, x =52±; (2)(2x ﹣1)3=﹣64,2x ﹣1=﹣4,2x =﹣3,x =32-. 【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.;两直线平等行,同位角相等;两直线平行,内错角相等;;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,,由已知条件∠解析:;;EGC AD E ∠∠;两直线平等行,同位角相等;两直线平行,内错角相等;1∠;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得//AD EG ,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得1E ∠=∠,2=3∠∠,由已知条件∠3=∠E ,等量代换即可的12∠=∠,即可证明AD平分∠BA C.【详解】证明:∵AD⊥BC,EG⊥BC∴∠ADC=EGC∠=90°(垂直定义)∴AD∥EG(同位角相等,两直线平行)∴∠1=E∠(两直线平等行,同位角相等)∠2=∠3(两直线平行,内错角相等)又∵∠3=∠E(已知)∴1∠=∠2(等量代换)∴AD平分∠BAC(角平分线的定义)故答案是:∠EGC;AD;∠E;两直线平等行,同位角相等;两直线平行,内错角相等;∠1;等量代换;角平分线定义.【点睛】本题考查了垂线的定义,平行线的性质与判定,角平分线的定义,掌握以上定理性质是解题的关键.20.(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对解析:(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A′的变化写出平移方法即可;(3)根据平移规律逆向写出点P′的坐标;(4)利用△ABC所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)A′(-3,1);B′(-2,-2);C′(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为:(a-4,b-2);(4)△ABC的面积=111 23131122222⨯-⨯⨯-⨯⨯-⨯⨯=2.【点睛】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.21.(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案 利用绝对值以及平解析:(1)0;(2)-3;(3)2;(4).【解析】【分析】() 1直接利用算术平方根以及立方根的定义化简进而得出答案;()2直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案 ()3利用绝对值以及平方根的非负性质得出a ,b 的值,进而得出答案;()4直接利用23的范围进而得出a ,b 的值,即可得出答案.【详解】解:(13630=-+=;()23121(2)8⎛-+-⨯ ⎝111333⎛⎫=--+⨯-=- ⎪⎝⎭; ()3110a b -+-=,1a ∴=,1b =,20172018a b +112=+=;()451+的整数部分为a 1的小数部分为b ,3a ∴=,2b =,2366a b ∴+=+=【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键. 22.(1)6分米;(2)满足.【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.【详解】解:(解析:(1)6分米;(2)满足. 【分析】(1(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出a ,求出长方形的长和宽和6比较即可.【详解】解:(16分米;(2)设长方形的长为4a 分米,则宽为3a 分米.则4324a a ⋅=,解得:a =∴长为4 5.6566a ≈<,宽为3 4.242 6.a ≈<∴满足要求.【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.23.(1) ;(2)① ;②【分析】(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义解析:(1)1902a ︒- ;(2)①1454a ︒+ ;②50︒ 【分析】(1)由平行线的性质得到4'B FC a ∠=∠=,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,1902BFE a ∠=︒-,根据平行线的性质得到1BFE C'GB 902a ∠=∠=︒- ,再由折叠的性质及平角的定义求解即可;②由(1)知,∠BFE = 19012EFB '∠=︒-∠,由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,再根据条件和折叠的性质得到''11402190B FC FGC +=∠+∠=∠︒-∠︒,即可求解.【详解】解:(1)如图,由题意可知'//'A E B F ,∴14a ∠=∠=,∵//AD BC ,∴4'B FC a ∠=∠=,180BFB a '∴∠=︒-,∴由折叠可知1129022BFE BFB a '∠=∠=∠=︒-.(2)①由题(1)可知1902BFE a ∠=︒- , ∵//'EF C G ,1902BFE C'GB a ∴∠=∠=︒-, 再由折叠可知:113180*********HGC C GB a a ⎛⎫∠+∠=︒-∠=︒-︒-=︒+ ⎪⎝⎭', 13454HGC a ∴∠=∠=︒+;②由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,由(1)知19012BFE ∠=︒-∠, 11802180290112B FC BFE ⎛⎫'∴∠=︒-∠=︒-︒-∠=∠ ⎪⎝⎭, 又3∠的度数比1∠的度数大20︒,∴3=1+20∠∠︒,()18023180212014021FGC '∴∠=︒-∠=︒-∠+︒=︒-∠,''11402190B FC FGC +=∴∠+∠=∠︒-∠︒,1=50∴∠︒.【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.。
2018—2019学年度第二学期期中测试卷
1 / 3—学年度第二学期期中测试卷七年级(初一)数学参考答案及评分意见一、选择题(本大题共小题,每小题分,共分).; .; .; .; .; .; .; ..二、填空题(本大题共小题,每小题分,共分).; .; .°; .; .; .αβ+或αβ-或βα-.三、解答题(本大题共小题,每小题分,共分).解:()由题意,得-,-, ……………分 解得,. ……………分()22a b +的算术平方根是5. ……………分 .解:()∵<211<, ……………分12<.即<. ……………分()原式21|2……………分2 ……………分 - ……………分.解:()由题意,得(+)+(-2a ),解得. ……………分 ∴(). ……………分()当,时,2是有理数. ……………分 .解:图 图()如图中垂线为所画. ……………分 ()如图中平行线为所画. ……………分 说明:每图分,说明分.四、解答题(本大题共小题,每小题分,共分).解:()∵∥轴, ∴、两点的纵坐标相同. ……………分 ∴+,解得. ……………分 ∴、两点间的距离是(-)+-+. ……………分 ()∵⊥轴,∴、两点的横坐标相同.∴(-,).∵,∴,解得1b =±. ……………分 当时,点的坐标是(-,). ……………分当-时,点的坐标是(-,-). ……………分2 /3 .解:()(,)、(,)、(,). ……………分()当运动秒时,点在上,点与点重合, ……………分 此时,,, . ……………分∴△梯形-△-△111(48)48242222+⨯-⨯⨯-⨯⨯ ……………分 ……………分.解:()∥,其理由是: ……………分∵∥,∴∠∠. ……………分∵∠∠,∴∠∠,∴∥. ……………分()∵∥,且∠°,∴∠°,∠∠. ……………分∵∠∠,∴∠∠.∵平分∠,∴∠∠, ……………分 ∴∠∠+∠12∠° …………分()∠+∠°. ……………分五、探究题(本大题共小题,共分).解:() ① 过作∥,则∠+∠°.∵∥,∴∥,∴∠+∠°. ……………分∴∠+∠+∠+∠°.即∠+∠+∠ °. ……………分②过作∥,则∠∠.∵∥,∴∥,∴∠∠. ……………分∴∠+∠∠+∠.即∠+∠∠. ……………分 ()∠+∠°,其理由是: ……………分∵、分别平分∠、∠,∴∠12∠,∠12∠. ∴∠+∠12(∠+∠).即(∠+∠)∠+∠.3 / 3 由()结果知∠°-∠ ,即∠+∠ °. ……………分 ∵13ABM ABF ∠=∠,13CDM CDF ∠=∠, ∴∠∠+∠11()33ABF CDF BFD ∠+∠=∠.∴∠∠. ……………分 由上证得∠+∠ °,∴∠+∠°. ……………分 ()当1ABMABF n ∠=∠,1CDM CDF n ∠=∠,且∠°时, ∴∠3602m n︒-︒. ……………分。
完整版七年级数学下册期中考试试卷及答案 - 百度文库
完整版七年级数学下册期中考试试卷及答案 - 百度文库一、选择题1.一个有理数的平方等于36,则这个数是()A .6B .6或6-C .36D .6-2.下列车标,可看作图案的某一部分经过平移所形成的是( )A .B .C .D . 3.若点P 在第四象限内,则点P 的坐标可能是( )A .()4,3B .()3,4-C .()3,4--D .()3,4- 4.下列说法中,错误的个数为( ).①两条不相交的直线叫做平行线;②过一点有且只有一条直线与已知直线平行;③在同一平面内不平行的两条线段一定相交;④两条直线与第三条直线相交,那么这两条直线也相交.A .1个B .2个C .3个D .4个5.如图,//AB CD ,点E 为AB 上方一点,,FB CG 分别为,EFG ECD ∠∠的角平分线,若2210E G ∠+∠=︒,则EFG 的度数为( )A .140︒B .150︒C .130︒D .160︒ 6.若24,a =31b =-,则+a b 的值是( ) A .1 B .-3 C .1或-3 D .-1或3 7.如图:AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =40°,则下列结论:①OF 平分∠BOD ;②∠POE =∠BOF ;③∠BOE =70°;④∠POB =2∠DOF ,其中结论正确的序号是( )A .①②③B .①②④C .①③④D .①②③④8.如图,已知在平面直角坐标系中,点A 坐标是(1,1).若记点A 坐标为(a 1,a 2),则一个点从点A 出发沿图中路线依次经过B (a 3,a 4),C (a 5,a 6),D (a 7,a 8),…,每个点的横纵坐标都是整数,按此规律一直运动下去,则a 2016+a 2017+a 2018的值为( )A .1009B .1010C .1513D .2521二、填空题9.若21(2)30x y z -+-+-=,则x+y+z=________.10.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.11.如图,,BO CO 是ABC ACB ∠∠、的两条角平分线,100A ∠=︒,则BOC ∠的度数为_________.12.如下图,C 岛在A 岛的北偏东65°方向,在B 岛的北偏西35°方向,则ACB =∠______度.13.如图所示,是用一张长方形纸条折成的,如果1128∠=︒,那么2∠=___°.14.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).15.下列四个命题:①直角坐标系中的点与有序实数对一一对应;②若a 大于0,b 不小于0,则点(),P a b --在第三象限;③过一点有且只有一条直线与已知直线平行;④若()214=--+y x ,则x y 的算术平方根是12.其中,是真命题的有______.(写出所有真命题的序号)16.在平面直角坐标系xoy 中,对于点(,)P x y 我们把(1,1)P y x -++叫做点P 的伴随点,已知1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,这样依次得到123,,,n A A A A ⋯,若点1A 的坐标为(3,1),则点2021A 的坐标为_______三、解答题17.计算:(1)3-(-5)+(-6)(2)()211162--⨯ 18.求下列各式中的x 值:(1)169x 2=144;(2)(x -2)2-36=0.19.如图,∠1=∠2,∠3=∠C ,∠4=∠5.请说明BF //DE 的理由.(请在括号中填上推理依据)解:∵∠1=∠2(已知)∴CF //BD ( )∴∠3+∠CAB =180°( )∵∠3=∠C (已知)∴∠C +∠CAB =180°(等式的性质)∴AB //CD ( )∴∠4=∠EGA (两直线平行,同位角相等)∵∠4=∠5(已知)∴∠5=∠EGA (等量代换)∴ED //FB ( )20.如图,已知ABC 在平面直角坐标系中的位置如图所示.(1)写出ABC 三个顶点的坐标;(2)求出ABC 的面积;(3)在图中画出把ABC 先向左平移5个单位,再向上平移2个单位后所得的A B C '''. 21.已知:a 173的整数部分,b 173的小数部分.求:(1)a ,b 值(2)()()224a b -++的平方根.22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数2 1.414≈3 1.732≈)23.直线AB ∥CD ,点P 为平面内一点,连接AP ,CP .(1)如图①,点P 在直线AB ,CD 之间,当∠BAP =60°,∠DCP =20°时,求∠APC 的度数;(2)如图②,点P 在直线AB ,CD 之间,∠BAP 与∠DCP 的角平分线相交于K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由;(3)如图③,点P 在直线CD 下方,当∠BAK =23∠BAP ,∠DCK =23∠DCP 时,写出∠AKC 与∠APC 之间的数量关系,并说明理由.【参考答案】一、选择题1.B解析:B【分析】根据一个数a,如果2a b=,那么a就叫做b的平方根求解即可.【详解】±=,解:∵()2636∴36的平方根为6或-6,故选B.【点睛】本题主要考查了平方根,解题的关键在于能够熟练掌握平方根的定义.2.D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平解析:D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平移所形成的,故此选项错误;D、是经过平移所形成的,故此选项正确;故选:D.【点睛】此题主要考查了利用平移设计图案,关键是掌握平移定义.3.B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案.【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有()3,4-满足要求, 故选:B .【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.4.D【分析】根据平行线的定义,平行线公理,同一平面内,直线的位置关系,逐一判断各个小题,即可得到答案.【详解】①在同一平面内,两条不相交的直线叫做平行线,故本小题错误,②过直线外一点有且只有一条直线与已知直线平行,故本小题错误,③在同一平面内不平行的两条直线一定相交;故本小题错误,④两条直线与第三条直线相交,那么这两条直线不一定相交,故本小题错误. 综上所述:错误的个数为4个.故选D .【点睛】本题主要考查平行线的定义,平行线公理,掌握平行线的定义,平行线公理是解题的关键.5.A【分析】过G 作GM //AB ,根据平行线的性质可得∠2=∠5,∠6=∠4,进而可得∠FGC =∠2+∠4,再利用平行线的性质进行等量代换可得3∠1=210°,求出∠1的度数,然后可得答案.【详解】解:过G 作GM //AB ,∴∠2=∠5,∵AB //CD ,∴MG //CD ,∴∠6=∠4,∴∠FGC =∠5+∠6=∠2+∠4,∵FG 、CG 分别为∠EFG ,∠ECD 的角平分线,∴∠1=∠2=12∠EFG ,∠3=∠4=12∠ECD ,∵∠E +2∠G =210°,∴∠E +∠1+∠2+∠ECD =210°,∵AB //CD ,∴∠ENB =∠ECD ,∴∠E +∠1+∠2+∠ENB =210°,∵∠1=∠E +∠ENB ,∴∠1+∠1+∠2=210°,∴3∠1=210°,∴∠1=70°,∴∠EFG =2×70°=140°.故选:A .【点睛】此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等.6.C【分析】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可.【详解】解:24,a =31,b -2,a ∴=±1b =-,∴当2,a =-1b =-时,213a b +=--=-;∴当2,a =1b =-时,211a b +=-=.故选:C .【点睛】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键. 7.A【分析】根据AB ∥CD 可得∠BOD =∠ABO =40°,利用平角得到∠COB =140°,再根据角平分线的定义得到∠BOE =70°,则③正确;利用OP ⊥CD ,AB ∥CD ,∠ABO =40°,可得∠POB =50°,∠BOF =20°,∠FOD =20°,进而可得OF 平分∠BOD ,则①正确;由∠EOB =70°,∠POB =50°,∠POE =20°,由∠BOF =∠POF -∠POB =20°,进而可得∠POE =∠BOF ,则②正确;由②可知∠POB=50°,∠FOD=20°,则④不正确.【详解】③∵AB∥CD,∴∠BOD=∠ABO=40°,∴∠COB=180°-40°=140°,又∵OE平分∠BOC,∴∠BOE=12∠COB=12×140°=70°,故③正确;①∵OP⊥CD,∴∠POD=90°,又∵AB∥CD,∴∠BPO=90°,又∵∠ABO=40°,∴∠POB=90°-40°=50°,∴∠BOF=∠POF-∠POB=70°-50°=20°,∠FOD=40°-20°=20°,∴OF平分∠BOD,故①正确;②∵∠EOB=70°,∠POB=90°-40°=50°,∴∠POE=70°-50°=20°,又∵∠BOF=∠POF-∠POB=70°-50°=20°,∴∠POE=∠BOF,故②正确;④由①可知∠POB=90°-40°=50°,∠FOD=40°-20°=20°,故∠POB≠2∠DOF,故④不正确.故结论正确的是①②③,故选A.【点睛】本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答.8.B【分析】观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2017=1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数解析:B【分析】观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a 2017=1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,进而可得结果.【详解】解:由直角坐标系可知A (1,1),B (2,﹣1),C (3,2),D (4,﹣2), ……,即a 1=1,a 2=1,a 3=2,a 4=﹣1,a 5=3,a 6=2,a 7=4,a 8=﹣2,……,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a 2017=1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,∴a 2016=﹣504,2018÷4=504……2,∴a 2018=505,故 a 2016+a 2017+a 2018=1010,故选:B .【点睛】本题主要考查了规律型:点的坐标,探索数字与字母规律是解题关键.二、填空题9.6【分析】根据非负数的性质列出方程求出x 、y 、z 的值,代入所求代数式计算即可.【详解】解:∵∴x-1=0,y-2=0,z-3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6解析:6【分析】根据非负数的性质列出方程求出x 、y 、z 的值,代入所求代数式计算即可.【详解】解:∵21(2)0x y -+-=∴x-1=0,y-2=0,z-3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=解析:1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m+n)2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.11.140°.【分析】△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.【详解析:140°.【分析】△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.【详解】△ABC中,∠ABC+∠ACB=180°−∠A=180°−100°=80°,∵BO、CO是∠ABC,∠ACB的两条角平分线.∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=40°,在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=140°.故填:140°.【点睛】本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义.12.100【分析】根据方位角的概念,过点C 作辅助线,构造两组平行线,利用平行线的性质即可求解.【详解】如图,作CE ∥AD ,则CE ∥BF .∵CE ∥AD ,∴=65°.∵CE ∥BF ,∴=35°.解析:100【分析】根据方位角的概念,过点C 作辅助线,构造两组平行线,利用平行线的性质即可求解.【详解】如图,作CE ∥AD ,则CE ∥BF .∵CE ∥AD ,∴DAC ACE ∠=∠=65°.∵CE ∥BF ,∴B CBF E C =∠∠=35°.∴C C A B A E C B E =+∠∠∠=65°+35°=100°.故答案为:100.【点睛】本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线.两直线平行,内错角相等.13.64【分析】如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.【详解】解:∵长方形的对边互相平行,∴∠3=180°﹣∠1=180°﹣128°=52°,由翻解析:64【分析】如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.【详解】解:∵长方形的对边互相平行,∴∠3=180°﹣∠1=180°﹣128°=52°,由翻折的性质得,∠212=(180°﹣∠3)12=(180°﹣52°)=64°.故答案为:64.【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质是解题的关键.14.③,④【分析】①[x) 示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可,②由定义得[x)x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义解析:③,④【分析】①[x) 示小于x的最大整数,由定义得[x)<x≤[x)+1,[385-)<385-<-8,[385-)=-9即可,②由定义得[x)<x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)<x联立即可判断.【详解】由定义知[x)<x≤[x)+1,①[385-)=-9①不正确,②[x)表示小于x的最大整数,[x)<x,[x) -x<0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)–x有最小值是-1,③正确,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)<x,∴x 1-≤[x )<x ,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算 ,阅读题给的定义,理解其含义,掌握性质[x )<x≤[x )+1,利用性质解决问题是关键.15.①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若大于0,不小于0,则>0,≥0,点在第三象限解析:①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若a 大于0,b 不小于0,则a >0,b ≥0,点(),P a b --在第三象限或x 轴的负半轴上;故此命题是假命题;③过直线外一点有且只有一条直线与已知直线平行;故此命题是假命题;④若4=y ,则x =1,y =4,则x y的算术平方根是12,正确,故此命题是真命题.故答案为:①④【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键. 16.【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A解析:()3,1【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A 2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A2(0,4),A3(−3,1),A4(0,−2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505…1,∴2021A的坐标与A1的坐标相同,为(3,1).故答案是:(3,1).【点睛】考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.三、解答题17.(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.【详解】(1)解:3-(-5)+(-6)=3+5-6解析:(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.【详解】(1)解:3-(-5)+(-6)=3+5-6=2(2)解:(-1)21 2=1-4× 1 2=1-2=-1【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(1)x=±;(2)x=8或x=-4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】解:(1)169x2=144,移项得:x2=,解得:x=±.解析:(1)x=±1213;(2)x=8或x=-4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】解:(1)169x2=144,移项得:x2=144 169,解得:x=±12 13.(2)(x-2)2-36=0,移项得:(x-2)2=36,开方得:x-2=6或x-2=-6解得:x=8或x=-4.故答案为(1)x=±1213;(2)x=8或x=-4.【点睛】本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:(已知)(内错角相等,两直线平解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:12∠=∠(已知)//CF BD∴(内错角相等,两直线平行),3180CAB(两直线平行,同旁内角互补),3C ∠=∠(已知),180C CAB ∴∠+∠=︒(等式的性质),//AB CD ∴(同旁内角互补,两直线平行),4EGA (两直线平行,同位角相等),45∠=∠(已知), 5EGA (等量代换), //ED FB ∴(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键. 20.(1);(2);(3)图见解析.【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:解析:(1)()()()4,3,3,1,1,2A B C ;(2)52;(3)图见解析. 【分析】(1)根据点,,A B C 在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:(1)由点,,A B C 在平面直角坐标系中的位置:()()()4,3,3,1,1,2A B C ;(2)ABC 的面积为1152312213222⨯-⨯⨯⨯-⨯⨯=; (3)如图所示,A B C '''即为所求.【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.21.(1),.(2).【分析】(1)首先得出接近的整数,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】,∴整数部分,小数部分.(2)原式,则的平方根为.【点睛】此题解析:(1)1a =,174b =.(2)32±【分析】(117接近的整数,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】 1754<<∴ 132<<,∴整数部分1a =,小数部分314b -=.(2)()()224a b -++原式())22144=-++ 11718=+=,则()()224a b -++的平方根为±【点睛】此题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键. 22.(1)6分米;(2)满足.【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.【详解】解:(解析:(1)6分米;(2)满足.【分析】(1(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出a ,求出长方形的长和宽和6比较即可.【详解】解:(16分米;(2)设长方形的长为4a 分米,则宽为3a 分米.则4324a a ⋅=,解得:a =∴长为4 5.6566a ≈<,宽为3 4.242 6.a ≈<∴满足要求.【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.23.(1)80°;(2)∠AKC =∠APC ,理由见解析;(3)∠AKC =∠APC ,理由见解析【分析】(1)先过P 作PE ∥AB ,根据平行线的性质即可得到∠APE =∠BAP ,∠CPE =∠DCP,再根据∠解析:(1)80°;(2)∠AKC=12∠APC,理由见解析;(3)∠AKC=23∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC=23∠APC理由:如图3,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=23∠BAP,∠DCK=23∠DCP,∴∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23(∠BAP﹣∠DCP)=23∠APC,∴∠AKC=23∠APC.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.。
滦镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
滦镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列说法正确的个数有()⑴过一点有且只有一条直线与已知直线平行⑵一条直线有且只有一条垂线⑶不相交的两条直线叫做平行线⑷直线外一点到这条直线的垂线段叫做这点到这条直线的距离A. 0个B. 1个C. 2个D. 3个【答案】A【考点】点到直线的距离,平行公理及推论,平面中直线位置关系【解析】【解答】解:(1)过直线外一点有且只有一条直线与已知直线平行,故(1)错误;(2)一条直线无数条垂线,故(2)错误;(3)平面内,不相交的两条直线叫做平行线,故(3)错误;(4)直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离,故(4)错误.故正确的有0个.故答案为:A.【分析】(1)当点在直线上时不能作出直线和已知直线平行;(2)一条直线由无数个点构成,所以一条直线无数条垂线;(3)平行线是指在同一平面内,不相交的两条直线;(4)点到这条直线的距离是指直线外一点到这条直线的垂线段的长度。
2、(2分)如果a(a>0)的平方根是±m,那么()A.a2=±mB.a=±m2C.=±mD.±=±m【答案】C【考点】平方根【解析】【解答】解:∵a(a>0)的平方根是±m,∴故答案为:D.【分析】根据平方根的意义即可判断。
3、(2分)下列各组数中,是方程2x-y=8的解的是()A. B. C. D.【答案】C【考点】二元一次方程的解【解析】【解答】先把原方程化为y=2x-8,然后利用代入法可知:当x=1时,y=-6,当x=2时,y=-4,当x=0.5时,y=-7,当x=5时,y=2.故选:C.【分析】先把原方程化为y=2x-8,然后利用代入法,逐一判断即可。
4、(2分)如图,与∠1是内错角的是()A. ∠2B. ∠3C. ∠4D. ∠5【答案】D【考点】同位角、内错角、同旁内角【解析】【解答】解:∠1与∠2是邻补角,故A不符合题意;∠1与∠3是同位角,故B不符合题意;∠1与∠4不满足三线八角的关系,故C不符合题意;∠1与∠5是内错角,故D符合题意。
潞城市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
潞城市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列说法中,不正确的个数有().①所有的正数都是整数. ②一定是正数. ③无限小数一定是无理数.④没有平方根. ⑤不是正数的数一定是负数. ⑥带根号的一定是无理数.A. 3个B. 4个C. 5个D. 6个【答案】D【考点】平方根,实数及其分类,有理数及其分类,无理数的认识【解析】【解答】解:①如是正数,但不是整数,故①说法错误.②当a=0时,,不是正数,故②说法错误.③无限小数包括无限循环小数和无限不循环小数,其中无限循环小数是有理数,无限不循环小数是无理数,故③说法错误.④的结果是正数,有平方根,故④说法错误.⑤0既不是正数,也不是负数,故⑤说法错误.⑥带根号且开不尽的数一定是无理数,故⑥说法错误.故不正确的说法有6个.故答案为:D.【分析】本题主要考查有理数和无理数的相关定义,熟记以下几点:(1)实数包括有理数和无理数;(2)有理数包括正数(正整数和正分数)、0和负数(负整数、负分数);(3)无理数:无限不循环小数;(4)小数分为:有限小数和无限小数(无限不循环小数,无限循环小数);(5)无限循环小数是有理数,无限不循环小数是无理数.2、(2分)如图,已知A1B∥A n C,则∠A1+∠A2+…+∠A n等于()A.180°nB.(n+1)·180°C.(n-1)·180°D.(n-2)·180°【答案】C【考点】平行线的性质【解析】【解答】解:如图,过点A2向右作A2D∥A1B,过点A3向右作A3E∥A1B,……∵A1B∥A n C,∴A3E∥A2D∥…∥A1B∥A n C,∴∠A1+∠A1A2D=180°,∠DA2A3+∠A2A3E=180°,….∴∠A1+∠A1A2A3+…+∠A n-1A n C=(n-1)·180°.故答案为:C.【分析】过点A2向右作A2D∥A1B,过点A3向右作A3E∥A1B,……根据平行的传递性得A3E∥A2D∥…∥A1B∥A n C,再由平行线的性质得∠A1+∠A1A2D=180°,∠DA2A3+∠A2A3E=180°,….将所有式子相加即可得证.3、(2分)在3.14,﹣,π,,﹣0.23,1.131331333133331…(每两个1之间依次多一个3)中,无理数的个数是()A. 1个B. 2个C. 3个D. 4个【答案】C【考点】无理数的认识【解析】【解答】解:无理数有:、π、1.131331333133331…(每两个1之间依次多一个3),一共有3个。
下各镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
下各镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)若a>b,则下列各式变形正确的是()A. a-2<b-2B. -2a<-2bC. |a|>|b|D. a2>b2【答案】B【考点】有理数大小比较,不等式及其性质【解析】【解答】解:A、依据不等式的性质1可知A不符合题意;B、由不等式的性质3可知B符合题意;C、如a-3,b=-4时,不等式不成立,故C不符合题意;D、不符合不等式的基本性质,故D不符合题意.故答案为:B【分析】根据不等式的性质,不等式的两边都减去同一个数,不等号的方向不变;不等式的两边都乘以同一个负数,不等号的方向改变;只有两个正数,越大其绝对值就越大,也只有对于两个正数才存在越大其平方越大。
2、(2分)一个数的算术平方根等于它本身,则这个数应是()A. 1B. ﹣1C. 1或﹣1D. 1或0【答案】D【考点】算术平方根【解析】【解答】∵12=1,∴1的算术平方根是1.∵0的算术平方根是0,∴算术平方根等于本身的数是1和0.故答案为:D.【分析】因为1的平方等于1,0的平方等于0,所以算术平方根等于它本身只有1和0.3、(2分)若m>n,且am<an,则a的取值应满足条件()A. a>0B. a<0C. a=0D. a0【答案】B【考点】不等式及其性质【解析】【解答】解:根据题意,在不等式的两边都乘以a后,不等号方向发生了改变,根据不等式的性质,所乘的数一定是负数.故答案为:B【分析】不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立。
4、(2分)满足方程组的解x与y之和为2,则a的值为()A. ﹣4B. 4C. 0D. 任意数【答案】B【考点】三元一次方程组解法及应用【解析】【解答】解:根据题意可列出方程组,(1 )﹣(2)得x+2y=2,代入(3)得y=0,则x=2,把y=0,x=2代入(1)得:a+2=6,∴a=4.故答案为:B.【分析】根据题意建立三元一次方程组,观察系数的特点,两个方程中含有a,且a的系数是1,因此利用加减消元消去a后的方程与x+y=2,建立二元一次方程组,求出x、y的值,就可求出a的值。
潞城镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
潞城镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,A,B,C,D中的哪幅图案可以通过图案①平移得到()A. B. C. D.【答案】D【考点】平移的性质【解析】【解答】解:通过图案①平移得到必须与图案①完全相同,角度也必须相同瘵察图形可知D可通过图案①平移得到,故答案为:D【分析】根据平移的性质,观察图形即可得出答案。
2、(2分)下列四个数中,最大的一个数是()A. 2B.C. 0D. -2 【答案】A【考点】实数大小的比较【解析】【解答】解:∵0和负数比正数都小而1<<2∴最大的数是2故答案为:A【分析】根据正数都大于0和负数,因此只需比较2和的大小即可。
3、(2分)三元一次方程组消去一个未知数后,所得二元一次方程组是()A. B. C. D.【答案】D【考点】三元一次方程组解法及应用【解析】【解答】解:,②−①,得3a+b=3④①×3+③,得5a−2b=19⑤由④⑤可知,选项D不符合题意,故答案为:D.【分析】观察各选项,排除C,而A、B、D的方程组是关于a、b的二元一次方程组,因此将原方程组中的c 消去,观察各方程中c的系数特点,因此由②−①,①×3+③,就可得出正确的选项。
4、(2分)实验课上,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A. 4种B. 3种C. 2种D. 1种【答案】C【考点】二元一次方程的解,二元一次方程的应用【解析】【解答】根据题意可得:5x+6y=40,根据x和y为非负整数可得:或,共两种,故选C.【分析】根据总人数为40人,建立二元一次方程,再根据x和y为非负整数,,用含y的代数式表示出x,得到x=,求出y的取值范围为0<y<,得出满足条件的x、y的值即可。
5、(2分)如图,直线AB,CD相交于点O,∠EOD=90°,若∠AOE=2∠AOC,则∠DOB的度数为()A. 25°B. 30°C. 45°D. 60°【答案】B【考点】角的运算,对顶角、邻补角【解析】【解答】∵∠EOD=90°,∴∠COE=90°,∵∠AOE=2∠AOC,∴∠AOC=30°,∴∠AOE=2∠AOC=30°,故答案为:B.【分析】根据图形和已知得到∠EOD、∠COE是直角,由∠AOE=2∠AOC,对顶角相等,求出∠DOB的度数.6、(2分)已知≈3.606,≈1.140,根据以上信息可求得的近似值是(结果精确到0.01)()A. 36.06B. 0.36C. 11.40D. 0.11【答案】B【考点】算术平方根【解析】【解答】解:∵= = ×=10 ≈3.606;,∴≈0.3606≈0.36.故答案为:B.【分析】根据算术平方根的被开方数的小数点每向左或向右移动两位,其算数根的小数点就向相同的方向移动一位,即可得出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
潞城镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级 ___________ 座号_______ 姓名______________ 分数 _____________一、选择题1、(2分)如图,与/ 1是内错角的是()A. / 2B. Z 3C. / 4D. / 5【答案】D【考点】同位角、内错角、同旁内角【解析】【解答】解:/ 1与/2是邻补角,故A不符合题意;/ 1与/3是同位角,故B不符合题意;/ 1 与/4不满足三线八角的关系,故C不符合题意;/ 1与/5是内错角,故D符合题意。
故答案为:D。
【分析】根据三线八角的定义,两条直线被第三条直线所截,截出的八个角中,位置上形如“ 的两个角是同位角;位置上形如“ Z的两个角是内错角;位置上形如“ I的两个角是同旁内角;根据定义意义判断即可。
2、(2分)下列各对数中,相等的一对数是()【考点】实数的运算B.【答案】A【解析】【解答】解:A. •••( -2) 3=-8 , -23=-8 ,••• (-2) 3=-23, A符合题意;2 2 2 2B. •/ -2 =-4 , (-2) =4, • -2 工(-2) , B 不符合题意;C. T - (-3) =3,-卜3|=-3, •- - (-3)工卜3|, C 不符合题意;F 4 2 斗F 2D. T = , ( ) = , • 工() ,D不符合题意;故答案为:A.【分析】根据乘方的运算,绝对值,去括号法则,分别算出每个值,再判断是否相等,从而可得出答案3、(2分)x = 3是下列哪个不等式的解()A. x + 2> 42 c CB. x —3 > 6C. 2x —1 V 3D. 3x + 2V 10【答案】A【考点】不等式的解及解集【解析】【解答】解:根据不等式的解的定义求解【分析】把x=3分别代入各选项即可作出判断。
p + 2y=64、(2分)用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()(9x+6y=66y=18 (9A + 6y= 18 ①(4A-^6V =2② \4x-6y = 2③(4i^6y = 2+ 4y=12④A.①②B.②③C.③④D.①④【答案】C【考点】解二元一次方程组> + 2y=6(J)$【解析】【解答】解:试题分析:+叩二把y的系数变为相等时,①X3,②X2得,jfc + 6y=lS|4x+6y=2把x的系数变为相等时,①疋,②X3得,|6a + 4y=12c<': - f11 - ?所以③④正确.故答案为:C.【分析】观察方程特点:若把y的系数变为相等时,①X3,②疋,就可得出结果;若把x的系数变为相等时,①X2,②X3,即可得出答案。
5、(2分)七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是()A. 14B. 13C. 12D. 15【答案】C【考点】二元一次方程组的其他应用【解析】【解答】解:设这间会议室的座位排数是x排,人数是y人.根据题意,得114(x-l)+l = y解得(x= 12ly=155故答案为:c.【分析】本题中有两个等量关系:1每排坐12人,则有11人没有座位;2、每排坐14人,则余1人独坐一排•这样设每排的座位数为x,总人数为y,列出二元一次方程组即可.tx=26、(2分)若是方程组的解,则a、b值为()c.【答案】A【考点】二元一次方程组的解【解析】【解答】解:把代入得,b ::「于,.皿=2.故答案为:A.【分析】方程组的解,能使组成方程组中的每一个方程的右边和左边都相等,根据定义,将代入方程\ax - 3y=l组即可得出一个关于a,b的二元一次方程组,求解即可得出a,b的值。
7、(2分)如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH丄PQ于点H,则这样做的理由是()A. 两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线【答案】C【考点】垂线段最短【解析】【解答】解:•••从村庄A修建一条连接公路PQ的小路,过点A作AH丄PQ于点H , 二AH最短(垂线段最短)故答案为:C【分析】根据垂线段最短,即可得出答案。
& ( 2分)如图,是测量一物体体积的过程:(1 )将300mL的水装进一个容量为500ml的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出•根据以上过程,推测这样一颗玻璃球的体积为下列范围内的()T4 * # Y AtinA. IOcm3以上,20 cm3以下B. 20 cm3以上,30 cm3以下C. 30 cm3以上,40 cm3以下D. 40 cm3以上,50 cm3以下【答案】D【考点】一元一次不等式组的应用【解析】【解答】解:设玻璃球的体积为X,伴<500- 300则有151>500-300,可解得40<x<50.故一颗玻璃球的体积在40cm3以上,50cm3以下,故答案为:D.【分析】设玻璃球的体积为x,再根据题意列出不等式:4x V 500-300, 5x> 500-300 ,化简计算即可得出x的取值范围.9、(2分)如图,能和/ a构成内错角的角的个数是()【分析】两条直线被第三条直线所截形成的角中,内错角是两个角位于第三条直线的两侧,在两条直线之间, 两个角的位置交错,呈 “Z 字型”即可得出答案。
10、( 2分)若a>b ,则下列不等式中错误的是 ()A. a-1>b-1B. a+1>b+1C. 2a>2bD .> db【答案】D【考点】不等式及其性质【解析】【解答】解:根据不等式的基本性质,可知不等式的两边同时加上或减去同一个数(或因式),不等号的方向不变,不等式的两边同时乘以或除以一个正数, 不等号的方向不变, 不等号的方向不变, 不等式的两边同时乘以或除以一个负数,不等号的方向改变,可知D 不正确•故答案为:D.【分析】根据不等式的性质可判断•不等式的两边同时加上或减去同一个数(或因式),不等号的方向不变;A. 1B. 2C. 3D. 4【答案】B【考点】同位角、内错角、同旁内角/ a 成内错角的角有2个.不等式的两边同时乘以或除以一个正数,不等号的方向不变;不等号的方向不变,不等式的两边同时乘以或除以一个负数,不等号的方向改变•11、(2分)对于等式2x+3y=7,用含x的代数式来表示y,下列式子正确的是()7-2x 7-3y2v-7 A. _ B. C. D. 一▼【答案】A【考点】二元一次方程的解【解析】【解答】解移项得:3y=7-2x_ 7-2x系数化为1得:故答案为:A【分析】先将左边的2x移项(移项要变号)到方程的右边,再将方程两边同时除以3,即可求解。
12、(2分)下列各式中是二元一次方程的是()A. x+3y=5B. - xy - y=1C. 2x - y+1【答案】A【考点】二元一次方程的定义【解析】【解答】解:A. x+3y=5,是二元一次方程,符合题意;B. - xy - y=1,是二元二次方程,不是二元一次方程,不符合题意;C. 2x - y+1,不是方程,不符合题意;X 1D.J,不是整式方程,不符合题意,故答案为:A.【分析】含有两个未知数,未知数项的最高次数是 1的整式方程,就是二元一次方程,根据定义即可一一判断:A 、是二元一次方程符合题意;B 、是二元二次方程,不符合题意;C 、不是方程,不符合题意;D 、是分式方程,不是整式方程,不符合题意。
二、填空题13、( 1 分) (-制 的立方根是 ____________________【答案】4【考点】立方根及开立方【解析】【解答】解:=64 1•••的立方根为=4.故答案为: 4【分析】先求出的值,再求出64的立方根。
+ 戶=2 Ma^+3b^=5c{14、(1分)三个同学对问题若方程组的ic rm解是,求方程组i计、的解•”提出各自的想法•甲说:这个题目好象条件不够,不能求解”;乙说:它们的系数有一定的规律,可以试试”;丙说:能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是______________________ •x=2.5【答案】丿=5【考点】解二元一次方程组【解析】【解答】解:方程整理得:33故答案为:如产+36涉二Sfj 【分析】将方程组囱^亠处尸辺转化为y的值。
如]:V+訪4333再根据题意可得出43 3_5然后求出x、15、( 1分) 方程2x-y= 1和2x+y=7的公共解是 ________________________;A = 2 【答案】y =3【考点】二元一次方程组的解,解二元一次方程组【分析】解联立两方程组成的方程组,即可求出其公共解。
16、( 1分)在一次射击比赛中,某运动员前 7次射击共中62环,如果他要打破 89环(10次射击)的记 录,那么第8次射击他至少要打出 _____________________ 环的成绩。
【答案】8【考点】一元一次不等式的特殊解,一元一次不等式的应用【解析】【解答】解:为了使第 8次的环数最少,可使后面的2次射击都达到最高环数,即10环.设第8次射击环数为x 环,根据题意列出一元一次不等式62+x+2 XI0>89解之,得x > 7x 表示环数,故x 为正整数且x > 7,则x 的最小值为8即第8次至少应打8环.【解析】【解答】解:联立方程组得: 戶_卩二][2x+y=7【分析】为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环,又他要打破89环的记录故总成绩要大于89环,设第8次射击环数为x环,从而列出不等式,求解并取出最小整数解即可。
17、(1分)如图,/ 1= 15° / AOC = 90。
•若点B, O, D在同一条直线上,则 / 2 = _______________________【考点】对顶角、邻补角,垂线【解析】【解答】解:•••/ AOC=90 ° / 1=15 ;•••/ BOC= / AOC- / 1=90 °15 =75 °又•••/ BOC+ / 2=180 °•••/ 2=180 °-Z BOC=180° -75 =105 °故答案为:105 °.【分析】根据角的运算结合已知条件得/ BOC=75,由补角定义得/ 2=180 ° / BOC即可得出答案18、(1分)按如下程序进行运算:并规定:程序运行到结果是否大于65 ”为一次运算,且运算进行4次才停止,则可输入的整数x的个数是【答案】4【考点】解一元一次不等式组【解析】【解答】解:根据题意得:第一次:2x - 1 ,第二次:2( 2x - 1)-仁4x - 3,第三次:2 (4x - 3)-仁8x - 7,第四次:2 ( 8x - 7)- 1=16x - 15 ,2A-2<654J-3<65&v-7<65根据题意得:'16.V - 15 >65解得:5v x <9.则x的整数值是:6,乙8, 9.共有4个.故答案是:4.x的整数值,从而求解【分析】根据程序可以列出前四次程序得到的不等式,组成不等式组,即可确定三、解答题AB、CD 相交于0 点,/ AOC=80 , OE 丄AB , OF 平分/ DOB,求/ EOF 的度1【答案】解: •••/ AOC=80 °•••/ BOD= / AOC=80 °•/ OF 平分/ DOB , /-Z DOF= / DOB=40 °•/ OE 丄AB ,•••/AOE=90 , •••/AOC=80 , /-Z EOD=180 -90 °-80 °10° /-Z EOF= / EOD+ / DOF=10 +40° =50° .【考点】角的平分线,角的运算,对顶角、邻补角【解析】【分析】根据图形和已知求出 Z EOD 的度数,再由角平分线性质、对顶角相等和角的和差,求出Z EOF= Z EOD+ Z DOF 的度数.20、( 5 分) 如图,Z 1= 2 Z 2, Z 1 + Z 2=162 ° 求 Z 3 与 Z 4 的度数.I【答案】 解:TZ 1= Z 2, Z 1 + Z 2=162 °• Z 仁54° Z 2=108° .•••Z 1和Z 3是对顶角,• Z 3= Z 仁54°•••Z 2和Z 4是邻补角,• Z 4=180° - Z 2=180° -108 °=72°【考点】解二元一次方程组Z 2算出Z 1的值,然后根据对顶角相等及邻补角的定义即可分别算出 Z 3与Z 4的度数. 21、( 5分) 如图,在 △ ABC 中,Z ABC 与 Z ACB 的平分线相交于 O .过点O 作EF // BC 分别交AB、1-2I Z 2代入 Z 1 + Z 2=162 ;消去Z 1,算出Z 2的值,再将Z 2的值代入 Z 1= 2分AC 于E、F.若 / BOC=130°, /ABC : /ACB=3 : 2,求 /AEF 和 / EFC.【答案】解:•••/ ABC : / ACB=3 : 2,•••设/ ABC=3x , / ACB=2x ,•/ BO、CO 分别平分Z ABC、Z ACB ,3•Z ABO= Z CBO= x, Z ACO= Z BCO=x , 又T ZBOC=130 °在厶BOC 中,Z BOC+ Z OBC+ Z OCB=180 °3•130°+ x+x=180°,解得:x=20 ;•Z ABC=3x=60 , Z ACB=2x=40 ,•/ EF// BC ,•Z AEF= Z ABC=60 ,Z EFC+ Z ACB=180 ,【解析】【分析】根据已知条件设Z ABC=3x , Z ACB=2x,由角平分线性质得Z ABO= Z CBO=Z BCO=x ,在A BOC中,根据三角形内角和定理列出方程, 解之求得x值,从而得Z ABC=60 ,x, Z ACO= Z ACB=40 ,再由平行线性质同位角相等得/ AEF=60 ,同旁内角互补得 / EFC=140 22、(5分)把下列各数表示在数轴上,并比较它们的大小(用,0,,-4【答案】解:■2-31J---- 1——I——i』・2< <0<|-3| <【考点】实数在数轴上的表示,实数大小的比较【解析】【分析】根据数轴上用原点表示0,原点右边的点表示正数,原点左边的点表示负数,即可个实数在数轴上找出表示该数的点,用实心的小原点作标记,并在原点上写出该点所表示的数,上所表示的数,右边的总比左边的大即可得出得出答案。