脱水装置

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C N G加气站脱水装置

培训教材

1. 天然气脱水的必要性

由于我国管输天然气仅规定进入大管网的净化气不含游离水即可(SY7514-88)。此外,加上有些地方沿长输管道各站点有大量未经脱水的无硫气及低硫气输入,即使有些净化厂配有三甘醇(TEG)脱水装置,整个天然气管网,除个别地段外水蒸气也基本是饱和的。在相当长的时间内,我国原料天然气的含水量达到国际管输标准(0.12g/m3)是困难的。

根据《汽车用压缩天然气》(SY/T7546-1996)的规定,压缩天然气在贮存和向汽车充气过程中,在最高储存压力下,气体中水露点应低于当地最低环境温度5℃以下,如果达不到该要求,压缩天然气可能会析出液态水。液态水的存在将会对汽车及加气站的安全产生如下严重损害。

①系统冰堵压缩天然气压力每下降1bar,温度降低约0.4加气站和汽车内部管道、阀门多处在节流小孔,极易形成大压降、大温差,导致管内气体温度骤降至零下几十度,远低于当地最低环境温度,因此,CNG系统所要求的水分含量也远低于输送管网所要求的气体水分含量。根据经验,中国大陆南方当气体露点温度高于-35℃,北方地区露点温度高于-45℃,东北、新疆等寒冷地区露点温度高于-55℃,就有可能发生冰堵现象,导致加气站不能实现正常加气,汽车无法启动和运行;

②在高压状态下,液态水的存在会在贮气容器中生成水合物。压力为25MPa、密度为0.68MPa的天然气在24℃时就可能生成水合物,同样会堵塞管道和阀门。

③液态水的存在加强了酸性组分(H2S、CO2)对压力容器及管道的腐蚀,并可能发生硫化氢应力腐蚀开裂及二氧化碳腐蚀开裂,导致爆炸等灾难性事故的发生。

④水(油、烃)聚集。出租车气瓶使用两年后,在维护检测时,往往能倒出0.5~1升的油水混合物。不仅占据了气瓶的有效容积,而且游离水会提供上述裂纹缺陷的生存发展条件。另据介绍,中国、泰国推广应用液压子站时,某些子站液压油寿命极低,追究原因,发现大部分也是由于母站输送气体含水、含烃量过高所致。

因此,无论是天然气加气站还是天然气汽车,使压缩天然气的含水量达到标准是至关重要的天然气的脱水深度应根据加气站所在地区的最低大气温度来确定,其表示方法为储气瓶储气压力下的水露点(PDP),也可用天然气中的残余水含量来表示。只要将天然气的含水量脱出到符合标准,无论是加气站还是汽车都不会发生因天然气含湿量引起的有关问题。

2. CNG加气站工艺

图3.1 标准型加气站的工艺流程框图

图3.2加气母站的工艺流程框图

图3.3 加气子站的工艺流程框图

图3.4 加气母站示意图

图3.5 加气子站示意图

3. 天然气脱水

3.1 天然气脱水方法

有许多方法可用于天然气脱水,并使之达到管输要求。这些方法按其原理可分为冷冻分离、固体干燥剂吸附和溶剂吸收三大类[7]。近年来国外正大力发展膜分离技术进行天然气脱水,但由于其高成本及应用规模的限制,目前在工业上还应用不多。压缩天然气脱水属深度脱水,几乎都采用固体干燥剂吸附方法。

固体干燥剂脱水的操作过程是周期性的,用一个或多个干燥塔吸附脱水,干燥剂应采用吸水能力比吸烃类或吸酸性气体能力强的吸附剂。由于吸附时产生吸附热,用热气流加热就会使吸附剂脱附水分,同时吸附剂得到再生,再生冷却后分离出水分。

3.2 吸附剂的选择

当前国内外主要的天然气深度脱水装置,是利用合成氟石分子筛对气体中的水蒸气分子有强烈的吸附作用,达到干燥气体的目的。

合成氟石分子筛是一种有严格骨架结构的硅铝酸盐晶体,其硅铝四面体形成的内部骨架具有三维连通的无数微孔,是一种孔径大小均一的强极性吸附剂,具有很高的选择吸附分离能力。随Si/Al比值的增加,分子筛的极性逐渐降低,因此低Si/Al比的分子筛具有更强烈的吸附水分的能力,适合于气体或液体的深度脱水干燥。按不同的分子结晶

结构和不同的交换金属离子成分,分子筛微孔孔径的大小也各异。如KaA型分子筛的有效孔径为0.3~0.33nm(纳米)左右,被称为3A分子筛;而NaA型分子筛的有效孔径为0.42~0.47nm,称为4A分子筛。

3.3 脱水装置工作原理

当气体通过分子筛床层时,气体中的水蒸气分子随气流进入分子筛内部的孔道。由于水分子属于强极性分子,因此被吸附在孔道上不再随气体流动;而甲烷等烃类气体都因属于非极性分子,会顺利通过,气体从而得到干燥。

随着吸附塔内的分子筛吸附的水分增加,分子筛对水分子的吸附能力也逐渐下降;当到达一定值时,从吸附塔出口的气体中的水分子就会超过规定值——说明该塔内分子筛已吸附饱和了。此时,必须对该吸附塔内分子筛进行再生脱附。

所谓再生流程,就是将分子筛微孔内吸附的水分驱逐,使分子筛重新活化的过程。由于吸附时产生吸附热,用热气流加热就会使吸附剂脱附水分,同时吸附剂得到再生,再生冷却后分离出水分。一般加气站大都采用两个吸附罐(双塔)轮流工作,以保证加气站连续运行。

零排放型:

4 NG加气站脱水装置常规类型

表4.1CNG加气站脱水装置常规类型

类型划分天然气脱水装置

按所处工艺位置(前置)低压脱水装置(级间)中压脱水装置(后置)高压脱水装置

按再生工艺减压排放型、零排放型开式循环

按控制方式半自动型、全自动型手动型、全自动型按冷却方式风冷、水冷

图4.1 低压(前置)天然气脱水装置图4.2 高压(后置)天然气脱水装置

4.1减压再生与零排放等压再生的选择

表4.2两种流程的经济技术比较

减压再生工艺因罗茨风机机壳为铸件,耐压性能较差,所以再生时需将再生系统压力降至0.5bar以下,当管网压力较高时,减压

排放出的天然气造成浪费和污染环境,且不

安全。

零排放等压再生工艺因罗茨风机密闭在

容器中,由容器承受管网压

力,罗茨风机仅提供再生系统所需压力降。

该机型可在线压力下实现再生运行,

工艺

流程

适用压力

范围MPa

再生循环方式

及特点

技术特性

价格

系数

体积/重量

系数

前置减

压再生

0.2~1.6

吸附与再生分别

为两个独立系统,

再生流程为封闭

循环

卸压、加热时需向外排放一定量的天然

气,取湿气加热再生,半湿气吹冷。

1 1/1

前置等

压再生

零排放

1.6~8.0

再生气取自产品

气,湿气回至吸附

塔入口,为半开式

循环

①干气再生/吹冷,露点低且稳定。

②加热时引起的气体膨胀随压缩机带走,

当压缩机停机时,加热引起的再生系统压

力升高为系统大容积分担,全过程为零排

放。③适用于高管网压力、大排量母站。

1.1

(低压)

1.2

(中压)

1.1/1.2

相关文档
最新文档