九年级数学锐角三角函数教案

合集下载

28.1锐角三角函数特殊角的锐角三角函数值(教案)2023-2024学年人教版数学九年级下册

28.1锐角三角函数特殊角的锐角三角函数值(教案)2023-2024学年人教版数学九年级下册
2.学习特殊(30°、45°、60°)的正弦、余弦、正切值,并能熟练运用这些值进行相关计算。
3.通过实际例题,培养学生运用锐角三角函数解决实际问题的能力。
本节课将结合教材内容,通过讲解、示范、练习等环节,帮助学生掌握特殊角的锐角三角函数值,并为后续学习三角函数的性质和应用打下坚实基础。
二、核心素养目标
3.增强学生的数学运算与数据分析能力:通过解决实际例题,让学生运用锐角三角函数进行计算和分析,提高数学运算与数据分析能力,为解决复杂问题奠定基础。
本节课将紧密围绕新教材的要求,关注学生核心素养的培养,帮助学生将所学知识内化为自身的数学素养,为未来的学习和生活打下坚实基础。
后的内容###”二、核心素养目标”作为标题标识,再开篇直接输出。
2.逻辑推理:通过特殊角的锐角三角函数值的推导,提高学生的逻辑推理能力。
3.数学运算与数据分析:培养学生运用特殊角的锐角三角函数值进行精确计算和解决实际问题的能力。
三、教学过程
1.导入新课
通过回顾上一节课的内容,引导学生进入锐角三角函数的学习。
2.基本概念与性质
复习锐角三角函数的定义,强调正弦、余弦、正切的概念。
四、教学评价
1.课堂问答:检查学生对特殊角的锐角三角函数值的掌握程度。
2.练习题完成情况:评估学生对知识点的理解和运用能力。
3.课后作业:布置相关作业,巩固所学知识。
五、教学资源
1.教材:人教版数学九年级下册。
2.课件:包含本节课教学内容的PPT。
3.练习题:针对本节课知识点的练习题。
五、教学反思
在上完这节关于特殊角的锐角三角函数值的内容后,我进行了深入的思考。首先,我发现学生们对于锐角三角函数的定义有了较好的理解,但记忆特殊角的函数值还存在一定难度。在教学中,我尝试通过一些记忆方法,如编口诀、画图等,帮助学生记忆。从学生的反馈来看,这些方法还是有一定效果的,但还需在后续教学中继续巩固。

九年级数学锐角三角函数教案

九年级数学锐角三角函数教案

一、教学目标:1.知识与技能目标:(1)了解什么是锐角三角函数;(2)掌握正弦、余弦和正切在锐角范围内的性质和计算方法;(3)能够运用锐角三角函数解决相关实际问题。

2.过程与方法目标:(1)运用课堂讲解、练习、小组合作和课堂展示相结合的方式,培养学生的学习兴趣;(2)通过解决实际问题的方式,培养学生的分析和解决问题的能力;(3)通过小组合作的方式,培养学生的合作和交流能力。

3.情感、态度与价值观目标:(1)通过展示数学的应用场景,培养学生对数学的兴趣和好奇心;(2)通过小组合作和课堂展示的方式,培养学生的合作和交流能力;(3)通过解决实际问题的方式,培养学生的分析和解决问题的能力。

二、教学重点和难点1.教学重点(1)正弦、余弦和正切的定义和性质;(2)正弦、余弦和正切的计算方法;(3)运用锐角三角函数解决相关实际问题。

2.教学难点(1)运用锐角三角函数解决实际问题的能力;(2)理解正弦、余弦和正切的定义和性质。

三、教学过程安排第一课时:1.导入(10分钟)让学生回顾之前学过的角度、弧度和三角比的相关知识,引出锐角三角函数的概念,并介绍本节课的学习内容和目标。

2.讲解(20分钟)(1)通过幻灯片和板书,讲解正弦、余弦和正切的定义和性质。

(2)讲解正弦、余弦和正切的计算方法,并解答学生提出的疑问。

3.练习(15分钟)(1)在黑板上出示锐角三角函数的计算练习题,让学生在纸上计算并互相讨论答案。

(2)随机抽选几位学生上台讲解解题过程,并进行讲解和点评。

4.小组合作(10分钟)(1)将学生分成小组,每个小组由3-4人组成,让他们一起解决一个实际问题。

(2)每个小组将解决过程和结果展示给全班,并进行评价和讨论。

5.总结(5分钟)(1)对本节课的内容进行总结概括。

(2)布置课后作业,让学生复习和巩固锐角三角函数的内容。

第二课时:1.复习(10分钟)让学生回顾之前学过的锐角三角函数的知识点,并进行简单的小测验。

人教版九年级下册28.1特殊角的锐角三角函数值教学设计

人教版九年级下册28.1特殊角的锐角三角函数值教学设计
(4)小组合作题:以小组为单位,探讨特殊角的三角函数值在生活中的应用,并撰写一篇小论文。
作业要求:
1.学生需独立完成作业,诚实守信,不得抄袭。
2.解题过程要求步骤清晰,书写规范。
3.小组合作题需充分发挥团队合作精神,共同完成。
4.作业完成后,及时上交,教师将进行批改和反馈。
4.通过对特殊角的锐角三角函数值的学习,培养学生对数的敏感性和逻辑思维能力。
(二)过程与方法
1.通过观察、猜想、验证等教学活动,引导学生自主发现特殊角的锐角三角函数值规律,培养学生自主学习的能力。
2.运用问题驱动的教学方法,激发学生的学习兴趣,引导学生通过合作、探究、讨论等方式,深入理解特殊角锐角三角函数的概念和计算方法。
针对学生的困惑,我会进行有针对性的解答,巩固学生对知识的理解。最后,强调特殊角的锐角三角函数值在实际生活中的应用,提高学生的应用意识,为后续学习打下坚实基础。
五、作业布置
为了巩固学生对特殊角的锐角三角函数值的学习,确保学生能够熟练掌握并运用到实际中,我设计了以下几类作业:
1.基础巩固题:布置一些基本的计算题,要求学生熟练掌握特殊角的正弦、余弦、正切值,并能快速准确地计算出结果。
学生在讨论过程中,可以相互提问、解答,共同探讨特殊角锐角三角函数值的规律。我会巡回指导,解答学生的疑问,引导学生深入思考。讨论结束后,每个小组汇报讨论成果,共同分享学习心得。
(四)课堂练习,500字
在课堂练习环节,我会设计不同难度的题目,让学生独立完成。题目包括基础题、提高题和应用题,旨在检验学生对特殊角的锐角三角函数值的掌握程度。
四、教学内容与过程
(一)导入新课,500字
在导入新课环节,我将结合学生的生活经验,提出一个与学生实际相关的问题:“同学们,在我们的日常生活中,如建筑设计、制作家具等,经常会遇到各种角度的测量问题。那么,如何才能快速、准确地计算出这些角度的三角函数值呢?”通过这个问题,激发学生的好奇心,引导学生思考。

华东师大版数学九年级上册24.3.1锐角三角函数教学设计

华东师大版数学九年级上册24.3.1锐角三角函数教学设计
4.通过对三角函数在现实生活中的应用,使学生体会数学与现实生活的紧密联系,增强学生的数学应用意识。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情,增强学生的学习自信心。
2.引导学生认识到数学在科学技术、社会发展中的重要作用,树立正确的数学价值观。
3.培养学生的耐心、细心和毅力,让学生在解决问题的过程中,体会克服困难、解决问题的喜悦。
1.教学方法:
(1)采用情境导入法,通过生活中的实例引出锐角三角函数的概念,激发学生的学习兴趣。
(2)运用启发式教学法,引导学生观察、猜想、归纳、验证特殊角的三角函数值,培养学生的探究能力和逻辑思维能力。
(3)采用任务驱动法,设计具有挑战性的任务,让学生在实践中掌握三角函数的应用。
(4)利用信息技术手段,如多媒体课件、网络资源等,丰富教学手段,提高教学效果。
2.教学方法:
采用总结归纳法,帮助学生梳理所学知识,形成知识体系。
3.教学内容:
(1)锐角三角函数的定义及正弦、余弦、正切函数的概念。
(2)特殊角的三角函数值。
(3)锐角三角函数在实际问题中的应用。
五、作业布置
为了巩固学生对锐角三角函数的理解和应用,以及检验学生的学习效果,特布置以下作业:
1.基础知识巩固:
4.通过对锐角三角函数的学习,提高学生的数学运算能力、逻辑思维能力和空间想象能力。
(二)过程与方法
1.引导学生通过观察、猜想、归纳、验证等方法,探索特殊角的三角函数值,培养学生的观察力和归纳能力。
2.利用实际问题,激发学生的探究欲望,引导学生运用三角函数知识解决问题,提高学生的问题解决能力。
3.采用小组合作、讨论交流等形式,培养学生的团队合作意识和沟通能力。

锐角三角函数的教案

锐角三角函数的教案

锐角三角函数的教案【篇一:锐角三角函数教案】第二十八章锐角三角函数【篇二:人教版九年级锐角三角函数全章教案】第二十八章锐角三角函数教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。

锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。

研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。

本章内容与已学相似三角形勾股定理等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。

难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sina 、cosa 、 tana 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。

至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。

28.1 锐角三角函数(1)第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.重点:理解认识正弦(sina)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.2.难点与关键:难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。

九年级数学上册《用计算器求锐角三角函数值》教案、教学设计

九年级数学上册《用计算器求锐角三角函数值》教案、教学设计
2.难点:理解锐角三角函数在实际问题中的应用,以及特殊锐角的三角函数值。
(二)教学设想
1.采用情境导入法,引导学生从实际问题出发,发现锐角三角函数的应用价值。例如,通过测量校园内建筑物的高度,让学生感受到锐角三角函数在生活中的重要性。
2.利用多媒体教学资源,如PPT、动画等,形象直观地展示锐角三角函数的定义和性质,帮助学生理解和记忆。
4.注重分层教学,针对不同水平的学生,设计不同难度的任务和问题,使每位学生都能在课堂上得到锻炼和提高。
5.课堂小结:通过师生互动,总结本节课的重点内容,加深学生对知识的印象。
6.课后作业:布置适量的课后作业,巩固所学知识,同时注重培养学生的自主学习和思考能力。
7.教学评价:
a.过程性评价:关注学生在课堂上的参与程度、合作交流、问题解决等方面,给予及时反馈。
2.教学过程:
a.将学生分成若干小组,每组一台计算器,让学生相互交流、探讨计算器求解锐角三角函数值的方法。
b.教师巡回指导,解答学生疑问,引导学生掌握计算器操作。
c.小组内讨论特殊锐角的三角函数值,并尝试记住这些值。
d.每个小组汇报讨论成果,其他小组进行评价和补充。
(四)课堂练习
1.教学内容:设计梯度性练习题,巩固学生对锐角三角函数的理解和应用。
2.教学过程:
a.教师发放练习题,要求学生在规定时间内完成。
b.学生独立完成练ቤተ መጻሕፍቲ ባይዱ题,教师巡回指导,解答学生疑问。
c.学生互相批改练习题,讨论解题方法和技巧。
d.教师对典型错误进行讲解,强调解题注意事项。
(五)总结归纳
1.教学内容:总结本节课的重点内容,加深学生对锐角三角函数的理解。
2.教学过程:
a.教师引导学生回顾本节课所学内容,总结锐角三角函数的定义、性质及计算器求解方法。

北师大版数学九年级下册1.1《锐角三角函数》教案1

北师大版数学九年级下册1.1《锐角三角函数》教案1

北师大版数学九年级下册1.1《锐角三角函数》教案1一. 教材分析北师大版数学九年级下册1.1《锐角三角函数》是学生在初中阶段学习三角函数的起点,起着承前启后的作用。

本节课主要介绍了锐角三角函数的定义及概念,通过生活中的实例让学生感受锐角三角函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。

教材以实例引入,引导学生探究锐角三角函数的定义,并通过自主学习、合作交流的方式,让学生掌握锐角三角函数的基本概念和性质。

二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念有一定的理解。

但是,对于锐角三角函数的理解还需要通过具体的实例和生活情境来引导学生。

学生在学习过程中,需要通过合作交流、自主探究的方式,掌握锐角三角函数的定义和性质。

此外,学生还需要在学习过程中,培养运用数学知识解决实际问题的能力。

三. 教学目标1.理解锐角三角函数的定义,掌握锐角三角函数的基本概念和性质。

2.能够运用锐角三角函数解决实际问题,提高运用数学知识解决实际问题的能力。

3.培养学生的合作交流、自主探究能力,提高学生的数学素养。

四. 教学重难点1.教学重点:锐角三角函数的定义及概念。

2.教学难点:锐角三角函数的性质和运用。

五. 教学方法1.实例引入:通过生活中的实例,引导学生感受锐角三角函数在实际生活中的应用。

2.自主学习:引导学生通过自主学习,掌握锐角三角函数的定义和性质。

3.合作交流:学生进行合作交流,分享学习心得和解决问题的方法。

4.实践操作:让学生通过实际操作,加深对锐角三角函数的理解。

六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示。

2.实例素材:收集生活中的实例,用于引导学生感受锐角三角函数的应用。

3.练习题库:准备一定数量的练习题,用于巩固所学知识。

七. 教学过程导入(5分钟)1.利用实例引入:展示一些生活中的实例,如测量国旗的高度、计算房屋的面积等,引导学生感受锐角三角函数在实际生活中的应用。

九年级锐角三角函数全章教案

九年级锐角三角函数全章教案
锐角三角函数的运用
通过具体例题,演示如何运用锐角三角函数解决实际问题。
03 教学重点与难点
教学重点
锐角三角函数的定义
01
学生需要掌握锐角三角函数的定义,包括正弦、余弦和正切的
定义。
锐角三角函数的性质
02
学生需要理解并掌握锐角三角函数的性质,如正弦、余弦和正
切的取值范围、周期性、奇偶性等。
锐角三角函数的应用
教学方法是否得当
在锐角三角函数的教学过程中,是否采用了多种教学方法,如讲解、 演示、练习等,是否能够帮助学生更好地理解和掌握知识。
学生参与度如何
在教学过程中,学生的参与度如何,是否能够积极思考和回答问题, 是否能够主动参与到课堂讨论中。
教学效果如何
通过本章节的教学,学生是否能够掌握锐角三角函数的基本概念和性 质,是否能够运用所学知识解决实际问题。
03
学生需要能够运用锐角三角函数解决实际问题,如测量问题、
几何问题等。
教学难点
01
锐角三角函数的图像
学生需要理解并掌握锐角三角函数的图像,包括正弦、余弦和正切的图
像。
02

锐角三角函数的变换
学生需要理解并掌握锐角三角函数的变换,如平移、伸缩等。
03
锐角三角函数与其他知识的综合应用
学生需要能够将锐角三角函数与其他知识进行综合应用,如与几何、代
过程与方法
通过实际操作和观察,掌握锐 角三角函数的计算方法。
通过小组合作和交流,理解锐 角三角函数的意义和应用。
通过实例分析和练习,提高解 决实际问题的能力。
情感、态度与价值观
培养对数学的兴趣和热爱。 培养自主探究和合作学习的精神。
培养解决实际问题的意识和能力。

九年级数学下册(人教版)28.1锐角三角函数教学设计

九年级数学下册(人教版)28.1锐角三角函数教学设计
(2)组织学生进行小组讨论,推导出锐角三角函数的基本关系式,并进行验证;
(3)结合实际例题,让学生运用锐角三角函数知识进行分析和求解。
3.巩固练习
设计不同难度的练习题,让学生在课堂上独立完成,巩固所学知识。同时,针对学生的错误,进行及时指导和纠正。
4.课堂小结
通过师生互动,总结本节课所学的主要内容,强化学生对锐角三角函数的认识。
2.提出问题:引导学生回顾直角三角形的性质和勾股定理,为新课的学习做好知识储备。
3.引入新课:在此基础上,引出本节课的主题——锐角三角函数,激发学生的好奇心和学习兴趣。
(二)讲授新知
1.锐角三角函数的定义:
(1)通过观察直角三角形,引导学生发现锐角三角函数的定义;
(2)结合图形,解释正弦、余弦、正切函数的概念;
三、教学重难点和教学设想
(一)教学重难点
1.重点:锐角三角函数的定义、基本关系式以及在实际问题中的应用。
2.难点:
(1)锐角三角函数的定义及其在直角三角形中的图形表示;
(2)锐角三角函数的基本关系式的推导和应用;
(3)将实际问题转化为锐角三角函数问题,并运用相关知识进行求解。
(二)教学设想
1.采用情境教学法,引入生活中的实际问题,让学生感受到数学知识的实用价值,激发他们的学习兴趣。
2.通过直观的图形演示,引导学生发现锐角三角函数的定义,培养他们的观察能力和抽象思维能力。
3.运用启发式教学法,引导学生通过自主探究、小组讨论等方式,推导出锐角三角函数的基本关系式,提高他们的逻辑思维能力和团队协作能力。
4.设计具有梯度的问题和练习,针对不同层次的学生进行差异化教学,使每个学生都能在原有基础上得到提高。
(3)利用计算器或计算工具,验证锐角三角函数的值。

人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案

人教版九年级锐角三角函数全章教案【人教版九年级锐角三角函数全章教案】一、教学目标:1. 理解锐角三角函数的概念和性质;2. 掌握正弦、余弦、正切函数的定义和计算方法;3. 能够应用三角函数解决实际问题;4. 培养学生的逻辑思维和解决问题的能力。

二、教学重点:1. 掌握锐角三角函数的定义和性质;2. 理解三角函数在坐标系中的几何意义;3. 能够应用三角函数解决实际问题。

三、教学难点:1. 理解三角函数的周期性和图像特点;2. 运用三角函数解决实际问题。

四、教学准备:1. 教材:人教版九年级数学教材;2. 教具:黑板、白板、书写工具、计算器等。

五、教学过程:1. 引入(10分钟)通过提问和讨论的方式引导学生回顾和复习之前学过的角的概念和性质,引出锐角的概念,并与直角、钝角进行对比。

2. 基本概念的引入(20分钟)a. 讲解锐角三角函数的定义:正弦、余弦、正切。

b. 讲解三角函数的计算方法和性质。

c. 通过例题演示如何计算三角函数的值。

3. 几何意义的理解(30分钟)a. 介绍三角函数在坐标系中的几何意义。

b. 讲解三角函数的周期性和图像特点。

c. 通过绘制图像和实例分析,让学生理解三角函数的变化规律。

4. 实际问题的应用(40分钟)a. 引导学生通过实例,学习如何应用三角函数解决实际问题,如测量高度、距离等。

b. 给学生一些练习题,让他们独立解决实际问题。

5. 总结与拓展(10分钟)a. 总结本节课所学的内容和方法。

b. 引导学生思考,如何进一步拓展和应用锐角三角函数的知识。

六、教学反思:本节课通过引导学生回顾和复习角的概念和性质,引入锐角的概念,并讲解了锐角三角函数的定义、计算方法和性质。

通过绘制图像和实例分析,让学生理解三角函数的几何意义和变化规律,并应用三角函数解决实际问题。

通过这样的教学过程,学生能够更好地掌握锐角三角函数的知识,提高他们的逻辑思维和解决问题的能力。

同时,教师需要根据学生的实际情况,灵活调整教学方法和教学内容,确保教学效果的最大化。

九年级数学上册《用科学计算器求锐角三角函数值》教案、教学设计

九年级数学上册《用科学计算器求锐角三角函数值》教案、教学设计
4.设计丰富的例题和练习题,引导学生独立思考、总结规律,提高解题技巧。
5.引导学生通过实际操作科学计算器,掌握求解锐角三角函数值的方法,培养学生动手操作能力和实践能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣和热情,增强学生学习数学的自信心。
2.培养学生勇于探索、积极思考的精神,养成良好的学习习惯。
2.利用多媒体演示锐角三角函数的定义和性质,通过动态图示和实例分析,帮助学生形象地理解概念,降低学习难度。
3.分步骤、循序渐进地教授科学计算器的使用方法,从基本的按键操作到求解锐角三角函数值,让学生在实际操作中掌握技能。
4.设计具有层次性的例题和练习题,针对不同水平的学生进行分组教学,使每个学生都能在原有基础上得到提高。
1.将学生分成若干小组,每组分配一个实际问题,要求运用锐角三角函数解决。
2.学生在小组内展开讨论,共同分析问题、建立数学模型、求解答案。
3.各小组汇报讨论成果,分享解题过程和经验,其他小组进行评价和补充。
4.教师对每个小组的表现给予肯定和指导,强调团队合作的重要性。
(四)课堂练习
1.设计具有代表性的练习题,涵盖锐角三角函数的定义、计算和应用等方面,让学生独立完成。
8.针对教学难点,设计专题辅导课,帮助学生巩固知识点,提高解题技巧。
9.结合课后作业和实践活动,鼓励学生将所学知识运用到生活中,提高学生的应用能力。
10.注重课后反思,根据学生的学习情况及时调整教学策略,以提高教学效果。
四、教学内容与过程
(一)导入新课
1.教学开始时,我将以一个生活中的实际问题作为导入:如何测量学校旗杆的高度?这个问题既贴近学生的生活,又能激发学生的好奇心和探究欲望。
5.引导学生通过小组合作、讨论交流的方式,共同解决实际问题,培养学生的团队协作能力和解决问题的能力。

人教版九年级下册28.1锐角三角函数(教案)

人教版九年级下册28.1锐角三角函数(教案)
人教版九年级下册28.1锐角三角函数(教案)
一、教学内容
人教版九年级下册第28章《锐角三角函数》第1节,内容包括:
1.锐角三角函数的定义:正弦函数、余弦函数、正切函数;
2.锐角三角函数的值:特殊角的正弦、余弦、正切值;
3.锐角三角函数的关系:同角三角函数的关系,诱导公式;
4.锐角三角函数的应用:解决直角三角形问题,实际生活中的应用。
三、教学难点与重点
1.教学重点
-锐角三角函数的定义:正弦、余弦、正切函数的定义及其在直角三角形中的表示方法;
-锐角三角函数的值:特殊角的正弦、余弦、正切值,以及如何记忆和应用这些值;
-锐角三角函数的关系:同角三角函数的基本关系,如正弦和余弦的平方和等于1,以及正切的定义;
-锐角三角函数的应用:利用函数值解决直角三角形问题,以及在现实生活中的应用。
2.教学难点
-理解锐角三角函数的定义,特别是正切函数的定义,因为正切涉及到两个边的比值,而不仅仅是与斜边的比值;
-记忆特殊角的正弦、余弦、正切值,对于部分学生来说,这些值的记忆可能存在困难;
-掌握同角三角函数之间的关系,尤其是正弦、余弦的平方和等于1的转换使用;
-将锐角三角函数应用于解决实际问题,需要学生具备一定的数学建模和问题分析能力。
举例解释:
-对于正切函数的定义,可以通过动态演示或实际操作,让学生直观感受正切值的变化,理解正切与角度的关系;
-为了帮助学生记忆特殊角的函数值,可以设计一些互动游戏或记忆卡片,通过重复练习和趣味性活动加强记忆;
-在讲解同角三角函数关系时,通过图形演示和实际例题,让学生看到这些关系在简化问题和转换公式中的应用;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解锐角三角函数的基本概念。锐角三角函数是描述直角三角形中角度与边长比例关系的数学工具。它们在解决实际问题,如测量、建筑等领域具有重要意义。

新人教版九年级数学锐角三角函数教案

新人教版九年级数学锐角三角函数教案

新人教版九年级数学锐角三角函数教案新人教版九年级数学锐角三角函数教案1一、复习巩固:1、在△ABC中,∠C=90°,∠A=45°,则BC:AC:AB = 。

2、在△ABC中,∠C=90°。

(1)已知∠A=30°,BC=8cm, (2)已知∠A=60°,AC= cm,求:AB与AC的长; 求:AB与BC的长。

二、例题学习:问题1:“五一”节,小明和同学一起到游乐场游玩,游乐场的大型摩天轮的半径为20m,旋转1周需要12min。

小明乘坐最底部的车厢(离地面约0.5m)开始1周的观光,2min后小明离地面的高度是多少(精确到0.1m)?拓展延伸:1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?思考与探索1:如图,东西两炮台A、B相距2000米,同时发现敌舰C,炮台A测得敌舰C在它的南偏东60°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离。

概念:仰角、俯角的定义如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角。

右图中的∠1就是仰角,∠2就是俯角。

问题2:为了测量停留在空中的气球的高度,小明先站在地面上某点观测气球,测得仰角为30°,然后他向气球方向前进了50m,此时观测气球,测得仰角为45°。

若小明的眼睛离地面1.6m ,小明如何计算气球的高度呢?思考与探索(2):大海中某小岛的周围10km范围内有暗礁。

一艘海轮在该岛的南偏西55°方向的某处,由西向东行驶了20km后到达该岛的南偏西25°方向的另一处。

如果该海轮继续向东行驶,会有触礁的危险吗?三、板演练习1、如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。

问这时摆球B'较最低点B升高了多少?2、飞机在一定高度上飞行,先测得正前方某小岛的俯角为30°,飞行10km后,测得该小岛的俯角为60°,求飞机的高度。

人教版九年级数学下第28章28.1《锐角三角函数》优秀教学案例

人教版九年级数学下第28章28.1《锐角三角函数》优秀教学案例
4.定期对学生的学习成果进行评价和总结,激发学生的学习动力,提高学生的数学素养。
四、教学评价
1.评价学生的知识掌握程度:通过课堂提问、作业批改等方式,了解学生对锐角三角函数知识的掌握情况;
2.评价学生的实践操作能力:通过实际问题解决,评价学生运用锐角三角函数解决实际问题的能力;
3.评价学生的合作交流能力:通过小组讨论、互动交流等方式,评价学生在团队合作中的表现;
3.讲练结合:在课堂中及时进行练习,巩固所学知识,提高学生的实际操作能力;
4.反馈调整:根据学生的学习情况,及时调整教学方法,以提高教学效果。
五、教学过程
1.创设情境,引入新课:通过生活实例,引导学生思考并引入锐角三角函数的概念;
2.自主探究,小组合作:让学生在小组内讨论交流,共同探究锐角三角函数的定义及应用;
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热爱,激发学生学习数学的内在动力;
2.培养学生合作交流的意识,提高学生团队协作的能力;
3.让学生感受数学与生活的紧密联系,培养学生的应用意识;
4.通过对本节课的学习,使学生树立正确的数学学习观念,相信自己通过努力可以掌握并运用好数学知识。
三、教学重难点
4.评价学生的情感态度与价值观:通过观察学生的学习态度、课堂表现等,评价学生对数学学科的兴趣和热爱。
五、教学拓展
1.利用多媒体技术,展示锐角三角函数在实际生活中的应用,激发学生的学习兴趣;
2.推荐相关的数学读物和网站,让学生课后进行拓展学习,提高学生的数学素养;
3.结合学校或社区的活动,让学生运用所学知识解决实际问题,提高学生的实践能力。
六、教学反思
在教学过程中,教师应不断反思自己的教学方法、教学内容等方面,以确保教学的质量和效果。同时,关注学生的学习反馈,根据学生的需求调整教学策略,以提高教学效果。通过不断的反思和调整,使教学更加符合学生的实际情况,提高学生的数学素养。

九年级数学上册《锐角三角函数》教案、教学设计

九年级数学上册《锐角三角函数》教案、教学设计
3.小组合作题需充分发挥团队协作精神,共同完成任务;
4.作业完成后,请学生认真检查,确保答案的正确性。
4.利用信息技术手段,如动态课件、网络资源等,丰富教学手段,提高学生的学习兴趣和积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情,提高学生的自主学习能力。
2.通过解决实际问题,使学生认识到数学知识在实际生活中的重要作用,增强学生的应用意识。
3.培养学生勇于探索、克服困难的精神,提高学生的自信心和自尊心。
九年级数学上册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.使学生掌握锐角三角函数的定义,理解正弦、余弦、正切函数的概念,并能够运用这些概念进行简单的计算。
2.培养学生运用三角函数解决实际问题的能力,如测量物体的高度、计算角度等。
3.使学生掌握特殊角的三角函数值,并能熟练运用到实际问题中。
(2)运用三角函数解决实际问题,尤其是将实际问题抽象为数学模型,并运用三角函数进行求解;
(3)掌握特殊角的三角函数值,并能灵活运用到实际问题中。
(二)教学设想
1.教学策略:
(1)采用情境教学法,创设实际问题情境,引导学生主动探究锐角三角函数的定义和性质;
(2)运用任务驱动法,设计具有挑战性的任务,让学生在实践中掌握三角函数的计算方法和应用;
(3)了解三角函数在其他学科领域的应用,如物理、工程等。
4.小组合作题:
(1)分组讨论:如何利用三角函数解决实际问题?举例说明;
(2)小组合作完成一份关于锐角三角函数在实际问题中应用的报告。
作业要求:
1.学生需独立完成基础题,提高题和拓展题可根据个人能力选择完成;
2.作业过程中,要求学生注重解题思路和方法的总结,养成良好的学习习惯;

24.3 锐角三角函数 华师大版数学九年级上册教案

24.3 锐角三角函数 华师大版数学九年级上册教案

24.3 锐角三角函数1.锐角三角函数第1课时锐角三角函数的定义※教学目标※【知识与技能】￿了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA表示直角三角形中两边的比.【过程与方法】￿通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,体会数学在解决实际问题中的作用.￿【情感态度】￿1.通过学习培养学生的合作意识.￿2.通过探究提高学生学习数学的兴趣.￿【教学重点】￿锐角三角函数的概念.￿【教学难点】￿锐角三角函数的概念的理解.￿※教学过程※￿一、情境导入￿如图(1),图(2)都可以用来测量物体的高度.这两个问题的解决,将涉及直角三角形中的边角关系.直角三角形中,它的边与角有什么关系?通过本节的学习,你就会明白其中的道理,并能应用所学知识解决相关的问题.￿二、探索新知￿1.某个角的对边、邻边的概念.在Rt△ABC中,直角∠C所对的边AB称为斜边,用c表示,另两边直角边为∠A的对边与邻边,分别用a、b表示(如图).￿￿2.做一做.￿(1)画一个Rt△ABC,使∠C=90°,∠A=30°,那么∠A的对边与斜边的比值是多少?量一量、算一算.(2)你画的三角形与你同伴画的三角形全等吗?不全等时,比值有什么关系?和你的同伴交流一下.￿(3)若∠A=45°、60°时,则∠A对边与斜边之比是多少?￿结论:在Rt△ABC中,只要一个锐角的大小不变(如∠A=30°),那么不管这个直角三角形大小如何,该锐角的对边与邻边的比值是一个固定的值.￿经过验证,在Rt△ABC中,当锐角A取其他固定值时,∠A的对边与邻边的比值还是一个固定值,与Rt△ABC的大小无关.￿说明:观察图中的Rt△AB 1C1、Rt△AB2C2和Rt△AB3C3,易知Rt△AB1C1Rt△AB2C2￿∽Rt△AB3C3.∴==可见,在Rt△ABC中,对于锐角A的每一个确定的值,其对边与邻边的比值是唯一确定的.同样,其对边与斜边,邻边与斜边的比值也是唯一确定的.3.锐角三角形函数的定义￿￿∠A的正弦:sinA=￿∠A的余弦:cosA=￿￿∠A的正切:tanA=￿∠A的正弦、余弦、正切统称为锐角∠A的三角函数.￿￿4.知识拓展￿(1)正弦与余弦三角函数值的取值范围.￿∵直角三角形中,斜边大于直角边.∴0<sinA<1,0<cosA<1.￿(2)同角三角函数关系￿sin2α+cos2α=1;tanα=.￿(3)互余两角的三角函数值￿若α、β都是锐角,且α+β=90°,￿那么:sinα=cosβ,cosα=sinβ.￿三、巩固练习￿【例1】如图,在Rt△ABC中,∠C=90°,AC=15,BC=8.试求出∠A的三个三角函数值.￿解:AB==17,sinA=,cosA=,￿tanA=.￿￿【练习】￿1.如图,在Rt△MNP中,∠N=90°,则:￿∠P的对边是,∠P的邻边是;￿∠M的对边是,∠M的邻边是.￿￿第1题图第2题图2.如图,在Rt△DEC中,∠E=90°,CD=10,DE=6.试求出∠D的三个三角函数值.￿3.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.根据下列所给条件,分别求出∠B的三个三角函数值:(1)a=3,b=4;(2)a=5,c=13.￿￿答案:1.￿MN PN PN MN￿￿2.由勾股定理,得CE=8,所以sinD=,cosD=,tanD=.￿3.(1)sinB=,cosB=,tanB=.￿(2)sinB=,cosB=,tanB=.￿四、应用拓展￿【例2】已知:Rt△ABC中,∠C=90°,sinA=,BC=3,求AB、AC的值.￿解:∵￿sinA=,∴AB=,￿∴AC=.【例3】如图,已知α为锐角,sinα=,求cosα、tanα的值.￿解:方法一:用定义法求解∵sinα=,∴设BC=3x,则AB=5x.由勾股定理,得AC=4x.￿∴cosα=,tanα=.￿方法二:用公式求解￿∵α为锐角,∴cosα==,tanα=.￿五、归纳小结1.正弦、余弦、正切的定义是在直角三角形中相对其锐角而定义的,其本质是两条线段长度之比,理解好这三个概念是学好本章的关键;￿2.正弦、余弦、正切实际上都是比值,没有单位,它们只与锐角α的大小有关,与三角形的边长无关;￿3.对于每一个锐角α的确定的值,它的正弦、余弦和正切都有唯一确定的值与之对应;反之,对于每一个确定的正弦、余弦和正切值,都有唯一的锐角与之对应.￿※课后作业※1.教材第111页习题24.3第1、2题.￿2.如图,在Rt△ABC中,∠CAB=90°,AD是∠CAB的平分线,￿tanB=,求的值.第2课时特殊角的三角函数值※教学目标※【知识与技能】￿1.熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数.￿2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.￿【过程与方法】￿培养学生观察、比较、分析、概括的思维能力.￿【情感态度】￿经历观察、操作、归纳等学习数学过程,感受数学思考过程的合理性,感受数学说理的必要性,说理过程的严谨性,养成科学的、严谨的学习态度.￿【教学重点】￿特殊角的三角函数值.￿【教学难点】￿与特殊角的三角函数值有关的计算.￿※教学过程※一、复习引入￿在Rt△ABC中,∠C=90°,AC=1,AB=2,求∠A、∠B的三个三角函数值.￿￿回顾锐角三角函数的定义;直角三角形的性质.￿二、探索新知￿在Rt△ABC中,∠A=30°,∠C=90°,如图,试求两个锐角的三个三角函数值.￿￿解:在直角三角形中,30°角所对的直角边是斜边的一半.所以,若设30°角所对的直角边为1,即￿BC=1,则AB=2,由勾股定理得:AC=.由三角函数定义,得sin30°=.cos30°=.tan30°=.￿￿同理可得sin60°=,cos60°=,tan60°=.2.在Rt△ABC中,∠C=90°,∠A=∠B=45°,如图,试求45°角的三角函数值.若设AC=BC=1.则AB=.易得￿sin45°=,cos45°=,tan45°=1.￿【例1】求值:sin30°·tan30°+cos60°·tan60°.￿解:原式=.￿【例2】在Rt△ABC中,若sinA=,则cos的值是多少?￿解:由sinA=知A=60°.￿∴cos=cos30°=.￿三、巩固练习￿1.在△ABC中,若cosA=,tanB=,则此三角形一定是()￿A.锐角三角形B.直角三角形￿C.钝角三角形D.等腰三角形￿2.用特殊角的三角函数填空:￿= = ;￿= = ;￿1= ;= .￿3.化简= .￿4.点M(-sin60°,cos60°)关于x轴对称的点的坐标是.￿5.求下列各式的值:￿(1)sin260°+cos260°;￿(2)2cos60°+2sin30°+4tan45°;￿(3).￿6.如图,在Rt△ABC中,∠C=90°,AB=,BC=.求∠A的大小.￿￿答案:1.A 2.sin60° cos30° sin45° cos45°￿tan45° tan60° 3. 4.￿5.(1)1 (2)6 (3)6.∠A=45°四、应用拓展￿1.你能求出tan15°的值吗?如图,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至D,使BD=AB,则∠D=15°.设AC=k,则AB=2k,BC=k,所以CD=BC+BD=BC+AB=(2+)k,￿所以tan15°===2-.￿2.仿上面的解题方法,易求tan22.5°=-1.￿※课后作业※1.教材第111页习题24.3的第3题.￿2.若∠A、∠B是△ABC的两个内角且满足关系式=0,求∠C的度数.￿￿3.若α为锐角,且tan2α-(1+)tanα+1=0.求α的度数.￿￿2.用计算器求锐角三角函数值￿※教学目标※【知识与技能】￿1.会使用计算器求锐角三角函数的值.￿2.会使用计算器根据锐角三角函数的值求对应的锐角.￿【过程与方法】￿在做题、计算的过程中,逐步熟练计算器的使用.￿【情感态度】￿经历计算器的使用过程,熟悉其按键顺序.￿【教学重点】￿利用计算器求锐角三角函数的值.￿【教学难点】￿计算器的按键顺序. ￿※教学过程※一、复习引入￿填表:￿由上表我们可以直接写出30°,45°,60°角的三角函数值及由特殊值写出相应的锐角.对一些非特殊的角,怎样求它的三个三角函数值呢?￿二、探索新知￿1.求锐角三角函数值￿【例1】求sin63°52′41″的值(精确到0.0001).￿解:如下方法将角度单位状态设定为“度”:￿再按下列顺序依次按键:￿￿显示结果为0.897859012.￿∴sin63°52′41″≈0.8979.￿【例2】求tan19°15′的值(精确到0.0001).￿解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:￿￿显示结果为0.3492156334.￿∴tan19°15′≈0.3492.￿2.由锐角三角函数值求锐角.￿【例3】若tanx=0.7410,求锐角x.(精确到1′)￿解:在角度单位状态为“度”的情况下(屏幕显示出),按下列顺序依次按键:￿￿显示结果为36.53844577.￿再按键,显示结果为36°32′18.4″.￿所以x≈36°32′.￿三、巩固练习￿1.利用计算器求下列三角函数值:(精确到￿0.0001)￿￿(1)sin24°;(2)cos51°42′20″;(3)tan70°21′.￿2.已知下列锐角α的各三角函数值,利用计算器求锐角α:(精确到1′)￿￿(1)sinα=0.2476;(2)cosα=0.4174;￿(3)tanα=0.1890.￿答案:1.(1)0.4067 (2)0.6197 (3)2.8006 2.(1)14°20′(2)65°20′(3)10°42′※课后作业※1.教材第111页习题24.3的第4、5题.￿2.比较大小.cos25° cos32°,tan29° tan39°.￿3.在Rt△ABC中,∠C=90°,AB=29,AC=25,求∠A的度数.￿。

九年级数学下册《由三角函数值求锐角》教案、教学设计

九年级数学下册《由三角函数值求锐角》教案、教学设计
难点:在解决具体问题时,选择合适的计算方法和策略,提高解题效率。
3.重点:培养学生运用三角函数解决实际问题的能力。
难点:引导学生将数学知识与其他学科知识相结合,培养学生的跨学科思维。
(二)教学设想
1.采用情境导入法,以生活中的实际问题为例,引出三角函数的概念,激发学生的学习兴趣。
2.通过讲解、示范、练习等形式,帮助学生掌握三角函数的基本知识和计算方法。在教学过程中,注重引导学生发现三角函数的内在联系,提高学生的理解能力。
五、作业布置
为了巩固学生对本章节知识的掌握,提高学生的实际运用能力,特布置以下作业:
1.必做题:
(1)完成课本第92页至第93页的练习题,包括填空题、选择题和解答题,要求学生在理解概念的基础上,准确运用三角函数求解实际问题;
(2)根据课堂学习,总结三角函数的定义、性质和求解方法,以书面形式呈现,培养学生的概括能力;
1.学生已经熟悉了代数运算,具备一定的符号意识和运算能力,这为学习三角函数奠定了基础;
2.学生在解决问题时,具有一定的逻辑推理和分析能力,但部分学生可能对将实际问题抽象为数学模型的过程感到困难;
3.学生在小组合作学习中,能够积极参与讨论,但个别学生可能存在依赖心理,需要教师引导和鼓励;
4.学生对数学学科的兴趣和动机存在差异,部分学生对数学学习具有较强的兴趣和求知欲,另一部分学生可能需要教师激发学习兴趣;
九年级数学下册《由三角函数值求锐角》教案、教学设计
Байду номын сангаас一、教学目标
(一)知识与技能
1.理解并掌握正弦、余弦、正切函数的定义,能够准确记忆并运用三角函数的基本关系;
2.学会使用计算器或数学表格,通过已知的三角函数值求解对应锐角的大小,精确到度和分;

(完整word版)苏科版九年级数学下册第七章《锐角三角函数》教学案

(完整word版)苏科版九年级数学下册第七章《锐角三角函数》教学案

课题7.1正切(1) 自主空间学习目标知识与技能:1.理解正切的概念, 能通过画图求出一个角的正切的近似值。

能运用正切解决与直角三角形有关的简单问题。

过程与方法:1.经历探索表示物体倾斜程度, 形成正切的概念的过程, 练就创造性解决问题的能力。

1.经历探索表示物体倾斜程度,形成正切的概念的过程,练就创造性解决问题的能力。

学习重点理解并掌握正切的含义, 会在直角三角形中求出某个锐角的正切值。

学习难点计算一个锐角的正切值的方法。

教学流程预习导航观察回答: 如图某体育馆, 为了方便不同需求的观众设计了多种形式的台阶。

下列图中的两个台阶哪个更陡?你是怎么判断的?图(1)图(2)[点拨]可将这两个台阶抽象地看成两个三角形答: 图的台阶更陡, 理由合作探究一、新知探究:1.思考与探索一:除了用台阶的倾斜角度大小外, 还可以如何描述台阶的倾斜程度呢?可通过测量BC与AC的长度,再算出它们的比, 来说明台阶的倾斜程度。

(思考: BC与AC长度的比与台阶的倾斜程度有何关系?)答: _________________. 讨论: 你还可以用其它什么方法?能说出你的理由吗?答: ________________________. 2.思考与探索二:(1)如图, 一般地, 如果锐角A的大小已确定,我们可以作出无数个相似的RtAB1C1, RtAB2C2, RtAB3C3……, 那么有: Rt△AB1C1∽_____∽____……根据相似三角形的性质,得: =_________=_________=……(2)由上可知:如果直角三角形的一个锐角的大小已确定, 那么这个锐角的对边与这个角的邻边的比值也_________。

3.正切的定义如图, 在Rt △ABC 中, ∠C =90°, a 、b 分别是∠A 的对边和邻边。

我们将∠A 的对边a 与邻边b 的比叫做∠A_______, 记作______。

即: tanA =________=__________(你能写出∠B 的正切表达式吗? )试试看.4.思考: 当锐角α越来越大时, α的正切值有什么变化? 二. 例题分析:例1:⑴某楼梯的踏板宽为30cm, 一个台阶的高度为15cm, 求 楼梯倾斜角的正切值。

人教版九年级数学下册:28锐角三角函数《锐角三角函数优秀教学案例》教案

人教版九年级数学下册:28锐角三角函数《锐角三角函数优秀教学案例》教案
1.了解锐角三角函数的概念、定义及性质,掌握锐角三角函数的计算方法。
2.能够运用锐角三角函数解决实际问题,提高学生的应用能力。
3.学会使用三角板和直尺等工具进行角度测量,培养学生的动手操作能力。
4.能够运用信息技术辅助学习,提高学生的信息素养。
(二)过程与方法
1.通过观察、实验、探究等方法,引导学生主动发现锐角三角函数的规律。
四、教学内容与过程
(一)导入新课
1.生活实例引入:教师通过展示一些实际生活中的图片,如建筑物的设计图、物理实验场景等,让学生观察并思考其中涉及到的角度问题。
2.提问引导:教师向学生提出问题,如“这些图片中的角度是如何计算的?”“你能想到一些与角度相关的实际问题吗?”等,激发学生的思考兴趣。
3.学生回答:鼓励学生积极回答问题,分享自己的观点和思考。
三、教学策略
(一)情景创设
1.生活情境:通过设置一些与生活密切相关的实例,如建筑设计、物理实验等,让学生了解锐角三角函数在实际生活中的应用,激发学生的学习兴趣。
2.问题情境:设计一些具有挑战性的问题,让学生在解决问题的过程中自然地引入锐角三角函数的知识,引导学生主动探究。
3.互动情境:创设轻松、愉快的课堂氛围,鼓励学生积极参与课堂讨论,培养学生主动表达自己观点的能力。
2.作业反馈:教师及时批改学生的作业,给予反馈和评价,指出学生的错误和不足,帮助学生提高。
3.学生自我检查:学生对自己的作业进行自我检查,总结自己在作业中的优点和不足,不断提高自己的学习效果。
五、案例亮点
1.生活情境的引入:通过展示与学生生活密切相关的实例,如建筑设计、物理实验等,让学生了解锐角三角函数在实际生活中的应用,使学生感受到数学的实用性,激发学生的学习兴趣。这种生活情境的引入,不仅能够引起学生的兴趣,还能够增强学生对知识的理解和记忆。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学锐角三角函数教案
九年级数学锐角三角函数教案
1.锐角三角函数
第一课时锐角三角函数(一)
教学目标
使学生了解在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的;通过实例认识正弦、余弦、正切、余切四个三角函数的定义。

并能应用这些概念解决一些实际问题。

教学过程
一、复习
由上节课例题若加改变得,若AC=160cm,∠C=31°,那幺,AB 的长度
为多少呢?
同学们现在或许不能解决上述问题,但是通过这节课的学习,以上问题自然很容易得到解决。

二、新课
1.明确直角三角形边角关系的名称。

直角三角形ABC 可以简记为Rt△ABC,我们已经知道∠C 所对的边AB 称
为斜边,用c 表示,另两条直角边分别为∠A 的对边与邻边,用a、b 表示。

如右图,在Rt△EFG 中,请同学们分别写出∠E、∠F 的对边和邻边。

2.在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的。

问题1 如右图,△ABC 和△A1B1C1 中,若∠C=∠
C1=∠90°,∠A=∠A1,那幺△ABC 和△A1B1C1 相似吗?与相等吗? 和相
等吗?。

相关文档
最新文档