固体料仓 (2.26)设计计算

合集下载

211245075_固体料仓仓壳锥体物料载荷计算

211245075_固体料仓仓壳锥体物料载荷计算

的设计%

%

!
!
'(' &
为物料在仓壳锥体计算截面
'('
上产生的水平压力!
! '(' )
为物料在仓壳锥体
计算截面
'('
上产生的法向压力!
! '(' *
为物料在
仓壳锥体计算截面 '(' 上产生的垂直压力!+,'&










!
#
-
$
&
" '(' ./
为仓壳锥体
'(' 截面的直径!00%
图 ! 物料对仓壳锥体的作用力
金 制 圆 筒 形 筒 仓 的 结 构 , (%%)! 此 标 准 适 用 于 直 径
不 大 于 5:0 的 铝 及 铝 合 金 料 仓 %
=>:#";5*%<<? 和 @A=:7:5$%%*%<5; 中 有 关
仓壳锥体设计的计算方法是类似的! 先利用仓壳
锥体顶截面的物料载荷和直径尺寸计算得到锥体
厚度-整个锥壳取同一厚度$!然后进行仓壳圆筒
' %=%
D
?+ 8E%F7G
A=
> @A ?
=/
H A1=;
&I'

' %=%
F
<%=%J
+
FK@
" %=%
D
LJ
K
&;'

配料仓的设计与计算

配料仓的设计与计算

4.4.1配料仓的设计与计算(流程图编号85-102)1、配料仓的结构形式:配料仓采用八角形钢板仓结构形式,设计成多联并用,材料用3mm厚的薄钢板。

每个料仓顶部设置一个边长为500㎜的正方形人孔,因为料仓顶部为天花板,为行走、清扫、看仓方便,未设置通风管。

2、配料仓容量与数量料仓容量:整体仓容量要保证至少4小时连续生产,并且仓的充满系数要根据物料的不同具体配置,按原料配比计算料仓容量及数量。

3、饲料用原料和生产配方分析由设计依据中地10个配方确定生产中需用的配料仓的原料名称,原料单位体积质量(v,t/m3)同一种原料在不同的配方中所占的百分比及一种原料在出现的若干个配方中的平均百分比并列表(epi,%)。

配方见表1。

表2 典型的饲料配方原料平均配比序号原料容重(t/m³)配比(%)1 玉米0.75 53.202 豆粕0.56 18.703 次粉0.50 9.54 鱼粉0.55 6.25 熟化小麦蛋白粉0.55 6.66 磷酸氢钙 1.2 0.627 玉米胚芽 4.038 进口鱼粉0.55 2.639 预混料 1.010 石粉 1.2 0.5211 沸石粉0.0412 菜粕0.55 6.113 棉粕0.55 4.714 酒糟粉0.55 2.315 米糠0.55 4.554、典型单体仓几何仓容计算 根据公式Vi=iktepi Q γ⨯⨯选定5%≤epi ≤10%的几种原料计算典型单体仓仓容式中: epi ——几种原料出现在若干个配方中的平均百分数(%);Vi ——原料的单位体积质量(t/m 3); Q ——配合饲料厂的设计生产能力(t/h ); t ——原料在料仓中的存放时间,取t=3h ; k ——单体仓的有效仓容系数,取k=0.80。

通过计算10种典型的配方,可知次粉的平均配比为9.5% 则有: V 次粉 =80.050.03%5.920⨯⨯⨯=14.25 m 35、基本仓仓容的确定由5%≤epi ≤10%原料所在单体仓的仓容大小得:V 基本仓=14.25 m 3 单体仓数量的配置:epi >10%,有2种原料;6个基本仓,其中2个存放玉米的基本料仓尺寸加大。

固体料仓计算NBT47003.2-2009

固体料仓计算NBT47003.2-2009

固体料仓计算NBT47003.2-2009设备名称:仓壳圆筒内直径 mm D i 22500仓壳锥顶半顶⾓°θ22.5设计压⼒MPa P 0.029设计外压⼒MPa P 0-0.002设计温度℃T 100物料堆积密度Kg/m 3ρ1450物料内摩擦⾓的最⼩值°ψ35物料与壳体壁⾯的摩擦⾓°ψ'25物料与料仓间的摩擦系数 µ=tan(ψ')/µ0.466307658壳体材料//Q345R 壳体材料密度Kg/m 3ρ8000焊接接头系数/φ0.85设计温度下材料的许⽤应⼒MPa [σ]t213仓壳锥体半顶⾓°θ522.1⽔平地震⼒抗震设防烈度度/8设计地震分组//第⼆组设计基本地震加速度g /0.2料仓⽔平地震⼒N F E 8741035.627——料仓等效总质量Kgm eq8579518.083编制⼈:固体料仓计算-----(按照NB/T47003.2-2009《固体料仓》计算)1.物料载荷计算2.地震载荷——等效质量系数/λm 0.85——地震影响系数/α10.094414414——阻尼调整系数/η21.18018018——⼀阶振型阻尼⽐/ξ0.03——地震影响系数最⼤值/αmax 0.08——与物料相关系数/I 1.1距底⾯⾼度hi集中质量mi的⽔平地震⼒N F Ei 见表2——距底⾯h k 处的集中质量Kgm k见表22.3地震弯矩N·mm 见表3——计算截⾯距地⾯⾼度mm h 见表3——设备基础距地⾯⾼度mmh 03.1⽔平风⼒基本风压值N/m 2q 0750场地⼟类别//A 相邻计算截⾯间的⽔平风⼒N Pi 见表4——料仓各计算段的外径mm D 0i 见表4——风压⾼度变化系数/f i 见表4——料仓第i段顶截⾯距地⾯的⾼度m h it 见表4——体型系数/K 10.71.7见表4——料仓⾼度mmH34500——料仓各计算段的风振系数(当H>20m时)/K 2i 2.2垂直地震⼒3.风载荷——脉动增⼤系数/ξ 2.1505——脉动影响系数/v i 见表4——振型系数/φz i 见表4——第i段长度mml i见表43.2风弯矩料仓任意计算截⾯I-I处的风弯矩N·mm M W I-I 见表5料仓底截⾯为0-0处的风弯矩N·mmM W 0-0——物料⾃然堆积上锥⾓⾼度mm h c 7877——料仓计算截⾯以上的储料⾼度mm h w见表6——锥段以上物料堆积⾼度mm 170005雪载荷N W s 238988.9956——基本雪压值N/m 2q w 6006.1仓壳圆筒轴向应⼒计算见表64.3物料对仓壳圆筒任意截⾯I-I处产⽣的⽔平⽅向压应⼒MPa P h 见表64物料对仓壳圆筒的作⽤⼒6仓壳圆筒应⼒计算MPa P v 4.4物料与仓壳圆筒间的摩擦⼒MPa F f 见表64.2物料对仓壳圆筒任意截⾯I-I处产⽣的垂直⽅向压应⼒4.1特性纵坐标/A 41888设计产⽣的轴向应⼒I-I见表7MPaσz1——仓壳圆筒计算截⾯I-I处的有效厚度mmδ见表7eiI-I见表7物料与仓壳圆筒间摩擦⼒产⽣的轴向应⼒MPaσz2I-I见表7最⼤弯矩在仓壳圆筒内产⽣轴向应⼒MPaσz3I-I见表7由计算截⾯I-I以上料仓壳体重及垂直地震⼒产⽣的轴向应⼒MPaσz3——计算截⾯I-I以上料仓壳体及附件质量Kg m up见表7I-I——计算截⾯I-I以上料仓壳体质量Kg m1upI-I——平台、扶梯质量Kg m2upI-I——计算截⾯I-I以上的⼈孔、接管、法兰及仓壳顶安装的附件质量Kg maup6.2仓壳圆筒周向应⼒I-I见表7由设计压⼒p和物料的⽔平压应⼒ph在计算截⾯I-I处产⽣周向应⼒MPaσθ6.3应⼒组合6.3.1组合拉应⼒I-I见表7组合轴向应⼒MPaσzI-I见表7组合拉应⼒MPaσzLI-I见表7 6.3.2组合压应⼒MPaσzA6.3.4应⼒校核组合拉应⼒见表7组合压应⼒见表7——仓壳圆筒材料的许⽤轴向压应⼒MPa [σ]er见表7——载荷组合系数/K1.27.1仓壳锥体任意截⾯上的应⼒计算7.1.1仓壳锥体特性纵坐标值mm A z 见表8——仓壳锥体计算截⾯a-a处的内直径mm D zia-a见表8——物料在仓壳锥体计算截⾯a-a处的锥⾓⾼mm h zc 见表87.1.2物料对仓壳锥体的垂直压应⼒MPa p v a-a 见表87.1.3物料对仓壳锥体产⽣的⽔平压应⼒MPa p h a-a 见表87.1.4仓壳锥体任意截⾯处的法向压应⼒MPa p n a-a 见表87.1.5周向应⼒MPa σθa-a 见表87.1.6轴向应⼒MPa σza-a 见表8——仓壳锥体计算截⾯a-a处以下的仓壳锥体质量与仓壳锥体计算截⾯a-a以下的仓壳锥体所储物料质量之和Kg m c a-a 见表8——锥壳下端开孔外直径mm /20007.2组合应⼒MPa σ∑a-a 见表87.3应⼒校核MPa/见表88.1裙座壳底截⾯的组合应⼒8裙座壳应⼒7仓壳锥体应⼒MPaσ1见表9MPaσ2见表90-0见表9——0-0截⾯处的垂直地震⼒,仅在最⼤弯矩为地震弯矩参与组合时计⼊此项N Fv——裙座壳底部截⾯积mm2A sb见表9——裙座半顶⾓,对圆柱形裙座,ψ=0°ψ0——裙座壳底部截⾯模数mm3Z sb见表9——裙座壳底部内直径mm Dis22500——裙座壳底部壁厚mmδ见表9——裙座材料名称//Q345R ——设计温度下的裙座材料许⽤应⼒MPa[σ]t212——设计温度下的裙座材料屈服强度MPa R eL(R p0.2)345——设计温度下的裙座材料弹性模量MPa E t191000 8.2裙座上较⼤开孔处截⾯h-h组合应⼒MPaσ1见表9MPaσ2见表9h-h见表9——h-h截⾯处的垂直地震⼒,仅在最⼤弯矩为地震弯矩参与组合时计⼊此项N Fv——h-h截⾯处裙座壳的截⾯积mm2A sm见表9mm2A m——h-h截⾯处⽔平⽅向的最⼤宽度mm b m——h-h截⾯处裙座壳的内直径mm D is22500——开孔加长管长度mm l mh-h见表9——h-h截⾯处的最⼤弯矩N·mm Mmax——h-h截⾯处的风弯矩N·mm M w h-h 见表9——h-h截⾯以上料仓的操作质量Kg m 0h-h见表9——h-h截⾯以上料仓的试验质量,如不进⾏⽔压试验,可取为m 0h-h Kg m max h-h 见表9——h-h截⾯处裙座壳的截⾯模数mm 3Z sm见表99.1⾃⽀承式锥顶形仓壳顶仓壳顶有效厚度mm δt26.94090828——单位⾯积的仓壳顶质量与附加质量之和Kg/m 2m t 696.5306122——单位⾯积的仓壳顶质量Kg/m 2m t115——单位⾯积仓壳顶附加质量Kg/m 2m t25——单位⾯积仓壳顶上平均载荷Kg/m 2m t3600——锥顶母线与其⽔平投影线间之夹⾓,⼀般取10°~35°°β22.5——仓壳顶材料在设计温度下的弹性模量MPa E t 195000受内压锥顶的周向应⼒MPa σθ31.6445283校核公式MPa181.059.2⾃⽀承式拱形仓壳顶仓壳顶有效厚度mm δt8.21651318——拱形仓壳顶球壳内半径mm R n 10000受内压拱形仓壳顶的周向应⼒MPaσθ19.853312049仓壳顶计算结论:校核合格校核公式MPa181.05结论:校核合格9.3仓壳顶加强筋加强筋的最⼤弯矩N·mm M max213443.0454——集中载荷N W z6000——直径⽅向加强筋的数量个n24所需加强筋截⾯模数mm3Z min1002080.0259.4仓壳顶与仓壳圆筒连接处的加强结构仓壳顶、仓壳圆筒与包边⾓钢有效截⾯积之和mm2A j24470.91471——取设计压⼒P及设计外压P0中较⼤值MPa0.0299.5仓壳椎体与仓壳圆筒连接处的加强结构仓壳圆筒圆周⽅向拉⼒N/mm Y s1278.931309仓壳锥体母线⽅向拉⼒N/mm Y1350.6599931仓壳锥体圆周⽅向拉⼒N/mm Y23489.584448仓壳锥体圆周⽅向拉⼒N Q-2786147.094——仓壳锥体有效加强长度mm B n0——仓壳圆筒有效加强长度mm B n252.1606631当Q>0时,承压圈区域内所需截⾯积mm2A c按临界许⽤应⼒计算当Q<0时,承压圈区域内所需截⾯积mm2A c-31823.49622——设计温度下材料的许⽤压缩应⼒MPa[σ]cr1039.6仓壳圆筒加强结构9.6.1仓壳圆筒设计外压 P0=2.25f i q0×10-6+P in MPa P00.005079688——料仓内部负压值MPa P in0.0029.6.2料仓许⽤临界外压⼒MPa[P cr] 6.82415E-05——核算区间罐壁筒体的当量⾼度m H E11.772——核算区间最薄圈罐壁板的有效厚度mm t min见表10——第i圈罐壁板的有效厚度mm t i见表10——第i圈罐壁板的实际⾼度m h i见表10——第i圈罐壁板的当量⾼度m H ei见表10 9.6.3加强圈个数及位置需设置加强圈10裙座地脚螺栓座10.1基础环内外径数据——基础环外径mm D ob22800——基础环内径mm D ob22200——基础环⾯积mm2A b 2.1206E+07——基础环材料许⽤弯曲应⼒MPa[σ]b170——裙座基础板外边缘到裙座壳外表⾯的距离mm b132——基础环的截⾯模数mm3Z b 1.1773E+11 10.2基础环厚度10.2.1⽆筋板时mmδb42.868621555.990842339MPa 5.9908423394.70E+0010.2.2有筋板时mmδb35.79064119——矩形板计算⼒矩N·mm M s36294.1499N·mm|M x|23632.63652N·mm|M y|36294.1499——系数C x//-0.2264——系数C y//0.05629——裙座基础板外边缘到裙座壳外表⾯的距离 b=(D ob-D is)/2-δs mm b132——筋板间最⼤间距 l=(πD ob/n-l3-δG)/(n j+1)-δG mm l328——地脚螺栓个数/n48——两个螺栓座之间筋板数量/n j3——筋板内侧间距mm l3100——筋板厚度mmδG16 10.3地脚螺栓8.04E-02地脚螺栓承受的最⼤拉应⼒MPa8.04E-02-3.2940E+000-0——0-0截⾯处垂直地震⼒,仅在最⼤弯矩为地震弯矩参与组合时计⼊此项N Fv地脚螺栓⼩径mm20.54——地脚螺栓腐蚀裕量mm C23——地脚螺栓材料许⽤应⼒MPa[σ]bt14710.4筋板筋板压应⼒MPaσg 3.52322495——⼀个地脚螺栓承受的最⼤拉⼒N F35514.1——对应于⼀个地脚螺栓的筋板个数/n15——筋板宽度mm l2126筋板许⽤压应⼒当λ≤λc时MPa[σ]c110.94当λ>λc时MPa[σ]c——长细⽐/λ21.626——回转半径,对长⽅形截⾯的筋板取0.289δG mm i 4.624——筋板长度mm l k200——系数/ν 1.5169——临界长细⽐/λc135.95——筋板材料的许⽤应⼒MPa[σ]G170结论:校核通过10.5盖板10.5.1⽆垫板时盖板最⼤应⼒MPaσz53.77014823 10.5.2有垫板时盖板最⼤应⼒MPaσz49.06347743——垫板上的地脚螺栓孔直径mm d227——盖板上的地脚螺栓孔直径mm d340——垫板宽度mm l460——盖板厚度,⼀般分块厚度不⼩于基础环的厚度mmδc24——垫板厚度mmδz12 10.6仓壳筒体与裙座连接焊缝10.6.1仓壳圆筒与裙座搭接焊接接头MPa140.49合格MPa145.45合格——焊接接头扛剪断⾯⾯积mm2A w778080.2631——裙座壳顶部截⾯外直径mm D ot22536J-J——搭接接头处的垂直地震⼒,仅在最⼤弯矩为地震弯矩参与组合时计⼊N FvJ-J8.68E+10——搭接焊接接头处的最⼤弯矩N·mm MmaxJ-J 1.48E+10——搭接焊接接头处处的风弯矩N·mm Mw——地震弯矩N·mm M e8.31E+10J-J9.96E+06——⽔压试验时(或满仓时)料仓最⼤质量(不计裙座质量)Kg mmaxJ-J9583002.44——J-J截⾯以上料仓操作质量Kg m——焊接接头抗剪截⾯模数mm3Z w4385468641t215——设计温度下焊接接头的许⽤应⼒,取两侧母材许⽤应⼒的较⼩者MPa[σ] w——设计温度下焊接接头的屈服强度,取两侧母材屈服强度的较⼩者MPaσs425 10.6.2仓壳圆筒与裙座对接焊接接头MPa-70.72合格——裙座顶截⾯的内直径mm D it22500。

钢制矩形料仓的设计计算

钢制矩形料仓的设计计算

钢制矩形料仓的设计计算
李林
【期刊名称】《石油和化工设备》
【年(卷),期】2016(019)007
【摘要】通过GB 50884-2013《钢筒仓技术规范》、材料力学等设计标准和力学原理,结合钢结构及混凝土料仓的结构和受力分析,提出了一种矩形固体料仓的设计计算方法,并指出在钢制固体料仓结构设计和制造过程中应注意的一些问题。

【总页数】3页(P17-19)
【作者】李林
【作者单位】贵州东华工程股份有限公司,贵州贵阳 550002
【正文语种】中文
【相关文献】
1.钢制矩形料仓加劲肋组合截面特性计算
2.钢制料仓在工业厂房中的应用
3.钢制常压矩形储槽的设计计算
4.大型固体料仓设计计算及制作工艺研究
5.吨袋包装机料仓额定容量设计计算方法研究
因版权原因,仅展示原文概要,查看原文内容请购买。

固体料仓设计计算-29页文档资料

固体料仓设计计算-29页文档资料

6设计计算固体料仓的校核计算按以下步骤进行:a)根据地震或风载的需要,选定若干计算截面(包括所有危险截面)。

b)根据JB/T 4735的相应章节,按设计压力及物料的特性初定仓壳圆筒及仓壳锥体各计算截面的有效厚度δe。

c)按6.1~6.18条的规定依次进行校核计算,计算结果应满足各相应要求,否则需要重新设定有效厚度,直至满足全部校核条件为止。

固体料仓的外压校核计算按GB 150的相应章节进行。

6.1 符号说明A ——特性纵坐标值,mm;B ——系数,按GB 150确定,MPa;C ——壁厚附加量,C=C1+C2,mm;C1 ——钢板的厚度负偏差,按相应材料标准选取,mm;C2 ——腐蚀裕量和磨蚀裕量,mm;腐蚀裕量对于碳钢和低合金钢,取不小于1 mm;对于不锈钢,当介质的腐蚀性极微时,取为0;对于铝及铝合金,取不小于1 mm;对于裙座壳取不小于2 mm;对于地脚螺栓取不小于3 mm;磨蚀裕量对于碳素钢和低合金钢、铝及铝合金一般取不小于1mm,对于高合金钢一般取不小于0.5mm。

D i ——仓壳圆筒内直径,mm;D o ——仓壳圆筒外直径,mm;E t——材料设计温度下的弹性模量,MPa;F f ——物料与仓壳圆筒间的摩擦力,N;F k1 ——集中质量m k引起的基本震型水平地震力,N;F V ——集中质量m k引起的垂直地震力,N;F Vi ——集中质量i引起的垂直地震力,N;0-F——料仓底截面处垂直地震力,N;VIIF-——料仓任意计算截面处垂直地震力,仅在最大弯矩为地震弯矩参与组合时计入此项,N;Vg ——重力加速度,取g =9.81m/s2;H——料仓总高度,mm;H o ——仓壳圆筒高度,mm;H c ——仓壳锥体高度,mm;H i ——料仓顶部至第i段底截面的距离,mm;h ——计算截面距地面高度(见图3),mm;h c ——物料自然堆积上锥角高度(见图7),mm;h i ——料仓第i段集中质量距地面的高度(见图3),mm;h k ——任意计算截面I-I以上集中质量m k距地面的高度(见图3),mm;h W ——料仓计算截面以上的储料高度(见图7),mm;I I E M -—— 任意计算截面I -I 处的基本振型地震弯矩,N·mm ; 00-E M —— 底部截面0-0处的地震弯矩,N·mm ; e M —— 由偏心质量引起的弯矩,N·mm ;II w M -—— 任意计算截面I -I 处的风力弯矩,N·mm ; 00-w M —— 底部截面0-0处的风力弯矩,N·mm ; I I M -m ax —— 任意计算截面I -I 处的最大弯矩,N·mm ; 00m ax -M —— 底部截面0-0处的最大弯矩,N·mm ; m c —— 仓壳锥体质量与仓壳锥体部分所储物料质量之和,kg ; m min —— 料仓最小质量,kg ;m t —— 单位面积的仓壳顶质量与附加质量之和,kg ; m o —— 料仓操作质量,kg ; m 05 —— 料仓储料质量,kg ; p —— 设计压力,MPa ; p o —— 设计外压力,MPa ;I I h p -—— 物料在仓壳圆筒计算截面I -I 处产生的水平压力,MPa ;I I v p -—— 物料在仓壳圆筒计算截面I -I 处产生的垂直压力,MPa ;a a h p -—— 物料对仓壳锥体计算截面a -a 处产生的水平压力,MPa ; a a n p -—— 物料对仓壳锥体计算截面a -a 处产生的法向压力,MPa ;a a v p -—— 物料对仓壳锥体计算截面a -a 处产生的垂直压力,MPa ;II II n p -—— 物料对仓壳锥体大端II -II 处产生的法向压力,MPa ;II II v p -—— 物料在仓壳锥体大端II -II 处产生的垂直压力,MPa ;q o —— 基本风压值,见GB 50009,或按当地气象部门资料,但均不应小于300 N/m 2; q w ——基本雪压值,N/m 2。

(整理)固体料仓设计计算

(整理)固体料仓设计计算

6设计计算固体料仓的校核计算按以下步骤进行:a)根据地震或风载的需要,选定若干计算截面(包括所有危险截面)。

b)根据JB/T 4735的相应章节,按设计压力及物料的特性初定仓壳圆筒及仓壳锥体各计算截面的有效厚度δe。

c)按6.1~6.18条的规定依次进行校核计算,计算结果应满足各相应要求,否则需要重新设定有效厚度,直至满足全部校核条件为止。

固体料仓的外压校核计算按GB 150的相应章节进行。

6.1 符号说明A ——特性纵坐标值,mm;B ——系数,按GB 150确定,MPa;C ——壁厚附加量,C=C1+C2,mm;C1 ——钢板的厚度负偏差,按相应材料标准选取,mm;C2 ——腐蚀裕量和磨蚀裕量,mm;腐蚀裕量对于碳钢和低合金钢,取不小于1 mm;对于不锈钢,当介质的腐蚀性极微时,取为0;对于铝及铝合金,取不小于1 mm;对于裙座壳取不小于2 mm;对于地脚螺栓取不小于3 mm;磨蚀裕量对于碳素钢和低合金钢、铝及铝合金一般取不小于1mm,对于高合金钢一般取不小于0.5mm。

D i ——仓壳圆筒内直径,mm;D o ——仓壳圆筒外直径,mm;E t——材料设计温度下的弹性模量,MPa;F f ——物料与仓壳圆筒间的摩擦力,N;F k1 ——集中质量m k引起的基本震型水平地震力,N;F V ——集中质量m k引起的垂直地震力,N;F Vi ——集中质量i引起的垂直地震力,N;0-F——料仓底截面处垂直地震力,N;VIIF-——料仓任意计算截面处垂直地震力,仅在最大弯矩为地震弯矩参与组合时计入此项,N;Vg ——重力加速度,取g =9.81m/s2;H——料仓总高度,mm;H o ——仓壳圆筒高度,mm;H c ——仓壳锥体高度,mm;H i ——料仓顶部至第i段底截面的距离,mm;h ——计算截面距地面高度(见图3),mm;h c ——物料自然堆积上锥角高度(见图7),mm;h i ——料仓第i段集中质量距地面的高度(见图3),mm;h k ——任意计算截面I-I以上集中质量m k距地面的高度(见图3),mm;h W ——料仓计算截面以上的储料高度(见图7),mm;I I E M -—— 任意计算截面I -I 处的基本振型地震弯矩,N·mm ; 00-E M —— 底部截面0-0处的地震弯矩,N·mm ; e M —— 由偏心质量引起的弯矩,N·mm ;II w M -—— 任意计算截面I -I 处的风力弯矩,N·mm ; 00-w M —— 底部截面0-0处的风力弯矩,N·mm ; I I M -m ax —— 任意计算截面I -I 处的最大弯矩,N·mm ; 00m ax -M —— 底部截面0-0处的最大弯矩,N·mm ; m c —— 仓壳锥体质量与仓壳锥体部分所储物料质量之和,kg ; m min —— 料仓最小质量,kg ;m t —— 单位面积的仓壳顶质量与附加质量之和,kg ; m o —— 料仓操作质量,kg ; m 05 —— 料仓储料质量,kg ; p —— 设计压力,MPa ; p o —— 设计外压力,MPa ;I I h p -—— 物料在仓壳圆筒计算截面I -I 处产生的水平压力,MPa ;I I v p -—— 物料在仓壳圆筒计算截面I -I 处产生的垂直压力,MPa ;a a h p -—— 物料对仓壳锥体计算截面a -a 处产生的水平压力,MPa ; a a n p -—— 物料对仓壳锥体计算截面a -a 处产生的法向压力,MPa ;a a v p -—— 物料对仓壳锥体计算截面a -a 处产生的垂直压力,MPa ;II II n p -—— 物料对仓壳锥体大端II -II 处产生的法向压力,MPa ;II II v p -—— 物料在仓壳锥体大端II -II 处产生的垂直压力,MPa ;q o —— 基本风压值,见GB 50009,或按当地气象部门资料,但均不应小于300 N/m 2; q w ——基本雪压值,N/m 2。

配料仓计算

配料仓计算

配料仓的设计计算本配料仓为10t/h配合饲料厂工艺设计,采用先粉碎后配料工艺,主要生产畜禽料,也可生产部分水产饲料。

饲料用原料和生产配方分析依据所选典型配方,原料单位体积质量(v,t/m3)同一种原料在不同的配方中所占的百分比及一种原料在出现的若干个配方中的平均百分比并列下表(epi,%)。

序号原料容重配比1 玉米0.75 59.102 豆粕0.56 24.883 菜籽粕0.55 12.504 麸皮0.24 15.755 稻草粉0.50 20.006 米糠0.32 10.007 次粉0.50 7.508 草粉0.20 5.009 鱼粉0.58 4.0010 添加剂-- 2.0011 肉骨粉0.70 1.7012 贝粉 1.20 0.5513 石粉 1.20 1.0614 磷酸氢钙 1.20 0.4715 预混料-- 0.7516 食盐 1.12 0.3717 盐酸赖氨酸-- 0.05典型单体仓几何仓容计算依据典型配方中各原料配比,配比在2%以下的进行人工投料。

由下表可知:e pi>20%的原料有3种,5%<e pi≤20%的原料有4种,2%<e pi≤5%的原料有2种。

配方一(%)配方二(%)配方三(%)配方四(%)玉米55.2 57 65 --豆粕34 30.5 25 10菜籽粕 5 -- -- 20麸皮-- -- 8.5 23稻草粉-- -- -- 20米糠-- -- -- 10鱼粉-- -- -- --石粉 1 1.12 -- --贝粉-- -- 1 --肉骨粉-- -- -- 5磷酸氢钙 1.5 0.47 -- -- 油脂 3 -- -- --次粉-- 5 -- 10草粉-- 5 -- --预混料-- 0.5 -- --食盐0.3 0.36 0.5 -- 盐酸赖氨酸-- 0.05 -- -- 添加剂-- -- -- 2所以选定5%<e pi<20%的原料计算典型单体仓仓容具有典型性,其单体仓仓容表达式为:V i=ik te Q pi γ⨯⨯式中:e pi——几种原料出现在若干个配方中的平均百分数(%);V i——原料的单位体积质量(t/m3);Q——配合饲料厂的设计生产能力(t/m);t——原料在料仓中的存放时间,取t=2.5h;k——单体仓的有效仓容系数,取k=0.85。

料仓计算书

料仓计算书

第三届湖北省“结构设计大赛”设计方案设计人:张学强、侯金穗、徐立一、 料仓装料部分: <一>形状尺寸1、形状:采用直圆筒状主装料仓,如图所示:2、图中圆筒部分高h1,圆台状部分高h2,其中 h1、 h2由以下过程计算体积:kg mm kg V 6010410039≥⨯⨯-mm 70021≤+h h mm 2002≤h()V h h ≥⨯⨯⨯+++⨯⨯22212460200602004200ππ3、考虑到料仓稳定性,结构体重心较低,圆台倾斜角较小,结合上述计算,最优方案为:mm h 4972= mm h 1181≥4、又考虑到料仓内部加固的箍竹片会占据一定体积,所以使上部略大于计算理论值,最终确定料仓尺寸为:mm h 5501= mm h 1202= <二>加固方法1、圆筒部采用内部竖直方向装配竹片,外部横向加环形竹箍固定的方式。

2、圆台部分采用圆筒部分向内部弯折延续,并且在折点内侧环箍加固及下部外侧环箍加固的方式。

3、为使下部形成圆台状,应将竹片加工成向下部逐渐变窄的尖竹片。

4、弯折处细部结构如图所示:5、安装有环箍部位竹片受力如图所示:<三>竹片加工规格及数据计算1、由于圆筒部分向上部受力越来越小,并且由竹片箍紧,所以主要承力部分为圆台状部分,下面就圆台状部分荷载及稳定性作具体计算分析。

2、圆筒及圆台部分共由N根竹片组成,圆筒部分每根竹片宽度为D,圆台下端宽度为d由几何关系有:mm 200⨯=πNDmm 60d ⨯=πN3、考虑竖直方向荷载,忽略料仓内壁对物料的摩擦力,每根竹片平均分摊荷载1p ,弯折区域总荷载P1满足以下关系:11p P N =⨯ 并且P1在竹片上呈梯形状分布,如图所示:4、忽略物料颗粒之间的摩擦力,圆台底部承受荷载为P2,每根竹片承受竖直向下的集中荷载p2,则满足以下关系:22p P N =⨯5、由几何关系有:kg 6020060221⨯=Pkg 6021=+P P6、P1大小呈梯形分布,在计算端点力矩时可将其看作直接作用于中点,由折点静力(力矩) 平衡条件得:0mm 200-mm 35mm 7012=⨯⨯⎪⎭⎫⎝⎛+⨯⎪⎭⎫ ⎝⎛F N P N P则水平距离中心x 处的弯矩为:Fx p x p x xx M ⨯-⨯+⨯⨯⎪⎭⎫ ⎝⎛-=720270007212021xm 10720x 114.5-54x 49000x 546-14000x 54612016-32⋅⨯⎪⎪⎭⎫ ⎝⎛⨯+⨯⨯=N N可得mm 29x =时弯矩值最大,此时m 426.01max ⋅⨯=N NM 此处的最大正应力为: ZW M maxmax =σ62λ∇=Z W其中 : λ为竹片厚度d 2970d+⨯-=∇D 又由: a 60maxMP ≤σ 得 : ≥λ0.34mm所以选用0.35mm 厚的竹片,而考虑到在弯矩最大处的安全性,所以在此处外侧额外加一环箍(图中为受力f 处)用以保护结构。

固体料仓的选型

固体料仓的选型

固体料仓一、固体料仓简介料仓的种类繁多,其结构和制造工艺也相差甚远。

其中金属板制料仓具有占地面积小,具有先进的装卸工艺,机械化程度高,能够保证储存物料的质量等优点,成为工业料仓中的一个不可缺少的设备。

石油、化工、化纤、粮食、建筑等行业中广泛采用金属板制料仓。

考虑到储存的是松散的固体物料,在流动过程中会产生积料等不利影响,所以通常将仓壳筒设计为受力均匀、流动性较好的长圆筒形,也就是所谓的筒仓,料仓的顶部为拱顶型或锥顶形,料仓底部为锥体形。

焊制料仓是目前行业中的主要形式,料仓结构包括仓壳顶、仓壳锥体、仓壳圆筒、支座、接管和法兰、梯子平台等部位。

二、料仓容积料仓的容积包括底部的锥体容积与筒仓容积之和。

其容积由所成物料的体积来确定。

固体物料的体积的确定可根据出料流量与要储存的天数来确定。

三、料仓壳体的确定1.仓壳顶结构料仓仓壳顶结构一般有两种形式---自支撑式锥顶和自支撑式拱顶,自支撑式拱顶又分为封头顶和球冠顶两种。

当料仓直径较小时从制造的简便考虑优先采用自支撑式锥顶或者椭圆形封头作为仓顶,根据需要有时也可以采用蝶形封头。

2.仓壳锥体2.1仓壳锥体形式仓壳锥体一般采用大端无折边锥形封头和大端带折边锥形封头两种形式大端无折边的仓壳锥体结构较少采用,一般用于小直径、重量轻的料仓。

大端带折边的仓壳锥体结构用得较多。

2.2仓壳锥体半顶角θ的选取仓壳锥体半顶角θ的选取需要根据物料的特性来确定,保证物料的顺利流动,过小不经济,过大容易造成排料不畅、积料或架桥。

松散物料的种类很广,物料间的堆积特性、流动性差异很大。

一般而言,研究者认为物料在料仓中的流动形态分为两大类;漏斗流形态(又称为中心流型)即图1-2中的a、b、c和柱塞形态(又称为整体流动型)即图1-2中的d物料的流型应根据实际需要选取2.2.2松散物料安息角φ当松散物料放置在平面时,上部散落的物料会在重力的作用下向下运动,同时就会受到周围其他物料对它运动的约束,当物料重力在其运动方向产生的分力与周围物料对其的作用相等时,达到最终的平衡,物料堆积成母线与水平面成角度φ的圆锥体,对于每一种物料,φ角据有特定的数值,成为安息角(又称休止角)料仓的下料不畅,关键是倾斜角小于物料安息角所致。

关于城市固体废弃物填埋场库容计算问题

关于城市固体废弃物填埋场库容计算问题

关于城市固体废弃物填埋场库容计算问题由于经济快速发展,城市化扩大,居民消费水平日益提高,我国城市垃圾处理及污染防治成为环境保护的突出问题。

现代卫生填埋工程(城市固体废弃物填埋场)是世界各地处理城市固体废弃物的主要方法。

卫生填埋场的库容计算就显得非常重要,库容计算的正确与否直接影响到固体废弃物填埋场的使用年限,同时也是投资、决策的重要依据。

由于每个城市固体废弃物填埋场的地形各不相同,因此产生的固体废弃物堆体就很不规则、千差万别。

到目前为止没有一种固定而准确的计算方法来计算城市固体废弃物填埋场的库容,都是采用很粗略计算方法。

这样,就同一个工程而言不同的计算方法就产生了不同的库容,而且有些相差还很大。

我们在工作中总结出了一套计算库容的方法如下:(等高线剖切法+三维建模法)什么是等高线剖切法呢?我们把固体废弃物堆体看成是一个不规则体,即为填埋场的库容,具体做法是从不规则的底部向上剖切,这样就可以近似地得到一个拟柱体(上下底为两个平行的平面,所有的顶点都在两个平面上的多面体)体积计算公式为: V=31h (S 上+S 下+S 下S 上 ) 其中:V —— 拟柱体体积m 3 h —— 剖切高度mS 上——上底面积m 2(在同一等高线上的点所围合而成的面积)S下——下底面积m2(在同一等高线上的点所围合而成的面积)由此种方法从下到上依次类推由多个拟柱体相加最后得出填埋场的总库容。

需要说明的是用该方法来计算库容时h(剖切高度)越小体积就越准确,在实际操作中要根据工程大小来确定剖切高度。

下表是某垃圾处理场的库容计算表:填埋场的总库容为434227.5m3。

什么又是三维建模法呢?就是根据每个固体废弃物填埋场的设计库底以及封场以后的堆体实际形状,根据相应的标高点所建立的一个三维模型,比如用3Dmax软件就可以直接建立三维模型并且用3Dmax 软件自带的功能就可以计算出体积,这个三维模型就是我们所要求得的该垃圾填埋场的总库容439220m3见下图,应该说用三维建模法所计算出的库容最准确。

固体料仓

固体料仓

JB/T 4735.3─XXXX《固体料仓》标准释义引言固体料仓是储存固体松散物料的容器,它区别于储存气体、液体的容器。

气体和液体在常温的自然状态下是无形的物质,松散的固体物料在自然状态下有堆积形态。

气体充满于所储存的容器内,以自身的压力对整个容器壁产生作用力。

液体盛装在容器里,对液面以下的容器壁,以液柱的静压对不同高度的壁面产生不同的作用力。

松散的固体物料盛装在容器里,对物料面以下的容器壁,产生垂直压力、水平压力、在物料流动的情况下对壁面还产生摩擦力。

所以设计固体料仓时除要考虑容器的共性外还要考虑到它的特殊性。

在古代,生产力发展到一定水平后,首先是稻谷、小麦、大豆等粮食类松散粒状固体物料要进行储存,人们用苇席编制、陶制、木制、砖木混制的各种容器、仓体等来储存多余的粮食。

而后随着生产力的飞速发展,科学、技术的进一步提高,除对粮食类物料外,对建筑材料中的沙石、水泥,及各种工业原料和产品等需要进行储存、配用,需要储存的松散固体物料的种类越来越多。

特别是粮食、水泥、煤炭成为料仓中储存的松散固体物料品种中最多的品种。

制造料仓的材料也随之出现了钢筋混泥土、钢材、铝材、复合材料制等多种材质。

仓体的形状也更多样化,出现了圆形、方形、矩形、星形、蜂窝形以及组合式等各种储存料仓,同时还产生了管风琴式、内置多卸料管式等均化料仓。

物料的输送方式和输送量也发生了巨大的变化,料仓的容积也越来越大,出现了上万立方米容量的特大型料仓。

料仓也成为一种具有独特用途和结构的设备。

料仓(bin,bunker)的种类繁多,其结构和制造工艺也相差甚远,其中金属制料仓具有占地面积小,具有先进的装、卸料工艺,机械化程度高,能保证储存的物料的质量等优点,成为工业用料仓中的一个不可缺少的设备。

本标准并未将所有料仓都包括在内,只涉及适用于石油、化工、化纤的工业用的金属制圆筒形料仓(也称筒仓,silo),以及能盛装在用金属制料仓里的,如粮食、建筑用物料用的料仓。

仓容计算公式

仓容计算公式

库房容量:指粮油加工企业符合《粮油仓储管理办法》和《粮油储藏技术规范》仓储设施与设备的基本要求,能够安全储原粮1年以上,直接为加工服务的原料仓、成品库的固定仓房设计储粮能力,不含粮库收储仓容。

不含封闭式的用于储粮的简单建筑物仓容,如罩棚等简易仓。

仓容:指仓房的设计能力。

一般按以下方法计算:
散装平房仓仓容计算公式:建筑面积×装粮高度×粮食容重×93%。

包装平房仓仓容计算公式:建筑面积×堆包高度×粮食容重×70%。

筒状粮仓仓容计算公式:〔3.14×内径半径2×装粮高度+漏斗锥体体积〕×粮食容重。

粮食容重统一按中等质量小麦容重计算,为750kg/m3。

优质原粮基地:指产业化龙头企业投资建设或与农民签订订单合同的专用原料基地。

油罐总罐容:仅统计单罐罐容1吨及以上的油罐罐容。

油罐容量按照设计容量确定,如设计容量不详,则按照以下公式计算:
圆柱体油罐容量计算:油罐容量(吨)=油罐底面积(m2)×油罐柱高(m)×0.9×0.92。

固体料仓计算NBT47003.2-2009

固体料仓计算NBT47003.2-2009

设备名称:仓壳圆筒内直径 mm D i 22500仓壳锥顶半顶角°θ22.5设计压力MPa P 0.029设计外压力MPa P 0-0.002设计温度℃T 100物料堆积密度Kg/m 3ρ1450物料内摩擦角的最小值°ψ35物料与壳体壁面的摩擦角°ψ'25物料与料仓间的摩擦系数 μ=tan(ψ')/μ0.466307658壳体材料//Q345R 壳体材料密度Kg/m 3ρ8000焊接接头系数/φ0.85设计温度下材料的许用应力MPa [σ]t213仓壳锥体半顶角°θ522.1水平地震力抗震设防烈度度/8设计地震分组//第二组设计基本地震加速度g /0.2料仓水平地震力N F E 8741035.627——料仓等效总质量Kgm eq8579518.083编制人:固体料仓计算-----(按照NB/T47003.2-2009《固体料仓》计算)1.物料载荷计算2.地震载荷——等效质量系数/λm 0.85——地震影响系数/α10.094414414——阻尼调整系数/η21.18018018——一阶振型阻尼比/ξ0.03——地震影响系数最大值/αmax 0.08——与物料相关系数/I 1.1距底面高度hi集中质量mi的水平地震力N F Ei 见表2——距底面h k 处的集中质量Kgm k见表22.3地震弯矩N·mm 见表3——计算截面距地面高度mm h 见表3——设备基础距地面高度mmh 03.1水平风力基本风压值N/m 2q 0750场地土类别//A 相邻计算截面间的水平风力N Pi 见表4——料仓各计算段的外径mm D 0i 见表4——风压高度变化系数/f i 见表4——料仓第i段顶截面距地面的高度m h it 见表4——体型系数/K 10.71.7见表4——料仓高度mmH34500——料仓各计算段的风振系数 (当H>20m时 )/K 2i 2.2垂直地震力3.风载荷——脉动增大系数/ξ 2.1505——脉动影响系数/v i 见表4——振型系数/φz i 见表4——第i段长度mml i见表43.2风弯矩料仓任意计算截面I-I处的风弯矩N·mm M W I-I 见表5料仓底截面为0-0处的风弯矩N·mmM W 0-0——物料自然堆积上锥角高度mm h c 7877——料仓计算截面以上的储料高度mm h w见表6——锥段以上物料堆积高度mm 170005雪载荷N W s 238988.9956——基本雪压值N/m 2q w 6006.1仓壳圆筒轴向应力计算见表64.3物料对仓壳圆筒任意截面I-I处产生的水平方向压应力MPa P h 见表64物料对仓壳圆筒的作用力6仓壳圆筒应力计算MPa P v 4.4物料与仓壳圆筒间的摩擦力MPa F f 见表64.2物料对仓壳圆筒任意截面I-I处产生的垂直方向压应力4.1特性纵坐标/A 41888设计产生的轴向应力I-I见表7MPaσz1——仓壳圆筒计算截面I-I处的有效厚度mmδ见表7eiI-I见表7物料与仓壳圆筒间摩擦力产生的轴向应力MPaσz2I-I见表7最大弯矩在仓壳圆筒内产生轴向应力MPaσz3I-I见表7由计算截面I-I以上料仓壳体重及垂直地震力产生的轴向应力MPaσz3——计算截面I-I以上料仓壳体及附件质量Kg m up见表7I-I——计算截面I-I以上料仓壳体质量Kg m1upI-I——平台、扶梯质量Kg m2upI-I——计算截面I-I以上的人孔、接管、法兰及仓壳顶安装的附件质量Kg maup6.2仓壳圆筒周向应力I-I见表7由设计压力p和物料的水平压应力ph在计算截面I-I处产生周向应力MPaσθ6.3应力组合6.3.1组合拉应力I-I见表7组合轴向应力MPaσzI-I见表7组合拉应力MPaσzLI-I见表7 6.3.2组合压应力MPaσzA6.3.4应力校核组合拉应力见表7组合压应力见表7——仓壳圆筒材料的许用轴向压应力MPa [σ]er见表7——载荷组合系数/K1.27.1仓壳锥体任意截面上的应力计算7.1.1仓壳锥体特性纵坐标值mm A z 见表8——仓壳锥体计算截面a-a处的内直径mm D zia-a见表8——物料在仓壳锥体计算截面a-a处的锥角高mm h zc 见表87.1.2物料对仓壳锥体的垂直压应力MPa p v a-a 见表87.1.3物料对仓壳锥体产生的水平压应力MPa p h a-a 见表87.1.4仓壳锥体任意截面处的法向压应力MPa p n a-a 见表87.1.5周向应力MPa σθa-a 见表87.1.6轴向应力MPa σza-a 见表8——仓壳锥体计算截面a-a处以下的仓壳锥体质量与仓壳锥体计算截面a-a以下的 仓壳锥体所储物料质量之和Kg m c a-a 见表8——锥壳下端开孔外直径mm /20007.2组合应力MPa σ∑a-a 见表87.3应力校核MPa/见表88.1裙座壳底截面的组合应力8裙座壳应力7仓壳锥体应力MPaσ1见表9MPaσ2见表90-0见表9——0-0截面处的垂直地震力,仅在最大弯矩为地震弯矩参与组合时计入此项N Fv——裙座壳底部截面积mm2A sb见表9——裙座半顶角,对圆柱形裙座,ψ=0°ψ0——裙座壳底部截面模数mm3Z sb见表9——裙座壳底部内直径mm D is22500——裙座壳底部壁厚mmδ见表9——裙座材料名称//Q345R ——设计温度下的裙座材料许用应力MPa[σ]t212——设计温度下的裙座材料屈服强度MPa R eL(R p0.2)345——设计温度下的裙座材料弹性模量MPa E t191000 8.2裙座上较大开孔处截面h-h组合应力MPaσ1见表9MPaσ2见表9h-h见表9——h-h截面处的垂直地震力,仅在最大弯矩为地震弯矩参与组合时计入此项N Fv——h-h截面处裙座壳的截面积mm2A sm见表9mm2A m——h-h截面处水平方向的最大宽度mm b m——h-h截面处裙座壳的内直径mm D is22500——开孔加长管长度mm l mh-h见表9——h-h截面处的最大弯矩N·mm Mmax——h-h截面处的风弯矩N·mm M w h-h 见表9——h-h截面以上料仓的操作质量Kg m 0h-h见表9——h-h截面以上料仓的试验质量,如不进行水压试验,可取为m 0h-h Kg m max h-h 见表9——h-h截面处裙座壳的截面模数mm 3Z sm见表99.1自支承式锥顶形仓壳顶仓壳顶有效厚度mm δt26.94090828——单位面积的仓壳顶质量与附加质量之和Kg/m 2m t 696.5306122——单位面积的仓壳顶质量Kg/m 2m t115——单位面积仓壳顶附加质量Kg/m 2m t25——单位面积仓壳顶上平均载荷Kg/m 2m t3600——锥顶母线与其水平投影线间之夹角,一般取10°~35°°β22.5——仓壳顶材料在设计温度下的弹性模量MPa E t 195000受内压锥顶的周向应力MPa σθ31.6445283校核公式MPa181.059.2自支承式拱形仓壳顶仓壳顶有效厚度mm δt8.21651318——拱形仓壳顶球壳内半径mm R n 10000受内压拱形仓壳顶的周向应力MPaσθ19.853312049仓壳顶计算结论:校核合格校核公式MPa181.05结论:校核合格9.3仓壳顶加强筋加强筋的最大弯矩N·mm M max213443.0454——集中载荷N W z6000——直径方向加强筋的数量个n24所需加强筋截面模数mm3Z min1002080.0259.4仓壳顶与仓壳圆筒连接处的加强结构仓壳顶、仓壳圆筒与包边角钢有效截面积之和mm2A j24470.91471——取设计压力P及设计外压P0中较大值MPa0.0299.5仓壳椎体与仓壳圆筒连接处的加强结构仓壳圆筒圆周方向拉力N/mm Y s1278.931309仓壳锥体母线方向拉力N/mm Y1350.6599931仓壳锥体圆周方向拉力N/mm Y23489.584448仓壳锥体圆周方向拉力N Q-2786147.094——仓壳锥体有效加强长度mm B n0——仓壳圆筒有效加强长度mm B n252.1606631当Q>0时,承压圈区域内所需截面积mm2A c按临界许用应力计算当Q<0时,承压圈区域内所需截面积mm2A c-31823.49622——设计温度下材料的许用压缩应力MPa[σ]cr1039.6仓壳圆筒加强结构9.6.1仓壳圆筒设计外压 P0=2.25f i q0×10-6+P in MPa P00.005079688——料仓内部负压值MPa P in0.0029.6.2料仓许用临界外压力MPa[P cr] 6.82415E-05——核算区间罐壁筒体的当量高度m H E11.772——核算区间最薄圈罐壁板的有效厚度mm t min见表10——第i圈罐壁板的有效厚度mm t i见表10——第i圈罐壁板的实际高度m h i见表10——第i圈罐壁板的当量高度m H ei见表10 9.6.3加强圈个数及位置需设置加强圈10裙座地脚螺栓座10.1基础环内外径数据——基础环外径mm D ob22800——基础环内径mm D ob22200——基础环面积mm2A b 2.1206E+07——基础环材料许用弯曲应力MPa[σ]b170——裙座基础板外边缘到裙座壳外表面的距离mm b132——基础环的截面模数mm3Z b 1.1773E+11 10.2基础环厚度10.2.1无筋板时mmδb42.868621555.990842339MPa 5.9908423394.70E+0010.2.2有筋板时mmδb35.79064119——矩形板计算力矩N·mm M s36294.1499N·mm|M x|23632.63652N·mm|M y|36294.1499——系数C x//-0.2264——系数C y//0.05629——裙座基础板外边缘到裙座壳外表面的距离 b=(D ob-D is)/2-δs mm b132——筋板间最大间距 l=(πD ob/n-l3-δG)/(n j+1)-δG mm l328——地脚螺栓个数/n48——两个螺栓座之间筋板数量/n j3——筋板内侧间距mm l3100——筋板厚度mmδG16 10.3地脚螺栓8.04E-02地脚螺栓承受的最大拉应力MPa8.04E-02-3.2940E+000-0——0-0截面处垂直地震力,仅在最大弯矩为地震弯矩参与组合时计入此项N Fv地脚螺栓小径mm20.54——地脚螺栓腐蚀裕量mm C23——地脚螺栓材料许用应力MPa[σ]bt14710.4筋板筋板压应力MPaσg 3.52322495——一个地脚螺栓承受的最大拉力N F35514.1——对应于一个地脚螺栓的筋板个数/n15——筋板宽度mm l2126筋板许用压应力当λ≤λc时MPa[σ]c110.94当λ>λc时MPa[σ]c——长细比/λ21.626——回转半径,对长方形截面的筋板取0.289δG mm i 4.624——筋板长度mm l k200——系数/ν 1.5169——临界长细比/λc135.95——筋板材料的许用应力MPa[σ]G170结论:校核通过10.5盖板10.5.1无垫板时盖板最大应力MPaσz53.77014823 10.5.2有垫板时盖板最大应力MPaσz49.06347743——垫板上的地脚螺栓孔直径mm d227——盖板上的地脚螺栓孔直径mm d340——垫板宽度mm l460——盖板厚度,一般分块厚度不小于基础环的厚度mmδc24——垫板厚度mmδz12 10.6仓壳筒体与裙座连接焊缝10.6.1仓壳圆筒与裙座搭接焊接接头MPa140.49合格MPa145.45合格——焊接接头扛剪断面面积mm2A w778080.2631——裙座壳顶部截面外直径mm D ot22536J-J——搭接接头处的垂直地震力,仅在最大弯矩为地震弯矩参与组合时计入N FvJ-J8.68E+10——搭接焊接接头处的最大弯矩N·mm MmaxJ-J 1.48E+10——搭接焊接接头处处的风弯矩N·mm Mw——地震弯矩N·mm M e8.31E+10J-J9.96E+06——水压试验时(或满仓时)料仓最大质量(不计裙座质量)Kg mmaxJ-J9583002.44——J-J截面以上料仓操作质量Kg m——焊接接头抗剪截面模数mm3Z w4385468641t215——设计温度下焊接接头的许用应力,取两侧母材许用应力的较小者MPa[σ]w——设计温度下焊接接头的屈服强度,取两侧母材屈服强度的较小者MPaσs42510.6.2仓壳圆筒与裙座对接焊接接头MPa-70.72合格——裙座顶截面的内直径mm D it22500。

堆料场的计算公式

堆料场的计算公式

堆料场的计算公式全文共四篇示例,供读者参考第一篇示例:堆料场是工业生产中常见的一个场所,通常用于储存原材料或半成品。

在堆料场中,需要合理地堆放物料,以便于管理和利用。

为了有效地管理堆料场,需要对堆料场中的物料进行计算,以便掌握物料的数量、质量等信息。

下面我们来讨论一下堆料场的计算公式。

一、堆料场容积的计算堆料场的容积通常指的是堆放物料的容积。

在实际生产中,常用的堆料场形状有矩形、圆形等形状,因此需要根据堆料场的形状来计算堆料场的容积。

矩形堆料场的容积计算公式为:容积= 长× 宽× 高长、宽、高分别是堆料场的长、宽、高(单位为米)。

在堆料场中,需要计算堆放在堆料场中的物料的数量。

一般来说,物料的数量可以通过计算物料的体积或质量来确定。

物料的数量= 堆料场的容积/ 物料的体积或堆料场的容积/ 物料的密度物料的体积指的是单个物料的体积,物料的密度指的是物料的密度(单位为千克/立方米)。

堆料场的计算公式涉及到堆料场的容积、物料的数量和物料的质量等方面。

通过这些计算公式,可以有效地管理堆料场中的物料,提高物料的利用率,进而提高生产效率。

希望以上内容对大家有所帮助。

第二篇示例:堆料场是指用来堆放各种散装物料的场地,常见于建筑工地、采矿场和物流中心等地方。

在堆料场中,需要根据不同的物料类型和堆放方式来计算堆料的数量和体积,以便合理安排场地和提高工作效率。

下面就来介绍一些常用的堆料场计算公式。

首先是计算矩形堆料体积的公式。

矩形堆料是指把物料平整地堆放在场地上,形成一个矩形的堆料体积。

计算公式为:V = l x w x hV表示堆料的体积,l表示堆料的长度,w表示堆料的宽度,h表示堆料的高度。

这个公式适用于计算各种矩形形状的堆料体积,比如木板、砖块等。

以上是一些常用的堆料场计算公式,通过这些公式可以快速准确地计算各种不同形状的堆料体积,帮助工程师和工人们更好地安排场地和提高工作效率。

在实际工作中,我们还可以根据需要制定更多的计算公式,以适应不同类型的堆料和场地要求。

矩形固体料仓

矩形固体料仓

74科技资讯 SC I EN C E & TE C HN O LO G Y I NF O R MA T IO N工 业 技 术NB/T47003.2-2009《固体料仓》对储存固体松散物料的钢制焊接立式圆筒形料仓的设计算有明确的阐述,N B/T47003.1-2009《钢制焊接常压容器》中对储存液体物料的钢制焊接矩形容器的设计计算有详细的规定。

但在某一大型项目中,有一储存褐煤的钢制矩形锥体料仓。

外形见图1,设计计算无具体的标准参照。

下面就其结构及受力状况进行分析,提出对该种设备的设计计算方法和依据。

1 工艺条件所有的工艺参数包括设计温度,设计压力,料仓材质,磨蚀及腐蚀裕量,充装介质的密度,颗粒度,安息角,介质与壳体的磨擦系数及磨擦角等均由工艺专业提供。

2 选材设备的选材除应满足设计要求外,还要考虑其经济型。

应尽量考虑优选用价格低廉并且刚性较好的碳钢材料。

3 设计计算3.1锥形料仓的分段为使仓内料松散固体物料能够自动流出,料仓无论横截面是圆形还是方形其底部均为锥体,并且锥体部分的半顶角θ的大小与物料与壳体的摩擦系数及摩擦角有决定性的关系。

半顶角θ一般由工艺提供。

如图1,整个设备就是一个截面为矩形的锥形容器。

为了准确的计算风载荷及地震载荷,将料仓在高度方向等间距截面划分,每一段就是一个小的矩形锥体。

将每个截面及划分后的锥体从上到下分别按顺序编号,如图1。

并且在每个截面及竖向同等间距设置加强筋。

设定料仓壳体的名义厚度及加强筋的规格,按照NB/T47003.2-2009依次计算每段锥体的容积,操作质量,重心,地震力,地震弯矩及任意截面处的最大弯矩等。

3.2分析液体及固体物料对容器壁的作用力固体料仓是储存固体松散物料的容器,它是区别于储存气体,液体的容器。

气体充满于所储存的容器内,以自身的压力对整个容器壁产生作用力。

液体盛装在容器内,以液柱静压力对不同高度的壁面产生不同的作用力。

而松散的固体物料在自然状态下有堆积形态,对物料面以下的容器壁产生垂直压力,水平压力,在物料流动矩形固体料仓李晓栋(福斯特惠勒工程建筑设计(上海)有限公司 上海 200122)摘 要:结合圆形固体料仓及矩形容器的设计标准及原理,分析比较矩形固体料仓及液体矩形容器的结构及受力状况,提出矩形固体料仓的计算方法。

料仓计算

料仓计算
θ θ I-I z3=32Do1M E/(π I-I z3=32Do2M E/(π
(Do1^4-Di^4)) (Do2^4-Di^4))
MPa MPa
4.11704962 5.49285379
=PhDi/(2δ =PhDi/(2δ
1eφ 2eφ
) )
MPa MPa
4.84571371 5.99822029
θ
MPa N Kg
12.9484542 121972.747 3212.4
MPa mm
0.08387625 37550
MPa
0.01995274
MPa
0.02743037
=Di(Pn+P2)/(2δ
3eφ
cosθ )
MPa
34.8967879
2.5、轴向应力
公式:σ z=DiPv/(4δ 3、应力评定 3.1、周向应力 评定条件:σ
k1:基本振型参与系数,按式(14-13)计算:
mm mm mm mm
5000 21000 32000 22000
N Kg mm
14200.8422 0.5 16872.4662 14960 0.26878188 0.3 0.23 0.63840539
2、垂直地震力 当设防烈度为8度或9度区应考虑上下两个方向垂直地震力的作用。 3、地震弯矩 公式:MI-IE1=∑Fk1(hk-h) 式中:h:任意计算截面到底截面的距离 4、当料仓高度大于20m时,还须考虑高振型的影响,按下式计算 MI-IE=1.25MI-IE1 (五)、风载荷 设备安装在室内,无需考虑风载荷 (六)、偏心弯矩 料仓为轴对称结构,偏心载荷为0,无需考虑偏心弯矩 (七)、最大弯矩 不考虑分弯矩,偏心弯矩为0,最大弯矩即为地震弯矩 公式:Mmax=M
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第i段的操作质量
料仓的操作质量
料仓的最小质量
料仓的等效总质量
等效质量系数:地震计算时取
V Di θ p p0 T ψ μ q0
qw
C2 C2 C2
[σ]t φ
ReL(RP0.2) Et
[σ]t ReL(RP0.2)
Et θ
料仓计算
1500 10000 22.5 0.029 0.002
65 35 0.466307658 450 A 600 7 一 0.1 Ⅲ 1
av)*Dzi/(4*δ eia-acosθ)+maac*g/(π*ma-ac*
δeia-a*cosθ)
截面a-a处组合应力
载荷组合系数 轴向组合拉应力校核 钢板的厚度负偏差 壁厚附加量 裙座壳应力
人孔截面m-m截面应力计算公式
钢板的厚度负偏差 壁厚附加量 人孔截面开孔加强管长度 人孔截面处水平方向的最大宽度
2
3000
1
3000
见表7
段号 10 9 8 7 6 5 4 3 2 1
4.56E+09
li(mm)
1091 3000 3000 3000 4000 4000 4000 4000 3000 3000 ∑,N.mm N.mm
0.800 0.780 0.468 0.234
Pi(N) 11736.85 32067.75 31251.12 30053.82 38103.31 34704.5 30622.69 25985.44 13872.2 7258.99
筋板的许用应力(λ<λc):
仓壳锥体任意截面a-a处设计压力P和垂直于其 壁面的法向压力Pn产生的周向应力
σa-aθ=(P+Pa-ah)*Dzi/
仓壳锥体计算截面a-a处的仓壳锥体质量与仓
壳锥体计算截面a-a以下的仓壳锥体所储物料
质量之和:
σa-aZ=(P+Pa-
仓壳锥体任意截面a-a处的由设计压力P和物料 垂直压力Pv产生的轴向应力:
3501
mm
18617
PhI-I=ρ gDi/4TAN(ψ)’* (1-(hw/A+1)^2)*10^-9 PvI-I=ρg(hW((hw/A+1)^-1+hc/3)*10^-9 FfI-I=π*Di^2ρ ghW/(4*(hw+A))*10 ^-9
仓壳圆筒应力 内压产生的轴向应力 物料与仓壳圆筒壁间摩擦力产生的轴向应力
10 9 8 7 6 5
4
3
2
1

1'(m-m)
li(mm) 1091 3000 3000 3000 4000 4000 4000 4000 3000 3000
2000
∑'(m-m)
注:表格内(、)前表示裙座壳体数据,(、)
地震载荷及地震弯矩
与物料特性有关的使用系数I
物料特性
一般料仓,不储存危险物料
人孔截面开孔加强管厚度
σa-a∑=(σ z a-a ^2+ σ θ a-a ^2- σ z a-a * σ θ a-a )^ 0.5 K=1.2
σI-IzL<K*[σ]tφ C1=0.8 C=C1+C2=0.8+1=1.8
1.2 140
1.8
σ1=M0-0max/Zsb+(mo*g+FV0-0)/Asb≤KB,K[σ]t σ2=0.3M0-0w/Zsb+(mmax*g)/Asb≤B,0.9ReL
每一个计算截面最大弯矩的计算 最大弯矩在仓壳圆筒内产生轴向应力 料仓壳体及附件质量
σI-Iz1=PD i /4δ σI-Iz2=F f /πDiδ
I-I ei
MmaxI-I=M W I-I ,MEII +0.25M W I-I σI-Iz3=32*D 0 *M max I-I /π(D0^4-
mup(kg)=
见表6
表6 各截面水平风载荷
li(mm)
νi
1091
0.862
3000
0.861
3000
0.854
3000
0.845
4000
0.836
4000
0.820
各截面风弯矩MWI-I=Pili/2+Pi+1(li+li+1/2) +Pi+2(li+li+1+li+2/2)+…,
人孔截面风弯矩
4
4000
3
4000
2
3 0Cr18Ni9
137 0.85 206 191000 Q345R 197 295 191000 45 15800
m01 m02 ρ m03 ma mi m0=m01+m02+m03 mmin=m01+m02+ma meq λm
表3 料仓质量
段号 仓壳顶 仓壳圆筒
裙座/仓壳锥体
mmin meq

基础环截面模数
Zb
混凝土基础上的最大压应力
σbmax=M00max/Zb+(mo*g+FVmm)/Ab
3.8357E+00
采用带筋板结构,两个螺栓做质检筋板数量: nj
10300 9700 9.4248E+06 2.2896E+10
σbmax=0.3M0-0w/Zb+(m0-0max*g)/A
2.1729E+00 5
载荷组合系数
K=1.2
1.2
轴向组合拉应力校核 轴向组合压应力校核 钢板的厚度负偏差 壁厚附加量
σI-IzL<K*[σ]tφ σI-IzA≤[σ]er C1=0.8
140
(σ)cr=K*B,K[σ]t
取较小者,见表 9
C=C1+C2=0.8+1=1.8
物料对仓壳锥体的作用力以及仓壳锥体应力
仓壳锥体计算截面a-a处的内直径 物料在仓壳锥体计算截面a-a处的锥角高 仓壳锥体特性纵坐标值A
物料对仓壳圆筒作用力 锥段以上物料堆积高度 料仓计算截面以上储料高度 物料与仓壳圆筒壁之间摩擦系数 μ 物料自然堆积上锥角高度hc 特性纵坐标值A
物料在仓壳圆筒计算截面I-I处产生的水平压 力
物料在仓壳圆筒计算截面I-I处产生的垂直压
物料与仓壳圆筒壁之间摩擦力
15800
mm
hW
mm
见表8
0.4663
设计温度下弹性模量 裙座材料 设计温度下许用应力
设计温度下屈服强度
设计温度下弹性模量 锥体角度 物料距锥段以上堆积高度
设计条件
料仓质量 设定仓顶厚度 设定仓壳圆筒壁厚 设定仓壳锥体壁厚 设定裙座壳壁厚度 仓壳(包括支座)质量
平台、扶梯质量 堆积物料密度 操作时料仓内物料质量
人孔、管件及仓壳顶上附件(过滤器、吊柱等)质量
ζ η2=1+(0.05ζ)/(0.06+1.7* α1=η2*αmax g FE=I*α1*meq*g hFiEi=FE*mi*hi/ ∑ mk*hk(k=1,2,
10 9 8 7 6
0.03 1.18 0.0944 9.81 1779610.955 见表4
mk(mi)(kg) 15717 174297 288889 290385 389175
见表9
见表9
取较大者,见表 9
雪载荷
Ws=π /4*D0^2*qw*10^-6
47237
截面以上仓壳重量及垂直地震力产生的轴向应 σI-Iz4=m up *g+F V I-

I +Ws /πD i *δ ei I-I
FVI-I=0 N
抗震烈度为7度 8、9度公式计算
内压力和物料的水平压力筒壁中产生的周向应 力
σ1=Mm-mmax/Zsb+(mm-mo*g+FVm-m)/Asb≤KB,K[σ]t σ2=0.3Mm-mw/Zsb+(mm-mmax*g)/Asb≤B,0.9ReL
C1=0.8
C=C1+C2=0.8+2=2.8
2.8
lm
120
mm
bm
500
mm
δm
16
mm
Asm=π*Dis*δes-∑[(bm+2δm)δes-Am]
地脚螺栓数量:
n
24
筋板内侧间距:
l3
100
裙座基础板外边缘到裙座壳外表面的距离 筋板厚度
筋板间最大间距
b/l CX MX=CX*σbmax*b^2 My=Cy*σbmax*l^2 Ms=max{|MX|,|MY|}
基础环板厚度δb
考虑腐蚀裕量2mm基础环板厚度
b=(D0b-Dis)/2-δs
126
料仓公称容积 料仓内直径 仓壳锥体半顶角 设计压力 设计外压力 设计温度 物料内摩擦角 物料与仓壳内壁之间的摩擦系数 基本风压值 地面粗糙度 雪载荷 抗震设防烈度 设计地震组 设计基本地震加速度 场地土类别 仓壳圆筒、仓壳锥体的腐蚀裕量和磨蚀裕量
裙座腐蚀裕量
地脚螺栓腐蚀裕量 仓壳圆筒、仓壳锥体和仓壳顶材料 设计温度下许用应力 仓壳焊接接头系数 设计温度下屈服强度
DZia-a hzc=Da-azi/2*tanψ Az=Da-azi/4*tanψ'tan^2(45-ψ
见表10 见表10 见表10
Pha-a=ρ
物料在仓壳锥体计算截面a-a处产生的水平压 gDi/4TAN(ψ)’*

(1-(hw/Az+1)^-
2)*10^-9
物料在仓壳锥体计算截面a-a处产生的垂直压 Pva-a=ρg(hW((hw/Az+1)^-1+hzc/3)*10^-9 物料在仓壳锥体计算截面a-a处产生的法向压 Pna-a=Pa-avsin^2θ+Pa-ahcos^2θ
相关文档
最新文档