生物信息学介绍PPT

合集下载

生物信息学导论精品PPT课件

生物信息学导论精品PPT课件

2020/10/5
16
概述
➢ 生物信息学往哪里去
表18-1生物信息学的过去、现在和将来
二十世纪90年代 的生物信息学
当前的生物信息 学
未来的生物信息 学
2020/10/5
主要内容
大规模基因组学与蛋白质组学的实 验数据形成的一级数据库及其相应 的分析方法与工具
由一级数据库分类、归纳、注释得 到的基因组学与蛋白质组学二级数 据库 (知识库)及其相应的分析方法与 工具
细胞和生物体的完全计算机表示
目的 了解单个基因和蛋白 质的功能与用途
2020/10/5
12
概述
➢ 生物信息学的起源
DNA自动测序构成过巨大的冲击,因为它曾经是各种生物学数据高通 量产出的前沿阵地。像表达序列标签(ESTs),单核苷多态性(SNPs)都 和基因序列密切相关。随后发展的研究基因表达模式(profile)的DNA微 阵列技术、用于探测蛋白质相互作用的酵母双杂交系统、以及质谱技术极 大地让生命科学类数据库飞速膨胀。结构基因组学方面的新技术还不能大 规模地产生数据,但它们正在导致蛋白质三维结构数据的增加。
2020/10/5
14
概述
➢ 生物信息学往哪里去
尽管最近十年来,高通量检测技术与信息技术的结合让人们认识了大 量的基因和蛋白质,但是和物理学、化学相比较,生物学仍旧是一门不成 熟的学科,因为对于生命过程,我们无法根据一般性原理做出像卫星轨道 那样精确的预测。随着数据的不断膨胀和知识的积累,也借助于生物信息 学,这种情形很有可能发生改变。
生物信息学导论
Introduction to Bioinformatics
Email: Tel:
2020/10/5
1

生物信息学概述(共59张PPT)精选全文完整版

生物信息学概述(共59张PPT)精选全文完整版

蛋白质 结构
蛋白质 功能
最基本的 生物信息
2024/11/11
生命体系千姿百 态的变化
维持生命活 动的机器
9
第一部遗传密码已被破译,但对密码的转录过程还不清楚,对大多
数DNA非编码区域的功能还知之甚少
对于第二部密码,目前则只能用统计学的方法进行分析。破译“第
二遗传密码”:即折叠密码(folding code),从蛋白质的一级结构
Rickettsia prowazekii
Helicobacter pylori
Buchnerasp. APS
Escherichia coli大南芥
Thermotoga maritima
Thermoplasma acidophilum
mouse
Caenorhabitis elegans
以基因组计划的实施为标志的基因组时代(1990年至2001年)是生
物信息学成为一个较完整的新兴学科并得到高速发展的时期。这一 时期生物信息学确立了自身的研究领域和学科特征,成为生命科学 的热点学科和重要前沿领域之一。
这一阶段的主要成就包括大分子序列以及表达序列标签 ( expressed sequence tag,EST)数据库的高速发展、BLAST( basic local alignment search tool)和FASTA(fast alignment)等工具软件的研制和相应新算法的提出、基因的寻 找与识别、电子克隆(in silico cloning)技术等,大大提高
细胞质(线粒体、叶绿体) 基因组DNA
人类基因组:3.2×109 bp 18
人类自然科学史上的 3 大计划
曼哈顿原子 弹计划
阿波罗登月 计划
人类基因组计划

生物信息学课堂ppt课件

生物信息学课堂ppt课件
它是一门理论概念与实践应用并重的学科 ❖ bioinformatics这一名词在1991年左右才在文献中出现,还
只是出现在电子出版物的文本中。
5
产生 生物信息学的
❖ 20世纪后期,生物科学技术迅猛发展,无论从数量上还是从质量上都 极大地丰富了生物科学的数据资源。数据资源的急剧膨胀迫使人们寻求 一种强有力的工具去组织这些数据,以利于储存、加工和进一步利用。 而海量的生物学数据中必然蕴含着重要的生物学规律,这些规律将是解 释生命之谜的关键,人们同样需要一种强有力的工具来协助人脑完成对 这些数据的分析工作。
❖ 基因组时代--基因寻找和识别、网络数据库系统的 建立、交互界面的开发;
❖ 后基因组时代--大规模基因组分析、蛋白质组分析。
8
重要性 生物信息学的
❖ 生物信息学不仅是一门学科,更是一种重要的研究开发工具。 ❖ 从科学的角度来讲,生物信息学是一门研究生物和生物相关
系统中信息内容与信息流向的综合系统科学。只有通过生物 信息学的计算处理,人们才能从众多分散的生物学观测数据 中获得对生命运行机制的系统理解。 ❖ 从工具的角度来讲,生物信息学几乎是今后所有生物(医药) 研究开发所必需的工具。只有根据生物信息学对大量数据资 料进行分析后,人们才能选择该领域正确的研发方向。 ❖ 生物信息学不仅具有重大的科学意义,而且具有巨大的经济 效益。它的许多研究成果可以较快地产业化,成为价值很高 的产品。
分析(主要研究内容) 应用(多个领域)
主要由数据库、计算机网络和应用软件三大部分构成
2
定义
❖ 收集、维护、传播、分析以及利用在分子生物学研究中获得的大量数据。
生物信息学(bioinformatics)是生物学与计算机科学以及应用数学等学

生物信息学分析方法介绍PPT课件

生物信息学分析方法介绍PPT课件
生物信息学分析方法 介绍
目录
• 生物信息学概述 • 基因组学分析方法 • 转录组学分析方法 • 表观遗传学分析方法 • 蛋白质组学分析方法 • 生物信息学分析流程和方法比较
01
生物信息学概述
生物信息学的定义和重要性
定义
生物信息学是一门跨学科的学科,它利用计算机科学、数学和工程学的原理和 技术,对生物学数据进行分析、建模和解读,以揭示生命现象的本质和规律。
研究蛋白质的序列、结构 和功能,以及蛋白质相互 作用和蛋白质组表达调控 机制。
研究基因转录本的序列、 结构和表达水平,以及转 录调控机制。
研究基因表达的表观遗传 调控机制,如DNA甲基化 、组蛋白修饰等。
通过对患者基因组、蛋白 质组和转录组等数据的分 析,为个性化医疗和精准 医学提供支持。
02
基因组学分析方法
基因组注释
基因组注释是指对基因组序列中的各 个区域进行标记和描述的过程,包括 基因、转录单元、重复序列、调控元 件等。
注释信息可以通过数据库(如RefSeq、 GeneBank等)或注释软件(如GATK、 ANNOVAR等)获取。注释信息对于 理解基因组的生物学功能和进化关系 具有重要意义。
基因组变异检测
基因组变异检测是指检测基因组序列 中的变异位点,包括单核苷酸变异、 插入和缺失等。
VS
变异检测对于遗传疾病研究、进化生 物学和生物进化研究等领域具有重要 意义。常用的变异检测方法有SNP检 测、CNV检测等,它们基于不同的原 理和技术,具有不同的适用范围和精 度。
03
转录组学分析方法
RNA测序技术
利用生物信息学方法和算法,对 RNA测序数据进行基因融合检测, 寻找融合基因及其融合方式。
基因融合检测结果可以为研究肿 瘤等疾病提供重要线索,有助于 深入了解疾病发生发展机制。

生物信息学介绍(PPT20页)

生物信息学介绍(PPT20页)
– 蛋白质的结构和功能预测
• 蛋白质怎样实现细胞和有机体的动力学:
– 生命为什么是蛋白质的运动方式
• 个体发育和系统发育的法则和机理:
– 肌体如何长成、运作、衰老和进化
• 征服疾病:
– 主要循环系统疾病、癌症、病毒源性疾病、遗传病和衰老
• 保护和利用生物资源,开发和发展生物产业:
– 生物学怎样造福人类

1、
功的路 。2020/10/262020/10/26Monda y, October 26, 2020
成功源于不懈的努力,人生最大的敌人是自己怯懦

2、
。2 020/10/ 262020 /10/26 2020/10 /2610/ 26/202 0 12:03:09 AM
每天只看目标,别老想障碍
–蛋白质的三维结构
– 蛋白质的物理性质预测
– 其他特殊局部信息:其它特殊局部结构包括 膜蛋白的跨膜螺旋、信号肽、卷曲螺旋 (Coiled Coils)等,具有明显的序列特征和结 构特征,也可以用计算方法加以预测
• cDNA 芯片相关的数据管理和分析
实验室信息管理系统 基因表达公共数据库
• 分子进化
基因芯片流程(二)
6. 图象处理(采用专门软件,对图象进行分析, 提取每个点上的数字信号),得到原始数据表。
7. 数据校正和筛选(对cy5或cy3信号进行校正, 消除实验或扫描等各环节因素对数据的影响, 同时利用筛选规则对数据中的“坏点”,“小 点”,“低信号点”进行筛选,并作标记。)
8. 差异表达基因的确定(采用ratio值对差异基因 进行判断,或采用统计方法如线性回归、主成 分分析、调整P值算法等对差异基因进行统计 推断)
远期任务
• 读懂人类基因组,发现人类遗传语言的 根本规律,从而阐明若干生 物学中的重 大自然哲学问题,像生命的起源与进化 等。这一研究的关键和核心是了解非编 码区

生物信息学PPT课件

生物信息学PPT课件

生物信息学在农业研究中的应用
1 2 3
作物育种
生物信息学可以通过基因组学手段分析作物的遗 传变异,为作物育种提供重要的遗传资源。
转基因作物研究
通过生物信息学分析,可以了解转基因作物的基 因表达和性状变化,为转基因作物的研发和应用 提供支持。
农业环境监测
生物信息学可以帮助研究人员监测农业环境中的 微生物群落、土壤质量等指标,为农业生产提供 科学依据。
特点
生物信息学具有数据密集、技术依赖、多学科交叉、应用广泛等特点。
生物信息学的重要性
促进生命科学研究
提高疾病诊断和治疗水平
生物信息学为生命科学研究提供了强 大的数据分析和挖掘工具,有助于深 入揭示生命现象的本质和规律。
生物信息学在疾病诊断和治疗方面具 有重要作用,通过对基因组、蛋白质 组等数据的分析,有助于实现个体化 精准医疗。
03 生物信息学技术与方法
基因组测序技术
基因组测序技术概述
基因组测序是生物信息学中的一项关键技术,它能够测定生物体的 全部基因序列,为后续的基因组学研究提供基础数据。
测序原理
基因组测序主要基于下一代测序技术,如高通量测序和单分子测序, 通过这些技术可以快速、准确地测定生物体的基因序列。
测序应用
基因组测序在医学、农业、生物多样性等多个领域都有广泛应用,如 疾病诊断、药物研发、作物育种等。
生物信息学ppt课件
目录
• 生物信息学概述 • 生物信息学的主要研究领域 • 生物信息学技术与方法 • 生物信息学的应用前景 • 生物信息学的挑战与展望 • 案例分析
01 生物信息学概述
定义与特点
定义
生物信息学是一门跨学科的学科,它利用计算机科学、数学和工程学的原理、 技术和方法,对生物学数据进行分析、解释和利用,以解决生物学问题。

《生物信息学概述》课件

《生物信息学概述》课件

04
生物信息学的挑战与未来发展
数据整合与标准化
数据整合
在生物信息学中,数据整合是一个重要的挑战。由于不同实验室、研究机构的数据格式、标准和质量 各不相同,如何将这些数据有效地整合在一起成为一个亟待解决的问题。
标准化
为了提高数据的可比性和可重复性,生物信息学需要制定统一的标准和规范,以确保数据的准确性和 可靠性。
03
生物信息学在医学研究中的应用
疾病诊断
基因检测
利用生物信息学技术对基因序列进行分析,检测与疾病相关的基因 变异,有助于早期发现遗传性疾病和个性化诊断。
疾病分型
通过对生物样本的基因组、转录组和蛋白质组等数据进行比较分析 ,有助于对疾病进行精确分型,为制定个性化治疗方案提供依据。
预测疾病风险
基于生物信息学的大数据分析,可以预测个体患某种疾病的风险,为 预防性干预提供科学依据。
05
实例分析
基因组学研究实例
总结词
基因组学研究实例展示了生物信息学在基因组序列分析中的应用。
详细描述
基因组学研究实例中,生物信息学发挥了重要作用。通过对基因组序列进行分析,可以 发现与人类健康、疾病相关的基因变异和功能。生物信息学方法包括基因组测序、基因
表达分析、基因变异检测等,这些方法为个性化医疗和精准医学提供了有力支持。
02
生物信息学的主要技术
基因组学
基因组测序
通过对生物体基因组的测序,分析基因序列、基因突变和基 因功能。
基因表达分析
研究基因在不同条件下的表达水平,揭示基因与生物表型之 间的关系。
蛋白质组学
蛋白质分离与鉴定
分离和鉴定生物体内的蛋白质,了解蛋白质的组成和功能。
蛋白质相互作用研究
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

远期任务
• 读懂人类基因组,发现人类遗传语言的 根本规律,从而阐明若干生 物学中的重 大自然哲学问题,像生命的起源与进化 等。这一研究的关键和核心是了解非编 码区
– 非编码区信息结构分析 – 遗传密码起源和生物进化的研究
生物学世纪的重大生物学课题
• 生命是什么:生物系统运作机理的更深入探索 • 基因组中的信息:读懂ACGT序列 • 氨基酸序列如何编码蛋白质的特性与活性
1986年Americian Rensto Dulbecco 《Science》
阐明人类基因组的全部核苷酸序列,从整体上破译人类 遗传信息,在分子水平全面认识自我
近期任务
• 大规模基因组测序中的信息分析 • 新基因和新SNPS(单核苷酸多态性)的发
现与鉴定 • 完整基因组的比较研究 • 大规模基因功能表达谱的分析 • 生物大分子的结构模拟与药物设计
1.6cm2 40万位点 每点1000万条探针
基因芯片流程(一)
1. 实验设计 2. 样品制备(指mRNA或总RNA样品,包括对照
组和实验组) 3. 芯片制备(包括PCR,纯化,点样等步骤) 4. 芯片杂交(将mRNA或总RNA分别进行逆转录
生成cDNA,在此步骤中将对照组和实验组 cDNA分别标记CY3和CY5荧光信号) 5. 芯片扫描(采用激光扫描仪,分别用532nm和 635nm波长激光扫描芯片,对于每张芯片,得 到CY3和CY5通道两幅图象)
生物信息学介绍
生物信息学:
• 存储、修复、分析、整合生物数据的学科
• 分子生物学与信息技术的结合体
• 研究材料与结果:各种生物学数据
• 研究工具:网络、计算机
• 包括生物学和计算两部分
• 现代生物研究的核心
• 研究方法:
– 传统生物学:实验 – 现代生物学:理论
理论 实验验证
• 基因和生命的关系: 中心法则
• 大规模基因表达谱数据分析
重复序列分析 编码区统计特征分析 启动子分析内含子/外显子剪接位点 翻译起始位点和翻译终止信号 tRNA基因识别 DNA序列自身编码特征分析 基因组组织结构和信息结构
不同物种、不同进化水平的生物的相关 基因之间进行比较
• 蛋白质结构和功能的预测分析
– 蛋白质家族保守序列寻找 – 从氨基酸组成辨识蛋白质 –蛋白质二级结构预测
关基因 • 可视化工具和基因数据分析
• KDD2001年BIOKDD的主题就是“生物信息 学中的数据挖掘”
现在的工作
• 数据挖掘算法在生物信息学研究中的应 用
• 数据挖掘算法在生物信息学研究中的改 进与发展
• 生物信息学软件的开发
基因芯片(microarray)介绍
• 电子技术与生物技术的结合 • 基因组研究中最实用的部分之一 • Affymetrix公司:
9. 生物信息学分析(如cluster 算法、差异基因的 同源性比对,差异基因的相关文献检索等)
基因芯片应用
• 基因表达检测
– 特异性相关的基因:差异表达的基因 – 基因功能研究 – 健康状况的检测 – 毒理学研究 – 群克隆的排序
基因传递遗传信息(转录),并由蛋白质表达,构成 有机体,完成生命的功能
DNA
mRNA
蛋白质
• 蛋白质组(蛋白质protein与基因组genome的杂合)
一种基因组所表达的全套蛋白质,即一种细胞至一种生 物所表达的全部蛋白质
• 蛋白质组学:从蛋白质组的水平研究认识生命活动
的机理和疾病发生的分子机制
• 人类基因组计划(Human Genome PROJECT, HGP)
现在进行的研究
• 序列比对
– 系列两两比对 – 多系列比对
• 基因组数据分析
序列拼接:通过计算分析从EST库拼接出完整的新基因, 即“电子克隆” 新基因发现:根据编码区具有的序列特征等通过计算分 析从DNA序列中确定基因编码区
序列同源比较:
Smith-Waterman算法 FASTA BLAST算法
–蛋白质的三维结构
– 蛋白质的物理性质预测
– 其他特殊局部信息:其它特殊局部结构包括 膜蛋白的跨膜螺旋、信号肽、卷曲螺旋 (Coiled Coils)等,具有明显的序列特征和结 构特征,也可以用计算方法加以预测
• cDNA 芯片相关的数据管理和分析
实验室信息管理系统 基因表达公共数据库
• 分子进化
基因芯片流程(二)
6. 图象处理(采用专门软件,对图象进行分析, 提取每个点上的数字信号),得到原始数据表。
7. 数据校正和筛选(对cy5或cy3信号进行校正, 消除实验或扫描等各环节因素对数据的影响, 同时利用筛选规则对数据中的“坏点”,“小 点”,“低信号点”进行筛选,并作标记。)
8. 差异表达基因的确定(采用ratio值对差异基因 进行判断,或采用统计方法如线性回归、主成 分分析、调整P值算法等对差异基因进行统计 推断)
– 蛋白质的结构和功能预测
• 蛋白质怎样实现细胞和有机体的动力学:
– 生命为什么是蛋白质的运动方式
• 个体发育和系统发育的法则和机理:
– 肌体如何长成、运作、衰老和进化
• 征服疾病:
– 主要循环系统疾病、癌症、病毒源性疾病、遗传病和衰老
• 保护和利用生物资源,开发和发展生物产业:
– 生物学怎样造福人类
研究分类
• 序列分析 • 不基于序列的研究
–生物芯片的基因表达谱分析 –全基因组关联分析 –基因调控网络的反向工程研究
数据挖掘技术在生物信息学的应用
• 异质、分布式基因组数据的语义综合 • DNA序列的相似性查找和比较 • 关联分析:识别基因序列的共发生性 • 路径分析:在疾病发展的不同阶段的相
基因芯片产业化现状
• 公司:尖端技术研究和市场化的混合体 • 美国已有二十多家公司 • 我国:
– 首家为联合基因集团 – 南方病虫害基因 – 白血病检测
基因芯片分析所用到的算法
• 聚类 • 分类 • 关联分析 • 时间序列分析 • 异常检测 • 可视化
相关文档
最新文档