极坐标与参数方程经典练习题含答案详解
高中数学极坐标与参数方程大题(详解)
参数方程极坐标系解答题1.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为:,曲线C的参数方程为:(α为参数).(I)写出直线l的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.解答:解:(1)∵直线l的极坐标方程为:,∴ρ(sinθ﹣cosθ)=,∴,∴x﹣y+1=0.(2)根据曲线C的参数方程为:(α为参数).得(x﹣2)2+y2=4,它表示一个以(2,0)为圆心,以2为半径的圆,圆心到直线的距离为:d=,∴曲线C上的点到直线l的距离的最大值=.3.已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.解答:解:(1)把曲线C1:(t为参数)化为普通方程得:(x+4)2+(y﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;把C2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x轴上,长半轴为8,短半轴为3的椭圆;(2)把t=代入到曲线C1的参数方程得:P(﹣4,4),把直线C3:(t为参数)化为普通方程得:x﹣2y﹣7=0,设Q的坐标为Q(8cosθ,3sinθ),故M(﹣2+4cosθ,2+sinθ)所以M到直线的距离d==,(其中sinα=,cosα=)从而当cosθ=,sinθ=﹣时,d取得最小值.4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.解答:解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即(x﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l的参数方程(t为参数),把t=x代入y=﹣1+2t可得直线l的普通方程:,∴圆心到直线l的距离,∴|AB|=2==,点P直线AB距离的最大值为,.5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4分)点到直线的距离(6分)所以椭圆上点到直线距离的最大值为,最小值为.(10分)6.在直角坐标系xoy中,直线I的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=cos(θ+).(1)求直线I被曲线C所截得的弦长;(2)若M(x,y)是曲线C上的动点,求x+y的最大值.解答:解:(1)直线I的参数方程为(t为参数),消去t,可得,3x+4y+1=0;由于ρ=cos(θ+)=(),即有ρ2=ρcosθ﹣ρsinθ,则有x2+y2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==,故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M(,),则x+y==sin(),由于θ∈R,则x+y的最大值为1.7.选修4﹣4:参数方程选讲已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为,曲线C的极坐标方程为.(Ⅰ)写出点P的直角坐标及曲线C的普通方程;(Ⅱ)若Q为C上的动点,求PQ中点M到直线l:(t为参数)距离的最小值.解解(1)∵P点的极坐标为,答:∴=3,=.∴点P的直角坐标把ρ2=x2+y2,y=ρsinθ代入可得,即∴曲线C的直角坐标方程为.(2)曲线C的参数方程为(θ为参数),直线l的普通方程为x﹣2y﹣7=0设,则线段PQ的中点.那么点M到直线l的距离.,∴点M到直线l的最小距离为.8.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.解答:解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.9.在直角坐标系xoy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=4.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的坐标.解答:解:(1)由曲线C1:,可得,两式两边平方相加得:,即曲线C1的普通方程为:.由曲线C2:得:,即ρsinθ+ρcosθ=8,所以x+y﹣8=0,即曲线C2的直角坐标方程为:x+y﹣8=0.(2)由(1)知椭圆C1与直线C2无公共点,椭圆上的点到直线x+y﹣8=0的距离为,∴当时,d的最小值为,此时点P的坐标为.10.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.解答:解:(I)∵,∴,∴圆C的直角坐标方程为,即,∴圆心直角坐标为.(5分)(II)∵直线l的普通方程为,圆心C到直线l距离是,∴直线l上的点向圆C引的切线长的最小值是(10分)11.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.解答:解:(1)根据题意,得曲线C1的直角坐标方程为:x2+y2﹣4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得,代入x2+y2﹣4y=12,得点Q的轨迹C2的直角坐标方程为:(x﹣3)2+(y﹣1)2=4,(2)直线l的普通方程为:y=ax,根据题意,得,解得实数a的取值范围为:[0,].12.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos ()=2.(Ⅰ)求C1与C2交点的极坐标;(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为(t∈R为参数),求a,b的值.解答:解:(I)圆C1,直线C2的直角坐标方程分别为x2+(y﹣2)2=4,x+y﹣4=0,解得或,∴C1与C2交点的极坐标为(4,).(2,).(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),故直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y=x﹣+1,∴,解得a=﹣1,b=2.13.在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ(Ⅰ)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(Ⅱ)若曲线C与直线相交于不同的两点M、N,求|PM|+|PN|的取值范围.解答:解:(I)直线l的参数方程为(t为参数).曲线C的极坐标方程ρ=4cosθ可化为ρ2=4ρcosθ.把x=ρcosθ,y=ρsinθ代入曲线C的极坐标方程可得x2+y2=4x,即(x﹣2)2+y2=4.(II)把直线l的参数方程为(t为参数)代入圆的方程可得:t2+4(sinα+cosα)t+4=0.∵曲线C与直线相交于不同的两点M、N,∴△=16(sinα+cosα)2﹣16>0,∴sinαcosα>0,又α∈[0,π),∴.又t1+t2=﹣4(sinα+cosα),t1t2=4.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4|sinα+cosα|=,∵,∴,∴.∴|PM|+|PN|的取值范围是.14.在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.解答:解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).15.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2相交于A,B两点.(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB的长度.解答:解:(Ⅰ)曲线C2:(p∈R)表示直线y=x,曲线C1:ρ=6cosθ,即ρ2=6ρcosθ所以x2+y2=6x即(x﹣3)2+y2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB的长度.16.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+)=,圆C的参数方程为,(θ为参数,r>0)(Ⅰ)求圆心C的极坐标;(Ⅱ)当r为何值时,圆C上的点到直线l的最大距离为3.解答:解:(1)由ρsin(θ+)=,得ρ(cosθ+sinθ)=1,∴直线l:x+y﹣1=0.由得C:圆心(﹣,﹣).∴圆心C的极坐标(1,).(2)在圆C:的圆心到直线l的距离为:∵圆C上的点到直线l的最大距离为3,∴.r=2﹣∴当r=2﹣时,圆C上的点到直线l的最大距离为3.17.选修4﹣4:坐标系与参数方程在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(Ⅱ)求圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C1,C2的公共弦的参数方程为(或圆C1,C2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1从而于是圆C1,C2的公共弦的参数方程为.。
极坐标参数方程大题及答案详解
极坐标参数方程大题及答案详解1. 题目描述求函数 $r = f(\\theta)$, 其中 $f(\\theta)$ 是 $\\theta$ 的某个函数。
问题描述已知函数 $r = f(\\theta)$,具体要求如下:1.求函数 $r = f(\\theta)$ 的图像。
2.求 $r = f(\\theta)$ 的对称轴。
3.求 $r = f(\\theta)$ 的顶部和底部的点。
4.求函数 $r = f(\\theta)$ 在给定范围内的最大值和最小值的坐标。
给定的函数 $r = f(\\theta)$ 满足条件:函数的定义域为 $\\theta \\in [a, b]$。
请根据给定题目中的参数方程,完成以上要求。
2. 解答详解给定函数 $r = f(\\theta)$ 的参数方程,我们首先可以绘制其图像,具体步骤如下:1.初始化一个极坐标系。
2.根据给定函数 $r = f(\\theta)$ 的参数方程,计算r和 $\\theta$ 所对应的坐标点。
3.将得到的坐标点在极坐标系上绘制出来。
4.连接相邻的点,即可得到函数 $r = f(\\theta)$ 的图像。
完成上述步骤后,我们可以得到函数 $r = f(\\theta)$ 的图像。
下面我们根据题目的要求,依次解答其他问题:2.1 求函数 $r = f(\\theta)$ 的对称轴函数 $r = f(\\theta)$ 的对称轴是指图像关于某条直线对称。
我们可以通过以下步骤来求解对称轴:1.对于给定的$\\theta$ 的取值范围,找到该范围内的最大值和最小值。
2.计算最大值和最小值所对应的函数值r。
3.选取最大值和最小值所对应的角度 $\\theta_{max}$ 和$\\theta_{min}$,计算其平均值 $\\theta_{avg}$。
4.根据 $\\theta_{avg}$ 计算其所对应的函数值r avg。
5.当 $\\theta$ 从 $\\theta_{avg}$ 开始递增或递减时,观察r的变化趋势,若r的值逐渐减小或递增,说明图像关于 $\\theta_{avg}$ 对称;若r的值逐渐增大或递减,说明图像不关于 $\\theta_{avg}$ 对称。
极坐标与参数方程-习题及答案
金材教育 极坐标与参数方程未命名1.在直角坐标系xOy 中,曲线C 1的参数方程为{x =cosαy =1+sinα (α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+π4)=2√2.(1(写出C 1的普通方程和C 2的直角坐标方程((2)直线y =x 与C 1交于异于原点的A ,与C 2交于点B ,求线段AB 的长. 【答案】(1)x 2+(y −1)2=1;C 2:x +y =4. (2)|AB |=√2.【解析】分析:(1)利用sin 2α+cos 2α=1,将曲线C 1的参数方程化为普通方程,由{x =ρcosθy =ρsinθ 求出C 2的直角坐标方程;(2)由直线的参数方程的意义,求出线段AB 的长。
详解:(1)C 1:{x =cosαy =1+sinα (α为参数)的普通方程是x 2+(y −1)2=1.∵ρsin (θ+π4)=2√2,整理得√22ρsinθ+√22ρcosθ=2√2,∴C 2的直角坐标方程为x +y =4; 故C 1:x 2+(y −1)2=1;C 2:x +y =4.(2)直线y =x 的极坐标方程为θ=π4,C 1的极坐标方程为ρ=2sinθ, ∴点A (√2,π4),B (2√2,π4),即ρA =√2,ρB =2√2, 于是|AB |=ρB −ρA =√2.点睛:本题主要考查曲线的普通方程、直角坐标方程的求法等,属于基础题。
考查了推理论证能力,运算求解能力。
2.(本题满分10分)选修4-4:坐标系与参数方程选讲在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求曲线的普通方程与曲线的直角坐标方程;(2)设点,曲线与曲线交于,求的值.【答案】(1);(2)85。
【解析】试题分析:(1)根据曲线的参数方程,两式相加消去参数,即可得到普通方程;由曲线的极坐标方程得ρ2=41+3sin2θ⇒ρ2+3ρ2sin2θ=4,可化为直角坐标方程;(2)将,代入直角坐标方程,整理后,利用=t1t2即可求解.试题解析:(1)两式相加消去参数t可得曲线的普通方程,由曲线的极坐标方程得ρ2=41+3sin2θ⇒ρ2+3ρ2sin2θ=4,整理可得曲线的直角坐标方程.(2)将代人直角坐标方程得利用韦达定理可得,所以|MA||MB|=考点:简单曲线的极坐标方程;直线的参数方程.3.选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线C1的参数方程为:{x=√55ty=9+2√55t(t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=8sinθ.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)若曲线C 1与C 2交于A ,B 两点,点P 的坐标为(0,9),求1|PA |+1|PB |. 【答案】(1)x 2+(y −4)2=16;2x −y +9=0. (2)4√59. 【解析】分析:(1)消元法解出直线C 1的普通方程,利用直角坐标和极坐标的互化公式解出圆C 2的直角坐标方程(2)将直线C 1的参数方程为代入圆C 2的直角坐标方程并化简整理关于t 的一元二次方程。
高考极坐标参数方程含答案(经典39题)(1)_看图王
方程. C1 与 C2 公共点的个数和 C 1 与C2 公共点的个数是否相同?说明你的理由.
29.在平面直角坐标系
xoy
中,圆
C
的参数方程为
x
y
4 cos 4 sin
(
为参数),直线
l
(2)求证直线 l 和曲线 C 相交于两点 A 、 B ,并求 | MA | | MB | 的值.
(2, )
6.在极坐标系中,O 为极点,已知圆 C 的圆心为 3 ,半径 r=1,P 在圆 C 上运动。 (I)求圆 C 的极坐标方程;(II)在直角坐标系(与极坐标系取相同的长度单位,且以极点 O 为原点, 以极轴为 x 轴正半轴)中,若 Q 为线段 OP 的中点,求点 Q 轨迹的直角坐标方程。
程是
4 cos
,直线 l
的参数方程是
x
3 y1 2
3 2 t.
t
,
(t
为参数)。求极点在直线 l
上的射影点
P
的
极坐标;若 M 、 N 分别为曲线 C 、直线 l 上的动点,求 MN 的最小值。
x 4 cos
8.平面直角坐标系中,将曲线
y
sin
( 为参数)上的每一点纵坐标不变,横坐标变为原来的
为
t
2
,Q
为
C
2
上的动点,求
PQ
中点
M
到直线
C3
:
2x
y
7
0
(t
为参数)距离的最大值。
第 13页 共 16页
◎
第 14页 共 16页
极坐标与参数方程专项训练及详细答案
一.选择题(共4小题)1.在极坐标系中,圆C :ρ2+k 2cos ρ+ρsin θ﹣k=0关于直线l :θ=(ρ∈R )对称的充要条件是( )2.过点A (4,﹣)引圆ρ=4sin θ的一条切线,则切线长为( ).5.极坐标系下,直线与圆的公共点个数是 __ .6.(坐标系与参数方程选做题)已知曲线C 1、C 2的极坐标方程分别为,,则曲线C 1上的点与曲线C 2上的点的最远距离为 _________ .7.在极坐标系中,点M (4,)到直线l :ρ(2cos θ+sin θ)=4的距离d= _________ . 8.极坐标方程所表示曲线的直角坐标方程是 _________ .9.已知直线(t 为参数)与曲线(y ﹣2)2﹣x 2=1相交于A ,B 两点,则点M (﹣1,2)到弦AB 的中点的距离为 _________ . 10.(坐标系与参数方程选做题)已知曲线C 的极坐标方程是ρ=6sin θ,以极点为坐标原点,极轴为x的正半轴,建立平面直角坐标系,直线l 的参数方程是为参数),则直线l 与曲线C 相交所得的弦的弦长为 _________ . 11.(坐标系与参数方程)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建极坐标系,两种坐标系取相同的单位长度.已知曲线C :psin 2θ=2acos θ(a >0),过点P (﹣2,﹣4)的直线l 的参数方程为,直线l 与曲线C 分别交于M 、N .若|PM|、|MN|、|PN|成等比数列,则实数a 的值为_________ .12.已知曲线(t 为参数)与曲线(θ为参数)的交点为A ,B ,,则|AB|=13.在平面直角坐标下,曲线,曲,若曲线C 1、C 2有公共点,则实数a 的取值范围为 _________ .14.(选修4﹣4:坐标系与参数方程) 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为,求|PA|+|PB|.15.已知过定点P (﹣1,0)的直线l :(其中t 为参数)与圆:x 2+y 2﹣2x ﹣4y+4=0交于M ,N 两点,则PM .PN= _________ .三.解答题(共3小题)16.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C 的参数方程为.以直角坐标系原点为极点,x轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.点P为曲线C上的一个动点,求点P到直线l距离的最小值.17.在平面直角坐标系xOy中,圆C 的参数方程为(θ为参数),直线l经过点P(1,1),倾斜角,(1)写出直线l的参数方程;(2)设l与圆圆C相交与两点A,B,求点P到A,B两点的距离之积.18.选修4﹣4:坐标系与参数方程已知在直角坐标系xOy中,曲线C 的参数方程为(θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为.(Ⅰ)求曲线C在极坐标系中的方程;(Ⅱ)求直线l被曲线C截得的弦长.参考答案与试题解析一.选择题(共4小题)1.在极坐标系中,圆C:ρ2+k2cosρ+ρsinθ﹣k=0关于直线l:θ=(ρ∈R)对称的充要条件是()对称,则圆心所以,即2.过点A(4,﹣)引圆ρ=4sinθ的一条切线,则切线长为(),运算求得结果.,﹣==43.在平面直角坐标系xOy中,点P的坐标为(﹣1,1),若取原点O为极点,x轴正半轴为极轴,建(((|OP|=,或,∠,C二.填空题(共11小题)5.(坐标系与参数方程选做题)极坐标系下,直线与圆的公共点个数是1.解:直线,即y=,即圆的圆.圆心到直线的距离等于=6.(坐标系与参数方程选做题)已知曲线C 1、C 2的极坐标方程分别为,,则曲线C 1上的点与曲线C 2上的点的最远距离为.,d=|CQ|=|PQ|=d+r=故答案为:7.(2004•上海)在极坐标系中,点M (4,)到直线l:ρ(2cos θ+sin θ)=4的距离d=.,)化成直角坐标,,2=.8.极坐标方程所表示曲线的直角坐标方程是.=5解:∵极坐标方程=59.已知直线(t 为参数)与曲线(y ﹣2)2﹣x 2=1相交于A ,B 两点,则点M (﹣1,2)到弦AB 的中点的距离为 .=,,根据中点坐标的性质可得中点对应的参数为,中点的距离为×=故答案为:10.(坐标系与参数方程选做题)已知曲线C 的极坐标方程是ρ=6sin θ,以极点为坐标原点,极轴为x的正半轴,建立平面直角坐标系,直线l 的参数方程是为参数),则直线l 与曲线C 相交所得的弦的弦长为 4 .,我们可以求出直线的一般方程,代入点到圆心距为.所以11.(坐标系与参数方程)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建极坐标系,两种坐标系取相同的单位长度.已知曲线C :psin 2θ=2acos θ(a >0),过点P (﹣2,﹣4)的直线l 的参数方程为,直线l 与曲线C 分别交于M 、N .若|PM|、|MN|、|PN|成等比数列,则实数a 的值为1 .=|x 则由=•=|x ﹣12.已知曲线(t 为参数)与曲线(θ为参数)的交点为A ,B ,,则|AB|=.解:把曲线化为普通方程得:,即把曲线(联立得:,消去,,==2213.在平面直角坐标下,曲线,曲线,若曲线C 1、C 2有公共点,则实数a 的取值范围为 . 解:曲线,即2≤,故答案为:14.(选修4﹣4:坐标系与参数方程) 在直角坐标系xoy 中,直线l 的参数方程为(t 为参数),在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为,求|PA|+|PB|. 的方程为的直角坐标方程:,即,故可设=15.已知过定点P (﹣1,0)的直线l :(其中t 为参数)与圆:x 2+y 2﹣2x ﹣4y+4=0交于M ,N 两点,则PM .PN= 7 .:(((×t=7=0三.解答题(共3小题)16.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 的参数方程为.以直角坐标系原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.点P为曲线C 上的一个动点,求点P 到直线l 距离的最小值.﹣化简为:ρ+=2=)﹣.17.在平面直角坐标系xOy 中,圆C 的参数方程为(θ为参数),直线l 经过点P (1,1),倾斜角,(1)写出直线l 的参数方程;(2)设l 与圆圆C 相交与两点A ,B ,求点P 到A ,B 两点的距离之积. 化为普通方程为,把直线,∴18.选修4﹣4:坐标系与参数方程已知在直角坐标系xOy 中,曲线C 的参数方程为(θ为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 的方程为.(Ⅰ)求曲线C 在极坐标系中的方程;(Ⅱ)求直线l 被曲线C 截得的弦长. 的距离为=。
2023年高考数学真题分训练 极坐标系与参数方程(含答案含解析)
专题34 极坐标系与参数方程2⎩2 2考点 116 平面直角坐标系中的伸缩变换 考点 117 极坐标和直角坐标的互化⎧x = t + 1,⎪x = 4cos 2θ, 1.(2023 全国Ⅱ文理 21)已知曲线C 1 , C 2 的参数方程分别为C 1 : ⎨ (θ为参数),C : ⎪ t ( t 为 ⎩ y = 4sin 2θ⎪ y = t - 1参数).(1) 将C 1 , C 2 的参数方程化为一般方程;⎪ t(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系.设C 1 , C 2 的交点为 P ,求圆心在极轴上,且经过极点和 P 的圆的极坐标方程.(解析)(1)由cos 2 θ+ sin 2 θ= 1得C 1 的一般方程为: x + y = 4 ,⎧x = t + 1 ⎧x 2= t 2 + 1 + 2 ⎪ t ⎪ t 2 C 2 2由⎨ 1 得: ⎨1 ,两式作差可得2 的一般方程为: x - y = 4 . ⎪ y = t - ⎪ y 2 = t 2 + - 2 ⎪ t ⎪ t 2⎧x = 5 ⎧x + y = 4 ⎪ (2)由 得: 2 ,即 P ⎛ 5 , 3 ⎫. ⎨x 2 - y 2= 4 ⎨ ⎪ y = 3 ⎩ 2 ⎪ ⎝ ⎭⎛ 5 ⎫2⎛3 ⎫217设所求圆圆心的直角坐标为(a , 0),其中 a > 0 ,则 a - ⎪ + 0 - ⎪ = a 2 ,解得:a = ,⎝2 ⎭⎝2 ⎭10∴ 17 ∴⎛ 17 ⎫2⎛ 17 ⎫222 2 17 所求圆的半径 r = , 10 所求圆的直角坐标方程为: x - 10 ⎪ + y = 10 ⎪ ,即 x + y = x ,5 ∴所求圆的极坐标方程为ρ= 17cos θ.5⎝ ⎭ ⎝ ⎭103⎩⎪x = 2 - t - t 2, 2.(2023 全国Ⅲ文理 22)在直角坐标系 xOy 中,曲线C 的参数方程为⎪ y = 2 - 3t + t 2( t 为参数且t ≠ 1),C与坐标轴交于 A , B 两点.(1) 求 AB ;(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,求直线 AB 的极坐标方程.(解析)(1)令 x = 0 ,则t 2 + t - 2 = 0 ,解得t = -2 或t =1(舍),则 y = 2 + 6 + 4 = 12 ,即 A (0,12) . 令 y = 0 ,则t 2 - 3t + 2 = 0 ,解得t = 2 或t =1(舍),则 x = 2 - 2 - 4 = -4 ,即 B (-4, 0) .∴ AB == 4 .(2)由(1)可知 k AB =12 - 00 - (-4)= 3 ,则直线 AB 的方程为 y = 3(x + 4) ,即3x - y +12 = 0 .由 x = ρcos θ, y = ρsin θ可得,直线 AB 的极坐标方程为3ρcos θ- ρsin θ+12 = 0 .3.(2023 江苏 22)在极坐标系中,已知点 A (ρ, π) 在直线l : ρcos θ= 2 上,点 B (ρ , π) 在圆C : ρ= 4 sin θ上1 32 6(其中ρ≥ 0 , 0 ≤θ< 2π).(1)求ρ1 , ρ2 的值(2)求出直线l 与圆C 的公共点的极坐标.(解析)(1) Q ρ cos π = 2∴ρ = 4; Q ρ = 4 s inπ2 .131 26 ∴ρ2 = (2) Q ρcos θ= 2, ρ= 4 sin θ∴ 4 sin θcos θ= 2,∴sin 2θ= 1 Q θ∈0, 2π)∴θ= π, 5π,4 4当θ= π时ρ= 2 4;当θ= 5π 时ρ= -2 4 < 0 (舍);即所求交点坐标为当π (2 2, ) . 4 4.(2023 全国 II 文理 22)在极坐标系中,O 为极点,点 M (ρ0 ,θ0 )(ρ0 > 0)在曲线C : ρ= 4 s in θ上,直线 l 过点 A (4, 0) 且与OM 垂直,垂足为 P . (1)当θ = π时,求ρ 及 l 的极坐标方程;3(2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.(解析)(1)因为 M (ρ,θ ) 在C 上,当θ = π 时,ρ = 4 s in π= 2 .0 0 0 3 03由已知得| OP |=| OA | cos π= 2 .322333⎢⎥⎢⎥设Q (ρ,θ) 为l 上除P 的任意一点.在Rt △OPQ 中ρcos⎛θ-π ⎫=| OP |= 2 , 3 ⎪ ⎝ ⎭π ⎛ π ⎫经检验,点P (2, ) 在曲线ρcos θ- ⎪ = 2 上. ⎝ ⎭所以,l 的极坐标方程为ρcos ⎛θ- π ⎫= 2 .3 ⎪ ⎝ ⎭(2)设 P (ρ,θ) ,在Rt △OAP 中, | OP |=| OA | cos θ= 4 cos θ,即 ρ= 4 cos θ..因为P 在线段OM 上,且 AP ⊥ OM ,故θ的取值范围是⎡π , π⎤. ⎣ 4 2 ⎦所以,P 点轨迹的极坐标方程为ρ= 4 cos θ,θ∈ ⎡π , π⎤ .⎣4 2 ⎦5.(2023 全国 III 文理 22)如图,在极坐标系 Ox 中, A (2, 0) , B ( 2, π) ,C ( 2, 3π) , D (2, π) ,弧 AB ,4 4 A , A 所在圆的圆心分别是(1, 0) ,π, (1, π) ,曲线 M 是弧 A ,曲线 M 是弧 A ,曲线 M 是BC CD(1, ) 21 AB2 BC3 弧C D .(1) 分别写出 M 1 , M 2 , M 3 的极坐标方程;(2) 曲线 M 由 M 1 , M 2 , M 3 构成,假设点 P 在 M 上,且| OP |= ,求P 的极坐标.(解析)(1)由题设可得,弧 AB , B C ,C D 所在圆的极坐标方程分别为ρ= 2 cos θ,ρ= 2 s in θ,ρ= -2 cos θ,所以 M 的极坐标方程为ρ= 2 cos θ⎛0 θ π ⎫ , M 的极坐标方程为 1 4⎪ 2⎝⎭ρ= 2 sin θ⎛ π θ3π ⎫ , M 的极坐标方程为ρ= -2 cos θ⎛ 3πθ π ⎫ . 4 4 ⎪ 34 ⎪ ⎝ ⎭ ⎝ ⎭(2)设 P (ρ,θ) ,由题设及(1)知3332⎩⎩⎩⎩⎩θ假设0 θπ,则 2 cos θ=,解得θ=π;4 6假设 π θ 3π ,则 2 sin θ= ,解得θ= π 或θ= 2π ; 4 4 3 3 假设 3π θ π ,则-2 cos θ= ,解得θ= 5π .4 ⎛ 综上,P 的极坐标为3, π ⎫ 或⎛3, π ⎫ 或⎛63,2π ⎫ 或⎛3, 5π ⎫ .6⎪ 3⎪ 3 ⎪ 6 ⎪ ⎝⎭ ⎝⎭ ⎝⎭ ⎝ ⎭考点 118 参数方程与一般方程的互化6.(2023 上海 14)已知直线方程3x + 4 y +1 = 0 的一个参数方程可以是()⎧x = 1+ 3t A . ⎨ y = -1+ 4t ⎧x = 1- 4tB . ⎨y = -1- 3t⎧x = 1- 3tC . ⎨y = -1+ 4t ⎧x = 1+ 4t D . ⎨y = -1- 3t(答案)D(解析)A .参数方程可化简为 4x - 3y - 7 = 0 ,故 A 不正确;B .参数方程可化简为3x - 4 y - 7 = 0 ,故B 不正确;C .参数方程可化简为 4x + 3y -1 = 0 ,故 C 不正确;D .参数方程可化简为3x + 4 y +1 = 0 , 故 D 正确.应选 D .7.(2023 全国Ⅲ)选修 4—4:坐标系与参数方程](10 分)在平面直角坐标系 xOy 中, A O 的参数方程为⎧x = cos θ(θ为参数),过点(0, -2) 且倾斜角为α的直线l 与A O 交于 A , B 两点.(1) 求α的取值范围;(2) 求 AB 中点 P 的轨迹的参数方程.⎨ y = sin ,(解析)(1) A O 的直角坐标方程为 x 2 + y 2 = 1. 当α= π时, l 与A O 交于两点.2当α≠ π时,记 tan α= k ,则l 的方程为 y = kx -.l 与A O 交于两点当且仅当< 1 ,解得 k < -1 或2α∈π ππ 3πk > 1,即( , ) 或α∈ ( , ) .4 2 2 4α π 3π 综上,的取值范围是( , ) . 4 4222222⎨(2) l 的参数方程为⎪x = t cos α, (t 为参数, π < α< 3π) . ⎨⎩ y = - + t sin α 4 4 设 A , B , P 对应的参数分别为 t , t , t ,则t =t A + t B,且t , t 满足t 2 - 2 2t sin α+ 1 = 0 .ABPP2A B于是t A + t B= 2 2 sin α, t P =2 sin α.又点 P 的坐标(x , y ) 满足 ⎪x = t P cos α,y = - + t sin α.⎧ ⎪x =2sin 2α, 2 ⎩P π 3π 所以点 P 的轨迹的参数方程是⎨ ⎪ y = - 2 - 2 cos 2α (α为参数, < α< ) . 4 4 ⎪ 2 2考点 119 极坐标方程与参数方程的综合应用8.(2023 北京文理)在极坐标系中,直线ρcos θ+ ρsin θ= a (a > 0) 与圆ρ=2 cos θ相切,则 a =.(答案)1+ (解析)利用 x = ρcos θ, y = ρsin θ,可得直线的方程为 x + y - a = 0 ,圆的方程为(x -1)2 + y 2 = 1 ,所以圆心(1, 0) ,半径 r = 1,由于直线与圆相切,故圆心到直线的距离等于半径,即|1- a |= 1 ,∴ a = 1+ 或1- ,又 a > 0 ,∴ a = 1+ .9.(2023 北京文理)在极坐标系中,点 A 在圆ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 上,点 P 的坐标为(1, 0) ),则| AP | 的最小值为.(答案)1(解析)圆的一般方程为 x 2 + y 2 - 2x - 4y + 4 = 0 ,即(x -1)2 + ( y - 2)2 = 1 .设圆心为C (1, 2) ,所以| AP |min =| PC | -r = 2 -1 = 1 .10.(2023 天津文理)在极坐标系中,直线4ρcos(θ- π) +1 = 0 与圆ρ= 2 s in θ的公共点的个数为.6(答案)2(解析)直线的一般方程为 2 3x + 2 y +1 = 0 ,圆的一般方程为 x 2 + ( y -1)2= 1 ,因为圆心到直 3线的距离 d = < 1 4,所以有两个交点.11.(2023 北京文理)在极坐标系中,直线ρcos θ- | AB |= .3ρsin θ-1 = 0 与圆ρ= 2 cos θ交于 A , B 两点,则(答案)2(解析)将ρcos θ-3ρsin θ-1 = 0 化为直角坐标方程为 x - 3y -1 = 0 ,将ρ=2cos θ化为直角坐标方程为(x -1)2+ y 2= 1 ,圆心坐标为(1,0),半径 r=1,又(1,0)在直线 x - 3y -1 = 0 上,所以|AB|=2r=2.222234y x ⎩⎩⎩)⎩12.(2023 广东文理)已知直线l 的极坐标方程为 2ρsin(θ- π= 47πA (2 2,) ,则点 Α 到直线l 的距离为 .42 ,点 Α 的极坐标为(答案)(解析)由 2ρsin(θ- 2π ) = 得2ρ´ 4 2 7π(sin θ- cos θ) = ,所以 y - x = 1, 故直线l 的直角坐标方程为 x - y +1 = 0 ,而点 A (2 2, ) 对应的直角坐标为4 A (2,-2) ,所以点 A (2,-2) 到直线l : x - y +1 = 0 的距离为| 2 + 2 +1| = 5 2. 213.(2023 安徽文理)在极坐标系中,圆ρ= 8sin θ上的点到直线θ=是.π(ρ∈ R ) 距离的最大值 3(答案)6(解析)圆ρ= 8sin θ即ρ2= 8ρsin θ,化为直角坐标方程为 x 2+ ( y - 4)2= 16 ,π直线θ=,则tan θ=,化为直角坐标方程为 3x - y = 0 ,圆心(0, 4) 到直线3的距离为| -4 |= 2 ,所以圆上的点到直线距离的最大值为 6.14.(2023 全国Ⅰ文理 21)⎧x = cos k t ,在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ y = sin k t(t 为参数) .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线C 2 的极坐标方程为 4ρcos θ-16ρsin θ+ 3 = 0 .(1) 当 k = 1时, C 1 是什么曲线?(2) 当 k = 4 时,求C 1 与C 2 的公共点的直角坐标.(解析)(1)当 k = 1时,曲线C 的参数方程为⎧x = cos t ,( t 为参数),两式平方相加得 x 2 + y 2 = 1 ,1⎨y = sin t∴曲线C 1 表示以坐标原点为圆心,半径为 1 的圆.⎧x = cos 4 t ,(2)当 k = 4 时,曲线C 1 的参数方程为⎨ y = sin 4t ( t 为参数),∴ x ≥ 0, y ≥ 0 ,曲线C 1 的参数方程化为⎧ x = cos 2 t ⎨ y = sin 2t(t 为参数),两式相加得曲线C 1 方程为 + = 1,得 = 1 - ,平方得 5 22x yx 77⎩2y = x - 2 + 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 ,曲线C 2 的极坐标方程为4ρcos θ-16ρsin θ+ 3 = 0 ,曲线C 2 直角坐标方程为4x -16 y + 3 = 0 ,联立C , C 方程⎪ y = x - 2 +1 , ,整理得12 x - 32 + 13 = 0 ,解得 x = 1 或 = 13(舍去),1 2⎨ ⎩4x -16 y + 3 = 02 6 ∴ x = 1 , y = 1 ,∴C ,C 1 1 公共点的直角坐标为( , ) .4 4 1 24 4⎧ 1- t 2 ⎪x =1+ t 215.(2023 全国 1 文理 22)在直角坐标系 xOy 中,曲线 C 的参数方程为⎨ ⎪ y = ⎩ 4t 1+ t 2(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 2ρcos θ+ 3ρsin θ+11 = 0 .(1) 求 C 和 l 的直角坐标方程;(2) 求 C 上的点到 l 距离的最小值.1- t 2⎛ y ⎫2⎛ 1- t 2 ⎫24t 2 (解析)(1)因为-1 < ≤ 1 ,且 x 2 + ⎪ = ⎪ + = 1,所以C 的直角坐标方程为2y 2 1+ t 2⎝ 2 ⎭ ⎝1 + t 2 ⎭ (1+ t 2 )2x += 1(x ≠ -1) .4l 的直角坐标方程为 2x + 3y +11 = 0 .⎧x = cos α, (2)由(1)可设C 的参数方程为 (α为参数, -π <α< π ).⎨y = 2sin α4 cos ⎛α- π ⎫ +113 ⎪ C 上的点到l 的距离为 = ⎝ ⎭.当α= - 2π 时, 4 c os ⎛α- π ⎫+11 取得最小值7,故C 上的点到l 距离的最小值为 . 3 3 ⎪ ⎝ ⎭16.(2023 全国Ⅰ文理) 在直角坐标系 xOy 中,曲线C 1 的方程为 y = k |x | + 2 .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2+ 2ρcos θ- 3 = 0 . (1) 求C 2 的直角坐标方程;x x x | 2 c os α+ 2 3 sin α+11|7⎨y = 4 s in θ,⎩(2) 假设C 1 与C 2 有且仅有三个公共点,求C 1 的方程.(解析)(1)由 x = ρcos θ, y = ρsin θ得C 2 的直角坐标方程为(x +1)2 + y 2 = 4 .(2)由(1)知C 2 是圆心为 A (-1, 0) ,半径为 2 的圆.由题设知,C 1 是过点 B (0, 2) 且关于 y 轴对称的两条射线.记 y 轴右边的射线为l 1 ,y 轴左边的射线为l 2 .由于 B 在圆C 2 的外面,故C 1 与C 2 有且仅有三个公共点等价于l 1 与C 2 只有一个公共点且l 2 与C 2 有两个公共点,或l 2 与C 2 只有一个公共点且l 1 与C 2 有两个公共点.当l 与C 只有一个公共点时, A 到l 所在直线的距离为 2 ,所以| -k + 2 |= 2 ,故 k = - 4 或 k = 0 .1213经检验,当k = 0 时, l 与C 没有公共点;当 k = - 4时, l 与C 只有一个公共点, l 与C 有两个公共点.1231 2 2 2| k + 2 | 当l 与C 只有一个公共点时, A 到l 所在直线的距离为2 ,所以= 2 ,故 k = 0 或 k = 4 .2 2 23经检验,当k = 0 时, l 与C 没有公共点;当 k = 4时, l 与C 没有公共点.1 2 32 2综上,所求C 的方程为 y = - 4| x | +2 .1317.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,曲线C 的参数方程为⎧x = 2 cos θ,( θ 为参数),直线l 的参数⎩⎧x = 1+ t cos α 方程为⎨ y = 2 + t sin α ( t 为参数).(1) 求C 和l 的直角坐标方程;(2) 假设曲线C 截直线l 所得线段的中点坐标为(1, 2) ,求l 的斜率.x 2 + y 2 =(解析)(1)曲线C 的直角坐标方程为 1. 4 16当cos α≠ 0 时, l 的直角坐标方程为 y = tan α⋅ x + 2 - tan α; 当cos α= 0 时, l 的直角坐标方程为 x = 1 .(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+ 3cos 2 α)t 2 + 4(2 cos α+ sin α)t - 8 = 0 .①3317⎩⎨ y = 1- ty 因为曲线C 截直线l 所得线段的中点(1, 2) 在C 内,所以①有两个解,设为t 1 , t 2 ,则t 1 + t 2 = 0 .4(2 cos α+ sin α)又由①得t 1 + t 2 = -1+ 3cos 2α,故 2 cos α+ sin α= 0 ,于是直线l 的斜率 k = tan α= -2 .18.(2023 江苏)在极坐标系中,直线l 的方程为ρsin( π-θ) = 2 ,曲线C 的方程为ρ= 4 cos θ,求直线l 被曲6 线C 截得的弦长.(解析)因为曲线C 的极坐标方程为ρ=4 cos θ,所以曲线C 的圆心为(2, 0) ,直径为 4 的圆.因为直线l 的极坐标方程为ρsin( π -θ) = 2 ,则直线l 过 A (4, 0) ,倾斜角为 π,所以 A 为直线l 与圆C 的一6 6 个交点.设另一个交点为 B ,则∠OAB= π ,连结 OB ,因为 OA 为直径,从而∠OBA= π ,所以 AB = 4 c os π= 2 .6 因此,直线l 被曲线C 截得的弦长为 2 .2 6⎧x = 3cos θ19.(2023 全国Ⅰ文理)在直角坐标系 xOy 中,曲线C 的参数方程为⎨ y = sin θ ,(θ为参数),直线l 的参数方程为⎧x = a + 4t( t 为参数).⎩ (1) 假设 a = -1,求C 与l 的交点坐标;(2) 假设C 上的点到l 距离的最大值为 ,求 a .(解析)(1)曲线C 的一般方程为 x 2 + 29= 1.当a = -1时,直线l 的一般方程为 x + 4 y - 3 = 0 .⎧x + 4 y - 3 = 0⎧x = - 21 ⎪ ⎧x = 3 ⎪25 21 24由⎨ x 2 2解得⎨ y = 0 或⎨ ,从而C 与l 的交点坐标为(3, 0) , (- 24 , ) . ⎩ 9+ y = 1 ⎩⎪ y = ⎩ 25 25 25171717171733342⎩(2)直线l 的一般方程为 x + 4 y - a - 4 = 0 ,故C 上的点(3cos θ, sin θ) 到l 的距离为| 3cos θ+ 4 sin θ- a - 4 |d =.当a ≥-4 时, d 的最大值为a + 9.由题设得a + 9= ,所以a = 8 ;当a < -4 时, d 的最大值为 -a + 1 .由题设得 -a + 1= ,所以 a = -16 . 综上, a = 8 或 a = -16 .20.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线C 1 的极坐标方程为ρcos θ= 4 .(1) M 为曲线C 1 上的动点,点 P 在线段OM 上,且满足| OM | ⋅ | OP |= 16 ,求点 P 的轨迹C 2 的直角坐标方程;π(2) 设点 A 的极坐标为(2, 3) ,点 B 在曲线C 2 上,求∆OAB 面积的最大值. (解析)(1)设 P 的极坐标为(ρ,θ) (ρ> 0) , M 的极坐标为(ρ1 ,θ) (ρ1 > 0) .由椭圆知| OP |= ρ, | OM |= ρ1 =cos θ.由| OM | ⋅ | OP |= 16 得C 2 的极坐标方程ρ= 4 cos θ(ρ> 0) , 因此C 的直角坐标方程为(x - 2)2 + y 2= 4(x ≠ 0) .(2)设点 B 的极坐标为(ρB ,α) (ρB > 0) .由题设知| OA |= 2 , ρB = 4cos α,于是∆OAB 面积1 π π 3S = 2 | OA | ⋅ρB ⋅sin ∠AOB = 4cos α| sin(α- 3 ) | = 2 | sin(2α- 3 ) - | ≤ 2 + . 2 当α= - π时, S 取得最大值 2 + ,所以∆OAB 面积的最大值为 2 + .1221.(2023 全国Ⅲ文理)在直角坐标系 xOy 中,直线l 的参数方程为⎧x = 2 + t( t 为参数),直线l 的参数方⎧x = -2 + m⎪1 ⎨ y = kt 2程为⎨ ⎩ y = m k( m 为参数).设l 1 与l 2 的交点为 P ,当 k 变化时, P 的轨迹为曲线C .(1) 写出C 的一般方程;17175224 5⎨t⎩(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l3 :ρ(cosθ+ sinθ) -交点,求M 的极径.= 0 ,M 为l3与C 的(解析)(1)消去参数t 得l 的一般方程l : y =k (x -2),消去参数m 得l 的一般方程l : y =1 (x+2).11⎧y =k (x-2)22k⎪设P(x, y) ,由题设得⎨⎩y=1 (x+2)k,消去k 得x2-y2=4 (y ≠0),所以C 的一般方程为x2-y2=4 (y ≠0).⎪ρ2(cos2θ-sin2θ)=4(2)C的极坐标方程为ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π),联立⎨得⎩ρ(cosθ+sinθ)-2=0cosθ- sinθ=2 (cosθ+sinθ),故tanθ=-1,从而cos2θ=9,sin2θ=1,代入ρ2(cos2θ-sin2θ)=4得3ρ2=5,所以交点M的极径为.10 10⎧x =-8 +t22.(2023 江苏)在平面坐标系中xOy 中,已知直线l 的参考方程为⎪y = ( t 为参数),曲线C 的参数方⎧x=2s2⎪2程为⎨⎩y=22s( s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.(解析)直线l 的一般方程为x - 2 y + 8 = 0 .因为点P 在曲线C 上,设P(2s2 , 2 2s) ,从而点P 到直线l 的的距离4 5d == ,当s =时,dmin=5.因此当点P 的坐标为(4, 4) 时,曲线C 上点P 到直线l 的距离取到最小值.5⎧x =a cos t23.(2023 全国I 文理)在直角坐标系xOy 中,曲线C1 的参数方程为⎨y = 1+a sin t(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2 :ρ= 4 cosθ.(I)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(II)直线C3 的极坐标方程为θ=a0 ,其中a0 满足tan a0 =2 ,假设曲线C1 与C2 的公共点都在C3上,求a.22(s -2)2 +4510 10 ⎫2152⎩1123⎩⎨⎩=⎧x = a cos t (解析)(1) ⎨ y = 1 + a sin t( t 均为参数),∴x 2 + ( y - 1)2= a 2 ①∴ C 为以(0 ,1) 为圆心, a 为半径的圆.方程为 x 2 + y 2 - 2 y +1 - a 2 = 0 .∵ x 2 + y 2 = ρ2 ,y = ρsin θ,∴ ρ2- 2ρsin θ+ 1 - a 2 = 0 ,即为C 的极坐标方程.(2) C :ρ= 4cos θ,两边同乘ρ得ρ2 = 4ρcos θ ρ2= x 2 + y 2 ,ρcos θ= x ,∴ x 2 + y 2 = 4x ,即( x - 2)2+ y 2 = 4 ②C 3 :化为一般方程为 y = 2x ,由题意: C 1 和C 2 的公共方程所在直线即为C 3 ,①—②得: 4x - 2 y + 1 - a 2 = 0 ,即为C ,∴1 - a 2 = 0 ,∴ a = 1 .24.(2023 全国 II 文理)在直角坐标系 xOy 中,圆 C 的方程为( x + 6)2+ y 2 = 25 .(I) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程;⎧x = t cos α(II)直线 l 的参数方程是⎨ y = t sin α(t 为参数),l 与 C 交于 A 、B 两点, AB = ,求 l 的斜率.⎧ρ2 = x 2 + y 2 (解析)(Ⅰ)整理圆的方程得 x 2 + y 2 + 12 + 11 = 0 ,由⎪ρcos θ= x ⎪ρsin θ= y 可知圆C 的极坐标方程为ρ2 + 12ρcos θ+ 11 = 0 .(Ⅱ)记直线的斜率为 k ,则直线的方程为 kx - y = 0 ,由垂径定理及点到直线距离公式知:= 36k 2 290 ,整理得 k 2 = 5 ,则 k = ± . 1 + k 4 3 3⎪x =3 cos α25.(2023 全国 III 文理)在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ ⎩ y = sin α(α为参数),以坐标原点为极点,以 x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρsin(θ+ π) = 2.24(Ⅰ)写出C 1 的一般方程和C 2 的直角坐标方程;(Ⅱ)设点 P 在C 1 上,点 Q 在C 2 上,求| PQ |的最小值及此时 P 的直角坐标.x 2 2(解析)(Ⅰ) C 1 的一般方程为 3+ y = 1, C 2 的直角坐标方程为 x + y - 4 = 0 .(Ⅱ)由题意,可设点 P 的直角坐标为( 3 cos α, sin α) ,因为C 2 是直线,所以| PQ | 的最小值,即为 P 到C 2| 3 cos α+sin α- 4 |2222⎨⎩⎪=1⎩的距离d (α) 的最小值, d (α) ==π2 | sin(α+ π ) - 2 | .3 3 1当且仅当α= 2k π+(k ∈ Z ) 时, d (α) 取得最小值,最小值为 6,此时 P 的直角坐标为( , ) . 2 2 ⎧x = 1 + 1t , 26.(2023 江苏)在平面直角坐标系 xOy 中,已知直线l 的参数方程为⎪ ⎪ y = ⎩ 2 3 t , 2(t 为参数) ,椭圆C 的参数⎧x = cos θ,方程为⎨ y = 2sin θ, (θ为参数) ,设直线l 与椭圆C 相交于 A , B 两点,求线段 AB 的长.⎧x = 1+ 1t(解析)椭圆C 的一般方程为 x 2 + y 4 = 1,将直线l 的参数方程⎨ ⎪ y = ⎩2 3 t2 ,代入 x 2 + y 4 = 1,得(1+ 1 t )2 + 3 t )22 = 1,即7t 2 +16t = 0 ,解得t = 0 , t = - 16 ,所以 AB =| t - t | 16 .2 4 1 2 71 2727.(2023 全国Ⅰ文理)在直角坐标系 xOy 中,直线C : x = -2 ,圆C :(x -1)2 + ( y - 2)2= 1 ,以坐标原12点为极点, x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求C 1 , C 2 的极坐标方程;(Ⅱ)假设直线C 3 的极坐标方程为θ=(ρ∈ R ) ,设C 2 与C 3 的交点为 M , N ,求∆C 2MN 的面积.4(解析)(Ⅰ)因为 x = ρcos θ, y = ρsin θ,∴ C 的极坐标方程为ρcos θ= -2 , C 的极坐标方程为ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 .12(Ⅱ)将θ= π代入ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 ,得ρ2- 3 2ρ+ 4 = 0 ,解得ρ = 2, ρ = , 4|MN|= ρ - ρ = ,因为C 的半径为 1,则A C MN 的面积 ⨯ 122 ⨯1⨯sin 45o = 1 . 1 2 22 2 2 ⎧x = t cos α,28.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,曲线C 1 : ⎨ y = t sin α, ( t 为参数,t ≠0)其中0 ≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2 : ρ= 2 sin θ, C 3 : ρ= 2 3 cos θ. (Ⅰ)求C 2 与C 3 交点的直角坐标;(Ⅱ)假设C 1 与C 2 相交于点 A , C 1 与C 3 相交于点 B ,求| AB | 的最大值.222(π3623)( x -1+ y +1= )()⎨(解析)(Ⅰ)曲线C 的直角坐标方程为 x 2 + y 2 - 2 y = 0 ,曲线C 的直角坐标方程为 x 2 + y 2- 2 3x = 0 .联⎪x 2+ y 2- 2 y = 0,⎧x = 0, ⎧ 3 ⎪x = 2 , 立⎨x 2 + y 2 - 2 3x = 0,解得⎨ y = 0, 或⎨ 3 ⎪ ⎩ ⎪ y = ,⎩ 23所以C 2 与C 1 交点的直角坐标为(0, 0) 和( , ) .2 2(Ⅱ)曲线C 1 的极坐标方程为θ= α(ρ∈ R , ρ≠ 0) ,其中0 ≤α<π. 因此 A 得到极坐标为(2 sin α,α) , B 的极坐标为(2 3 cos α,α) . π5π所以 AB = 2 sin α- 2 3 cos α = 4 s in(α-) ,当α= 时, AB 取得最大值,最大值为 4 . 3 629.(2023 江苏) 已知圆 C 的极坐标方程为ρ2+ 2 2ρsin(θ- π- 4 = 0 ,求圆 C 的半径.4(解析) 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为 x 轴的正半轴,建立直角坐标系 xoy .圆C 的极坐标方程为ρ2 + 2⎛ 2 sin θ- 2cos ⎫4 = 0 ,化简,得ρ2 + 2ρsin θ- 2ρcos θ- 4 = 0 . ρ 22 θ⎪⎪ - ⎝ ⎭则圆C 的直角坐标方程为 x 2 + y 2 - 2x + 2 y - 4 = 0 ,即2 2,所以圆C 的半径为 . ⎧x = 3 + 1 t 30.(2023 陕西文理)在直角坐标系 xOy 中,直线l 的参数方程为⎪2⎪ y = 3 t ⎩ 2 轴正半轴为极轴建立极坐标系,⊙ C 的极坐标方程为ρ= 2 3 sin θ. (Ⅰ)写出⊙ C 的直角坐标方程;( t 为参数).以原点为极点, x(Ⅱ) P 为直线l 上一动点,当 P 到圆心C 的距离最小时,求 P 的直角坐标.(解析)(Ⅰ) 由ρ= 2 3 sin θ, 得ρ2= 2 3ρsin θ,从而有 x 2+y 2= 2 3y , 所以x 2+ (y -3 )2= 3 .(Ⅱ)设P (3 += ,故当t =0 时,| PC |取最小值,此时 P 点的直角坐标为(3, 0) .21t,3t), 又C(0, 3) ,则| PC |=3222 3 ⎪55⎨y = 2 - 2t⎩⎩31.(2023 全国Ⅰ文理)已知曲线C : x 4 + y 29 = 1,直线l : ⎧x = 2 + t ( t 为参数). ⎩(Ⅰ)写出曲线C 的参数方程,直线l 的一般方程;(Ⅱ)过曲线C 上任一点 P 作与l 夹角为30o的直线,交l 于点 A ,求| PA |的最大值与最小值.⎧x = 2 cos θ.(解析)〔I 〕曲线C 的参数方程为⎨ y = 3sin θ. (θ为参数).直线l 的一般方程为2x + y - 6 = 0. ……5 分(Ⅱ)曲线C 上任意一点P(2cos θ.3sin θ)到l 的距离为d =4 cos θ+ 3sin θ- 6 .则 PA =d = sin 30︒ 5sin(θ+α) - 6 , 其中α为锐角,且tan α= 4 . 3当sin (θ+α)=-1时,PA 取得最大值,最大值为22 5 .5当sin(θ+α) = 1时,PA 取得最小值,最小值为2 5 .532.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆 C 的极坐标方程为ρ= 2 cos θ,θ∈ ⎡0,π⎤ .(Ⅰ)求 C 的参数方程;⎣⎢ 2 ⎥⎦(Ⅱ)设点 D 在 C 上,C 在 D 处的切线与直线l : y = 3x + 2 垂直,依据(Ⅰ)中你得到的参数方程,确定 D 的坐标.(解析)(I)C 的一般方程为(x -1)0 ≤ t ≤ x ).2 + y 2⎧x = 1+ cos t , = 1(0 ≤ y ≤ 1) ,可得 C 的参数方程为⎨ y = sin t ,(t 为参数,(Ⅱ)设 D (1+ cos t , sin t ) .由(I)知 C 是以 G(1,0)为圆心,1 为半径的上半圆. π因为 C 在点D 处的切线与 t 垂直,所以直线 GD 与 t 的斜率相同, tan t = 3, t =.32 5523⎩⎩⎩1⎩⎩ππ 3故D 的直角坐标为(1+ cos , s in ) ,即( , ) .3 3 2 233.(2023 全国Ⅰ文理)已知曲线C 的参数方程为⎧x = 4 + 5 cos t( t 为参数),以坐标原点为极点,x 轴的正1 ⎨y = 5 + 5sin t半轴为极轴建立极坐标系,曲线C2 的极坐标方程为ρ= 2 s inθ.(Ⅰ)把C1 的参数方程化为极坐标方程;(Ⅱ)求C1 与C2 交点的极坐标( ρ≥0 ,0 ≤θ≤2π).⎧x = 4 + 5 c os t2 2(解析)将⎨y = 5 + 5sin t消去参数t ,化为一般方程(x - 4) + ( y -5) = 25 ,即C1 :x 2 +y2⎧x =ρcosθ-8x -10 y+16 = 0 ,将⎨y =ρsinθ代入x 2 +y2- 8x -10 y + 16 = 0 得,ρ2 - 8ρcosθ-10ρsinθ+16 = 0 ,∴C 的极坐标方程为ρ2 - 8ρcosθ-10ρsinθ+16 = 0 .⎪x2+y2-8x-10y+16=0(Ⅱ) C 的一般方程为x2 +y2 - 2 y = 0 ,由⎨⎧x =1解得⎨⎧x = 0或⎨,2∴C1 与C2 的交点的极坐标分别为(⎩x2+y2-2y=0π),(2, ) .4 2⎩y =1 ⎩y = 2 34.(2023 全国Ⅱ文理)已知动点P ,Q 都在曲线C与β= 2α( 0 <α< 2π) M 为PQ 的中点.⎧x = 2 c os β:⎨y = 2 s in β(β为参数)上,对应参数分别为β=α(Ⅰ)求M的轨迹的参数方程(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并推断M 的轨迹是否过坐标原点.(解析)(Ⅰ)由题意有P(2c osα,2sinα),Q(2c os2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α),⎧x = cosα+ cos 2α,M 的轨迹的参数方程为⎨y = sinα+ sin 2α, (0 <α< 2π).(Ⅱ)M 点到坐标原点的距离d ==0 <α< 2π),当α=π时,d = 0 ,故M 的轨迹过坐标原点.2,π3⎩100⎩135.(2023 全国文理)已知曲线C 的参数方程是⎧x = 2 cos ϕϕ为参数),以坐标原点为极点, x 轴的正半轴1⎨y = 3sin ϕ(为极轴建立极坐标系,曲线C 2 的极坐标方程是ρ= 2 .正方形 ABCD 的顶点都在C 2 上,且 A 、 B 、C 、πD 依逆时针次序排列,点 A 的极坐标为(2, ) . 3(Ⅰ)求点 A 、 B 、C 、 D 的直角坐标;(Ⅱ)设 P 为C 上任意一点,求| PA |2 + | PB |2 + | PC |2 + | PD |2 的取值范围.π5π 4π 11π(解析)(1)点 A , B , C , D 的极坐标为(2, ), (2, ), (2, ), (2, ) ,3 6 3 6点 A , B , C , D 的直角坐标为(1, 3),(-⎧x 0 = 2cos ϕ3,1), (-1, - 3),( 3, -1) .(2)设 P (x 0 , y 0 ) ;则⎨ y = 3sin (ϕ为参数) , ⎩ 0ϕt = PA 2+ PB 2+ PC 2+ PD 2= 4x 2 + 4 y 2 +16 = 32 + 20 sin 2ϕ∈32, 52.⎧x = 2 c os α 36.(2011 全国文理)在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ y = 2 + 2 s in(α为参数),M 是C 上 α的动点, P 点满足OP = 2OM , P 点的轨迹为曲线C 2(Ⅰ)求C 2 的方程(Ⅱ)在以 O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ= π与C 的异于极点的交点为 A ,与C 的异于极点的交点为 B ,求 AB .31 2(解析)(I)设 P (x , y ) ,则由条件知 M( x , y).由于 M 点在C 上,⎧ x = 2 cos α ⎪ 2 2 2⎧ x = 4 cos α 1⎧ x = 4 cos α 所以⎨ y ,即⎨y = 4 + 4 s in ,从而C 2 的参数方程为⎨y = 4 + 4 s in (α为参数), ⎪ = 2 + 2 s in α ⎩ α ⎩ α⎩ 2(Ⅱ)曲线C 1 的极坐标方程为ρ= 4sin θ,曲线C 2 的极坐标方程为ρ= 8sin θ.射线θ= π与C 的交点 A 的极径为ρ = 4sin π,射线θ= π与C 的交点 B 的极径为ρ = 8sin π.3 1 1 3 32 23所以| AB |=| ρ2 - ρ1 |= 2 .。
极坐标与参数方程大题及答案
极坐标与参数方程大题及答案一、极坐标问题1.求解方程$r = 2\\cos(\\theta)$的直角坐标方程。
首先,根据极坐标到直角坐标的转换公式:$$x = r\\cos(\\theta)$$$$y = r\\sin(\\theta)$$将$r = 2\\cos(\\theta)$代入上述两式,得到:$$x = 2\\cos(\\theta)\\cos(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = 2\\cos^2(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$2.将直角坐标方程x2+y2−4x=0转换为极坐标方程。
首先,我们可以将直角坐标方程中的x2和y2替换成r2,从而得到:r2+y2−4x=0然后,将直角坐标方程中的x和y替换成$r\\cos(\\theta)$和$r\\sin(\\theta)$,得到:$$r^2 + (r\\sin(\\theta))^2 - 4(r\\cos(\\theta)) = 0$$将上述方程化简,得到极坐标方程为:$$r^2 + r^2\\sin^2(\\theta) - 4r\\cos(\\theta) = 0$$3.将极坐标方程$r = \\sin(\\theta)$转换为直角坐标方程。
使用极坐标到直角坐标的转换公式,将$r = \\sin(\\theta)$代入,得到:$$x = \\sin(\\theta)\\cos(\\theta)$$$$y = \\sin^2(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = \\frac{1}{2}\\sin(2\\theta)$$$$y = \\sin^2(\\theta)$$二、参数方程问题1.求解方程$\\frac{x + y}{x - y} = 2$的参数方程。
极坐标与参数方程经典练习题 带详细解答
1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l的参数方程为122x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB .2.已知直线l 经过点1(,1)2P ,倾斜角α=6π,圆C的极坐标方程为)4πρθ=-.(1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程;(2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+⎧⎨=-+⎩(α为参数),点Q的极坐标为7)4π。
(1)化圆C 的参数方程为极坐标方程;(2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。
5.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.6.(本小题满分10分) 选修4-4坐标系与参数方程 在直角坐标系中,曲线1C 的参数方程为⎩⎨⎧+==ααsin 22cos 2y x ,(α为参数) M 是曲线1C 上的动点,点P 满足2=,(1)求点P 的轨迹方程2C ;(2)在以D 为极点,X 轴的正半轴为极轴的极坐标系中,射线3πθ=与曲线1C ,2C 交于不同于原点的点A,B 求AB7.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ⎛⎫-⎪⎝⎭,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标;(2)求直线OM 的极坐标方程. 8.在直角坐标系中,曲线C 1的参数方程为:2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),以原点为极点,x 轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C 2是极坐标方程为:cos ρθ=, (1)求曲线C 2的直角坐标方程;(2)若P ,Q 分别是曲线C 1和C 2上的任意一点,求PQ 的最小值.9.已知圆C 的极坐标方程为2cos ρθ=,直线l的参数方程为1221122x x t ⎧=+⎪⎪⎨⎪=+⎪⎩ (t 为参数),点A的极坐标为4π⎫⎪⎪⎝⎭,设直线l 与圆C 交于点P 、Q .(1)写出圆C 的直角坐标方程;(2)求AP AQ ⋅的值.10.已知动点P ,Q 都在曲线C :2cos 2sin x ty t =⎧⎨=⎩(β为参数)上,对应参数分别为t α=与2t α=(0<α<2π),M 为PQ 的中点。
极坐标参数方程大题(含答案)
1、在直角坐标系中,圆的方程为,以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程; (2与圆交于点,求线段的长.2、在直角坐标系中,以原点为极点,点的,点,曲线.(1和直线的极坐标方程;(2)过点的射线交曲线于点,交直线于点,若,求射线所在直线的直角坐标方程.3、在平面直角坐标系中,直线(为参数).在以原点为极点,轴正半轴为极轴的极坐标中,圆的方程为 (1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求xOy C O xC C ,M N MN O A B 22:(1)1C x y -+=AB O l C M AB N ||||2OM ON =l xOy l t O x C l C P C l B A ,4、在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为(1)求直线和曲线的普通方程; (2)已知点,且直线和曲线交于两点,求的值5、在平面直角坐标系中,直线经过点,倾斜角为在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为. (1)写出直线的参数方程和曲线的直角坐标方程; (2)设直线与曲线相交于两点,求.6、在平面直角坐标系中,直线(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为.(1)求直线的极坐标方程及曲线C 的直角坐标方程;(2)若是直线C最大值.xOy C 244x k y k ⎧=⎨=⎩k x l l C (2,0)P l C A B ,||||||PA PB -l ()0,1P x C 4sin ρθ=l C l C A B 、xoy l t x 2sin ρθ=l ()1,A ρθl参考答案1、【答案】(1(2试题分析:(1)由,得到圆的极坐标方程;(2)将直线的极坐标代入,得到,所以试题解析: (1(2得,∴,,∴2、【答案】(1),;(2).试题分析:(1)将代入化简得.同理求出点,的直角坐标分别为,,所以的直角坐标方程为,极坐标方程为;(2)设射线,代入曲线得,代入直线得:,代入求得,即方程为. 试题解析:(1)点,的直角坐标分别为,,所以直线的极坐标方程为;曲线化为极坐标为(2)设射线,代入曲线得,代入直线得:所以射线所在直线的直角坐标方程为 考点:坐标系与参数方程.cos ,sin x y ρθρθ==2250ρρ--=2250ρρ--=122ρρ+=125ρρ=-2cos ρθ=sin 3ρθ=3y x =cos ,sin x y ρθρθ==22(1)1x y -+=2cos ρθ=A B (0,3)A AB 3y =sin 3ρθ=:l θα=C 2cos M ρα=AB ||||2OM ON =tan 3α=3y x =A B (0,3)A AB sin 3ρθ=C 2cos ρθ=:l θα=C 2cos M ρα=AB l 3y x =3、【答案】(1(2试题分析:(1)将参数方程转化为直角坐标系下的普通方程,需要根据参数方程的结构特征,选取恰当的消参方法,常见的消参方法有:代入消参法、加减消参法、平方消参法;(2)将参数方程转化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若有范围限制,要标出的取值范围;(2)直角坐标方程化为极坐标方程,只需把公式及直接代入并化简即可;而极坐标方程化为极坐标方程要通过变形,构造形如,,的形式,进行整体代换,其中方程的两边同乘以(或同除以)及方程的两边平方是常用的变形方法.试题解析:(1得直线得圆的直角坐标方程为把直线的参数方程代入圆的直角坐标方程,得故可设,又直线l ,两点对应的参数分别为,,考点:1、参数方程与普通方程的互化;2、直线与圆的综合问题.4、【答案】(1)(2试题分析:(1)消去曲线C 中的参数可得C 的普通方程,利用极坐标与直角坐标的互化公式可得直线的普通方程.(2)由直线的普通方程可知直线过P ,写出直线的参数方程,与曲线C 的普通方程联立,利用直线参数的几何意义及韦达定理可得结果. 【详解】(1)因为曲线的参数方程为(为参数),所以消去参数,得曲线的普通方程为y x ,y x ,θρcos =x θρsin =y θρcos θρsin 2ρρl C l C 1t 2t B A ,1t 2t 24y x =l l l C 244x k y k ⎧=⎨=⎩k k C 24y x =因为直线所以直线(2)因为直线经过点,所以得到直线(为参数)把直线的参数方程代入曲线的普通方程,得【点睛】本题考查了直角坐标方程与极坐标方程及参数方程的互化,考查了直线参数方程及参数的几何意义,属于中档题.5、【答案】(1)直线(为参数);曲线的直角坐标方程为;(2试题分析:(1)先根据直线参数方程标准式写直线的参数方程,利用化简极坐标方程为直角坐标方程;(2)将直线参数方程代入圆方试题解析:(1)直线(为参数). ∵,∴,∴,即, 故曲线的直角坐标方程为.l l l 20P (,)l t l C l t C ()2224x y +-=l y sin ,x cos ρθρθ==l t 4sin ρθ=24sin ρρθ=224x y y +=()2224x y +-=C ()2224x y +-=(2)将的参数方程代入曲线的直角坐标方程,得,显然,∴,∴6、【答案】(1,曲线;(2)2试题分析:(1)消去参数可得直线的普通方程,利用公式可把极坐标方程与直角坐标方程互化;(2这个最大值易求.【详解】(1)∵直线(为参数),∴消去参数,得直线由,得直线C的极坐标方程为,即,∴由,,得曲线C的直角坐标方程为.(2)∵在直线C上,l C230t t--=∆>2121,3lt t t t+==-2220x y y+-=cos,sinx yρθρθ==l tlcos,sinx yρθρθ==l2sinρθ=22sinρρθ=222x yρ=+sin yρθ=2220x y y+-=()1,Aρθl2【点睛】本题考查参数方程与普通方程的互化,考查极坐标方程与直角坐标方程的互化,掌握公是解题基础,在求论易得,学习时应注意体会.cos,sinx yρθρθ==。
极坐标与参数方程经典题型(附含详细解答)
专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。
极坐标与参数方程 练习题及解析
极坐标与参数方程练习题及解析1.平面直角坐标系中的伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换,(0):,(0)x xy yλλϕμμ''=⋅>⎧⎨=⋅>⎩的作用下,点P(x,y)对应到点P′(x′,y′),称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.点M的极坐标:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的∠xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记为M(ρ,θ).一般地,不做特殊说明时,我们认为ρ≥0,θ可取任何实数.注:极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一个点.极点O的坐标为(0,θ)(θ∈R).若ρ<0,则−ρ>0,规定点(−ρ,θ)与点(ρ,θ)关于极点对称,即(−ρ,θ)与(ρ,π+θ)表示同一点.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示(即一一对应的关系);同时,极坐标(ρ,θ)表示的点也是唯一确定的.极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应唯一点P(ρ,θ),但平面内任一个点P的极坐标不唯一.一个点可以有无数个坐标,这些坐标又有规律可循的,P(ρ,θ)(极点除外)的全部坐标为(ρ,θ+2kπ)或(−ρ,θ+(2k+1)π),(k∈Z).极点的极径为0,而极角任意取.若对ρ、θ的取值范围加以限制,则除极点外,平面上点的极坐标就唯一了,如限定ρ>0,0≤θ<2π或ρ< 0,−π<θ≤π等.极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的,即一个点的极坐标是不唯一的.3.极坐标与直角坐标的互化设M是平面内任意一点,它的直角坐标是(x,y),极坐标是(ρ,θ),从图中可以得出:x =ρcos θ , y =ρsin θ , ρ2=x 2+y 2 , ()tan 0yx xθ=≠. 4.常见曲线的极坐标方程5在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数()()x f t y g t =⎧⎪⎨=⎪⎩,并且对于t 的每一个允许值,由这个方程所确定的点M(x ,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.6.常见曲线的参数方程(1)经过定点()00,P x y ,倾斜角为2παα⎛⎫≠⎪⎝⎭的直线的参数方程00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数).设P 是直线上的任意一点,则t 表示有向线段P 0P ⃗⃗⃗⃗⃗⃗⃗ 的数量.参数的几何意义是有向线段P 0P ⃗⃗⃗⃗⃗⃗⃗ 的数量. (2)圆(x −a)2+(y −b)2=r 2的参数方程为cos sin x a r y b r θθ=+⎧⎨=+⎩(θ为参数).(3)椭圆22221(0)x y a b a b +=>>的参数方程为cos sin x a y b ϕϕ=⎧⎨=⎩(φ为参数);椭圆22221(0)y x a b a b +=>>的参数方程为cos sin x b y a ϕϕ=⎧⎨=⎩(φ为参数).(4)抛物线y 2=2px 参数方程22(2x pt t y pt⎧=⎨=⎩为参数,1tan t α=).参数t 的几何意义:抛物线上除顶点外的任意一点与原点连线的斜率的倒数. 7.参数方程与普通方程之间的互化在建立曲线的参数方程时,要注明参数及参数的取值范围.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.参数方程化为普通方程的关键是消参数,并且要保证等价性.若不可避免地破坏了同解变形, 则一定要通过.根据t 的取值范围导出的取值范围.)(),(t g y t f x ==y x ,一、解答题.1.直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y αα=⎧⎨=⎩(α为参数),直线l 的参数方程为13x ty t =-⎧⎨=+⎩(t 为参数).(1)求直线l 的普通方程,说明C 是哪一种曲线; (2)设M ,N 分别为l 和C 上的动点,求|MN|的最小值.【答案】(1)l:x +y =4,曲线C 是焦点在x 轴上的椭圆;(2)2√2−√5.【解析】(1)由题得直线l:x +y =4,曲线22:13x C y ⎛⎫+= ⎪⎝⎭,即2219x y +=, 所以曲线C 是焦点在x 轴上的椭圆.(2)设N(3cos α,sin α),则|MN|就是点N 到直线l 的距离,MN ==(φ的终边在第一象限且tan φ=3),当sin(α+φ)=1时,min ||MN ==. 【点评】参数方程里求直线上的点到曲线上的点的最值,一般先利用曲线的参数方程设点,再利用点到直线的距离求出距离的函数表达式,再利用三角函数的图象和性质求解.2.已知在平面直角坐标系xOy 中,直线l 过点M (0,1),倾斜角为α,以O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,圆C 的极坐标方程为ρ=4sin θ. (1)把圆C 的极坐标方程化为直角坐标方程,并求直线l 的参数方程; (2)若直线l 被圆C 截得的弦长为√13,求直线l 的倾斜角α. 【答案】(1)C :x 2+y 2−4y =0,cos :1sin x t l y t αα=⎧⎨=+⎩(t 为参数);(2)6πα=或56π.【解析】(1)ρ=4sin θ⇒ρ2=4ρsin θ, 所以圆C 的直角坐标方程为x 2+y 2−4y =0,① 直线l 的参数方程为cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数).②(2)将②代入①⇒t 2−2sin α⋅t −3=0⇒t 1+t 2=2sin α,123t t ⋅=-,l 被C 截得弦长121sin 2d t t α=-====, ∴6πα=或56π. 【点评】本题考查了极坐标方程与普通方程的互换,直线参数方程中,参数的几何意义,属于中档题. 3.在极坐标系中,圆C 的极坐标方程为ρ2=4ρ(cos θ+sin θ)−3,若以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求圆C 的一个参数方程;(2)在平面直角坐标系中,P (x ,y)是圆C 上的动点,试求x +2y 的最大值,并求出此时点P 的直角坐标.【答案】(1)2(2x y ϕϕϕ⎧=⎪⎨=+⎪⎩是参数);(2)最大值为11,P(3,4).【解析】(1)因为ρ2=4ρ(cos θ+sin θ)−3,所以x 2+y 2−4x −4y +3=0, 即(x −2)2+(y −2)2=5为圆C 的直角坐标方程,所以圆C的一个参数方程为2(2x y ϕϕϕ⎧=⎪⎨=⎪⎩为参数).(2)由(1)可知点P 的坐标可设为(2+√5cos φ,2+√5sin φ),则x +2y =2+√5cos φ+4+2√5sin φ=2√5sin φ+√5cos φ+6=5sin(φ+α)+6,其中cos α=,sin α=, 当x +2y 取最大值时,sin(φ+α)=1,2,2k k πϕαπ+=+∈Z ,此时cos cos()sin 2πϕαα=-==,sin sin()cos 2πϕαα=-== 所以x +2y 的最大值为11,此时点P 的直角坐标为(3,4).【点评】本题考查了极坐标与直角坐标的互化公式,同角三角函数的基本关系式、圆的参数方程及其应用、三角函数单调性与值域,属于中档题.4.在平面直角坐标系xOy 中,直线l 过定点P (3,0),倾斜角为02παα⎛⎫<<⎪⎝⎭,曲线C 的参数方程为1122x t tt y t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数);以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.(2)已知直线l 交曲线C 于M ,N 两点,且103PM PN ⋅=,求l 的参数方程. 【答案】(1)2222cos 4sin 4ρθρθ-=;(2)322x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).【解析】(1)由1122x t t t y t ⎧=+⎪⎪⎨⎪=-⎪⎩,得112x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩,∵2222221111224t t t t t t t t ⎛⎫⎛⎫+--=++-+-= ⎪ ⎪⎝⎭⎝⎭,∴x 2−(2y )2=4,即x 2−4y 2=4,又cos sin x y ρθρθ=⎧⎨=⎩,∴2222cos 4sin 4ρθρθ-=, 即曲线C 的极坐标方程为2222cos 4sin 4ρθρθ-=. (2)设l 的参数方程为3cos sin x t y t αα=+⎧⎨=⎩(t 为参数),代入x 2−4y 2=4,整理得()222cos 4sin 6cos 50t t ααα-++=, 设方程的两根分别为t 1,t 2,则12225cos 4sin t t αα=-, 则1222510cos 4sin 3PM PN t t αα⋅===-,解得cos 2α=±, ∵02πα<<,∴4πα=,故l的参数方程为322x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).【点评】在利用参数的几何意义时,一定要将参数方程化为标准方程.5.在平面直角坐标系xOy 中,曲线C 1是圆心在(0,2),半径为2的圆,曲线C 2的参数方程为4x ty t π⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩(t 为参数且02t π≤≤),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(2)若曲线C 2与坐标轴交于A 、B 两点,点P 为线段AB 上任意一点,直线OP 与曲线C 1交于点M (异于原点),求OM OP的最大值.【答案】(1)ρ=4sin θ;(2)√2+1.【解析】(1)曲线C 1的直角坐标方程为x 2+(y −2)2=4,即x 2+y 2−4y =0, 所以曲线C 1的极坐标方程为24sin ρρθ=,即ρ=4sin θ.(2)曲线C 2的参数方程为4x ty t π⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩,因为曲线C 2与两坐标轴相交,所以曲线C 2交x 轴于点A (2,0)、交y 轴于点B (0,2), 所以,线段AB 的方程为x +y −2=0(0≤x ≤2), 则线段AB 的极坐标方程为cos sin 2002πρθρθθ⎛⎫+-=≤≤ ⎪⎝⎭, 设点P 、Q 的极坐标分别为P (ρ1,θ)、Q (ρ2,θ),点P 在线段AB 上,可得ρ1cos θ+ρ1sin θ=2,可得12sin cos OP ρθθ==+,点Q 在曲线C 1上,则|OM |=ρ2=4sin θ,2sin cos 4sin 2sin 2sin cos sin 2cos 212OM OP θθθθθθθθ+=⨯=+=-+214πθ⎛⎫=-+ ⎪⎝⎭,02πθ≤≤,可得32444πππθ-≤-≤, 当242ππθ-=时,即当38πθ=时,OM OP取得最大值√2+1.【点评】在已知直角坐标方程求曲线的交点、距离、线段长度等几何问题时,如果不能直接用直角坐标解决,或用直角坐标解决较为麻烦,可将直角坐标方程转化为极坐标方程解决.6.在直角坐标系xOy 中,直线cos :sin x t l y t αα⎧=⎪⎨=⎪⎩(t 为参数)与曲线22:2x m C y m ⎧=⎨=⎩(m 为参数)相交于不同的两点A ,B . (1)当4πα=时,求直线l 与曲线C 的普通方程;(2)若|MA ||MB |=2||MA |−|MB ||,其中M (√3,0),求直线l 的倾斜角. 【答案】(1)l :y =x −√3,C :y 2=2x ;(2)6π或56π.【解析】(1)当4πα=时,直线l 的普通方程为y =x −√3,曲线C 的普通方程为y 2=2x .(2)将直线cos :sin x t l y t αα⎧=⎪⎨=⎪⎩,代入y 2=2x ,得 sin 2α⋅t 2−2cos α⋅t −2√3=0,224cos 0Δαα=+>,1222cos sin t t αα+=,12t t =121222cos ||||2||22sin MA MB MA MB t t t t αα=-⇒=+⇒=‖‖,|cos |2α∴=, 所以直线l 的倾斜角为6π或56π.【点评】本题考查参数方程化普通方程,考查直线方程中此时t 的几何意义的应用,是中档题. 7.在直角坐标系xOy 中,曲线C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)设A ,B 为曲线C 上不同两点(均不与O 重合),且满足4AOB π∠=,求OAB △的最大面积.【答案】(1)ρ=4sin θ;(2)2√2+2.【解析】(1)设曲线C 上任意点的极坐标为(ρ,θ),由题意,曲线C 的普通方程为x 2+(y −2)2=4,即x 2+y 2−4y =0, 则24sin ρρθ=,故曲线C 的极坐标方程为ρ=4sin θ. (2)设A(ρ1,θ),则2,4B πρθ⎛⎫+⎪⎝⎭,故30,4πθ⎛⎫∈ ⎪⎝⎭,因为点A ,B 在曲线C 上,则ρ1=4sin θ,24sin()4πρθ=+,故1sin sin()24AOB S OA OB AOB πθθ=∠=+△24(sin sin cos )2sin 22cos 22)24πθθθθθθ=+=-+=-+,30,4πθ⎛⎫∈ ⎪⎝⎭,故38πθ=时,OAB △取到最大面积为2√2+2. 【点评】本题考查参数方程、普通方程以及极坐标方程的转化,其中普通方程与极坐标方程转化的公式为222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,考查两线段积的取值范围的求法,涉及三角函数的辅助角公式以及三角函数的值域,考查学生转化与化归的思想以及运算求解的能力,属于中档题.一、解答题.1.在平面直角坐标系xOy 中,已知曲线C 1的参数方程为2cos 22sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4cos θ. (1)求曲线C 1与曲线C 2两交点所在直线的极坐标方程; (2)若直线l 1过点P (1,2)且与直线:2sin 16l πρθ⎛⎫+= ⎪⎝⎭平行,直线l 1与曲线C 1相交于A ,B 两点, 求11PA PB+的值. 【答案】(1)4πθ=(ρ∈R );(2)3. 【解析】(1)由2cos 22sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),消去参数ϕ,得曲线C 1的普通方程为x 2+(y −2)2=4, 由4cos ρθ=,得24cos ρρθ=,得曲线C 2的直角坐标方程为x 2+y 2=4x ,即(x −2)2+y 2=4. 所以两方程相减可得交线为y =x , 所以直线的极坐标方程为4πθ=(ρ∈R ).(2)由:2sin 16l πρθ⎛⎫+= ⎪⎝⎭,得√3ρsin θ+ρcos θ=1, ∴直线l 的直角坐标方程x +√3y =1, 直线l 的斜率为33-,所以直线l 1的斜率为33-,倾斜角为56π, 所以直线l 1的参数方程为312122x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数), 将直线l 1的参数方程代入曲线C 1,x 2+(y −2)2=4中,得2330t t --=. 设A ,B 两点的参数为t 1,t 2,∴123t t +=,t 1t 2=−3,则t 1,t 2异号.∴()21212121212124111115333t t t t t t t t PA PB t t t t +-+-+=+====. 【点评】将参数方程化为普通方程消参的3种方法: (1)利用解方程的技巧求出参数的表达式,然后代入消参; (2)利用三角恒等式消去参数;(3)根据参数方程本身的结构特征,灵活选用一些方法从整体上消去参数.一、解答题.1.已知曲线C 1的参数方程为21(23x t t y t =+⎧⎨=-⎩为参数),以原点为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线C 2:ρ=2a cos θ(a >0)关于C 1对称. (1)求C 1的极坐标方程,C 2的直角坐标方程;(2)已知曲线223:143x y C a a+=与两坐标轴正半轴交于A 、B 两点,P 为3C 上任一点,求△ABP 的面积的最大值.【答案】(1)1sin 220:4C πρθ⎛⎫-+= ⎪⎝⎭;C 2:(x −4)2+y 2=16;(2)4643+. 【解析】(1)121:23x t C y t =+⎧⎨=-⎩,消去t ,得x −y =4.精准预测题又cos sin x y ρθρθ=⎧⎨=⎩,代入x −y =4,得cos sin 40ρθρθ--=,∴cos sin 40sin 404πρθρθθ⎛⎫--=⇒-+= ⎪⎝⎭,所以C 1的极坐标方程为sin 04πρθ⎛⎫-+= ⎪⎝⎭;C 2:ρ=2a cos θ(a >0)化为(x −a )2+y 2=a 2(a >0), 又C 2关于C 1:x −y =4对称,∴(a ,0)∈C 1,∴a =4, ∴C 2:(x −4)2+y 2=16.(2)由(1)知a =4,∴223:11612x y C +=,∴A (4,0),B (0,2√3), ∴|AB |=2√7,易得l AB :√3x +2y −4√3=0,设P (4cos θ,2√3sin θ)到l AB 的距离为d .则1d ==≤当sin 14πθ⎛⎫+=- ⎪⎝⎭时,d1.∴()max11122ABP S AB d ==⨯=△. 【点评】本题关键在于准确运用x =ρcos θ,y =ρsin θ进行由极坐标方程向直角坐标方程转化,以及利用椭圆的参数方程求点到直线的最值.2.在直角坐标系xOy 中,直线l 过点P(0,2),倾斜角为2παα⎛⎫≠⎪⎝⎭.以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos 2θ−2sin θ=0. (1)求直线l 的参数方程与曲线C 的直角坐标方程;(2)若直线l 交曲线C 于A ,B 两点,M 为AB 中点,且满足|PA|,|PM|,|PB|成等比数列,求直线l 的斜率.【答案】(1)l 的参数方程为cos 2sin x t y t αα=⎧⎨=+⎩(t 为参数),C 的直角坐标方程为x 2=2y ;(2)斜率为±2.【解析】(1)因为直线l 过点P(0,2),倾斜角为2παα⎛⎫≠⎪⎝⎭, 所以直线l 的参数方程为cos 2sin x t y t αα=⎧⎨=+⎩(t 为参数) .因为ρcos 2θ=2sin θ,所以ρ2cos 2θ=2ρsin θ, 所以曲线C 的直角坐标方程为x 2=2y . (2)将直线l 的参数方程为cos 2sin x t y t αα=⎧⎨=+⎩(t 为参数),代入x 2=2y 可得: cos 2αt 2−2t sin α−4=0, 设A ,B 所对应的参数为t 1,t 2,所以1222sin cos t t αα+=,1224cos t t α-⋅=, 因为|PA|,|PM|,|PB|成等比数列,所以212122t t t t +⎛⎫= ⎪⎝⎭,即242sin cos os 4c ααα=, 解得tan 2α=4,tan α=±2,故直线l 的斜率为±2.【点评】解题的关键是熟练掌握极坐标与普通方程、参数方程与普通方程的互化;在利用t 的几何意义时,要将直线参数方程的标准形式代入到曲线的直角坐标方程里,方可进行求解,考查计算化简的能力,属基础题.3.在直角坐标系xOy 中,已知点M(2,0),曲线C 1的参数方程为cos sin x ty t =⎧⎨=⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为θ=θ0(ρ>0),点Q 是C 1与C 2的公共点. (1)当03πθ=时,求直线MQ 的极坐标方程;(2)当023πθ=时,记直线MQ 与曲线C 1的另一个公共点为P ,求|MP|⋅|MQ|的值. 【答案】(1)ρcos θ+√3ρsin θ−2=0;(2)3. 【解析】(1)曲线C 1的普通方程是x 2+y 2=1,当03πθ=时,点Q 的坐标为12⎛ ⎝⎭, 直线MQ 的普通方程为x +√3y −2=0,所以直线MQ 的极坐标方程为ρcos θ+√3ρsin θ−2=0.(2)当023πθ=时,点Q 的坐标为1,22⎛- ⎝⎭,所以MQ 的斜率为5k =-,所以直线MQ的参数方程为214x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 代入x 2+y 2=1并化简得230t -+=, 设它的两根为t 1,t 2,则|MP|⋅|MQ|=|t 1t 2|=3.【点评】本题考查极坐标方程与普通方程的互化,直线参数方程的几何意义.其中第二问解题的关键在于根据题意写出直线MQ的参数方程为214x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),进而利用直线参数方程几何意义求解. 4.在平面直角坐标系xOy 中,曲线C 1的参数方程为2cos sin x t y t αα=+⎧⎨=⎩(t 为参数,t ,α∈R ),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin 2cos 0ρθθ-=. (1)将C 1,C 2的方程化为普通方程,并说明它们分别表示什么曲线; (2)设曲线C 1与C 2的交点分别为A ,B ,求△OAB 的面积的最小值.【答案】(1)C 1:x sin α−y cos α−2sin α=0,曲线C 1表示过点()2,0的直线;C 2:y 2=2x ,曲线C 2表示抛物线;(2)4. 【解析】(1)由12cos :sin x t C y t αα=+⎧⎨=⎩(t 为参数),消去t 得C 1:y cos α=(x −2)sin α,即x sin α−y cos α−2sin α=0,曲线C 1表示过点(2,0)的直线. 由C 2:ρsin 2θ−2cos θ=0,得22sin 2cos 0ρθρθ-=.将x =ρcos θ,y =ρsin θ代入C 2的方程得y 2=2x ,曲线C 2表示抛物线. (2)由于直线C 1过定点(2,0),由题意可设C 1:x =my +2.联立222x my y x=+⎧⎨=⎩,消去x 得y 2−2my −4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2m ,y 1y 2=−4,且C 1与x 轴的交点为(2,0), 所以12122OAB S y y =⨯-==△,所以当m =0时,S △OAB 取得最小值4.【点评】本题考查直线的参数方程,极坐标方程与平面直角坐标方程的互化,以及直线与抛物线的位置关系,三角形面积的最值问题,属于中档题.5.数学中有许多寓意美好的曲线,在极坐标系中,曲线C :ρ=sin 3θ(ρ∈R ,[)0,2θπ∈)被称为“三叶玫瑰线”(如图所示).(1)求以极点为圆心的单位圆与三叶玫瑰线交点的极坐标; (2)射线l 1,l 2的极坐标方程分别为θ=θ0,02πθθ=+([)00,2θπ∈,ρ>0),l 1,l 2分别交曲线C 于点M ,N 两点,求2211OMON+的最小值.【答案】(1)1,6A π⎛⎫ ⎪⎝⎭,51,6B π⎛⎫ ⎪⎝⎭,31,2C π⎛⎫⎪⎝⎭;(2)4. 【解析】(1)将单位圆与三叶玫瑰线联立sin31ρθρ=⎧⎨=⎩,解得sin 3θ=1,所以()322k k πθπ=+∈Z ,()263k k ππθ=+∈Z ,因为[)0,2θπ∈,所以取k =0,1,2,得6πθ=,56π,32π,从而得到单位圆与三叶玫瑰线交点的极坐标为1,6A π⎛⎫ ⎪⎝⎭,51,6B π⎛⎫ ⎪⎝⎭,31,2C π⎛⎫⎪⎝⎭. (2)将θ=θ0,02πθθ=+代入C :[)()sin3,0,2ρθρθπ=∈∈R ,点M ,N 所对应的极径分别为ρ1,ρ2,所以ρ1=sin 3θ0,ρ2=−cos 3θ0, 即220sin 3OMθ=,|ON |2=cos 23θ0,()22002222220000111111sin 3cos 3||||sin 3cos 3sin 3cos 3OM ON θθθθθθ⎛⎫+=+=++ ⎪⎝⎭22002200sin 3cos 324cos 3sin 3θθθθ=++≥, 当且仅当 tan 23θ0=1时,取得最小值4.【点评】本题考查的知识要点:参数方程、极坐标方程和直角坐标方程之间的转换,极径的应用,三角函数关系式的转换,主要考查学生的运算能力和转换能力及思维能力,属于基础题.。
极坐标参数方程15道典型题(有答案)
联立方程解得交点坐标为 ………5分
(2)由(1)知: , 所以直线 : ,
化参数方程为普通方程: ,
对比系数得: , ………10分
2.极坐标系与直角坐标系 有相同的长度单位,以原点 为极点,以 轴正半轴为极轴,曲线 的极坐标方程为 ,曲线 的参数方程为 ,( 是参数, 是常数)
(1)求 的直角坐标方程和 的普通方程;
【解答】解:(I)设P(x,y),则由条件知M( , ).由于M点在C1上,
所以 即
从而C2的参数方程为
(α为参数)
(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.
射线θ= 与C1的交点A的极径为ρ1=4sin ,
射线θ= 与C2的交点B的极径为ρ2=8sin .
所以|AB|=|ρ2﹣ρ1|= .
(Ⅱ)设MN的中点为P,求直线OP的极坐标方程.
解:(1)将极坐标方程ρcos =1化为:
ρcosθ+ ρsinθ=1.
则其直角坐标方程为: x+ y=1,M(2,0),N(0, ),其极坐标为M(2,0),N .
(2)由(1)知MN的中点P .
直线OP的直角坐标方程为y= x,化为极方程为:ρsinθ= ·ρcosθ.
(Ⅱ)设P(2cosθ, sinθ),则|AP|= =2-cosθ,
P到直线l的距离d= = .
由|AP|=d得3sinθ-4cosθ=5,又sin2θ+cos2θ=1,得sinθ= , cosθ=- .
故P(- , ).…10分
4..在极坐标系Ox中,直线C1的极坐标方程为ρsinθ=2,M是C1上任意一点,点P在射线OM上,且满足|OP|·|OM|=4,记点P的轨迹为C2.
极坐标与参数方程含答案
极坐标系与参数方程一.高考真题1.设b a b a b a +=+∈则,62,,22R 的最小值( C )A .22-B .335-C .-3D .27-2.在极坐标系中,圆心在()2,π且过极点的圆的方程为( B )A.ρθ=22cosB.ρθ=-22c o sC.ρθ=22sinD.ρθ=-22s i n3.极坐标方程ρ=cos θ与ρcos θ= 12的图形是( B )A.C.D.4.极坐标方程ρ2cos2θ=1所表示的曲线是( D )A .两条相交直线B .圆C .椭圆D .双曲线5.在极坐标系中,直线l 的方程为ρsin θ=3,则点(2,π/6)到直线l 的距离为 2 .6.点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为( B )(A )0 (B )1 (C )2 (D )27.在平面直角坐标系xOy 中,直线l 的参数方程为)(33R t t y t x ∈⎩⎨⎧-=+=参数,圆C 的参数方程为[])20(2sin 2cos 2πθθθ,参数∈⎩⎨⎧+==y x ,则圆C 的圆心坐标为 (0,2) ,圆心到直线l 的距离为22.二.极坐标与参数方程 知识点回顾及练习(一)极坐标1.平面直角坐标系中的坐标伸缩变换设点(,)P x y 是平面直角坐标系中的任意一点,在变换(0):(0)x x y yλλϕμμ'=>⎧⎨'=>⎩ 的作用下,点(,)P x y 对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.例1:在平面直角坐标系中,方程1y x 22=+所对应的图形经过伸缩变换⎩⎨⎧='='3y y 2x,x 后的图形所对应的方程是19422='+'y x .例2: 在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧='='yy 3x,x 后,曲线C 变为曲线9y 9x 22='+',则曲线C 的方程是122=+y x例3:在同一平面直角坐标系中,使曲线2sin3x y =变为曲线sinx y =的伸缩变换是⎪⎩⎪⎨⎧='='y y x x 2132.极坐标系的概念如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对( , )叫做点M 的极坐标.例1:极坐标系中,点M )4,4(π表示的意思是 在正方向45°处的距极点距离为4的点。
极坐标参数方程高考练习含答案解析(非常好的练习题)【范本模板】
WORD 格式可编辑
13.已知 A 是曲线 ρ=3cosθ上任意一点,求点 A 到直线 ρcosθ=1 距离的最大值和最小值。
14 . 已知 椭圆
C
的极坐标方程为 2
12
3 cos2 4 sin 2
,点
F1 , F2 为其 左 ,右 焦 点 , 直 线 l 的 参数 方 程为
C
2
:
x
y
2 cos , 4sin ,
(
为参数)。
(Ⅰ)化
C1
,C
2
的方程为普通方程,并说明它们分别表示什么曲线;(II)若
C1
上的点
P
对应的参数为 t
2
,Q
为
C
2
上的动点,求 PQ 中点 M 到直线 C3 : 2x y 7 0 (t 为参数)距离的最大值。
专业知识分享
WORD 格式可编辑
(t是参数)
,圆
C
的极坐标方程为
2 cos(
). 4
2
(1)求圆心 C 的直角坐标;(2)由直线 l 上的点向圆 C 引切线,求切线长的最小值.
5.在直角坐标系 xOy
中,直线
l
的参数方程为
x
a
3t, t为参数 .在极坐标系(与直角坐标系 xOy 取相同的长度
y t
单位,且以原点 O 为极点,以 x 轴正半轴为极轴)中,圆 C 的方程为 4cos .
专业知识分享
22.设椭圆 E 的普通方程为 x2 y2 1 3
WORD 格式可编辑
(1)设 y sin , 为参数,求椭圆 E 的参数方程;(2)点 P x, y 是椭圆 E 上的动点,求 x 3y 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.曲线25()12x tt y t =-+⎧⎨=-⎩为参数与坐标轴的交点是( ).A .21(0,)(,0)52、 B .11(0,)(,0)52、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9、 2.把方程1xy =化为以t 参数的参数方程是( ).A .1212x t y t -⎧=⎪⎨⎪=⎩B .sin 1sin x t y t =⎧⎪⎨=⎪⎩C .cos 1cos x t y t =⎧⎪⎨=⎪⎩D .tan 1tan x t y t =⎧⎪⎨=⎪⎩ 3.若直线的参数方程为12()23x tt y t=+⎧⎨=-⎩为参数,则直线的斜率为( ).A .23 B .23- C .32 D .32- 4.点(1,2)在圆18cos 8sin x y θθ=-+⎧⎨=⎩的( ).A .内部B .外部C .圆上D .与θ的值有关5.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( ).A .一条直线B .两条直线C .一条射线D .两条射线6.两圆⎩⎨⎧+=+-=θθsin 24cos 23y x 与⎩⎨⎧==θθsin 3cos 3y x 的位置关系是( ).A .内切B .外切C .相离D .内含7.与参数方程为()21x tt y t⎧=⎪⎨=-⎪⎩为参数等价的普通方程为( ). A .2214y x += B .221(01)4y x x +=≤≤ C .221(02)4y x y +=≤≤ D .221(01,02)4y x x y +=≤≤≤≤8.曲线5cos ()5sin 3x y θπθπθ=⎧≤≤⎨=⎩的长度是( ).A .5πB .10πC .35π D .310π9.点(,)P x y 是椭圆222312x y +=上的一个动点,则2x y +的最大值为( ).A .22B .23C .11D .2210.直线112()3332x t t y t ⎧=+⎪⎪⎨⎪=-+⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标为( ).A .(3,3)-B .(3,3)-C .(3,3)-D .(3,3)-11.若点(3,)P m 在以点F 为焦点的抛物线24()4x t t y t⎧=⎨=⎩为参数上,则||PF 等于( ).A .2B .3C .4D .512.直线2()1x tt y t=-+⎧⎨=-⎩为参数被圆22(3)(1)25x y -++=所截得的弦长为( ).A .98B .1404C .82D .9343+ 二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________. 14.直线22()32x tt y t⎧=--⎪⎨=+⎪⎩为参数上与点(2,3)A -的距离等于2的点的坐标是_______.15.直线cos sin x t y t θθ=⎧⎨=⎩与圆42cos 2sin x y αα=+⎧⎨=⎩相切,则θ=_______________.16.设()y tx t =为参数,则圆2240x y y +-=的参数方程为____________________. 三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)求直线11:()53x t l t y t=+⎧⎪⎨=-+⎪⎩为参数和直线2:230l x y --=的交点P 的坐标,及点P与(1,5)Q -的距离.18.(本小题满分12分)过点10(,0)2P 作倾斜角为α的直线与曲线22121x y +=交于点,M N , 求||||PM PN ⋅的值及相应的α的值.19.(本小题满分12分)已知ABC ∆中,(2,0),(0,2),(cos ,1sin )A B C θθ--+(θ为变数), 求ABC ∆面积的最大值.20.(本小题满分12分)已知直线l 经过点(1,1)P ,倾斜角6πα=,(1)写出直线l 的参数方程.(2)设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积.21.(本小题满分12分)分别在下列两种情况下,把参数方程1()cos 21()sin 2t t t t x e e y e e θθ--⎧=+⎪⎪⎨⎪=-⎪⎩化为普通方程: (1)θ为参数,t 为常数;(2)t 为参数,θ为常数.22.(本小题满分12分)已知直线l 过定点3(3,)2P --与圆C :5cos ()5sin x y θθθ=⎧⎨=⎩为参数相交于A 、B 两点.求:(1)若||8AB =,求直线l 的方程;(2)若点3(3,)2P --为弦AB 的中点,求弦AB 的方程.答案与解析:1.B 当0x =时,25t =,而12y t =-,即15y =,得与y 轴的交点为1(0,)5; 当0y =时,12t =,而25x t =-+,即12x =,得与x 轴的交点为1(,0)2.2.D 1xy =,x 取非零实数,而A ,B ,C 中的x 的范围有各自的限制. 3.D 233122y t k x t --===--. 4.A ∵点(1,2)到圆心(1,0)-的距离为22(11)2228++=<(圆半径)∴点(1,2)在圆的内部.5.D 2y =表示一条平行于x 轴的直线,而2,2x x ≥≤-或,所以表示两条射线. 6.B 两圆的圆心距为22(30)(40)5--+-=,两圆半径的和也是5,因此两圆外切.7.D 22222,11,1,0,011,0244y y x t t x x t t y ==-=-+=≥≤-≤≤≤而得. 8.D 曲线是圆2225x y +=的一段圆弧,它所对圆心角为233πππ-=. 所以曲线的长度为310π. 9.D 椭圆为22164x y +=,设(6cos ,2sin )P θθ, 26cos 4sin 22sin()22x y θθθϕ+=+=+≤.10.D 2213(1)(33)1622t t ++-+=,得2880t t --=,12128,42t t t t ++==, 中点为11432333342x x y y ⎧=+⨯⎪=⎧⎪⎪⇒⎨⎨=-⎪⎩⎪=-+⨯⎪⎩. 11.C 抛物线为24y x =,准线为1x =-,||PF 为(3,)P m 到准线1x =-的距离,即为4. 12.C 2222212122x t x t y t y t ⎧=-+⨯⎪=-+⎧⎪⇒⎨⎨=-⎩⎪=-⨯⎪⎩,把直线21x t y t =-+⎧⎨=-⎩代入22(3)(1)25x y -++=,得222(5)(2)25,720t t t t -++-=-+=,2121212||()441t t t t t t -=+-=,弦长为122||82t t -=.13.221,(2)416x y x -=≥ 22()()422222t t tt tty x e x e e y y x x y y e e x e ---⎧⎧+==+⎪⎪⎪⇒⇒+-=⎨⎨=-⎪⎪-=⎩⎪⎩. 14.(3,4)-,或(1,2)- 222212(2)(2)(2),,22t t t t -+===±.15.6π,或56π 直线为tan y x θ=,圆为22(4)4x y -+=,作出图形,相切时,易知倾斜角为6π,或56π.16.2224141t x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩ 22()40x tx tx +-=,当0x =时,0y =,或241t x t =+; 而y tx =,即2241t y t =+,得2224141t x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩. 17.解:将153x ty t=+⎧⎪⎨=-+⎪⎩,代入230x y --=,得23t =,得(123,1)P +,而(1,5)Q -, 得22||(23)643PQ =+=.18.解:设直线为10cos ()2sin x t t y t αα⎧=+⎪⎨⎪=⎩为参数,代入曲线 并整理得223(1sin )(10cos )02t t αα+++=, 则12232||||||1sin PM PN t t α⋅==+, 所以当2sin 1α=时,即2πα=,||||PM PN ⋅的最小值为34,此时2πα=.19.解:设C 点的坐标为(,)x y ,则cos 1sin x y θθ=⎧⎨=-+⎩,即22(1)1x y ++=为以(0,1)-为圆心,以1为半径的圆. ∵(2,0),(0,2)A B -, ∴||4422AB =+=,且AB 的方程为122x y+=-, 即20x y -+=,则圆心(0,1)-到直线AB 的距离为22|(1)2|3221(1)--+=+-. ∴点C 到直线AB 的最大距离为3122+, ∴ABC S ∆的最大值是1322(12)3222⨯⨯+=+.20.解:(1)直线的参数方程为1cos 61sin 6x t y t ππ⎧=+⎪⎪⎨⎪=+⎪⎩,即312112x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩, (2)把直线312112x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩,代入422=+y x , 得22231(1)(1)4,(31)2022t t t t +++=++-=, 122t t =-,则点P 到,A B 两点的距离之积为2.21.解:(1)当0t =时,0,cos y x θ==,即1,0x y ≤=且; 当0t ≠时,cos ,sin 11()()22t tt t x y e e e e θθ--==+-,而221x y +=,即2222111()()44tt t t x y e e e e --+=+-;(2)当,k k Z θπ=∈时,0y =,1()2t tx e e -=±+,即1,0x y ≥=且; 当,2k k Z πθπ=+∈时,0x =,1()2t ty e e -=±-,即0x =;当,2k k Z πθ≠∈时,得2cos 2sin t tt t x e e ye e θθ--⎧+=⎪⎪⎨⎪-=⎪⎩,即222cos sin 222cos sin tt x y e x ye θθθθ-⎧=+⎪⎪⎨⎪=-⎪⎩,得222222()()cos sin cos sin t t x y x y e e θθθθ-⋅=+-, 即22221cos sin x y θθ-=. 22.解:(1)由圆C 的参数方程225cos 255sin x x y y θθ=⎧⇒+=⎨=⎩,设直线l 的参数方程为①3cos ()3sin 2x t t y t αα=-+⎧⎪⎨=-+⎪⎩为参数, 将参数方程①代入圆的方程2225x y += 得2412(2cos sin )550t t αα-+-=, ∴△216[9(2cos sin )55]0αα=++>, 所以方程有两相异实数根1t 、2t ,∴212||||9(2cos sin )558AB t t αα=-=++=, 化简有23cos4sin cos 0ααα+=,解之cos 0α=或3tan 4α=-, 从而求出直线l 的方程为30x +=或34150x y ++=.(2)若P 为AB 的中点,所以120t t +=,由(1)知2cos sin 0αα+=,得tan 2α=-,故所求弦AB 的方程为2242150(25)x y x y ++=+≤.备用题:1.已知点00(,)P x y 在圆38cos 28sin x y θθ=+⎧⎨=-+⎩上,则0x 、0y 的取值范围是( ).A .0033,22x y -≤≤-≤≤B .0038,28x y ≤≤-≤≤C .00511,106x y -≤≤-≤≤D .以上都不对1.C 由正弦函数、余弦函数的值域知选C .2.直线12()2x t t y t =+⎧⎨=+⎩为参数被圆229x y +=截得的弦长为( ). A .125 B .1255 C .955 D .91052.B 21512521155x t x t y t y t ⎧=+⨯⎪=+⎧⎪⇒⎨⎨=+⎩⎪=+⨯⎪⎩,把直线122x t y t=+⎧⎨=+⎩代入 229x y +=得222(12)(2)9,5840t t t t +++=+-=,2212121281612||()4()555t t t t t t -=+-=-+=,弦长为12125||55t t -=. 3.已知曲线22()2x pt t p y pt⎧=⎨=⎩为参数,为正常数上的两点,M N 对应的参数分别为12,t t 和,120t t +=且,那么||MN =_______________. 3.14||p t 显然线段MN 垂直于抛物线的对称轴,即x 轴,121||2||2|2|M N p t t p t =-=. 4.参数方程cos (sin cos )()sin (sin cos )x y θθθθθθθ=+⎧⎨=+⎩为参数表示什么曲线? 4.解:显然tan y x θ=,则222222111,cos cos 1y y x x θθ+==+, 2222112t a n c o s s i n c o s s i n 2c o s c o s221t a n x θθθθθθθθ=+=+=⨯++,即22222221112111y y x x x y y y x x x +=⨯+=+++,22(1)1y y x x x +=+, 得21y y x x x+=+, 即220x y x y +--=.5.已知点(,)P x y 是圆222x y y +=上的动点, (1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围.5.解:(1)设圆的参数方程为cos 1sin x y θθ=⎧⎨=+⎩, 22cos sin 15sin()1x y θθθϕ+=++=++, ∴51251x y -+≤+≤+.(2)cos sin 10x y a a θθ++=+++≥, ∴(cos sin )12sin()14a πθθθ≥-+-=-+-恒成立, 即21a ≥-.。