(汇总)非线性规划问题的求解方法.ppt

合集下载

非线性规划问题的求解方法

非线性规划问题的求解方法

程序1:主程序main2.m
global lamada%主程序main2.m,罚函数方法
x0=[1 1];
lamada=2;
c=10;
e=1e-5;
k=1;
while lamada*fun2p(x0)>=e
x0=fminsearch('fun2min',x0);
lamada=c*lamada;
k=k+1;
越是接近极值点,收敛越慢;
它是其它许多无约束、有约束最优化方法的基础。
该法一般用于最优化开始的几步搜索。
以梯度法为基础的最优化方法
min f (x), x En
求f(x)在En中的极小点
基础:方向导数、梯度
思想:
方向导数是反映函数值沿某一方向的变化率问题 方向导数沿梯度方向取得最大值
通过一系列一维搜索来实现。 本方法的核心问题是选择搜索方向。 搜索方向的不同则形成不同的最优化方法。
1.约束中可以有等式约束 2.可以含线性、非线性约束均可
输入参数语法:
x = fmincon(fun,x0,A,b) x = fmincon(fun,x0,A,b,Aeq,beq) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) x= fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2, ...)
i 1
j 1
其中 ( y), ( y) 是满足如下条件的连续函数:

非线性规划问题的求解方法[优质ppt]

非线性规划问题的求解方法[优质ppt]

3、问题:
4.1、外点法(外部惩罚函数法):
如何将此算法模块化?
外点法框图: kk1
初始 x(0),1 0,1 0,k1
以x(k)为初始点 , 解
min f ( x) k p( x)
得到 x (k 1)
No
k1k
kp(x(k1)) yes
停 x (k 1) f22=subs(fx2x2); if(double(sqrt(f1^2+f2^2))<=0.002)
a(k+1)=double(x1);b(k+1)=double(x2);f0(k+1)=double(subs(f)); break; else X=[x1 x2]'-inv([f11 f12;f21 f22])*[f1 f2]'; x1=X(1,1);x2=X(2,1); end end if(double(sqrt((a(k+1)-a(k))^2+(b(k+1)b(k))^2))<=0.001)&&(double(abs((f0(k+1)-f0(k))/f0(k)))<=0.001) a(k+1) b(k+1) k f0(k+1) break; else m(k+1)=c*m(k);
非线性规划问题的求解方法
Content
无约束非线性规划问题 有约束非线性规划问题 Matlab求解有约束非线性规划问题
一.无约束问题
• 一维搜索
指寻求一元函数在某区间上的最优值点的方法。这类方法不仅有实用 价值,而且大量多维最优化方法都依赖于一系列的一维最优化。
逐次插值逼近法 近似黄金分割法(又称0.618法) • 无约束最优化

非线性规划ppt课件

非线性规划ppt课件

g3(x) x1 x2 x3 0
;
20
一维搜索方法
目标函数为单变量的非线性
规划问题称为一维搜索问题
min t0 (0ttmax )
其中 t R 。
(t)
➢精确一维搜索方法 0.618法 Newton法
➢非精确一维搜索方法 Goldstein法 Armijo法
;
21
0.618法(近似黄金分割法)
定义 4.1.2 对于非线性规划(MP),若 x* X ,并且存在 x* 的一个
领域 N ( x* ) x Rn x x* ( 0, R) ,使
f (x* ) f (x), x N (x* ) X ,
则称 x* 是(MP)的局部最优解或局部极小点,称 f ( x* ) 是(MP)的局部
函数(t) 称为在[a,b]上是单谷的,如果存在一个 t * [a, b] ,使得(t) 在[a, t * ]上严格递减,且在[t * , b] 上严格递增。区间[a,b]称为(t) 的单 谷区间。
第 1 步 确定单谷区间[a,b],给定最后区间精度 0 ;
第 2 步 计算最初两个探索点
t1 a 0.382(b a) b 0.618(b a)
;
22
0.618法例题
• 例4.3.1 用0.618法求解
min(t) t3 2t 1 t0
(t) 的单谷区间为[0,3], 0.5
解答
例4.3.1解答 • 迭换换代tbtb 过程0311..62..∧✓18可0036145436481由-00下101.2.∧...0✓871110650431表48611 给0-0100.2.∨...0✓1470出2064308168821 --000100...∨...00✓4178376340791868681 01..7140486 a2112a

管理运筹学 06 非线性规划.ppt

管理运筹学 06 非线性规划.ppt
在此例中,约束h(X ) x1 x2 6 0 对最优解发生 了影响,若以 h(X ) x1 x2 6 0 代替原约束, 则非线性规划的最优解是X (2,2) ,即图中的 C点,此时 f (X ) 0。由于最优点位于可行域 的内部,故事实上约束 h(X ) x1 x2 6 0 并未 发挥作用,问题相当一个无约束极值问题。
于 凸任集意。实数,集合S ={X|X∈R, f (X) ≤}是
2019/11/18
27
2.4 凸函数的性质
设f (X)为定义在凸集R上的凸函数,则它 的任一极小点就是它在R上的最小点(全 局极小点);而且它的极小点形成一个凸 集。
设f (X)为定义在凸集R上的可微凸函数, 若它存在点X*∈R,使得对于所有的X∈R 有▽ f (X *)T (X- X*) ≥0,则X*是f (X)在R上 的最小点(全局极小点)。
Example 2: 在层次分析(Analytic Hierarchy Process,
简记为 AHP)中,为进行多属性的综合评 价,需要确定每个属性的相对重要性,即 它们的权重。为此,将各属性进行两两比 较,从而得出如下判断矩阵:
2019/11/18
5
1.1 非线性规划问题举例
a11 … a1n
则必有

0 f (X ) x1
f ( X ) x2
f ( X ) xn
f ( X ) 0
2019/11/18
18
必要条件
f
(X
)

( f
(X x1
)
,
f ( X x2
)
,
在 X*点处的梯度。
,
f ( X xn

非线性规划基础.pptx

非线性规划基础.pptx
部最优解。
定理13.10 若目标函数f(x)是Rn上的连续可微凸函数,
则 f (x的) 充0分必要条件 为无x 约束优化问题
(13.4)的全局最优点和局部最优点。
第19页/共35页
• 例13.5 求函数f(x)的最优值点,即。
m in
xR n
f
(
x
)
(
x12
1)2
x12
x22
2x1
解: f (x) 0 x (1,0)T
凹函数
第8页/共35页
非凸非凹函数
凸函数具有如下性质
第9页/共35页
二、凸函数的判断
• 一元函数凸性的判断
f (x) 0 f (x1) f (x2 ) f (x2 )(x1 x2 )
第10页/共35页
• 多元函数凸性的判断
梯度:
f (x) ( f (x) ,, f (x) )T
x1
xn
H(
x1,x2
)
6x1 3
23
• 判定正定的方法:当一个n×n矩阵A的任意k阶顺
序主子式大于0时,则该矩阵为正定的。
2 f (x) 2 f (x) 2 f (x)
x12
x1x2
x1xk
2 f (x)
H
(
k
x)
x2x1
2 f (x) x22
2 f (x) x2xk
2 f (x) 2 f (x) 2 f (x)
第13页/共35页
• 例13.4 判别下列函数的凸凹性
1) f (x1, x2 ) 2x12 x22 2x1x2 x1 1
2) f (x1, x2 ) x12 x22
解: 1)
H(
x1,x2

(汇总)非线性规划问题的求解方法.ppt

(汇总)非线性规划问题的求解方法.ppt

..........
5
3、问题:
..........
6
4.1、外点法(外部惩罚函数法):
..........
7
外点法框图: k k1
初始x(0) , 1 0, 1 0, k 1
以x(k)为初始点, 解
min f (x) k p(x)
得到 x(k 1)
No
k1 k
k p( x(k1) )
..........
yes

x(k1) opt
8
4.2、内点法(内部惩罚函数法): min F ( x, )
s.t. x S
算法: (1) 给定初始内点 x(0) S ,允许误差 e>0,
障碍参数 (1) ,缩小系数b (0,1) ,置 k=1;
(2) 以 x(k1) 为初始点,求解下列规划问题: min f (x) (k) B(x) ,令x(k) 为所求极小点 s.t. x S
else
m(k+1)=c*m(k);
..........
12
end end
结果:

ans =

• 1.0000


• ans =

• -7.1594e-004


• k=

• 14
..........
13
小结
讲解了两个求解有约束非线性规划问题的特点. 易于实现,方法简单. 没有用到目标函数的导数.
s.t. x S0 从x(k )出 发, 求 得 x(k1)
No
k1 k
kq( x(k1) )
yes

x(k1) opt

第13讲 非线性规划.ppt

第13讲  非线性规划.ppt

6
信息与计算科学系
数学 建模
在一组等式或不等式的约束下,求一个函数的最大 值(或最小值)问题,其中至少有一个非线性函数,这 类问题称之为非线性规划问题。可概括为一般形式
min f ( x),
s.t. hj ( x) 0, j 1, , q, (3.1) gi ( x) 0, i 1, , p.
其中 x [x1, , xn]T 称为模型(3.1)的决策变量, f 称 为目标函数, gi (i 1, , p)和hj ( j 1, ,q)称为约束函 数。另外,gi ( x) 0 (i 1, , p)称为等式约束,hj ( x) 0
3
信息与计算科学系
数学 建模
例 3.1 (投资决策问题)某企业有n个项目可供选择
投资,并且至少要对其中一个项目投资。已知该企业拥有
总资金 A元,投资于第i(i 1, ,n)个项目需花资金ai 元, 并预计可收益bi 元。试选择最佳投资方案。
解 设投资决策变量为
xi
1, 决定投资第i个项目 ,i 1, , n,
x(1)+x(2)^2+x(3)^3-20]; %非线性不等式约束
h=[-x(1)-x(2)^2+2;
x(2)+2*x(3)^2-3]; %非线性等式约束
11
信息与计算科学系
数学 建模
(3)编写主程序文件如下 [x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[],'fu n2')
14
信息与计)是极小值点,对应的极小值 f (1,0) 5; 点(1,2),( 3,0)不是极值点; 点( 3,2)是极大值点,对应的极大值 f ( 3,2) 31。

非线性规划PPT演示文稿

非线性规划PPT演示文稿
正是由于局部最优解的存在,使得非线性规划问 题的求解要比线性规划问题的求解复杂得多。当求 得一个最优解时,常常无法确定该解是否为全局最 优解。但是在某些情况下,可以保证所求得的解就 是全局最优解。下面7.2节、7.3节所介绍的边际收 益递减的二次规划和可分离规划就属于这种情况。
RUC, Information School, Ye Xiang
RUC, Information School, Ye Xiang
求总风险(方差)的一种简便方法
第7章 非线性规划
由于目标函数“总风险(方差)”的公式是非线性的,也 复杂,希望找到一种不容易出错且简便的办法
构造协方差矩阵(方差、协方差)
总风险(方差)=

SUMPRODUCT(MMULT(投资组合,协方差矩阵),投资
第7章 非线性规划
这种方法是将3.2节的成本收益平衡问题非 线性化。在这种情况下,成本是与投资有关 的风险,收益是投资组合的预期回报。
因此,该模型的一般表达形式为:
最小化 风险
约束条件 预期回报≥最低可接受水平
这个模型关注投资组合的风险和预期收益 之间的平衡。
RUC, Information School, Ye Xiang
例7.1 给定一根长度为400米
的绳子,用来围成一块矩形菜 地,问长和宽各为多少,使菜 地的面积最大? 解:这是一个小学数学问题, 现在把它当作一个规划问题来 求解。
RUC, Information School, Ye Xiang
7.1 非线性规划基本概念 第7章 非线性规划
(1) 决策变量
7.2.2 运用非线性规划优化 有价证券投资组合
第7章 非线性规划
投资组合优化,就是确定投资项目中的一 组最优投资比例。这里所说的“最优”,可 以是在一定风险水平下使得投资回报最大, 也可以是在一定的投资回报水平下使得风险 最小。

lingo解非线性规划汇总.ppt

lingo解非线性规划汇总.ppt

在LINGO中使用LINDO模型 运行程序 :
优化建模
点“LINGO菜单Solve 命令”
或 按ctrl+s运行
或 用鼠标点
• 运行状态窗口
优化建模
求解 器(求 解程 序)状 态框
解的目标函数值
当前解的状态 : "Global
Optimum", "Local Optimum", "Feasible", "Infeasible“(不可行), "Unbounded“(无界), "Interrupted“(中断), "Undetermined“(未确定)
INV (0) 10
@For(Quarters(I)|I#GT#1: INV(I)=INV(I-1)+RP(I)+OP(I)-DEM(I););
对下标集合的元素(下标i)增加了一个逻辑关系式 “i#GT#1”(这个限制条件与集合之间有一个竖线“|” 分开,称为过滤条件)。
限制条件“I#GT#1”是一个逻辑表达式,意思就是I>1; “#GT#”是逻辑运算符号,意思是“大于(Greater Than的字首字母缩写)” 。

第一季度 第二季度 第三季度 第四季度
DEM: 需求量(为已知)
40
60
75
25
RP: 正常生产的产量
OP: 加班生产的产量
INV: 库存量
总费用:四个季度的(生产费用+加班费用+库存费用)
DEM,RP,OP,INV对每个季度都应该有一个对应的值,也就说他们都应该是
一个由4个元素组成的数组,其中DEM是已知的,而RP,OP,INV是未知数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x1=X(1,1);x2=X(2,1);
end
end
if(double(sqrt((a(k+1)-a(k))^2+(b(k+1)b(k))^2))<=0.001)&&(double(abs((f0(k+1)-f0(k))/f0(k)))<=0.001)
a(k+1)
b(k+1)
k
f0(k+1)
break;
逐次插值逼近法 近似黄金分割法(又称0.618法) • 无约束最优化
指寻求 n元实函数f在整个n维向量空间Rn上的最优值点的方法。无约 束最优化方法大多是逐次一维搜索的迭代算法。这些迭代算法的基本
..........
3
思想是:在一个近似点处选定一个有利搜索方向,沿这个方向进行一 维寻查,得出新的近似点。然后对新点施行同样手续,如此反复迭代, 直到满足预定的精度要求为止。根据搜索方向的取法不同,可以有各 种算法。
else
m(k+1)=c*m(k);
..........
12
end end
结果:

ans =

• 1.0000


• ans =

• -7.1594e-004


• k=

• 14
..........
13
小结
讲解了两个求解有约束非线性规划问题的特点. 易于实现,方法简单. 没有用到目标函数的导数.
...
8
4.2、内点法(内部惩罚函数法): min F ( x, )
s.t. x S
算法: (1) 给定初始内点 x(0) S ,允许误差 e>0,
障碍参数 (1) ,缩小系数b (0,1) ,置 k=1;
(2) 以 x(k1) 为初始点,求解下列规划问题: min f (x) (k) B(x) ,令x(k) 为所求极小点 s.t. x S
(3) 如果 (k) B(x (k) ) e ,则停止计算,得到结果x(k) ,
(4) 否则令 (k1) b (k) ,置 k=k+1,返回(2)。
..........
9
内点法框图 k k1
x(0) S0 , 1 0, [0,1], 0, k 1
min f ( x) kq( x)
=diff(fx2,'x1');fx2x2=diff(fx2,'x2');
for k=1:100
x1=a(k);x2=b(k);e=m(k);
for n=1:100
f1=subs(fx1);
f2=subs(fx2);
f11=subs(fx1x1);
f12=subs(fx1x2);
..........
11
f21=subs(fx2x1);
f22=subs(fx2x2);
if(double(sqrt(f1^2+f2^2))<=0.002)
a(k+1)=double(x1);b(k+1)=double(x2);f0(k+1)=double(subs(f));
break;
else
X=[x1 x2]'-inv([f11 f12;f21 f22])*[f1 f2]';
m(1)=1;c=0.2;a(1)=2;b(1)=-3;
f=x1^2+x2^2-e*(1/(2*x1+x2-2)+1/(1-x1)); f0(1)=15;
fx1=diff(f,'x1');fx2=diff(f,'x2');fx1x1=diff(fx1,'x1');fx1x2=diff(fx1,'x2');fx2x1
最速下降法(负梯度法) Newton法 共轭梯度法 拟Newton法 变尺度法
..........
4
二.有约束问题
(一)罚函数法(SUMT) 1、算法思想: 将有约束优化问题转化为一系列无约束优化问题 进行求解.(Sequential Unconstrained Minimization Technique-SUMT) 2、算法类型: 外点法(外惩法) 内点法(内惩法)
..........
5
3、问题:
..........
6
4.1、外点法(外部惩罚函数法):
..........
7
外点法框图: k k1
初始x(0) , 1 0, 1 0, k 1
以x(k)为初始点, 解
min f (x) k p(x)
得到 x(k 1)
No
k1 k
k p( x(k1) )
问题的转化技巧(近似为一个无约束规划).
..........
14
(二)拉格朗日乘子法 (三)可行方向法与广义简约梯度法 (四)SQP方法
..........
15
三.Matlab求解有约束问题
..........
16
运行输出:
x= 24.0000 12.0000 12.0000
fval =
-3.4560e+03
运行输出:
x= 0.2578 0.2578
resnorm = 124.3622
..........
21
Thank you for your attention!
..........
22
s.t. x S0 从x(k )出 发, 求 得 x(k1)
No
k1 k
kq( x(k1) )
yes

x(k1) opt
..........
10
内点法的matlab程序:
m=zeros(1,50);a=zeros(1,50);b=zeros(1,50);f0=zeros(1,50);
syms x1 x2 e;
..........
17
(二)非负条件下线性最小二乘lsqnonneg
..........
18
(三)有约束线性最小二乘lsqlin
..........
19
(四)非线性最小二乘lsqnonlin
..........
20
求解x,使得下式最小
e e 10 (2 2k
kx1
kx 2)2
k 1
非线性规划问题的求解方法
..........
1
Content
无约束非线性规划问题 有约束非线性规划问题
Matlab求解有约束非线性规划问题
..........
2
一.无约束问题
• 一维搜索
指寻求一元函数在某区间上的最优值点的方法。这类方法不仅有实用 价值,而且大量多维最优化方法都依赖于一系列的一维最优化。
相关文档
最新文档