高考数学卷(word版)

合集下载

2023年高考真题——数学(新高考II卷) Word版含解析

2023年高考真题——数学(新高考II卷) Word版含解析

程,解出即可.
y xm
【详解】将直线
y
x
m
与椭圆联立
x2 3
y2
,消去
1
y
可得
4x2
6mx
3m2
3
0

因为直线与椭圆相交于 A, B 点,则 36m2 4 4 3m2 3 0 ,解得 2 m 2 ,
设 F1 到 AB 的距离 d1,F2 到 AB 距离 d2 ,易知 F1 2, 0 , F2 2, 0 ,
5.
已知椭圆 C :
x2 3
y2
1 的左、右焦点分别为 F1 ,F2 ,直线
y
x m 与 C 交于 A,B 两点,若 △F1AB
面积是 △F2 AB 面积的 2 倍,则 m ( ).
2 A. 3
B. 2 3
C. 2 3
D. 2 3
【答案】C
【解析】
【分析】首先联立直线方程与椭圆方程,利用 0 ,求出 m 范围,再根据三角形面积比得到关于 m 的方
综上所述: a 1 .
故选:B.
3. 某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高 中部两层共抽取 60 名学生,已知该校初中部和高中部分别有 400 名和 200 名学生,则不同的抽样结果共有 ( ).
A.
C45 400
C15 200

.C
C30 400
C40 400
C20 200
种.
故选:D.
4.

f
x
x
a
ln
2x 2x
1 1
为偶函数,则
a

).
A. 1

2021年高考数学真题试题(新高考Ⅰ卷)(word版,含答案与解析)

2021年高考数学真题试题(新高考Ⅰ卷)(word版,含答案与解析)

2021年高考数学真题试卷(新高考Ⅰ卷)一、选择题:本题共8小题,每小题5分,共40分。

1.设集合A= {x|-2<x<4}. B = {2,3,4,5},则A∩B=()A. {2}B. {2,3}C. {3,4,}D. {2,3,4}【答案】B【考点】交集及其运算【解析】【解答】解:根据交集的定义易知A∩B是求集合A与集合B的公共元素,即{2,3},故答案为:B【分析】根据交集的定义直接求解即可.2.已知z=2-i,则( z(z⃗+i)=()A. 6-2iB. 4-2iC. 6+2iD. 4+2i【答案】C【考点】复数的基本概念,复数代数形式的混合运算【解析】【解答】解:z(z+i)=(2−i)(2+2i)=4+4i−2i−2i2=6+2i故答案为:C【分析】根据复数的运算,结合共轭复数的定义求解即可.3.已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为()A. 2B. 2 √2C. 4D. 4 √2【答案】B【考点】旋转体(圆柱、圆锥、圆台)【解析】【解答】解:根据底面周长等于侧面展开图弧长,设母线为l,底面半径为r,则有2πr=180°360°×2πl,解得l=2r=2√2故答案为:B【分析】根据底面周长等于侧面展开图弧长,结合圆的周长公式与扇形的弧长公式求解即可.4.下列区间中,函数f(x)=7sin( x−π6)单调递增的区间是()A. (0, π2) B. ( π2, π) C. ( π, 3π2) D. ( 3π2, 2π)【答案】A【考点】正弦函数的单调性【解析】【解答】解:由−π2+2kπ≤x−π6≤π2+2kπ得−π3+2kπ≤x≤2π3+2kπ,k∈Z,当k=0时,[−π3,2π3]是函数的一个增区间,显然(0,π2)⊂[−π3,2π3],故答案为:A【分析】根据正弦函数的单调性求解即可.5.已知F 1,F 2是椭圆C :x 29+y 24=1 的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( ) A. 13 B. 12 C. 9 D. 6 【答案】 C【考点】基本不等式在最值问题中的应用,椭圆的定义【解析】【解答】解:由椭圆的定义可知a 2=9,b 2=4,|MF 1|+|MF 2|=2a=6, 则由基本不等式可得|MF 1||MF 2|≤|MF1||MF2|≤(|MF1|+|MF2|2)2=9 ,当且仅当|MF 1|=|MF 2|=3时,等号成立. 故答案为:C【分析】根据椭圆的定义,结合基本不等式求解即可. 6.若tan θ =-2,则sin θ(1+sin2θ)sin θ+cos θ=( )A. −65 B. −25 C. 25 D. 65 【答案】 C【考点】二倍角的正弦公式,同角三角函数间的基本关系,同角三角函数基本关系的运用 【解析】【解答】解:原式=sinθ(sin 2θ+2sinθcosθ+cos 2θ)sinθ+cosθ=sinθ(sinθ+cosθ)2sinθ+cosθ=sinθ(sinθ+cosθ)=sin 2θ+sinθcosθsin 2θ+cos 2θ=tan 2θ+tanθtan 2θ+1=25故答案为:C【分析】根据同角三角函数的基本关系,结合二倍角公式求解即可. 7.若过点(a,b)可以作曲线y=e x 的两条切线,则( ) A. e b <a B. e a <b C. 0<a<e b D. 0<b<e a 【答案】 D【考点】极限及其运算,利用导数研究曲线上某点切线方程【解析】【解答】解:由题意易知,当x 趋近于-∞时,切线为x=0,当x 趋近于+∞时,切线为y=+∞,因此切线的交点必位于第一象限,且在曲线y=e x 的下方. 故答案为:D【分析】利用极限,结合图象求解即可.8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A. 甲与丙相互独立 B. 甲与丁相互独立 C. 乙与丙相互独立 D. 丙与丁相互独立 【答案】 B【考点】相互独立事件,相互独立事件的概率乘法公式,古典概型及其概率计算公式 【解析】【解答】解:设甲乙丙丁事件发生的概率分别为P(A),P(B),P(C),P(D), 则P(A)=P(B)=16,P(C)=56×6=536,P(D)=66×6=16 ,对于A ,P(AC)=0;对于B ,P(AD)=16×6=136; 对于C ,P(BC)=16×6=136; 对于D ,P(CD)=0.若两事件X,Y 相互独立,则P(XY)=P(X)P(Y), 故B 正确. 故答案为:B【分析】根据古典概型,以及独立事件的概率求解即可二、选择题:本题共4小题。

2020年高考数学真题试题(浙江卷)(Word版+答案+解析)

2020年高考数学真题试题(浙江卷)(Word版+答案+解析)

2020年高考数学真题试卷(浙江卷)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合P ={x|1<x <4},Q ={x|2<x <3},则P∩Q =( ) A. {x|1<x≤2} B. {x|2<x <3} C. {x|3≤x <4} D. {x|1<x <4}2.已知a ∈R ,若a ﹣1+(a ﹣2)i (i 为虚数单位)是实数,则a =( ) A. 1 B. ﹣1 C. 2 D. ﹣23.若实数x ,y 满足约束条件 {x −3y +1≤0x +y −3≥0 ,则z =x+2y 的取值范围是( )A. (﹣∞,4]B. [4,+∞)C. [5,+∞)D. (﹣∞,+∞) 4.函数y =xcosx+sinx 在区间[﹣π,+π]的图象大致为( )A. B.C. D.5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A. 73B. 143 C. 3 D. 66.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 7.已知等差数列{a n }的前n 项和S n , 公差d≠0, a 1d≤1.记b 1=S 2 , b n+1=S n+2﹣S 2n , n ∈N*,下列等式不可能成立的是( )A. 2a 4=a 2+a 6B. 2b 4=b 2+b 6C. a 42=a 2a 8D. b 42=b 2b 88.已知点O (0,0),A (﹣2,0),B (2,0).设点P 满足|PA|﹣|PB|=2,且P 为函数y =3 √4−x 2 图象上的点,则|OP|=( )A. √222B. 4√105C. √7D. √109.已知a ,b ∈R 且ab≠0,若(x ﹣a )(x ﹣b )(x ﹣2a ﹣b )≥0在x≥0上恒成立,则( ) A. a <0 B. a >0 C. b <0 D. b >0 10.设集合S ,T ,S ⊆N*,T ⊆N*,S ,T 中至少有两个元素,且S ,T 满足:①对于任意x ,y ∈S ,若x≠y ,都有xy ∈T ;②对于任意x ,y ∈T ,若x <y ,则 yx ∈S ;下列命题正确的是( )A. 若S 有4个元素,则S ∪T 有7个元素B. 若S 有4个元素,则S ∪T 有6个元素C. 若S 有3个元素,则S ∪T 有4个元素D. 若S 有3个元素,则S ∪T 有5个元素二、填空题:本大题共7小题,共36分。

2021年全国高考真题乙卷数学试卷真题(文科)(word版,含答案)

2021年全国高考真题乙卷数学试卷真题(文科)(word版,含答案)

2021年普通高等学校招生全国统一考试试题数学(乙卷·文科)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U ={1,2,3,4,5},集合M ={1,2},N ={3,4},则 U (M ∪N)=( ) A .{5}B .{1,2}C .{3,4}D .{1,2,3,4}2.设iz =4+3i ,则z =( ) A .−3−4iB .−3+4iC .3−4iD .3+4i3.已知命题p :∃x ∈R ,sinx <1;命题q :∀x ∈R ,e |x|⩾1,则下列命题中为真命题的是( ) A .p ∧qB .¬p ∧qC .p ∧¬qD .¬(p ∨q)4.函数f(x)=sin x 3+cos x 3的最小正周期和最大值分别是( ) A .3π和√2B .3π和2C .6π和√2D .6π和25.若x ,y 满足约束条件{x +y ⩾4,x −y ⩽2,则z =3x +y 的最小值为y ⩽3,( )A .18B .10C .6D .46.cos 2π12−cos 25π12=( )A .12B .√33C .√22D .√327.在区间(0,12)随机取1个数,则取到的数小于12的概率为( ) A .34B .23C .13D .168.下列函数中最小值为4的是( ) A .y =x 2+2x +4 B .y =|sinx|+4|sinx|C .y =2x +22xD .y =lnx +4lnx9.设函数f(x)=1−x 1+x,则下列函数中为奇函数的是( ) A .f(x −1)−1B .f(x −1)+1C .f(x +1)−1D .f(x +1)+110.在正方体ABCD −A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A .π2B .π3C .π4D .π611.设B 是尼圆C :x 25+y 2=1的上顶点,点P 在C 上,则|PB|的最大值为( ) A .52B .√6C .√5D .212.设a ≠0,若x =a 为函数f(x)=a(x −a)2(x −b)的极大值点,则( )A.a<b B.a>b C.ab<a2D.ab>a2二、填空题:本题共4小题,每小题5分,共20分。

2021年高考数学真题试题(新高考Ⅱ卷)(Word版+答案+解析)

2021年高考数学真题试题(新高考Ⅱ卷)(Word版+答案+解析)

2021年高考数学真题试题(新高考Ⅱ卷)(Word版+答案+解析)2021年高考数学真题试卷(新高考Ⅱ卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(共8题;共40分)1.复数frac{2- i}{1-3i}$$在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.设集合 $U=\{1,2,3,4,5,6\}$,$A=\{1,3,6\}$,$B=\{2,3,4\}$,则$A∩(\complement_U B)=()$A。

$\{3\}$ B。

$\{1,6\}$ C。

$\{5,6\}$ D。

$\{1,3\}$3.抛物线 $y^2=2px(p>0)$ 的焦点到直线 $y=x+1$ 的距离为 $\sqrt{2}$,则 $p=$()A。

1 B。

2 C。

$2\sqrt{2}$ D。

44.北斗三号全球卫星导航系统是我国航天事业的重要成果。

在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为km(轨道高度是指卫星到地球表面的距离)。

将地球看作是一个球心为O,半径$r$ 为6400km的球,其上点A的纬度是指$\angle OAB$ 与赤道平面所成角的度数。

地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为 $\alpha$,记卫星信号覆盖地球表面的表面积为$S=2\pi r^2(1-\cos\alpha)$(单位:$km^2$),则 $S$ 占地球表面积的百分比约为()A。

26% B。

34% C。

42% D。

50%5.正四棱台的上底面和下底面的边长分别为2,4,侧棱长为2,则其体积为()A。

$20+12\sqrt{3}$ B。

$28\sqrt{2}$ C。

$\frac{28\sqrt{2}}{3}$ D。

$56$6.某物理量的测量结果服从正态分布 $N(10,\sigma^2)$,下列结论中不正确的是()A。

(word完整版)历年高考数学真题(全国卷整理版)43964.doc

(word完整版)历年高考数学真题(全国卷整理版)43964.doc

实用文档参考公式:如果事件 A、B互斥,那么P( A B) P( A)P( B)如果事件 A、B相互独立,那么P(AgB)P( A)gP( B)如果事件 A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件 A 恰好发生 k 次的概率P n (k ) C n k p k (1 p)n k (k 0,1,2,⋯n) 球的表面积公式S 4R2其中 R 表示球的半径球的体积公式V 3 R34其中 R表示球的半径普通高等学校招生全国统一考试一、选择题1、复数 1 3i =1 iA 2+IB 2-IC 1+2iD 1- 2i2、已知集合 A= {1.3. m },B={1,m} ,A U B=A, 则 m=A 0 或3B 0 或 3C 1或3D 1 或 33 椭圆的中心在原点,焦距为4 一条准线为 x=-4 ,则该椭圆的方程为A x2 + y2 =1B x2 + y2 =116 12 12 8C x2 + y2 =1D x2 + y2 =18 4 12 44 已知正四棱柱ABCD- A1B1C1D1中, AB=2, CC= 2 2 E 为 CC的中点,则直线AC与平面1 1 1 BED的距离为A 2B 3C 2D 1(5)已知等差数列{a n} 的前 n 项和为 S n,a5=5, S5=15,则数列的前100项和为(A) 100(B)99(C)99(D)101 101101100100(6)△ ABC中, AB边的高为 CD,若a· b=0, |a|=1 , |b|=2 ,则(A)( B)(C)(D)3(7)已知α为第二象限角, sin α+ sin β =3,则 cos2α =555 5--9(D) 3(A) 3 (B ) 9 (C)(8)已知 F1、 F2 为双曲线 C : x2 -y 2 =2 的左、右焦点,点 P 在 C 上, |PF1|=|2PF2| ,则 cos ∠ F1PF2=1 334(A) 4( B ) 5(C)4(D)51( 9)已知 x=ln π, y=log52 , z=e 2,则 (A)x < y < z ( B ) z < x <y (C)z < y < x (D)y< z < x(10) 已知函数 y = x2 -3x+c 的图像与 x 恰有两个公共点,则 c =(A ) -2 或 2 ( B ) -9 或 3 (C ) -1 或 1 ( D )-3 或 1( 11)将字母 a,a,b,b,c,c, 排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有( A ) 12 种( B ) 18 种( C ) 24 种( D ) 36 种7(12)正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF = 3。

2020年新高考全国卷Ⅰ数学高考试题文档版(word版含答案)

2020年新高考全国卷Ⅰ数学高考试题文档版(word版含答案)

2020年普通高等学校招生全国统一考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.2i 12i -= +A.1B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞ D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。

2023年全国新课标I卷高考数学真题及答案(Word版)

2023年全国新课标I卷高考数学真题及答案(Word版)

2023年全国新课标I卷高考数学真题及答案本试卷共 4 页,22 小题,满分150 分。

考试用时120 分钟注意事项:1.答卷前,考生务必用黑色字迹笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答卡上用2 笔试(A)在答卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

作答选择题时,选出每小题等案后,用2B 笔把答卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,符案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准便用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题爷的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题: 本大题共8 小题, 每小题 5 分, 共40 分. 在每小题给出的四个选项中, 只有一项是符合题目要求的1. 已知集合, 则A.B.C.D.2. 已知, 则A.B.C. 0D. 13. 已知向量. 若, 则A.B.C.D.4. 设函数在区间单调递减, 则的取值范围是A.B.C.D.5. 设椭圆的离心率分别为. 若,则A.B.C.D.6. 过点与圆相切的两条直线的夹角为, 则A. 1B.C.D.7. 记为数列的前项和, 设甲: 为等差数列; 乙: 为等差数列, 则A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件8. 已知, 则A.B.C.D.二、选择题: 本题共 4 小题, 每小题 5 分, 共20 分. 在每小题给出的选项中, 有多项符合题目要求. 全部选对的得 5 分, 部分选对的得 2 分, 有选错的得0 分9. 有一组样本数据, 其中是最小值, 是最大值, 则A. 的平均数等于的平均数B. 的中位数等于的中位数C. 的标准差不小于的标准差D. 的极差不大于的极差10. 噪声污染问题越来越受到重视, 用声压级来度量声音的强弱, 定义声压级, 其中常数是听觉下限阑值, 是实际声压. 下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车处测得实际声压分别为, 则A.B.C.D.11. 已知函数的定义域为, 则A.B.C. 是偶函数D. 为的极小值点12. 下列物体中, 能够被整体放入核长为1 (単位: ) 的正方体容器(容器壁厚度忽略不计)内的有A. 直径为的球体B. 所有棱长均为的四面体C. 底面直径为, 高为的圆柱体D. 底面直径为, 高为的圆柱体三、填空题: 本大题共 4 小题, 每小题 5 分, 共20 分.13. 某学校开设了4 门体育类选修课和4 门艺术类选修课, 学生需从这8 门课中选修2 门或 3 门课, 并且每类选修课至少选修 1 门, 则不同的选课方案共有种(用数字作答).14. 在正四棱台中, , 则该棱台的体积为15. 已知函数在区间有且仅有3 个零点, 则的取值范围是16. 已知双曲线的左、右焦点分别为. 点在上. 点在轴上, , 则的离心率为四、解答题: 本大题共 6 小题, 共70 分. 解答应写出必要的文字说明、证明过程或演算步骤.17. 已知在中, .(1) 求;(2)设, 求边上的高.18. 如图, 在正四棱杜中, . 点分别在棱上, , .(1) 证明: ;(2)点在棱上, 当二面角为时, 求.19. 已知函数.(1) 讨论的単调性;(2)证明: 当时, .20. 设等差数列的公差为, 且, 令, 记分别为数列, 的前项和.(1) 若, 求的通项公式;( 2 ) 若为等差数列, 且, 求.21. 甲乙两人投篮, 每次由其中一人投篮, 规则如下: 若命中则此人继续投篮, 若末命中则换为对方投篮. 无论之前投篮情况如何, 甲每次投篮的命中率均为0.6 , 乙每次投篮的命中率均为0.8 , 由抽签决定第一次投篮的人选, 第一次投篮的人是甲, 乙的概率各为0.5 .( 1 ) 求第2 次投篮的人是乙的概率;( 2 ) 求第次投篮的人是甲的概率;( 3 ) 已知: 若随机变量服从两点分布, 且, 则, 记前次(即从第1 次到第次投篮) 中甲投篮的次数为, 求.22. 在直角坐标系中, 点到轴的距离等于点到点的距离, 记动点的轨迹为.(1) 求的方程;( 2 ) 已知矩形有三个顶点在上, 证明: 矩形的周长大于.参考答案(非官方答案仅供参考)1、C2、A3、D4、D5、A6、B7、C8、B9、BD10、ACD11、ABC12、ABD13、6414、15、[2,3)16、。

2022北京高考真题数学(word版含答案)

2022北京高考真题数学(word版含答案)

绝密★本科目考试启用前2022北京高考真题数 学本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知全集{}33=-<<U x x ,集合{}21=-<≤A x x ,则=U C A (A )(]2,1- (B )(3,2)[1,3)--⋃ (C )[)2,1-(D )(3,2](1,3)--⋃(2)若复数z 满足34i z i ⋅=-,则z = (A )1 (B )5 (C )7(D )25(3)若直线210x y +-=是圆()221x a y -+=的一条对称轴,则a = (A )12(B )12-(C )1(D )1-(4)己知函数1()12xf x =+,则对任意实数x ,有 (A )()()0f x f x -+= (B )()()0f x f x --= (C )()()1f x f x -+=(D )()()13f x f x --=(5)己知函数22()cos sin f x x x =-,则 (A )()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递减 (B )()f x 在,412ππ⎛⎫- ⎪⎝⎭上单调递增 (C ) ()f x 在0,3π⎛⎫⎪⎝⎭上单调递减 (D ) ()f x 在7,412ππ⎛⎫⎪⎝⎭上单调递增 (6)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献,如图描述了一定条件下二氧化碳所处的状态与T 和1gP 的关系,其中T 表示温度,单位是K ;P 表示压强,单位是bar ,下列结论中正确的是(A )当220T =,1026P =时,二氧化碳处于液态 (B )当270T =,128P =时,二氧化碳处于气态 (C )当300T =,9987P =时,二氧化碳处于超临界状态 (D )当360T =,729P =时,二氧化碳处于超临界状态(8)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=(A )40 (B )41 (C )40-(D )41-(9)已知正三棱锥P ABC -的六条棱长均为6,S 是ABC △及其内部的点构成的集合,设集合{5}T Q S PQ =∈,则T 表示的区域的面积为(A )34π (B )π (C )2π(D )3π(10)在ABC △中,3AC =,4BC =,90C ∠=︒.P 为ABC △所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是 (A )[]5,3- (B )[]3,5- (C )[]6,4-(D )[]4,6-第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。

2020年高考全国卷二理科数学试题(word版+详细解析版)

2020年高考全国卷二理科数学试题(word版+详细解析版)

2020年高考全国卷二理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B =A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3} 答案:A解析:{1,0,1,2}A B =-,所以(){23},U A B =-,故选A2.若α为第四象限角,则A .cos 2α>0B .cos 2α<0C .sin 2α>0D .sin 2α<0答案:D解析:α为第四象限角,所以32222πk παk ππ+<<+(k ∈Z ),所以43244k ππαk ππ+<<+,所以sin 20α<,故选D3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A .10名B .18名C .24名D .32名答案:B解析:预计需要志愿者完成超过500+1600-1200=900份的概率为0.05,则需要志愿者完成不超过900份的概率为0.95,9005018÷=,故至少需要18名志愿者,故选B4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A .3699块B .3474块C .3402块D .3339块答案:C解析:设共有3n 环,则从上到下每一环的石板数构成一个首项为9,公差d 为9的等差数列{}n a ,设下层石板数之和为S 下,中层石板数之和为S 中,则2131()2n n S a a n +=+下,121()2n n S a a n +=+中,所以221(121)92S S n n d n d n -=+-==下中,所以29729n =,故9n =,故共有石板数为12726272792713934022a d ⨯+=⨯+⨯⨯=.故选C 5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A .55B .255C .355D .455答案:B解析:设圆的半径为r ,圆心的坐标为(,)a b ,则||a r =,||b r =,222(2)(1)a b r -+-=,所以24250a a b --+=,若b a =-,则2250a a -+=,此一元二次方程无解,故只能b a =,这时有2650a a -+=,解得a=1或a=5,故圆心到直线230x y --=的距离为25555===,故选B. 6.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =A .2B .3C .4D .5答案:C解析:在m n m n a a a +=中,令1m =,可得112n n n a a a a +==,所以数列{}n a 是首项为2,公比为2的等比数列,所以2n n a =,()101011051210121(21)2(21)2k k k k k a a a a ++++++++=-=-=-,所以4k =,故选C.7.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H答案:A解析:根据三视图可得到多面体的直观图如下图所示,从图中可见,点A 对应于侧视图中的E ,故选AA8.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE △的面积为8,则C 的焦距的最小值为A .4B .8C .16D .32答案:B。

2023年高考数学(四川卷)(文科)(word版+答案)全解析

2023年高考数学(四川卷)(文科)(word版+答案)全解析

2023年普通高等学校招生全国统一考试(四川)数 学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到8页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己地姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出解析后,用铅笔把答题卡上对应题目地解析标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它解析标号。

不能答在试卷卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出地四个选项中,只有一项是符合题目要求地。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24RS π=如果事件A 、B 相互独立,那么 其中R 表示球地半径)()()(B P A P B A P ⋅=⋅ 球地体积公式如果事件A 在一次试验中发生地概率是P,那么334R V π=n 次独立重复试验中恰好发生k 次地概率 其中R 表示球地半径kn k kn n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出地四个选项中,只有一项是符合题目要求地。

1、设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4} ,则C U (A ∩B )=(A ){2,3} (B ) {1,4,5} (C ){4,5} (D ){1,5}2、函数1ln(21),()2y x x =+>-地反函数是(A )11()2x y e x R =- ∈ (B )21()x y e x R =- ∈ (C ) 1(1()2xy e x R =- ) ∈ (D )21()xy e x R =- ∈3、 设平面向量(3,5(2,1)a b = ) ,=- ,则2a b -=(A )(7,3) (B )(7,7) (C )(1,7) (D )(1,3)4、(tanx+cotx)cos 2x=(A )tanx (B )sinx (C )cosx (D )cotx 5、不等式2||2x x -<地解集为(A )(-1,2) (B )(-1,1) (C )(-2,1) (D )(-2,2)6、将直线3y x =绕原点逆时针旋转90°,再向右平移1个单位,所得到地直线为(A )1133y x =-+ (B )113y x =-+ (C )33y x =- (D )31y x =+7、△ABC 地三个内角A 、B 、C 地对边边长分别是a b c 、、 ,若a =,A=2B,则cosB=(A ) (B (C (D学校 班级 姓名 考号/密///////////封/////////////线/////////////内/////////////不/////////////要/////////////答/////////////题///////8、设M 是球O 地半径OP 地中点,分别过M 、O 作垂直于OP 地平面,截球面得到两个圆,则这两个圆地面积比值为(A )14(B )12(C )23(D )349、定义在R 上地函数()f x 满足:()(2)13,(1)2,f x f x f ∙+==则(99)f =(A )13 (B ) 2 (C )132(D )21310、设直线l α⊂平面,过平面α外一点A 且与l 、α都成30°角地直线有且只有(A )1条 (B )2条 (C )3条 (D )4条11、已知双曲线22:1916x y C -=地左右焦点分别为F 1、F 2 ,P 为C 地右支上一点,且||||212PF F F =,则△PF 1F 2 地面积等于(A )24 (B )36 (C )48 (D )9612、若三棱柱地一个侧面是边长为2地正方形,另外两个侧面都是有一个内角为60°地菱形,则该棱柱地体积为(A(B) (C)(D)第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分。

高考数学试卷真题word

高考数学试卷真题word

高考数学试卷真题word一、选择题(本题共10小题,每小题5分,共50分)1. 下列哪个数是无理数?A. -2B. √3C. 0.33333(无限循环)D. 1/32. 函数f(x) = 2x^2 - 3x + 1的顶点坐标是?A. (-1/2, -1)B. (3/4, -1/8)C. (1/2, -1)D. (3/2, 1)3. 已知等差数列{an}的前n项和为S,若a1=2,d=3,求S5的值。

A. 40B. 50C. 60D. 704. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π5. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,这个三角形是?A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形6. 将函数y = 3x + 2向左平移3个单位,新的函数表达式为?A. y = 3(x + 3) + 2B. y = 3(x - 3) + 2C. y = 3x - 9 + 2D. y = 3x - 3 + 27. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B的元素个数。

A. 3B. 4C. 5D. 68. 已知sinθ = 3/5,θ为锐角,求cosθ的值。

A. 4/5B. -4/5C. 3/5D. -3/59. 一个正方体的体积为27,求其表面积。

A. 54B. 108C. 216D. 48610. 已知等比数列{bn}的首项b1=2,公比q=3,求b4的值。

A. 162B. 486C. 729D. 1458二、填空题(本题共5小题,每小题4分,共20分)11. 若f(x) = x^3 - 2x^2 - 5x,求f'(x)。

__________。

12. 已知点A(-1, 2),点B(4, -1),求直线AB的斜率。

__________。

13. 一个长方体的长、宽、高分别为2,3,4,求其对角线的长度。

2023高考数学全国卷1word版

2023高考数学全国卷1word版

2023高考数学全国卷1word版一、题目分析本次数学高考全国卷1是2023年的一套题目,本文档将对该套题目中的各个小题进行分析和解答。

题目主要涉及数学的基础概念、运算规则、几何图形和函数等内容。

二、选择题1. 题目一题目描述有一组数:1,2,3,4,5,6,7,8,9,10。

从中随机取两个数,计算它们的和,并将和以“xx+xx=xx”的形式写出来。

求满足这一条件的所有可能的组合。

解答1+9=102+8=103+7=104+6=105+5=10一共有5种满足这个条件的组合。

2. 题目二题目描述已知函数f(x)=2x+3,则下列哪个函数的图像不能通过将函数f(x)的图像进行平移、伸缩和翻转等操作得到?A. g(x)=2f(x-1)+1B. g(x)=-2f(x)+3C. g(x)=f(-x)+3D. g(x)=2f(3x)解答B选项的函数图像不能通过对f(x)的图像进行平移、伸缩和翻转等操作得到。

因为在B选项中,f(x)的系数被取了负值,导致图像翻转,而其他选项中操作后仍能通过对f(x)的图像进行相应操作得到。

答案:B3. 题目三题目描述甲、乙等速相向而行,甲的速度是乙的2倍。

如果甲的速度再增加5m/s,乙的速度再减少3m/s,两人还是等速相向而行。

设甲原来的速度为x m/s,求乙原来的速度。

解答设乙原来的速度为y m/s。

根据题意,甲的速度是乙的2倍,所以甲原来的速度为2y m/s。

条件二中,甲的速度增加5m/s,所以现在甲的速度为2y+5 m/s。

乙的速度减少3m/s,所以现在乙的速度为y-3m/s。

因为两人还是等速相向而行,所以甲和乙的速度之和为0,即:(2y+5) + (y-3) = 0解这个方程,得到y = -1.所以乙原来的速度为-1 m/s。

三、填空题1. 题目一题目描述设点A(3,4)为椭圆的一个焦点,点B(5,6)为该椭圆的上一半轴的一个端点。

若点P在椭圆上,则直线AP的斜率为_________。

2021年高考真题——数学(新高考全国Ⅰ卷)+Word版含解析

2021年高考真题——数学(新高考全国Ⅰ卷)+Word版含解析

2021年高考真题——数学(新高考全国Ⅰ卷)+Word版含解析2021年普通高等学校招生全国统一考试数学试卷,共22小题,满分150分,考试用时120分钟。

请考生注意以下事项:1.在答题卡上填写姓名、考生号、考场号和座位号,并用2B铅笔填涂试卷类型(A)。

2.选择题答案用2B铅笔在答题卡上涂黑,如需改动,用橡皮擦干净后再涂其他答案。

非选择题必须用黑色字迹的钢笔或签字笔作答,写在答题卡各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液。

3.考试结束后,请将试卷和答题卡一并交回。

一、选择题:共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合$A=x-2<x<4$,$B=\{2,3,4,5\}$,则$A$为()A。

$\{2\}$。

B。

$\{2,3\}$。

C。

$\varnothing$。

D。

$\{3,4\}$2.已知$z=2-i$,则$z(z+i)$为()A。

$6-2i$。

B。

$4-2i$。

C。

$6+2i$。

D。

$4+2i$3.已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A。

2.B。

2$\sqrt{2}$。

C。

4.D。

4$\sqrt{2}$4.下列区间中,函数$f(x)=7\sin\left(x-\dfrac{\pi}{6}\right)$单调递增的区间是()A。

$\left(0,\dfrac{\pi}{2}\right)$。

B。

$\left(\dfrac{\pi}{2},\pi\right)$。

C。

$\left(\dfrac{3\pi}{2},2\pi\right)$。

D。

$\left(\dfrac{\pi}{2},\dfrac{3\pi}{2}\right)$5.已知$F_1,F_2$是椭圆$C:x^2+y^2=1$的两个焦点,点$M$在$C$上,则$MF_1\cdot MF_2$的最大值为()A。

2020年高考真题——数学(理)(全国卷Ⅲ)+Word版含解析

 2020年高考真题——数学(理)(全国卷Ⅲ)+Word版含解析

2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题目时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x *N ,{(,)|8}B x y x y ,则A B ∩中元素的个数为()A.2B.3C.4D.6【答案】C 【解析】【分析】采用列举法列举出A B ∩中元素的即可.【详解】由题意,A B ∩中的元素满足8y xx y ,且*,x y N ,由82x y x ,得4x ,所以满足8x y 的有(1,7),(2,6),(3,5),(4,4),故A B ∩中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2.复数113i的虚部是()A.310B.110C.110D.310【答案】D 【解析】【分析】利用复数的除法运算求出z 即可.【详解】因为1131313(13)(13)1010i z i i i i ,所以复数113z i 的虚部为310.故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ,则下面四种情形中,对应样本的标准差最大的一组是()A.14230.1,0.4p p p pB.14230.4,0.1p p p pC.14230.2,0.3p p p pD.14230.3,0.2p p p p 【答案】B 【解析】【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.【详解】对于A 选项,该组数据的平均数为 140.1230.4 2.5A x ,方差为 222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s ;对于B 选项,该组数据的平均数为 140.4230.1 2.5B x ,方差为 222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s ;对于C 选项,该组数据的平均数为 140.2230.3 2.5C x ,方差为 222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s ;对于D 选项,该组数据的平均数为 140.3230.2 2.5D x ,方差为 222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s .因此,B 选项这一组的标准差最大.故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t ,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A.60 B.63C.66D.69【答案】C 【解析】【分析】将t t 代入函数0.23531t KI t e结合 0.95I tK求得t即可得解.【详解】0.23531t KI t e∵,所以0.23530.951t KI t K e,则 0.235319t e ,所以,0.2353ln193t,解得353660.23t .故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.(14,0) B.(12,0) C.(1,0) D.(2,0)【答案】B 【解析】【分析】根据题中所给的条件OD OE ,结合抛物线的对称性,可知4COx COx,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x 与抛物线22(0)y px p 交于,C D 两点,且OD OE ,根据抛物线的对称性可以确定4DOx COx,所以(2,2)C ,代入抛物线方程44p ,求得1p ,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.已知向量a ,b 满足||5a ,||6b ,6a b ,则cos ,= a a b ()A.3135B.1935C.1735 D.1935【答案】D 【解析】【分析】计算出a ab 、a b 的值,利用平面向量数量积可计算出cos ,a a b的值.【详解】5a ∵,6b ,6a b,225619a a b a a b .7a b,因此,1919cos ,5735a a b a a b a a b.故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =()A.19B.13C.12 D.23【答案】A 【解析】【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC,即可求得答案.【详解】∵在ABC 中,2cos 3C,4AC ,3BC 根据余弦定理:2222cos AB AC BC AC BC C2224322433AB可得29AB ,即3AB 由∵22299161cos 22339AB BC AC B AB BC故1cos 9B .故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.8.下图为某几何体的三视图,则该几何体的表面积是()A.B. C.6+2 D.【答案】C 【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S△△△根据勾股定理可得:AB AD DB ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD△该几何体的表面积是:632 .故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知2tan θ–tan(θ+π4)=7,则tan θ=()A.–2 B.–1C.1D.2【答案】D 【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.【详解】2tan tan 74∵,tan 12tan 71tan,令tan ,1t t ,则1271tt t,整理得2440t t ,解得2t ,即tan 2 .故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l 与曲线y =和x 2+y 2=15都相切,则l 的方程为()A.y =2x +1B.y =2x +12C.y =12x +1 D.y =12x +12【答案】D 【解析】【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y上的切点为 0x ,则00x ,函数y的导数为y,则直线l的斜率k,设直线l的方程为 0y x x,即00x x ,由于直线l 与圆2215x y,两边平方并整理得2005410x x ,解得01x ,015x(舍),则直线l 的方程为210x y ,即1122y x .故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b(a >0,b >0)的左、右焦点分别为F 1,F 2.P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A.1B.2C.4D.8【答案】A 【解析】【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【详解】ca∵,c ,根据双曲线的定义可得122PF PF a ,12121||42PF F PF F S P△,即12||8PF PF ,12F P F P ∵, 22212||2PF PF c ,22121224PF PF PF PF c ,即22540a a ,解得1a ,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A.a <b <cB.b <a <cC.b <c <aD.c <a <b【答案】A 【解析】【分析】由题意可得a 、b 、 0,1c ,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b ,得85b ,结合5458 可得出45b,由13log 8c ,得138c ,结合45138 ,可得出45c,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a、b、0,1c ,222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b,a b ;由8log 5b ,得85b ,由5458 ,得5488b ,54b ,可得45b;由13log 8c ,得138c ,由45138 ,得451313c ,54c ,可得45c .综上所述,a b c .故选:A.【点睛】本题考查对数式大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题目:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x,,则z =3x +2y 的最大值为_________.【答案】7【解析】【分析】作出可行域,利用截距的几何意义解决.【详解】不等式组所表示的可行域如图因为32z x y ,所以322x zy ,易知截距2z 越大,则z 越大,平移直线32x y ,当322x zy 经过A 点时截距最大,此时z 最大,由21y x x,得12x y ,(1,2)A ,所以max 31227z 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x的展开式中常数项是__________(用数字作答).【答案】240【解析】【分析】写出622x x二项式展开通项,即可求得常数项.【详解】∵622x x其二项式展开通项:62612rrrr C xx T1226(2)r r r r x C x 1236(2)r r rC x 当1230r ,解得4r 622x x的展开式中常数项是:664422161516240C C .故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握na b 的展开通项公式1C r n r r r n T ab ,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM,故122S△A BC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S △△△△111222AB r BC r AC r13322r解得:2r =,其体积:3433V r .故答案为:3.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.关于函数f (x )=1sin sin x x有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x 可判断命题④的正误.综合可得出结论.【详解】对于命题①,152622f,152622f,则66f f,所以,函数 f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数 f x 的定义域为,x x k k Z ,定义域关于原点对称, 111sin sin sin sin sin sin f x x x x f x x x x,所以,函数 f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x∵,11sin cos 22cos sin 2f x x x x x,则22f x f x,所以,函数 f x 的图象关于直线2x对称,命题③正确;对于命题④,当0x 时,sin 0x ,则 1sin 02sin f x x x,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a ,37a ,21n a n ,证明见解析;(2)1(21)22n n S n .【解析】【分析】(1)利用递推公式得出23,a a ,猜想得出 n a 的通项公式,利用数学归纳法证明即可;(2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a ,32381587a a ,由数列 n a 的前三项可猜想数列 n a 是以3为首项,2为公差的等差数列,即21n a n ,证明如下:当1n 时,13a 成立;假设n k 时,21k a k 成立.那么1n k 时,1343(21)4232(1)1k k a a k k k k k 也成立.则对任意的*n N ,都有21n a n 成立;(2)由(1)可知,2(21)2nnn a n 231325272(21)2(21)2n n n S n n ,①23412325272(21)2(21)2n n n S n n ,②由① ②得:23162222(21)2nn n S n 21121262(21)212n n n1(12)22n n ,即1(21)22n n S n .【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22列联表,计算出2K的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43 100,等级为2的概率为510120.27100,等级为3的概率为6780.21100,等级为4的概率为7200.09100;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100(3)22 列联表如下:人次400人次400空气质量不好3337空气质量好228221003383722 5.820 3.84155457030K ,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D 中,点,E F 分别在棱11,DD BB 上,且12DE ED ,12BF FB .(1)证明:点1C 在平面AEF 内;(2)若2AB ,1AD ,13AA ,求二面角1A EF A 的正弦值.【答案】(1)证明见解析;(2)427.【解析】【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz ,利用空间向量法可计算出二面角1A EF A 的余弦值,进而可求得二面角1A EF A 的正弦值.【详解】(1)在棱1CC 上取点G ,使得112C G CG,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D 中,//AD BC 且AD BC ,11//BB CC 且11BB CC ,112C G CG ∵,12BF FB ,112233CG CC BB BF 且CG BF ,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG ,同理可证四边形1DEC G 为平行四边形,1//C E DG 且1C E DG ,1//C E AF 且1C E AF ,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz ,则 2,1,3A 、 12,1,0A 、 2,0,2E 、 0,1,1F ,0,1,1AE , 2,0,2AF , 10,1,2A E , 12,0,1A F,设平面AEF 的法向量为 111,,m x y z,由0m AE m AF,得11110220y z x z 取11z ,得111x y ,则 1,1,1m ,设平面1A EF 的法向量为 222,,n x y z,由110n A E n A F,得22222020y z x z ,取22z ,得21x ,24y ,则 1,4,2n,cos ,7m n m n m n,设二面角1A EF A 的平面角为,则cos 7,sin 7.因此,二面角1A EF A的正弦值为7.【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m 的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,求APQ 的面积.【答案】(1)221612525x y ;(2)52.【解析】【分析】(1)因为222:1(05)25x y C m m ,可得5a ,b m ,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N ,可得PMB BNQ △△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1)∵222:1(05)25x y C m m 5a ,b m ,根据离心率154c e a ,解得54m或54m (舍), C 的方程为:22214255x y ,即221612525x y ;(2)∵点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N 根据题意画出图形,如图∵||||BP BQ ,BP BQ ,90PMB QNB ,又∵90PBM QBN ,90BQN QBN ,PBM BQN ,根据三角形全等条件“AAS ”,可得:PMB BNQ △△,∵221612525x y , (5,0)B ,651PM BN ,设P 点为(,)P P x y ,可得P 点纵坐标为1P y ,将其代入221612525x y,可得:21612525P x ,解得:3P x 或3P x ,P 点为(3,1)或(3,1) ,①当P 点为(3,1)时,故532MB ,∵PMB BNQ △△,||||2MB NQ ,可得:Q 点为(6,2),画出图象,如图∵(5,0)A ,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y ,根据点到直线距离公式可得P 到直线AQ的距离为:5d,根据两点间距离公式可得:AQ,APQ面积为:15252;②当P 点(3,1) 时,故5+38MB ,∵PMB BNQ △△,||||8MB NQ ,可得:Q 点为(6,8),画出图象,如图∵(5,0)A ,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y ,根据点到直线距离公式可得P 到直线AQ 的距离为:d ,根据两点间距离公式可得:AQAPQ面积为:1522 ,综上所述,APQ 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.21.设函数3()f x x bx c ,曲线()y f x 在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【答案】(1)34b ;(2)证明见解析【解析】【分析】(1)利用导数的几何意义得到'1(02f ,解方程即可;(2)由(1)可得'2311()32()(422f x x x x ,易知()f x 在11(,22 上单调递减,在1(,)2 ,1(,)2 上单调递增,且111111(1),(),(,(1)424244f c f c f c f c ,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b ,由题意,'1()02f ,即21302b 则34b;(2)由(1)可得33()4f x x x c ,'2311()33()422f x x x x ,令'()0f x ,得12x 或21x ;令'()0f x ,得1122x ,所以()f x 在11(,22 上单调递减,在1(,2 ,1(,)2 上单调递增,且111111(1),(,(),(1)424244f c f c f c f c ,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f 或(1)0f ,即14c 或14c .当14c 时,111111(1)0,()0,()0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(4,1)c 上存在唯一一个零点0x ,即()f x 在(,1) 上存在唯一一个零点,在(1,) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c 时,111111(1)0,(0,(0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(1,4)c 上存在唯一一个零点0x ,即()f x (1,) 上存在唯一一个零点,在(,1) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3cos sin 120【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值;(2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x ,则220t t ,解得2t 或1t (舍),则26412y ,即(0,12)A .令0y ,则2320t t ,解得2t 或1t (舍),则2244x ,即(4,0)BAB;(2)由(1)可知12030(4)AB k ,则直线AB 的方程为3(4)y x ,即3120x y .由cos ,sin x y 可得,直线AB 的极坐标方程为3cos sin 120 .【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.【解析】【分析】(1)由2222()2220a b c a b c ab ac bc 结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a ,由题意得出0,,0a b c ,由222322b c b c bc a a a bc bc,结合基本不等式,即可得出证明.【详解】(1)2222()2220a b c a b c ab ac bc ∵,22212ab bc ca a b c .,,a b c ∵均不为0,则2220a b c , 222120ab bc ca a b c;(2)不妨设max{,,}a b c a ,由0,1a b c abc 可知,0,0,0a b c ,1,a b c a bc ∵, 222322224b c b c bc bc bc a a a bc bc bc.当且仅当b c 时,取等号,a ,即max{,,}abc .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.祝福语祝你马到成功,万事顺意!。

2020年山东高考数学试卷(word版+详细解析版)

2020年山东高考数学试卷(word版+详细解析版)

2020年普通高等学校招生全国统一考试新高考全国一卷(山东卷)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{|13}A x x =≤≤,{|24}B x x =<<,则A B =A .{|23}x x <≤B .{|23}x x ≤≤C .{|14}x x ≤<D .{|14}x x <<答案:C解析:利用并集的定义可得{|14}AB x x =≤<,故选C.2.2i 12i -=+ A .1 B .−1C .iD .−i答案:D 解析:222i (2i)(12i)(22)(41)i i 12i 125----+--===-++,故选D3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A .120种B .90种C .60种D .30种答案:C解析:不同的安排方法有123653C C C 60⋅⋅=4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°答案:B解析:因为晷面与赤道所在平面平行,晷针垂直晷面,所以晷针垂直赤道所在平面,如图所示,设AB 表示晷针所在直线,且AB OB ⊥,AC 为AB 在点A 处的水平面上的射影,则晷针与点A 处的水平面所成角为BAC ∠,因为OA AC ⊥,AB OB ⊥,所以BAC AOB ∠=∠,由已知40AOB ∠=︒,所以40BAC ∠=︒,故选BCBO赤道A5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A .62%B .56%C .46%D .42%答案:C解析:既喜欢足球又喜欢游泳的学生数占该校学生总数的比例=60%+82%-96%=46%,故选C6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天答案:B 解析:设从1t 到2t 累计感染数增加1倍,即21()2()I t I t =,因为(e )rt I t =,所以21e 2ert rt =,所以21()e 2r t t -=,所以21()ln 2r t t -=.因为R 0 =1+rT ,所以01R r T-=,所以210ln 2ln 260.69 1.81 2.28T t t r R ⨯-==≈≈- 7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是A .()2,6-B .()6,2-C .()2,4-D .()4,6-答案:A解析:如图,过P 作PG AB ⊥,G 为垂足,则()||||cos ,AP AB AG GP AB AG AB AG AB AG AB ⋅=+⋅=⋅=⋅〈〉,当G 点落在AB 的反向延长线上时,cos ,1AG AB 〈〉=-,这时0||||cos 60AG AF <<︒,即0||1AG <<,所以这时20AP AB -<⋅<;当G 点落在AB 上或AB 的延长线上时,cos ,1AG AB 〈〉=,这时0||||cos 60AG AB BC ≤<+︒,即0||3AG ≤<,所以06AP AB ≤⋅<.综上所述,AP AB ⋅的取值范围是()2,6-,故选A。

2020年四川高考文科数学试卷(word版)和答案

 2020年四川高考文科数学试卷(word版)和答案

2020年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题目(共12小题).1.已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为()A.2B.3C.4D.52.若(1+i)=1﹣i,则z=()A.1﹣i B.1+i C.﹣i D.i3.设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为()A.0.01B.0.1C.1D.10 4.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.695.已知sinθ+sin()=1,则sin()=()A.B.C.D.6.在平面内,A,B是两个定点,C是动点.若=1,则点C的轨迹为()A.圆B.椭圆C.抛物线D.直线7.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)8.点(0,﹣1)到直线y=k(x+1)距离的最大值为()A.1B.C.D.29.如图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+210.设a=log32,b=log53,c=,则()A.a<c<b B.a<b<c C.b<c<a D.c<a<b 11.在△ABC中,cos C═,AC=4,BC=3,则tan B=()A.B.2C.4D.812.已知函数f(x)=sin x+,则()A.f(x)的最小值为2B.f(x)的图象关于y轴对称C.f(x)的图象关于直线x=π对称D.f(x)的图象关于直线x=对称二、填空题目:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年高考数学卷(word版)
————————————————————————————————作者:————————————————————————————————日期:
2018年普通高等学校招生全国统一考试
(全国卷Ⅱ)理科试卷
本试卷共23题,共150分,共5页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1、答题前,考试现将自己的姓名,准考证号
填写清楚,将条形码准确粘贴在条形码区域内
2、选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。

3、请按照题号顺序在答题卡 各题目的答题区域内做答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4、作图可先试用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、 选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、1212i i
+=-
A 、435
5
i -- B 、435
5
i -+ C 、345
5i -- D
3455
i -+ 2、已知集合(){}22,|3,,,A x y x y x Z y Z =+≤∈∈则A 中元素的个数为()
A 、9
B 、8
C 、5 D4 3、函数()2
x x
e e
f x x --=
的图象大致是()
4、已知向量()
,1,1,2a b a a b a a b =•=--=r r r r r r r r
满足则()
A 、4
B 、3
C 、2
D 、0
5、双曲线()22
2210,0x y a b a b
-=>>的离心率为3,则其渐近线方
y
x
1
1 o x
y
1
1 o x
y
1
1 o x
y
1
1 o A B C
D
程为() A 、2y x =±
B 、3y x =±
C 、22
y x =±
D 32
y x =±
6、在△ABC 中,5cos 25
C =
,BC=1,AC=5,则AB=( )
A 、42
B 、
30 C 、
29
D 25
7、为计算11111
12
3499100
S =-+-++
-
L
,设计了右侧的程序框图,则空白框中应填入 A 、i=i+1 B 、i=i+2 C 、i=i+3 D 、i=i+4
8、我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。

哥德巴赫猜想是“每个大于2的偶数可以
开始 N=0,T=0 i=1
i<100 S=N-T 1N N i
=+
11
N N i =+
+输出S 结束


表示为两个素数的和”,如30=7+23.在不超过30的素数中,其和等于30的概率是()
A 、112
B 、114
C 、115
D 、118
9、在长方体1111ABCD A B C D -中,AB=BC=1,13AA =,则异面直
线11AD 和DB 所成角的余弦值为() A 、15
B 、
5
6
C 、
55
D
22
10、若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是( )
A 、4
π B 、2
π C 、34
π D 、π
11、已知()f x 是定义在(),-∞+∞的奇函数,则满足()()11f x f x -=+。

若()12f =,则()()()()12350f f f f ++++=L () A 、-50 B 、0 C 、2 D 、50
12、已知()22
1222:0x y F F C a b a b
+>>和是椭圆的左右焦点,A
是C 的
左顶点,点P 在过A 且斜率为
3
6
的直线上,12PF F V 为等腰
三角形,012120F F P ∠=,则C 的离心率为( ) A 、23
B 、12
C 、13
D 、14
二、填空题(本题共5小题,每小题5分,共20分) 13、曲线()2ln 1y x =+在点(1,1)处的切线方程为 。

14、若x ,y 满足条件250
23050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩
,则z x y =+的最大值为
15、已知()sin cos 1,cos sin 0,sin =αβαβαβ+=+=+则 16、已知圆锥的顶点为S 母线SA,SB 所成角的余弦值为78

SA 与圆锥底面所成角为045,若SAB V D 面积为515,则圆
锥的侧面积为 三、解答题
(一)必做题:共60分 17(12分)
记n S 为等差数列{}n a 的前n 项和,已知137,15a S =-=- (1)求数列{}n a 的通项公式 (2)求n S ,并求n S 的最小值 18、(12分)
下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图。

为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型。

根据2000年到2016年的数据(时间t 的值依次为1,2,…,17)建立模型①:
$30.413.5y t =-+;
根据2000年到2016年的数据(时间t 的值
依次为1,2,…,17)建立模型②$9917.5y t =+。

(1)分别利用两个模型,求该地区2018年的环境基础设施投资额的预测值。

(2)你认为哪个模型得到的预测值更可靠?并说明理由。

19、(12分)
设抛物线2:4C y x = 的焦点为F ,过F 且斜率为k (k>0)的直线l 于C 交于A 、B 两点,8AB =.
(1)求l 的方程
(2)求过点A 、B 且于C 的准线相切的圆的方程。

20、(12分)
如图,在三棱锥P-ABC 中2
2,4AB BC PA PB PC =====
系列1, 2000, 11
系列1, 2001, 19
系列1, 2002, 25系列1, 2003, 35
系列1, 2004, 37系列1, 2005, 42系列1, 2006, 42系列1, 2007, 47系列1, 2008, 53系列1, 2009, 56系列1, 2010, 122系列1, 2011, 129系列1, 2012, 148系列1, 2013, 171系列1, 2014, 184系列1, 2015, 209
系列1, 2016, 220
2040608010012014016018020022024020002001
200220032004
2005
2006200720082009
O 为AC 中点。

(1)证明:PO ABC ⊥平面
(2)若点M 在棱BC 上,且二面角M-PC-A 为030,求PC 与平面PAM 所成角的正弦值。

21、(12分) 已知函数()2.x f x e ax =-
(1)1,0a a =≥≥若证明:当时,f(x)1
(2)若()f x 在()0,+∞只有一个零点,求a.
(二)选考题:共10分,请考生从22、23题中任选一题做答,如果多做,按所做的第一题计分 22、选修4-4:坐标系与参数方程(10分)
在直角坐标系xoy 中,曲线C 的参数方程为
2cos ()4sin x y θ
θθ=⎧⎨
=⎩
为参数,直线l
的参数方程为1cos ()2sin x t t y t α
α=+⎧⎨=+⎩
为参数
(1) 求C 与l 的直角坐标方程
(2) 若曲线C 截直线l 所得线段的中点坐标为(1,2),
求l 的斜率。

23、选修4-5:不等式选讲(10分)
P
O C
B
A
M
设函数()52
=-+--
f x x a x
(1)当a=1时,求不等式()0
f x≥的解集(2)若()1
f x≤,求a的取值范围。

A、B、C、D A、B、C、D A、B、C、D A、B、C、D。

相关文档
最新文档