一元二次方程导入课重点和难点突破教学设计
《一元二次方程》数学教案8篇
《一元二次方程》数学教案8篇作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
那么什么样的教案才是好的呢?这里作者为大家分享了8篇《一元二次方程》数学教案,希望在一元二次方程教案的写作这方面对您有一定的启发与帮助。
元二次方程教案篇一一、教材分析:1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。
本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;(2)能根据具体问题的实际意义,检验结果是否合理;(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二.教法、学法分析:1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。
教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。
还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。
同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。
因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三.教学流程分析:本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:活动1复习回顾解决课前参与活动2封面设计问题的探究活动3草坪规划问题的延伸活动4课堂回眸这有名程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
《一元二次方程》数学教案(优秀5篇)
《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点:正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?九年级数学《一元二次方程》教案篇二教学目标:知识与技能目标:经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。
一元二次方程教案
一元二次方程教案一、教学目标1、知识与技能目标学生能够理解一元二次方程的概念,掌握一元二次方程的一般形式。
学生能够熟练将一元二次方程化为一般形式,并准确指出各项系数。
学生能够运用一元二次方程的概念解决简单的实际问题。
2、过程与方法目标通过实际问题的引入,培养学生观察、分析和归纳的能力。
在探究一元二次方程概念的过程中,培养学生的抽象思维和逻辑推理能力。
3、情感态度与价值观目标让学生感受数学与实际生活的紧密联系,激发学生学习数学的兴趣。
通过合作学习,培养学生的团队合作精神和交流能力。
二、教学重难点1、教学重点一元二次方程的概念及一般形式。
一元二次方程各项系数的确定。
2、教学难点理解一元二次方程概念中二次项系数不为零的条件。
从实际问题中抽象出一元二次方程的数学模型。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课教师通过展示实际生活中的问题,如矩形面积问题、增长率问题等,引导学生思考并列出方程。
例如:一个矩形的长比宽多 2,面积为 24,求矩形的长和宽。
设宽为 x,则长为 x + 2,可列出方程 x(x + 2) = 24 。
2、探索新知让学生观察所列出的方程,引导学生发现这些方程的共同特点。
教师讲解一元二次方程的概念:只含有一个未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程。
强调一元二次方程的一般形式为 ax²+ bx + c = 0(a ≠ 0),其中ax²是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
举例说明如何将一个方程化为一般形式,并指出各项系数。
例如:方程 2x² 3x + 1 = 0 ,其中 a = 2 ,b =-3 ,c = 1 。
3、巩固练习给出一些方程,让学生判断是否为一元二次方程,并说明理由。
例如:x²+ 2x 3 ,不是方程;3x² 5 = 0 ,是一元二次方程。
给出一些一元二次方程,让学生指出各项系数。
一元二次方程优秀教案
一元二次方程优秀教案一元二次方程优秀教案1. 教学目标1.1 知识目标1) 理解一元二次方程的定义;2) 掌握一元二次方程的解的判别式,并能应用到问题中;3) 掌握求一元二次方程的解的方法。
1.2 能力目标1) 能够运用一元二次方程解的判别式解决实际问题;2) 能够独立分析问题,提出一元二次方程模型,并求解。
1.3 情感目标1) 培养学生解决实际问题的兴趣和能力;2) 培养学生合作探究、归纳总结的能力。
2. 教学重点2.1 掌握一元二次方程解的判别式,能将其应用于实际问题;2.2 掌握求解一元二次方程的方法。
3. 教学难点3.1 在实际问题中运用一元二次方程解的判别式;3.2 独立提出一元二次方程模型,并求解。
4. 教学过程4.1 导入新知通过引入一个生活实例,如小明投篮问题,引发学生对解决实际问题的思考。
4.2 概念讲解与示例4.2.1 讲解一元二次方程的定义,并引入解的判别式。
4.2.2 通过教师示范和学生参与,做一些例题,使学生理解一元二次方程解的判别式的用法。
4.3 练习与巩固4.3.1 设计一定数量的练习题,包括解一元二次方程的判别式和求解方程。
4.3.2 学生独立完成练习,教师随机抽查答案并解析。
4.4 拓展与应用4.4.1 引导学生思考和讨论,提出其他生活实例,如最大面积问题,汽车行驶问题等,并分析解决的步骤。
4.4.2 学生通过小组合作讨论,提出一元二次方程模型,并求解。
4.5 归纳与总结通过学生讨论与教师指导,总结一元二次方程的解决步骤和应用方法。
5. 教学手段5.1 板书:绘制一元二次方程的定义、解的判别式和解的求解方法。
5.2 多媒体展示:展示生活实例和解决步骤。
5.3 小组讨论:提出生活实例并讨论解决方法。
5.4 练习册:配备练习题,供学生独立完成。
6. 教学评价6.1 反馈方法:批改学生练习册并给予针对性的解析和指导。
6.2 评价指标:学生能正确应用一元二次方程解的判别式解决问题,并能独立提出方程模型并求解。
名师教学设计《一元二次方程》完整教学教案
(一)温故知新
什么是一元一次方程
它的一般形式是:
(二)探索新知
问题1 如图,有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形分析:
设切去的正方形的边长为x cm,则盒
底的长为__________,
宽为__________.
得方程________________________
整理得____________________ ①
问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛
分析:全部比赛的场数为___________.
设应邀请x个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_____________场.
列方程______________________
化简整理得_______________ ②
【归纳】1.一元二次方程:______________.
2.一元二次方程的一般形式:__________________ .
其中ax2是____________,_____是二次项系数;bx是__________,_____是一次项系数;_____是常数项.(注意:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数是一个重要条件,不能漏掉.)
3.一元二次方程的解(根):_____________________________.。
九年级数学上人教版《一元二次方程》教案
《一元二次方程》教案一、教学目标:1.理解和掌握一元二次方程的概念和解法。
2.能够运用一元二次方程解决实际问题。
3.培养学生的数学思维和解决问题的能力。
二、教学难点与重点:1.教学难点:一元二次方程的解法和运用。
2.教学重点:一元二次方程的概念和性质。
三、教具和多媒体资源:1.黑板和粉笔。
2.投影仪和教学PPT。
3.教学软件:数学工具软件(如GeoGebra、Desmos等)。
四、教学方法:1.讲授法:通过讲解一元二次方程的概念、性质和解法,使学生理解和掌握一元二次方程的基本知识。
2.演示法:通过演示一元二次方程的解法,使学生掌握一元二次方程的解法。
3.讨论法:通过小组讨论和案例分析,使学生能够运用一元二次方程解决实际问题。
4.练习法:通过课堂练习和课后作业,使学生能够熟练掌握一元二次方程的解法。
五、教学过程:1.导入新课:通过实际问题引入一元二次方程的概念,激发学生的学习兴趣。
2.讲授新课:讲解一元二次方程的概念、性质和解法,重点强调一元二次方程的解法和运用。
3.巩固练习:通过课堂练习,使学生能够熟练掌握一元二次方程的解法。
4.归纳小结:通过总结一元二次方程的概念、性质和解法,使学生能够全面理解和掌握一元二次方程的基本知识。
5.布置作业:布置相关练习题,使学生能够熟练运用一元二次方程解决实际问题。
六、评价与反馈:1.课堂表现评价:通过观察学生在课堂上的表现,评价学生的学习态度和参与度。
2.练习与作业评价:通过检查学生的课堂练习和课后作业,评价学生对一元二次方程的掌握情况。
3.测试与考试评价:通过进行单元测试或期中、期末考试,评价学生对一元二次方程的理解和运用能力。
4.学生自评与互评:引导学生进行自我评价和互评,培养学生的自我认知和团队协作能力。
5.教师反馈:根据学生的评价结果,及时调整教学策略和方法,提高教学效果。
同时,给予学生及时的鼓励和反馈,激发学生的学习动力。
6.教学反思:对整个教学过程进行反思和总结,发现问题和不足,以便在今后的教学中加以改进和提高。
一元二次方程的教案
一元二次方程的教案一、教学目标1. 使学生理解一元二次方程的概念,掌握一元二次方程的一般形式。
2. 使学生掌握一元二次方程的解法,会用直接开平方法、配方法、公式法、因式分解法解简单的一元二次方程。
3. 使学生理解一元二次方程根的判别式,会根据根的判别式判断一元二次方程根的情况。
4. 使学生会用一元二次方程解决实际问题,增强学生的数学应用意识和能力。
二、教学重点1. 一元二次方程的概念及一般形式。
2. 一元二次方程的解法。
3. 一元二次方程根的判别式。
4. 一元二次方程的应用。
三、教学难点1. 一元二次方程根的判别式。
2. 一元二次方程的应用。
四、教学过程1. 导入通过实际问题引出一元二次方程的概念,让学生感受数学与实际生活的联系。
2. 一元二次方程的概念及一般形式讲解一元二次方程的定义,强调二次项系数不为零。
通过例题让学生掌握一元二次方程的一般形式,并能将给定的方程化为一般形式。
3. 一元二次方程的解法(1)直接开平方法:通过平方根的概念,引导学生掌握形如ax^2+c=0(a不等于0)的一元二次方程的解法。
(2)配方法:通过完全平方公式,讲解配方法的步骤,让学生掌握形如ax^2+bx+c=0(a不等于0)的一元二次方程的解法。
(3)公式法:直接给出求根公式,让学生利用公式法解一元二次方程。
(4)因式分解法:通过将方程因式分解,化为两个一次方程来求解。
4. 一元二次方程根的判别式讲解一元二次方程根的判别式\Delta=b^2-4ac,让学生掌握利用判别式判断方程根的情况。
5. 一元二次方程的应用通过实际问题,让学生学会用一元二次方程解决实际问题,提高学生的数学应用意识和能力。
6. 小结与作业总结一元二次方程的概念、解法、判别式及应用,布置适量的作业,让学生巩固所学知识。
五、教学方法讲授法、练习法、讨论法。
六、教学资源教材、教案、多媒体设备。
《一元二次方程》优秀教案(精选5篇)
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1学习目标1、一元二次方程的求根公式的推导2、会用求根公式解一元二次方程.3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯学习重、难点重点:一元二次方程的求根公式.难点:求根公式的条件:b2 -4ac≥0学习过程:一、自学质疑:1、用配方法解方程:2x2-7x+3=0.2、用配方解一元二次方程的步骤是什么?3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?二、交流展示:刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?三、互动探究:一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是用求根公式解一元二次方程的方法称为公式法由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解.就不必再代入公式计算了.四、精讲点拨:例1、课本例题总结:其一般步骤是:(1)把方程化为一般形式,进而确定a、b,c的值.(注意符号)(2)求出b2-4ac的值.(先判别方程是否有根)(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根.例2、解方程:(1)2x2-7x+3=0 (2) x2-7x-1=0(3) 2x2-9x+8=0 (4) 9x2+6x+1=0五、纠正反馈:做书上第P90练习。
一元二次方程教案
一元二次方程教案一、教学目标1. 知识目标:掌握一元二次方程的概念、性质及解法。
2. 能力目标:能够正确列写一元二次方程,并解决相关的实际问题。
3. 情感目标:培养学生对数学的兴趣,提高解决问题的能力。
二、教学重难点1. 教学重点:掌握一元二次方程的解法,理解一元二次方程的性质。
2. 教学难点:应用一元二次方程解决实际问题。
三、教学内容与方法1. 教学内容:(1)一元二次方程的定义。
(2)一元二次方程的解法。
(3)一元二次方程的应用。
2. 教学方法:(1)归纳法:通过观察具体的例子总结一元二次方程的解法。
(2)示例法:通过解决一些实际问题引入一元二次方程的应用。
四、教学过程Step 1:导入与扩展(10分钟)首先,通过一个简单的问题导入一元二次方程的概念。
例如:小明有一定量的香蕉,如果每天吃两根,需要吃多少天才能吃完?引导学生思考问题解决所需的步骤。
Step 2:引入一元二次方程的定义(10分钟)通过示例法,将具体问题转化成数学语言。
例如:设香蕉的总数量为x,每天吃两根,则需要吃x/2天才能吃完。
这个数学表达就是一个一元二次方程。
解释一元二次方程的定义,并引导学生找出方程中的未知数、系数及常数项。
Step 3:一元二次方程的解法(40分钟)1. 整理方程形式:将方程变为ax^2+bx+c=0的标准形式。
2. 因式分解法:引导学生观察一些特殊情况,例如平方差公式和完全平方公式。
通过实例讲解因式分解法的步骤,注意提醒学生注意因式分解法只适用于某些特殊情况。
3. 公式法:介绍一元二次方程的求根公式和判别式的含义。
通过实例讲解公式法的步骤,包括确定a、b、c的值并代入公式计算。
4. 配方法:介绍一元二次方程配方法的思路和步骤。
通过实例讲解配方法的具体操作,注意提醒学生要注意配方完成后的处理。
Step 4:一元二次方程的应用(40分钟)通过一些实际问题,引导学生将问题转化成为一元二次方程,并解决问题。
例如:某人在固定的速度下往返于两个地点,求距离和时间的关系;某地发生地震,求震中的深度等。
初三数学一元二次方程教案优秀5篇
初三数学一元二次方程教案优秀5篇数学《一元二次方程》教案设计篇一教学目标1、了解整式方程和一元二次方程的概念;2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:1、教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。
方程,只有当时,才叫做一元二次方程。
如果且,它就是一元二次方程了。
解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。
(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。
如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。
如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。
元二次方程的应用篇二12.6 一元二次方程的应用(三)一、素质教育目标(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题。
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识。
二、教学重点、难点1.教学重点:学会用列方程的方法解决有关增长率问题。
2.教学难点:有关增长率之间的数量关系。
下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了。
三、教学步骤(一)明确目标。
《一元二次方程》优秀教案(精选5篇)
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
教学重点1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。
2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。
一元二次方程教案第一课时
一元二次方程教案第一课时一、教学目标知识与技能:学生能够理解一元二次方程的概念,掌握一元二次方程的一般形式,并能正确地识别和转换一元二次方程。
过程与方法:通过观察、分析和归纳,学生能够掌握一元二次方程的解法,并能够运用一元二次方程解决实际问题。
情感态度与价值观:培养学生对数学的兴趣和爱好,激发学生的学习热情,培养学生的逻辑思维能力和创新精神。
二、教学重点和难点教学重点:一元二次方程的概念、一般形式及其解法。
教学难点:如何正确识别和转换一元二次方程,以及如何运用一元二次方程解决实际问题。
三、教学过程导入新课:通过实例引导学生了解一元二次方程的概念,并通过对比一元一次方程,突出一元二次方程的特点和差异。
知识讲解:详细讲解一元二次方程的一般形式、解法及其在实际问题中的应用,并配以相应的例题进行说明。
练习与巩固:提供相应的练习题目,让学生在课堂上进行练习,并引导学生通过自主思考和小组讨论解决问题。
总结与回顾:对本节课的知识点进行总结和回顾,加深学生对一元二次方程的理解和应用。
布置作业:根据学生的学习情况布置适量的作业,以巩固和拓展课堂所学知识。
四、教学方法和手段教学方法:采用讲解、演示、小组讨论等多种教学方法相结合的方式进行教学,以提高学生的参与度和学习效果。
教学手段:运用多媒体课件、板书等多种教学手段辅助教学,提高教学效果和学生的学习兴趣。
五、课堂练习、作业与评价方式课堂练习:提供相应的练习题目,让学生通过自主思考和小组讨论解决问题,巩固所学知识。
作业:根据学生的学习情况布置适量的作业,以巩固和拓展课堂所学知识。
作业可以分为基础题目和提高题目两个层次,以满足不同学生的需求。
评价方式:通过学生的课堂表现、练习和作业等多种方式进行评价,以全面了解学生的学习情况和进步程度。
同时,鼓励学生积极参与评价,提高评价的客观性和准确性。
六、辅助教学资源与工具教学课件:提供相应的多媒体课件,包括文字、图片、视频等多种形式的内容,以辅助教学。
九年级数学上册《一元二次方程的解法》教案、教学设计
4.思考题:
(1)让学生思考一元二次方程的判别式与方程根的性质之间的关系,并用自己的语言进行简要阐述。
(2)引导学生探讨一元二次方程在实际生活中的应用价值,例如在物理学、经济学等领域。
作业布置要求:
1.学生在完成作业时,要注意书写规范,保持作业整洁、清晰。
3.教学策略:
(1)采用问题驱动的教学方法,鼓励学生提出问题,引导学生通过探究解决问题;
(2)利用信息技术手段,如多媒体教学、网络资源等,丰富教学形式,提高学生的学习兴趣;
(3)实施合作学习,让学生在小组内相互讨论、分享解题思路,培养学生的团队协作能力;
(4)注重个别化教学,根据学生的不同情况进行针对性指导,帮助他们克服学习中的困难;
5.能够运用一元二次方程解决一些简单的实际应用问题。
(二)过程与方法
1.引导学生通过观察、分析、归纳,发现一元二次方程的解法规律;
2.通过合作交流,让学生在讨论、质疑、总结中掌握一元二次方程的解法;
3.设计具有梯度的问题,使学生逐步掌握一元二次方程的四种解法,并能够灵活运用;
4.引导学生运用类比、转化、概括等方法,将一元二次方程的解法与已学的知识进行联系;
(二)讲授新知
在这一环节,我将系统地讲授一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法。
1.直接开平方法:通过一个简单的例子,让学生理解直接开平方法的原理和步骤,并强调这种方法只适用于特定类型的方程。
2.配方法:利用几何图形和实际例题,讲解配方法的基本思想,并引导学生掌握配方的技巧。
5.通过实际例题的讲解与练习,培养学生运用数学知识解决实际问题的能力。
初中一元二次方程教案模板
初中一元二次方程教案模板一、教学目标:1. 知识与能力目标:学生能够理解一元二次方程的概念,掌握一元二次方程的解法,并能够应用一元二次方程解决实际问题。
2. 过程与方法目标:通过探索一元二次方程的解法,培养学生逻辑思维能力和解决问题的能力。
3. 情感、态度与价值观目标:培养学生对数学的兴趣,感受数学在生活中的应用,培养学生的团队合作意识。
二、教学重点、难点:1. 教学重点:一元二次方程的概念,一元二次方程的解法及其应用。
2. 教学难点:一元二次方程的解法,特别是因式分解法和求根公式的运用。
三、教学过程:1. 导入新课:通过生活中的实际问题,引导学生列出方程,从而引出一元二次方程的概念。
2. 自主学习:学生自主探究一元二次方程的解法,总结解题步骤和技巧。
3. 课堂讲解:讲解一元二次方程的概念,解析一元二次方程的解法,并通过例题演示解题过程。
4. 练习巩固:学生独立完成练习题,教师进行个别辅导,巩固所学知识。
5. 拓展应用:学生分组讨论,运用一元二次方程解决实际问题,分享解题心得。
6. 总结反思:教师引导学生总结一元二次方程的特点和解题方法,反思自己在学习过程中的优点和不足。
四、教学方法:1. 情境教学法:通过设置生活情境,激发学生的学习兴趣,引导学生主动参与。
2. 启发式教学法:教师提问引导学生思考,激发学生的探究欲望。
3. 合作学习法:学生分组讨论,培养学生的团队合作意识和沟通能力。
4. 案例教学法:通过讲解典型例题,培养学生解决问题的能力。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答和练习完成情况。
2. 练习作业:检查学生完成练习题的情况,评估学生的掌握程度。
3. 小组讨论:评估学生在团队合作中的表现,包括沟通能力和解决问题的能力。
4. 学生自评:让学生反思自己在学习过程中的优点和不足,鼓励自我提高。
六、教学资源:1. 教材:一元二次方程相关章节的内容。
2. 课件:教师制作的课件,包括图片、文字和动画等。
22.1一元二次方程数学教案
22.1一元二次方程数学教案
教案名称:《一元二次方程》
一、教学目标:
1. 知识与技能:理解并掌握一元二次方程的概念,能够解基本的一元二次方程;学会使用因式分解法、公式法等方法解决相关问题。
2. 过程与方法:通过观察、思考、讨论、合作等方式,提高学生分析问题、解决问题的能力。
3. 情感态度价值观:培养学生的数学思维,激发学生对数学的兴趣,增强学生的学习自信心。
二、教学重难点:
重点:理解和掌握一元二次方程的概念,学会使用因式分解法、公式法解一元二次方程。
难点:理解和运用一元二次方程的解法,解决实际问题。
三、教学过程:
1. 导入新课:通过生活实例或者历史故事引出一元二次方程的概念,激发学生的学习兴趣。
2. 新知探究:首先介绍一元二次方程的概念,然后引导学生学习如何用因式分解法解一元二次方程,再进一步介绍公式法,并举例说明。
在这个过程中,鼓励学生主动参与,提出自己的见解和疑问。
3. 实践应用:设计一些练习题让学生独立完成,以此来检验他们对新知识的理解和掌握程度。
同时,还可以设置一些实际问题,让学生利用所学知识去解决,以提升他们的应用能力。
4. 总结归纳:带领学生回顾本节课的主要内容,强调重要知识点,解答学生在课堂上提出的疑问。
5. 布置作业:布置适量的习题,让学生在课后巩固和复习所学知识。
四、教学评价:
通过课堂观察、小组讨论、练习反馈等方式,评价学生对一元二次方程的理解和掌握程度,以及他们的问题解决能力。
五、教学反思:
在课程结束后,教师需要反思本次教学的效果,包括教学设计是否合理,教学方法是否有效,学生的学习效果如何等等,以便于下次改进教学。
九年级数学上一元二次方程的解法教案【优秀3篇】
数学,是一门有趣而又很有学问的学科。
生活中存在着无穷的数学故事,与你我的生活息息相关,也是一个游戏的宝塔。
2022中考数学知识点有哪些你知道吗?一起来看看2022中考数学知识点,欢迎查阅!以下是人见人爱的小编分享的九年级数学上一元二次方程的解法教案【优秀3篇】,在大家参照的同时,也可以分享一下白话文给您最好的朋友。
数学《一元二次方程》教案设计篇一教材分析1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。
2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。
一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。
3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。
学情分析1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。
2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的`难度,解决这问题要以多练为主。
3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。
教学目标1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。
2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。
教学重点和难点1、重点:概念的形成及一般形式。
2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。
元二次方程的应用篇二第一课时教学目标一、教学1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
初三数学一元二次方程教案(最新5篇)
初三数学一元二次方程教案(最新5篇)元二次方程篇一教学目标1. 了解整式方程和的概念;2. 知道的一般形式,会把化成一般形式。
3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:重点:的概念和它的一般形式。
难点:对的一般形式的正确理解及其各项系数的确定。
教学建议:1. 教材分析:1)知识结构:本小节首先通过实例引出的概念,介绍了的一般形式以及中各项的名称。
2)重点、难点分析理解的定义:是的重要组成部分。
方程,只有当时,才叫做。
如果且,它就是了。
解题时遇到字母系数的方程可能出现以下情况:(1)的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合的定义。
(2)条件是用“关于的”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。
如“关于的”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。
如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是,解题时就会有不同的结果。
教学目的1.了解整式方程和的概念;2.知道的一般形式,会把化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:重点:1.的有关概念2.会把化成一般形式难点:的含义。
教学过程设计一、引入新课引例:剪一块面积是壹五0cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。
3.让学生自己列出方程( x(x十5)=壹五0 )深入引导:方程x(x十5)=壹五0有人会解吗?你能叫出这个方程的名字吗?二、新课1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。
一元二次方程教学重难点设计教学设计
2、一元二次方程的一般形式
一般地,任何一个关于x的一元二次方程都可以化为a x 2 + b x + c = 0的形式,我们把(a,b,c为常数,a≠0)称为一元二次方程的一般形式。
回顾本章节课学习内容,梳理知识,使知识系统化
八、教学评价设计
2、把以上方程整理得:----------- ------
问题2:在一块宽20。
你能根据题意,列出方程吗?m、长32m的矩形空地上,修筑宽相等的三条小路(两条纵向,一条横向,纵向与横向垂直),把矩形空地分成大小一样的六块,建成小花坛。如图要使花坛的总面积为570 m2,问小路的宽应为多少?
思考:1、若设小路的宽是xm,那么横向小路的面______m2,纵向小路的面积是m2,两者重叠的面积是-------- ----m2.由于花坛的总面积是--------m2.
五、学习者特征分析
绝大部分学生对书本中的小结都是持肯定的态度的,也就是说每一章的小结或多或少都会对学生有一定的帮助,但是我们应该怎样去看待这个小结,我们可以看到有32.58%的学生觉得书本中总结得还可以,有44.19%的学生觉得总结得不够,有10.49%的学生觉得很难把这些总结转化为自己的知识,还有12.73%的同学就是没什么感觉,这也就意味着我们老师要在学完每一章或是每一个知识点之后帮学生总结归纳相关的知识,使之形成一个系统的知识结构,便于学生对知识的理解和掌握
2.提问:请说出
2x2-33x+58=0,
X2+2x-1=0的一次项及系数、二次项及系数、常数项
1.类比一元一次方程可以使学生对概念的理解更深刻,但需要强调“一元”“二次”的真正含义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程导入课重点难点突破教学设计
一元二次方程的两个根不一定都是实际问题的解,本节的重难点是根据具体问题的实际意义,检验方程的解是否合理.
突破设计
一.列方程解应用题的步骤是:审题,设未知数,列方程,解方程,检验,答题.实际问题的解,不仅要满足所列方程,还应符合实际问题的具体题意.因此,求出方程的解后一定要进行检验,以确定实际问题的答案.在以前学习一元一次方程、二元一次方程组的应用题时,因为一般只有一个(组)解,往往符合实际意义,所以很少检验是否符合题意.而列一元二次方程解应用题时,方程的解一般有两个,这时就需要判断两个解是否都符合题意.
二.要注意培养学生良好的解题习惯,包括借助直观方法分析题意、检验所得方程及其根的实际意义,找出合乎实际的结果等.方程的解是不是实际问题的解,要根据实际意义来判断,不能想当然地主观判断.1.方程有负数解,不符合实际意义需舍掉;2.虽然方程的两个解都是正数,但实际问题要求的解有范围限制,有的方程的解不在要求的范围内,所以它们并不都是实际问题的解;有时实际问题要求是整数解时,方程有分数解,不符合实际意义需舍掉.例题解读
1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要盈利1200元,每件衬衫应降价多少元?
【解析】设每件衬衫应降价x元,
由题意,得(40-x)(20+2x)=1200,
解方程得,x1=10,x2=20.
因为要尽量减少库存,所以x=20.
答:每件衬衫应降价20元.
2若把上面的问题换为:某商店购进一种商品,单价30元,试销中发现这种商品每天的销售量p(件)与每天的销售价x(元)满足关系:p=100-2x,若商店每天销售这种商品要获得200元的销售利润,那么每件商品的售价应为多少元?每天要售出这种商品多少件?
【解析】根据题意得:(x-30)(100-2x)=200,
整理得:x2-80x+1600=0,
∴(x-40)2=0,
∴x=40,
∴p=100-2x=20(件).
答:每件商品的售价应定为40元,每天要销售这种商品20件.
3.如图,在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m2,求道路的宽.
(部分参考数据:322=1024,522=2704,482=2304)
【解析】利用平移,原图可转化为右图,设道路宽为x米,
根据题意得:(20-x)(32-x)=540.
整理得:x2-52x+100=0.解得:x1=50(舍去),x2=2.答:道路宽为2米.。