数据仓库与数据挖掘试题
数据仓库与数据挖掘习题.doc
数据仓库与数据挖掘习题. .数据仓库与数据挖掘习题1.1什么是数据挖掘?在你的回答中,强调以下问题:(a) 它是又一个骗局吗?(b) 它是一种从数据库,统计学和机器学习发展的技术的简单转换吗?(c) 解释数据库技术发展如何导致数据挖掘(d) 当把数据挖掘看作知识发现过程时,描述数据挖掘所涉及的步骤。
1.2 给出一个例子,其中数据挖掘对于一种商务的成功至关重要的。
这种商务需要什么数据挖掘功能?他们能够由数据查询处理或简单的统计分析来实现吗?1.3 假定你是Big- (a) 它是又一个骗局吗?(b) 它是一种从数据库,统计学和机器学习发展的技术的简单转换吗?(c) 解释数据库技术发展如何导致数据挖掘(d) 当把数据挖掘看作知识发现过程时,描述数据挖掘所涉及的步骤。
1.2 给出一个例子,其中数据挖掘对于一种商务的成功至关重要的。
这种商务需要什么数据挖掘功能?他们能够由数据查询处理或简单的统计分析来实现吗?1.3 假定你是Big:每个学生的姓名,地址和状态(例如,本科生或研究生),所修课程,以及他们累积的GPA(学分平均)。
描述你要选取的结构。
该结构的每个成分的作用是什么?1.4 数据仓库和数据库有何不同?它们有那些相似之处?1.5简述以下高级数据库系统和应用:面向对象数据库,空间数据库,文本数据库,多媒体数据库和WWW。
1.6 定义以下数据挖掘功能:特征化,区分,关联,分类,预测,聚类和演变分析。
使用你熟悉的现实生活中的数据库,给出每种数据挖掘的例子。
1.7 区分和分类的差别是什么?特征化和聚类的差别是什么?分类和预测呢?对于每一对任务,它们有何相似之处?1.8 根据你的观察,描述一种可能的知识类型,它需要由数据挖掘方法发现,但未在本章中列出。
它需要一种不同于本章列举的数据挖掘技术吗?1. 9 描述关于数据挖掘方法和用户交互问题的三个数据挖掘的挑战。
1. 10 描述关于性能问题的两个数据挖掘的挑战。
2.1 试述对于多个异种信息源的集成,为什么许多公司宁愿使用更新驱动的方法(构造使用数据仓库),而不愿使用查询驱动的方法(使用包装程序和集成程序)。
12《数据仓库与数据挖掘》复习题
《数据仓库与数据挖掘》复习大纲三、简答题(5×6分=30分)四、分析计算题(3×10分=30分)考试范围:第一讲数据挖掘概述考点:1、数据挖掘、知识发现(KDD)基本概念;2、数据挖掘的过程;3、数据挖掘过技术的三个主要部分。
复习参考题:一、填空题(1)数据库中的知识挖掘(KDD)包括以下七个步骤:数据清理、数据集成、数据选择、数据变换、数据挖掘、模式评估和知识表示。
(2)数据挖掘的性能问题主要包括:算法的效率、可扩展性和并行处理。
(3)当前的数据挖掘研究中,最主要的三个研究方向是:统计学、数据库技术和机器学习。
(4)在万维网(WWW)上应用的数据挖掘技术常被称为:WEB挖掘。
(5)孤立点是指:一些与数据的一般行为或模型不一致的孤立数据。
二、单选题(1)数据挖掘应用和一些常见的数据统计分析系统的最主要区别在于:BA、所涉及的算法的复杂性;B、所涉及的数据量;C、计算结果的表现形式;D、是否使用了人工智能技术(2)孤立点挖掘适用于下列哪种场合?DA、目标市场分析B、购物篮分析C、模式识别D、信用卡欺诈检测(3)下列几种数据挖掘功能中,( D )被广泛的应用于股票价格走势分析。
A. 关联分析B.分类和预测C.聚类分析D. 演变分析(4)下面的数据挖掘的任务中,( B )将决定所使用的数据挖掘功能。
A、选择任务相关的数据B、选择要挖掘的知识类型C、模式的兴趣度度量D、模式的可视化表示(5)下列几种数据挖掘功能中,(A )被广泛的用于购物篮分析。
A、关联分析B、分类和预测C、聚类分析D、演变分析(6)根据顾客的收入和职业情况,预测他们在计算机设备上的花费,所使用的相应数据挖掘功能是( B)。
A.关联分析B.分类和预测C. 演变分析D. 概念描述(7)帮助市场分析人员从客户的基本信息库中发现不同的客户群,通常所使用的数据挖掘功能是( C )。
A.关联分析B.分类和预测C.聚类分析D. 孤立点分析E. 演变分析(8)假设现在的数据挖掘任务是解析数据库中关于客户的一般特征的描述,通常所使用的数据挖掘功能是( E )A.关联分析B.分类和预测C. 孤立点分析D. 演变分析E. 概念描述三、简答题1、何谓数据挖掘?它有哪些方面的功能?答:从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程称为数据挖掘。
数据仓库与数据挖掘考试试题
一、填空题(15分)1.数据仓库的特点分别是面向主题、集成、相对稳定、反映历史变化。
2.元数据是描述数据仓库内数据的结构和建立方法的数据。
根据元数据用途的不同可将元数据分为技术元数据和业务元数据两类。
3.OLAP技术多维分析过程中,多维分析操作包括切片、切块、钻取、旋转等。
4.基于依赖型数据集市和操作型数据存储的数据仓库体系结构常常被称为“中心和辐射”架构,其中企业级数据仓库是中心,源数据系统和数据集市在输入和输出范围的两端。
5.ODS实际上是一个集成的、面向主题的、可更新的、当前值的、企业级的、详细的数据库,也叫运营数据存储。
二、多项选择题(10分)6.在数据挖掘的分析方法中,直接数据挖掘包括(ACD)A 分类B 关联C 估值D 预言7.数据仓库的数据ETL过程中,ETL软件的主要功能包括(ABC)A 数据抽取B 数据转换C 数据加载D 数据稽核8.数据分类的评价准则包括( ABCD )A 精确度B 查全率和查准率C F-MeasureD 几何均值9.层次聚类方法包括( BC )A 划分聚类方法B 凝聚型层次聚类方法C 分解型层次聚类方法D 基于密度聚类方法10.贝叶斯网络由两部分组成,分别是( A D )A 网络结构B 先验概率C 后验概率D 条件概率表三、计算题(30分)11.一个食品连锁店每周的事务记录如下表所示,其中每一条事务表示在一项收款机业务中卖出的项目,假定sup min=40%,conf min=40%,使用Apriori算法计算生成的关联规则,标明每趟数据库扫描时的候选集和大项目集。
(15分)解:(1)由I={面包、果冻、花生酱、牛奶、啤酒}的所有项目直接产生1-候选C1,计算其支持度,取出支持度小于sup min的项集,形成1-频繁集L1,如下表所示:(2)组合连接L1中的各项目,产生2-候选集C2,计算其支持度,取出支持度小于sup min的项集,形成2-频繁集L2,如下表所示:至此,所有频繁集都被找到,算法结束,所以,confidence({面包}→{花生酱})=(4/5)/(3/5)=4/3> conf minconfidence({ 花生酱}→{面包})=(3/5)/(4/5)=3/4> conf min所以,关联规则{面包}→{花生酱}、{ 花生酱}→{面包}均是强关联规则。
数据仓库与数据挖掘试题
09数据仓库与数据挖掘试题(最后)(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数据仓库与数据挖掘试题一、什么是数据仓库数据仓库的主要特征有哪些它与传统的关系数据库系统有什么区别二、关系模型和多维模型在数据仓库设计中各有什么优缺点?三、数据仓库上的代数操作有哪些?如何定义的,举例说明。
四、什么是知识发现,知识发现的过程包括那几个步骤五、什么是关联规则如何利用Apriori算法在给定的数据集合上找出关联规则六、什么是分类什么是聚类二者的区别是什么常用的分类和聚类方法有哪些1、数据仓库是一个面向主题的、集成的、不可更新的、随时间不断变化的数据集合,它用于支持企业或组织的决策分析处理。
数据仓库的主要特征: 面向主题的、集成的、时变的、非易失的数据仓库与数据库的区别数据库是面向事务的设计,数据仓库是面向主题设计的。
数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。
数据库设计是尽量避免冗余,一般采用符合范式的规则来设计,数据仓库在设计是有意引入冗余,采用反范式的方式来设计。
数据库是为捕获数据而设计,数据仓库是为分析数据而设计,它的两个基本的元素是维表和事实表。
2、关系模型先建立企业级数据仓库,再在其上开发具体的应用。
企业级数据仓库固然是我们所追求的目标,但在缺乏足够的技术力量和数据仓库建设经验的情况下,按照这种模型设计的系统建设过程长,周期长,难度大,风险大,容易失败。
这种模型的优点是信息全面、系统灵活。
由于采用了第三范式,数据存储冗余度低、数据组织结构性好、反映的业务主题能力强以及具有较好的业务扩展性等,但同时会存在大量的数据表,表之间的联系比较多,也比较复杂,跨表操作多,查询效率较低,对数据仓库系统的硬件性能要求高等问题。
另一方面,数据模式复杂,不容易理解,对于一般计算机用户来说,增加了理解数据表的困难。
多维模型降低了范式化,以分析主题为基本框架来组织数据。
数据仓库与数据挖掘 阶段考试复习题
第一章数据仓库与数据挖掘概述无习题第二章数据仓库概述一.判断题在分析型处理产生后,数据处理的环境由原来的以单一数据库为中心的数据环境发展为以数据仓库为基础的体系化环境。
在事务型(操作型)数据处理下,数据处理的环境主要是以单一数据库为中心的数据环境。
数据仓库是为构建分析型数据处理环境而出现的一种数据存储和组织技术.面向应用,是数据仓库区别于传统的操作型数据库的关键特征。
一个数据仓库是通过集成多个异种数据源来构造的。
由于在数据仓库中只进行数据的初始装载和查询操作,所以,数据一旦进入数据仓库,就是稳定的,基本上不会被更新。
数据立方体必须是3维的。
在数据仓库中,概念分层定义了一个映射序列,可以将低层概念映射到更一般的高层概念。
方体的格,是在单个维上定义的映射序列,可以将低层概念映射到更一般的高层概念。
雪花模型通过在每个维表基础上,增加附加维表的方式来降低星型模型中可能会存在的冗余现象。
在事实星座模型中,有且仅能有一个事实表。
在数据仓库的设计过程中,要坚持“数据驱动和需求驱动双驱动,且以需求驱动为中心”的原则。
二.单选题在以下人员中,被誉为“数据仓库之父”的是:()(知识点:数据仓库的基本概念;易)A. H.Inmon B. E.F.Codd C. Simon D. Pawlak以下关于数据仓库的说法正确的是:()(知识点:数据仓库的基本概念;难)A. 数据仓库中的数据只能来源于组织内部的操作型数据库B. 数据仓库是为应对事务型数据处理的需要而产生的C. 数据仓库是面向主题的,这是其区别于操作型数据库的关键特征D. 数据仓库必须是面向企业全局的,不能以部门为单位建立数据仓库以下哪项不是“信息包图”中的元素?()(知识点:数据仓库的三级模型;难)A. 维度B. 维的概念层次及相应层次上的数量C. 度量D. 方体的格以下哪项不属于数据仓库的逻辑模型?()(知识点:数据仓库的三级模型;中)A. 星型模型B. 雪花模型C. 度量模型D. 事实星座模型在数据仓库的设计过程中,下列描述正确的是()(知识点:数据仓库的设计;难)A. 数据仓库是“数据驱动+需求驱动”双驱动,但必须以需求驱动为中心B. 数据仓库主要面向分析型处理环境,在设计时很难完全明确用户的需求C. 数据仓库与数据库一样,其数据主要来自于企业的业务流程D. 数据仓库的设计目标是要提高事务处理的性能下面哪项关于星型模型的说法是不正确的:()(知识点:数据仓库的三级模型;难)A. 有一个事实表,且事实表中的属性由指向各个维表的外键和一些相应的度量数据组成B. 有一组小的附属表,称为维表,且每维一个维表C. 事实表的每个字段都是事实度量字段D. 由于每维只能建立一个维表,使得维表中有些信息会产生冗余在数据仓库的概念模型中,通过()来实现数据从客观世界到主观认识的映射。
数据仓库与数据挖掘考试试题
数据仓库与数据挖掘考试试题
1. 简答题
a) 数据仓库的定义是什么?
b) 数据挖掘的基本任务有哪些?
c) 数据清洗在数据挖掘中的作用是什么?
2. 选择题
请从以下选项中选择正确答案:
a) 数据仓库的主要特点是:
A. 面向主题
B. 面向过程
C. 面向对象
D. 面向细节
b) 数据挖掘的主要方法包括:
A. 分类
B. 聚类
C. 关联分析
D. 回归分析
c) 数据清洗的过程包括:
A. 数据标准化
B. 数据去重
C. 数据缺失值处理
D. 数据转换
3. 算法题
使用Apriori算法来进行关联规则挖掘,假设有以下购物篮数据集:{牛奶,面包,尿布}
{可乐,面包,尿布}
{牛奶,可乐,尿布}
{牛奶,面包,可乐}
请按照步骤描述如何使用Apriori算法来找出频繁项集和关联规则。
4. 应用题
某电商网站的用户行为数据包括用户ID、商品ID、购买时间等字段,试设计一个数据挖掘任务,根据历史数据预测用户未来可能购买
的商品。
请描述具体的数据处理流程和算法选择,以及如何评估模型
的准确性。
5. 论述题
数据仓库和数据挖掘在实际应用中的价值和意义是什么?结合具体案例或行业来说明,并探讨未来数据仓库和数据挖掘的发展方向。
以上为数据仓库与数据挖掘考试试题的内容,希望您认真针对每个问题进行回答,考试时间为2小时,请自行安排时间和注意事项,祝您考试顺利!。
数据仓库与数据挖掘_北京理工大学中国大学mooc课后章节答案期末考试题库2023年
数据仓库与数据挖掘_北京理工大学中国大学mooc课后章节答案期末考试题库2023年1.假设属性income的最大最小值分别是12000元和98000元。
利用最大最小规范化的方法将属性的值映射到0至1的范围内。
对属性income的73600元将被转化为:()参考答案:0.7162.数据的可视化是将数据以各种图表的形式展现在用户的面前,使用户能观察数据,并在较高的层次上找出数据间可能的关系。
参考答案:正确3.数据挖掘和可视化都是知识提取的方式。
参考答案:正确4.面向应用场景的可视化交互式数据挖掘方法是以数据挖掘算法和模型为主,并不针对具体应用场景或数据类型参考答案:错误5.将原始数据进行集成、变换、维度规约、数值规约是以下哪个步骤的任务?()参考答案:数据预处理6.数据仓库的数据ETL过程中,ETL软件的主要功能包括()参考答案:数据抽取_数据加载_数据转换7.数据挖掘的主要任务是从数据中发现潜在规则,从而能更好的完成描述数据、预测数据的任务。
参考答案:正确8.传统数据仓库包括数据仓库数据库、数据抽取/转换/加载、元数据、访问工具、数据集市、和信息发布系统七个部分组成。
参考答案:数据仓库管理9.关联规则挖掘过程是发现满足最小支持度的所有项集代表的规则。
参考答案:错误10.假定你现在训练了一个线性SVM并推断出这个模型出现了欠拟合现象。
在下一次训练时,应该采取下列什么措施?()参考答案:增加特征11.下面哪一项关于CART的说法是错误的()参考答案:CART输出变量只能是离散型。
12.以下哪种方法不是常用的数据约减方法()参考答案:关联规则挖掘13.假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15,35, 50, 55, 72, 92,204, 215 使用如下每种方法将它们划分成四个箱。
等频(等深)划分时,15在第几个箱子内? ()参考答案:第二个14.下表是一个购物篮,假定支持度阈值为40%,其中()是频繁闭项集。
数据仓库与数据挖掘技术-试题答案
数据仓库与数据挖掘技术答案一、简答1.为什么需要对数据进行预处理?数据预处理主要包括哪些工作(需要对数据进行哪些方面预处理)?(1)现实世界的数据是杂乱的,数据多了什么问题会出现。
数据库极易受到噪音数据(包含错误或孤立点)、遗漏数据(有些感兴趣的属性缺少属性值或仅包含聚集数据)和不一致数据(在编码或者命名上存在差异)的侵扰,因为数据库太大,常常多达几G或更多。
进行数据预处理,提高数据质量,从而提高挖掘结果质量。
(2)数据预处理主要包括:数据清理:去除数据中的噪音、纠正不一致;数据集成:将数据由多个源合并成一致的数据存储,如数据仓库或数据方;数据交换:规范化或聚集可以改进涉及距离度量的挖掘算法精度和有效性;数据归约:通过聚集、删除冗余特征或聚类等方法来压缩数据。
数据离散化:属于数据归约的一部分,通过概念分层和数据的离散化来规约数据,对数字型数据特别重要。
2. 什么叫有监督学习?什么叫无监督学习?) 是通过发现数据属性和类别属性之间的关联模式,并通监督学习(Supervised learning或归纳过利用这些模式来预测未知数据实例的类别属性。
监督学习又称为分类Classification。
学习Inductive Learning无监督学习(Unsupervised learning)即聚类技术。
在一些应用中,数据的类别属性是缺失的,用户希望通过浏览数据来发现其的某些内在结构。
聚类就是发现这种内在结构的技术。
3.什么是数据仓库的星形模式?它与雪花模式有何不同?雪花模式与星形模式不同在于:雪花模式的维表可能是规范化形式,以便减少冗余。
这种表易于维护,并节省存储空间,因为当维结构作为列包含在内时,大维表可能非常大。
然而,与巨大的事实表相比,这种空间的节省可以忽略。
此外,由于执行查询更多的连接操作,雪花结构可能降低浏览的性能。
这样系统的性能可能受影响。
因此,在数据仓库设计中,雪花模式不如星形模式流行。
二、写出伪代码三答:(1)所有频繁项集为:[E,K,O] [K,M] [K,Y] (2) 关联规则:[O]->[E,K] 1.0[E,O] -> [K] 1.0[K,O] -> [E] 1.01.0[M] -> [K][Y] -> [K] 1.0答:a)决策树表示一种树型结构,它由它的分来对该类型对象依靠属性进行分类。
数据仓库与数据挖掘考试题
6.假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15在第几个箱子内?()
A第一个B第二个C第三个D第四个
7.上题中,等宽划分时(宽度为50),15又在哪个箱子里?()
3.当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?()
A.分类B.聚类C.关联分析D.隐马尔可夫链
4.使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?()
A.探索性数据分析B.建模描述
C.预测建模D.寻找模式和规则
5.下面哪种不属于数据预处理的方法?()
A第一个B第二个C第三个D第四个
8.只有非零值才重要的二元属性被称作:()
A计数属性B离散属性C非对称的二元属性D对称属性
9.以下哪种方法不属于特征选择的标准方法:()
A嵌入B过滤C包装D抽样
10.下面不属于创建新属性的相关方法的是:()
A特征提取B特征修改C映射数据到新的空间D特征构造
填空
1、调和数据是存储在和操作型数据存储中的数据。
10、支持向量机中常用的核函数有、和。
简答、简述题
1、什么是数据仓库?数据仓库的特点主要有哪些?
2、什么是聚类?它与分类有什么异同?
3、简述处理空缺值的方法。
4、简述ID3算法的基本思想及其主算法的基本步骤。
5、何谓OLTP和OLAP?它们的主要异同有哪些?
6、简述你对数据仓库未来发展趋势的看法。
数据仓库与数据挖掘
姓名:
分数:
选择题
数据仓库与数据挖掘复习资料
数据仓库与数据挖掘简答题资料1.数据库与数据仓库的本质差别?《第一章》答:a.数据库是用于事务处理,数据仓库用于决策分析;b.数据库保持事务处理的当前状态,数据仓库既保存过去的数据又保存当前的数据;c.数据仓库的数据是大量数据库的集成;d.对数据库的操作比较明确,操作数据量少。
对数据仓库操作不明确,操作数据量大。
e.数据库是细节的、在存取时准确的、可更新的、一次操作数据量小、面向应用且支持管理;数据仓库是综合或提炼的、代表过去的数据、不更新、一次操作数据量大、面相分析且支持决策。
2.联机分析处理(OLAP)的简单定义是什么?它体现的特征是什么?《第三章》联机分析处理简单定义:即OLAP是共享多维信息的快速分析。
体现了4个特征:a.快速性:用户对OLAP的快速反应能力有很高的要求。
b.可分析性:OLAP系统应能处理与应用有关的任何逻辑分析和统计分析。
c.多维性:多维性是OLAP的特点,系统必须提供对数据分析的多维视图和分析,包括对层次维和多重层次维的完全支持。
d.信息性:不论数据量有多大,也不管数据存储在何处,OLAP系统都应能及时获得信息,并且管理大容量信息。
3.数据仓库两类用户有什么本质的不同?《第五章》数据仓库的用户有两类:信息使用者和探索者。
信息使用者是使用数据仓库的大量用户,信息使用者以一种可预测、重复性的方式使用数据仓库。
探索者完全不同于信息使用者,他们有一个完全不可预测的、非重复性的数据使用模式。
探索者查看海量详细数据,而概括数据则会妨碍探索者的数据分析。
探索者经常查看历史数据,且查看时间比使用者长的多。
探索者的任务是寻找公司数据内隐含的价值并且根据过去的事件努力预测未来决策的结果。
探索者是典型的数据挖掘者。
4.信息论的基本原理是什么?《第七章》一个传递信息的系统是由发送端(信源)和接收端(信宿)以及连接两者的通道(信道)组成的。
信息论把通信过程看做是在随机干扰的环境中传递信息的过程。
数据仓库与数据挖掘试题
《数据仓库与数据挖掘试题》一、判断题(每小题1分,计30分,答题时每5个答案写在一起)1.数据库作为数据资源用于管理业务中的信息分析处理。
(X)2.数据库的查询不是指对记录级数据的查询,而是指对分析要求的查询。
(X)3.关系数据库是二维数据(平面),多维数据库是空间立体数据。
(v)4.数据进入数据仓库之前,必须经过加工与集成。
(V)5.OLAP使用的是当前数据;OLTP使用的是历史数据。
(V)6.对数据仓库操作不明确,操作数据量少。
(X)7.数据集市实现难度超过数据仓库。
(X)8.OLAP使用的数据经常更新;OLTP使用的数据不更新,但周期性刷新。
(X)9.数据集市可升级到完整的数据仓库。
(V)10.数据库中存放的数据基本上是保存当前综合数据。
(X)11.OLAP可以应分析人员的要求快速、灵活地进行大数据量的复杂处理。
(V)12.OLAP支持复杂的决策分析操作,侧重对分析人员和高层管理人员的决策支持。
(V)13.OLTP的事务处理量大,处理内容比较简单但重复率高。
(V)14.数据仓库的用户有两类:信息使用者和探索者。
(V)15.对数据库的操作比较明确,操作数据量大。
(X)16.数据库用于事务处理,数据仓库用于决策分析。
(V)17.信息使用者以一种可预测的、重发性的方式使用数据仓库平台。
(V)18.OLAP一次处理的数据量大;OLTP一次性处理的数据量小。
(V)19.OLTP每次操作的数据量不大且多为当前的数据。
(V )20.数据仓库系统由数据仓库(DW)、仓库管理和分析工具三部分组成。
(V)21.随着业务的变化,数据仓库中的数据会随时更新。
(X)22.数据集市的规模比数据仓库更大。
(X)23.数据集市具有更详细的、预先存储在数据仓库的数据。
(V)24.不同维值的组合及其对应的度量值构成了不同的查询和分析。
(V)25.OLAP使用细节性数据,OLTP使用综合性数据。
(X)26.数据集市由企业管理和维护。
数据仓库与数据挖掘技术考试试题汇总
33. ID3 算法主要存在的缺点有:
46. 数据从集结区加载到数据仓库中的主要方法?
1 ID3 算法在选择根结点和各内部结点中的分枝
1 SQL 命令;
属性时,使用信息增益作为评价标准。信息增益的缺点是
2 由 DW 供应商或第三方提供专门的加载工具;
倾向于选择取值较多的属性,在有些情况下这类属性可能
3 由 DW 管理员编写自定义程序。
不会提供太多有价值的信息。
47. 数据库、TPS、MIS 属于面向业务操作的数据资源管
2 ID3 算法只能对描述属性为离散型属性的数据
理。
集构造决策树。
48. 面向决策分析的数据资源管理包括数据仓库以及与
34. 数据字典是数据库中各类数据描述的集合,通常包括
之紧密相关的 DSS。
的数据量很大;数据仓库软硬件要求很高。
也即频繁 k-项集为空。
9. ETL 过程的主要步骤可以概括为:
14. 调和数据是存储在企业级数据仓库和操作型数据存
1 决定数据仓库中需要的所有的目标数据;
储中的数据。
2 决定所有的数据源,包括内部和外部的数据源; 15. SQL Server SSAS 提供了所有业务数据的同意整合
8 为所有的数据装载编写规程;
18. 分类器设计阶段包含划分数据集 、分类器构造 、分
9 维度表的抽取、转换和装载;
类器测试。
10 事实表的抽取、转换和装载。
19. 数据处理通常分成两大类:联机事务处理和联机分析
10. 数据分割的好处有:
处理。
1 对当前细节数据进行分割的总体目的就是把数 20. ROLAP 是基于关系数据库的 OLAP 实现,而 MOLAP
31. 常见的聚类算法可以分为基于划分的聚类算法,基于 转换规则和数据刷新规则及安全(用户授权和存取控制)。
数据仓库和数据挖掘试题(11年)答案--南京理工研究生
数据仓库与数据挖掘I.选择题,为每个问题选择最合适的答案(10×2%=20%)1.数据仓库上的业务处理称作_B_。
A.联机事务处理B.联机分析处理C.联机输入处理D.联机查询处理2.在自然演化体系结构中,关于导致数据缺乏可信性的原因的说法哪个不正确?DA.数据无时基B.抽取程序的算法有差异C.抽取的层次不同D.缺乏集成性3.下面哪项关于OLTP与OLAP访问特点的说法是不正确的。
AA.OLTP和OLAP对于响应时间的要求都高B.OLTP访问频率高,OLAP访问频率低C.OLAP访问大量的历史,执行大量统计操作D.OLTP数据处理具有并发性4.下面关于数据仓库中数据的说法错误的是?A.数据越详细,粒度越小,层次级别就越高。
B.在估计直接存储设备数时,如数据超过1000万行必须强制采取双重粒度级。
C.数据仓库大部分分析是针对被压缩的、存取效率高的轻度级数据进行的。
D.数据分割便于数据的重构、重组和恢复,以提高创建索引和顺序扫描的效率。
5.下面关于数据仓库的数据存储方式的说法哪个是不正确的?FE.虚拟存储方式中,数据仓库的数据仍然在源数据中。
F.星型模式下的维表规范化的,而雪花模式下的不需要规范化G.在查询效率方面,星型模式效率更高H.在事实星座模式中有多个事实表,且它们共享相同的维表6.下面关于星型模型的说法哪个是不正确的?I.有一个包含大量数据的事实表J.有一组小的附属表,称为维表,每维一个。
K.事实表的每个字段都是事实度量字段L.事实中每条元组都含有指向各个维表的外键和一些相应的度量数据。
7.下面关于数据仓库的数据追加的说法哪个是不正确的?CA.时标法需要为记录数据增加一个时间标志。
B.前后映像文件方法需要扫描整个数据库,占用较多资源,对性能有较大影响C.DELTA不需要扫描整个数据库,效率较高,应用普遍D.日志文件法也不需要扫描整个数据库,是固有机制。
8.假设收入属性的最小与最大分别是10000和90000,现在想把当前值30000映射到区间[0,1],若采用最大-最小数据规范方法,计算结果是多少?BA.0.25B.0.375C.0.125D.0.59.下面关于维的概念哪个是不正确的? CA.维是人们观察数据的特定角度。
数据仓库与数据挖掘期末考试题库
复习内容填空题(每空1分)第1章1、数据仓库就是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。
2、根据数据用途的不同可将数据仓库的元数据分为技术元数据和业务元数据两类。
3、数据处理通常分成两大类:联机事务处理(OLTP)和联机分析处理。
4、多维分析是指对以“维”形式组织起来的数据(多维数据集)采取切片、切块、钻取和旋转等各种分析动作,以求剖析数据,使用户能从不同角度、不同侧面观察数据仓库中的数据,从而深入理解多维数据集中的信息。
5、ROLAP是基于关系数据库的OLAP实现,而MOLAP是基于多维数据结构组织的OLAP实现。
6、数据仓库按照其开发过程,其关键环节包括数据抽取、数据存储与管理和数据表现等。
7、数据仓库系统的体系结构根据应用需求的不同,可以分为以下4种类型:两层架构、独立数据集市、依赖型数据集市和操作型数据存储和逻辑型数据集市和实时数据仓库。
8、操作型数据存储(ODS)实际上是一个集成的、面向主题的、可更新的、当前值的(但是可“挥发”的)、企业级的、详细的数据库,也叫运营数据存储。
P159、“实时数据仓库”意味着源数据系统、决策支持服务和数据仓库之间以一个接近实时的速度交换数据和业务规则。
10、从应用的角度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以运营导向为主和以实时数据仓库和自动决策为主。
11、数据挖掘的分析方法可以分为直接数据挖掘和间接数据挖掘两类。
第2章1、调和数据是存储在企业级数据仓库和操作型数据存储中的数据。
2、抽取、转换、加载过程的目的是为决策支持应用提供一个单一的、权威数据源。
因此,我们要求ETL 过程产生的数据(即调和数据层)是详细的、历史的、规范的、可理解的、即时的和质量可控制的。
3、数据抽取的两个常见类型是静态抽取和增量抽取。
静态抽取用于最初填充数据仓库,增量抽取用于进行数据仓库的维护。
4、粒度是对数据仓库中数据的综合程度高低的一个衡量。
数据仓库与数据挖掘试题
《数据仓库与数据挖掘试题》一、判断题(每小题1分,计30分,答题时每5个答案写在一起)1.数据库作为数据资源用于管理业务中的信息分析处理。
(X)2.数据库的查询不是指对记录级数据的查询,而是指对分析要求的查询。
(X)3.关系数据库是二维数据(平面),多维数据库是空间立体数据。
(v)4.数据进入数据仓库之前,必须经过加工与集成。
(V)5.OLAP使用的是当前数据;OLTP使用的是历史数据。
(V)6.对数据仓库操作不明确,操作数据量少。
(X)7.数据集市实现难度超过数据仓库。
(X)8.OLAP使用的数据经常更新;OLTP使用的数据不更新,但周期性刷新。
(X)9.数据集市可升级到完整的数据仓库。
(V)10.数据库中存放的数据基本上是保存当前综合数据。
(X)11.OLAP可以应分析人员的要求快速、灵活地进行大数据量的复杂处理。
(V)12.OLAP支持复杂的决策分析操作,侧重对分析人员和高层管理人员的决策支持。
(V)13.OLTP的事务处理量大,处理内容比较简单但重复率高。
(V)14.数据仓库的用户有两类:信息使用者和探索者。
(V)15.对数据库的操作比较明确,操作数据量大。
(X)16.数据库用于事务处理,数据仓库用于决策分析。
(V)17.信息使用者以一种可预测的、重发性的方式使用数据仓库平台。
(V)18.OLAP一次处理的数据量大;OLTP一次性处理的数据量小。
(V)19.OLTP每次操作的数据量不大且多为当前的数据。
(V )20.数据仓库系统由数据仓库(DW)、仓库管理和分析工具三部分组成。
(V)21.随着业务的变化,数据仓库中的数据会随时更新。
(X)22.数据集市的规模比数据仓库更大。
(X)23.数据集市具有更详细的、预先存储在数据仓库的数据。
(V)24.不同维值的组合及其对应的度量值构成了不同的查询和分析。
(V)25.OLAP使用细节性数据,OLTP使用综合性数据。
(X)26.数据集市由企业管理和维护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数据仓库与数据挖掘试题》
一、判断题(每小题1分,计30分,答题时每5个答案写在一起)
1.数据库作为数据资源用于管理业务中的信息分析处理。
(X)
2.数据库的查询不是指对记录级数据的查询,而是指对分析要求的查询。
(X)
3.关系数据库是二维数据(平面),多维数据库是空间立体数据。
(v)
4.数据进入数据仓库之前,必须经过加工与集成。
(V)
5.OLAP使用的是当前数据;OLTP使用的是历史数据。
(V)
6.对数据仓库操作不明确,操作数据量少。
(X)
7.数据集市实现难度超过数据仓库。
(X)
8.OLAP使用的数据经常更新;OLTP使用的数据不更新,但周期性刷新。
(X)
9.数据集市可升级到完整的数据仓库。
(V)
10.数据库中存放的数据基本上是保存当前综合数据。
(X)
11.OLAP可以应分析人员的要求快速、灵活地进行大数据量的复杂处理。
(V)
12.OLAP支持复杂的决策分析操作,侧重对分析人员和高层管理人员的决策支持。
(V)
13.OLTP的事务处理量大,处理内容比较简单但重复率高。
(V)
14.数据仓库的用户有两类:信息使用者和探索者。
(V)
15.对数据库的操作比较明确,操作数据量大。
(X)
16.数据库用于事务处理,数据仓库用于决策分析。
(V)
17.信息使用者以一种可预测的、重发性的方式使用数据仓库平台。
(V)
18.OLAP一次处理的数据量大;OLTP一次性处理的数据量小。
(V)
19.OLTP每次操作的数据量不大且多为当前的数据。
(V )
20.数据仓库系统由数据仓库(DW)、仓库管理和分析工具三部分组成。
(V)
21.随着业务的变化,数据仓库中的数据会随时更新。
(X)
22.数据集市的规模比数据仓库更大。
(X)
23.数据集市具有更详细的、预先存储在数据仓库的数据。
(V)
24.不同维值的组合及其对应的度量值构成了不同的查询和分析。
(V)
25.OLAP使用细节性数据,OLTP使用综合性数据。
(X)
26.数据集市由企业管理和维护。
(X)
27.OLAP的概念模型是多维的。
(V)
28.数据库已经成为了成熟的信息基础设施。
(V)
29.数据库既保存过去的数据又保存当前的数据。
(X)
30.OLTP面对的是事务处理操作人员和低层管理人员。
(V)
二、填空题(每小题1分,计10分)
1.信息使用者通常查看概括数据或聚集数。
2.探索者的任务是寻找公司数据内隐含的价值。
3.数据立方体是在所有可能组合的维上进行分组聚集计算的总和。
4.基本的多维数据分析操作包括切片切块、旋转、钻取等。
5.数据立方体的构建和维护等计算方法成为了多维数据分析研究的关键问
题。
6.OLAP是建立在网络上的开发体系结构。
7.在数据立方体中,不同维度组合构成了不同的子立方体。
8.不同的数据仓库需要建立不同的数据库。
9.ETL是建立数据仓库的重要步骤,需要花费开发数据仓库70%的工作量。
10.数据仓库的数据是综合的集成。
三、名词解释(每小题5分,计30分)
1、数据集市4、元数据
2、数据挖掘5、知识发现
3、商业智能6、数据仓库
1,数据集市(Data Marts)是一种更小、更集中的数据仓库,为公司提供
分析商业数据的一条廉价途径。
Data Marts是指具有特定应用的数据仓库,主要针对某个应用或者具体部
门级的应用,支持用户获得竞争优势或者找到进入新市场的具体解决方案。
4,元数据(metadata)定义为关于数据的数据(data about data),即
元数据描述了数据仓库的数据和环境。
2,数据挖掘(DM):KDD过程中的一个特定步骤,它用专门算
法从数据中抽取知识。
3,商业智能以数据仓库为基础,通过联机分析处理和数据挖掘技术帮助企业
领导者针对市场变化的环境,做出快速、准确的决策。
5,知识发现(KDD):从数据中发现有用知识的整个过程。
6,数据仓库是决策支持系统(dss)和联机分析应用数据源的结构化数据环境。
数据仓库研究和解决从数据库中获取信息的问题。
数据仓库的特征在于面向主题、集成性、稳定性和时变性。
四、简答题(每小题5分,计30分)
1.简述数据仓库与数据挖掘的关系?
数据仓库与数据挖掘都是决策支持新技术。
但它们有着完全不同的辅助决策
方式。
在数据仓库系统的前端的分析工具中,数据挖掘是其中重要工具之一。
它可
以帮助决策用户挖掘数据仓库的数据中隐含的规律性。
2.比较统计学与数据挖掘的异同?
⏹统计学主要是对数量数据(数值)或连续值数据(如年龄、工资等),进
行数值计算(如初等运算)的定量分析,得到数量信息。
⏹数据挖掘主要对离散数据(如职称、病症等)进行定性分析(覆盖、归
纳等),得到规则知识。
⏹统计学与数据挖掘是有区别的。
但是,它们之间是相互补充的。
3.比较OLAP的数据模型MOLAP与ROLAP?
MOLAP是事先生成多维立方体,供以后查询分析用,而ROLAP是通过动态的生成Sql,去做查询关系型数据库,如果没有做性能优化,数据量很大的时候,性能问题就会显得比较突出了。
ROLAP与MOLAP比较
4.比较数据挖掘与OLAP的差异?
OLAP的典型应用,通过商业活动变化的查询发现的问题,经过追踪查询找出问题出现的原因,达到辅助决策的作用。
数据挖掘任务在于聚类(如神经网络聚类)、分类(如决策树分类)、预测等。
5.什么是关于数据仓库映射的元数据?
数据仓库的元数据除对数据仓库中数据的描述(数据仓库字典)外,还有以下三类元数据:
(1) 关于数据源的元数据
(2) 关于抽取和转换的元数据
(3) 关于最终用户的元数据
6.简述联机分析处理的四个特征?
(1)快速性:用户对OLAP的快速反应能力有很高的要求。
(2)可分析性:OLAP系统应能处理任何逻辑分析和统计分析。
(3)多维性:系统必须提供对数据分析的多维视图和分析。
(4)信息性:OLAP系统应能及时获得信息,并且管理大容量的信息。
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。