河北省保定市竞秀区乐凯中学2018-2019学年七下数学《8份合集》期末模拟试卷

合集下载

保定市2018-2019学年度七年级下期末调研考试数学试卷(有答案)

保定市2018-2019学年度七年级下期末调研考试数学试卷(有答案)

2018-2019学年度第二学期期末调研考试七年级数学试卷注意:本试卷共8页,三道大题,26个小题。

总分120分。

时间120分钟。

一、 选择题(本大题有16个小题,共42分。

1~10小题,各3分;11~16小题,各2分。

在每题给出的四个选项中,只有一项符合题目要求。

请将正确选项的代号填写在下面的表格中)A .B .36C .0D .﹣102.实数π、0、 0.101001中,无理数有( )个 A .1B .2C .3D .43.如右图,给出了过直线外一点作已知直线的平行线的方法,其依据是( )A. 同旁内角互补,两直线平行B. 内错角相等,两直线平行C. 同位角相等,两直线平行D. 两直线平行,同位角相等 4.如右图,数轴上点P 表示的数可能是( ) A. BC5.下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④ 19的平方根是,其中正确的有( ) A. 个 B. 个 C. 个 D. 个 6.若a <b ,则下列结论中,不成立...的是( ) A. a +3<b +3 B. a -2>b -2 C. -2a >-2b D . 12a <12b7.用加减法解方程组32104150x y x y -=⎧⎨-=⎩①②时,最简捷的方法是( )A. ①×4﹣②消去x B .①×4+②×3消去x C.②×2+①消去y D.②×2﹣①消去y8.如右图,点A (﹣2,1)到X 轴的距离为( ) A .﹣2 B .1 C .2 D . 9.为了了解某校1500名学生的体重情况,从中抽取了100名学生的体重。

就这个问题来说,下面说法正确的是( ) A.1500名学生的体重是总体 B.1500名学生是总体 C.每个学生是个体 D.100名学生是所抽取的一个样本10.如右图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠B=∠ACB C.∠A=∠ECD D.∠A=∠ACE 11.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上的简图可表示为()A.9- B.3- C.3 D.913. 如右图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么∠BAO与∠A BO之间的大小关系一定为()A.互余 B.互补 C.相等 D.不等、、,观测14. 如右图所示正方形格中,连接AB AC AD∠∠∠=()1+2+3A .120° B. 125° C.130° D. 135°15. 某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打()A.9折B.8折 C.7折D.6折16. 《孙子算经》中有一道题,原文是:“今有木,不知长短。

2018-2019学年河北省保定市竞秀区七年级(上)期末数学试卷(含解析)印刷版

2018-2019学年河北省保定市竞秀区七年级(上)期末数学试卷(含解析)印刷版

2018-2019学年河北省保定市竞秀区七年级(上)期末数学试卷一、选择题(本大题共16个小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目的要求.)1.(3分)﹣的倒数是()A.B.C.﹣D.﹣2.(3分)下列图形中,能折成正方体的是()A.B.C.D.3.(3分)下列单项式中,能够与a2b合并成一项的是()A.﹣2a2b B.a2b2C.ab2D.3ab4.(3分)下列调查中,采用的调查方式不适宜的是()A.了解我市中学生的节水意识采取抽样调查的方式B.为了调查一个省的环境污染情况,调查该省的省会城市C.了解观众对一部电影的评价情况,调查座号为奇数号的现众D.了解飞行员视力的达标率采取普查方式5.(3分)化简﹣16(x﹣0.5)的结果是()A.﹣16x﹣0.5B.﹣16x+0.5C.16x﹣8D.﹣16x+86.(3分)下列方程的变形正确的个数有()(1)由3+x=5,得x=5+3;(2)由7x=﹣4,得x=﹣;(3)由y=0得y=2;(4)由3=x﹣2得x=﹣2﹣3.A.1个B.2个C.3个D.4个7.(3分)“在山区建设公路时,时常要打通一条隧道,就能缩短路程”其中蕴含的数学道理是()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段的长度是两点间的距离8.(3分)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.49.(3分)若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是()A.﹣a和﹣b B.3a和3b C.a2和b2D.a3和b310.(3分)如图,一枚直径为4cm的圆形古钱币沿着直线滚动一周,圆心移动的距离是()A.2πcm B.4πcm C.8πcm D.16πcm11.(2分)下列叙述:①最小的正整数是0;②单项式3x3y的次数是3;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C是线段AB的中点;⑤若x表示有理数,且|x|=x,则x>0.其中正确的个数有()A.0个B.1个C.2个D.3个12.(2分)定义运算“@”的运算法则为:x@y=xy﹣y,如:3@2=3×2﹣2=4.那么(﹣3)@(﹣2)的运算结果是()A.8B.﹣3C.4D.﹣413.(2分)已知线段AB=10cm,P A+PB=20cm,则下列说法正确的是()A.点P一定在线段AB的延长线上B.点P一定在线段BA的延长线上C.点P一定不在线段AB上D.点P一定不在直线AB外14.(2分)已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a+b>0B.﹣a+b>0C.ab<0D.﹣a﹣b>015.(2分)一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣28B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28D.(1+50%x)×80%=x+2816.(2分)如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A、D两点表示的数分别为﹣5和6,点E为线段BD的中点,那么中点E表示的数为()A.0B.1C.2D.3二、填空题(本大题共3个小题,共10分.17-18小题各3分:19小题有两空,每空2分.把答案写在题中横线上)17.(3分)将数字617000000科学记数法表示,记为.18.(3分)图1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图2的新几何体,则该新几何体的体积为cm3.(计算结果保留π).19.(4分)如图所示的运算程序中,若开始输入的x值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,…第6次输出的结果;第2019次输出的结果为.三、解答题(本大题共68分,解答应写出文字说明或演算步骤)20.(16分)(1)计算:﹣45×(﹣0.4)(2)计算:﹣22+(﹣2)+(﹣)﹣|﹣1.5|(3)先化简,再求值:x2+(x2﹣4y)﹣2(x2﹣2y+1),其中x=﹣1,y=21.(8分)计算题:(1)4x﹣3(20﹣x)+4=0 (2).22.(6分)在平整的桌面上,有若干个棱长为1cm的小正方体堆成一个几何体,如图所示(1)分别画出这个几何体从上面、左面看到的图形;(2)如果把露在外面的面都涂上颜色,求涂上颜色的面的面积;(3)若你手里还有一些相同的小正方体,如果保持从上面、左面看到的图形不变,最多可以再添加几个小正方体?直接写出结果.23.(8分)2018年3月27日是全国中小学生安全教育日,某校为加强学生的安全意识,组织了全校学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计,绘制了图中两幅不完整的统计图.(1)学校共抽取了名学生,a=,n=.(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?24.(10分)如图,将连续的奇数1,3,5,7…按图1中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图2所示.(1)计算:若十字框的中间数为17,则a+b+c+d=.(2)发现:移动十字框,比较a+b+c+d与中间的数.猜想:十字框中a、b、c、d的和是中间的数的;(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.25.(10分)某校篮球社团决定购买运动装备,经了解,甲、乙两家运动产品经销店以同样的价格出售某种品牌的队服和篮球,已知每套队服比每个篮球多50元,两套队服与三个篮球的费用相等.经洽谈,甲店的优惠方案是:每购买十套队服,送一个篮球,乙店的优惠方案是:若购买队服超过80套,则购买篮球打八折.(1)求每套队服和每个篮球的价格是多少?(2)若篮球社团购买100套队服和m个篮球(m是大于10的整数),请用含m的式子分别表示出到甲经销店和乙经销店购买装备所花的费用;(3)在(2)的条件下,若m=60,通过计算判断到甲、乙哪家经销店购买更划算.26.(10分)如图所示,已知直线AB、CD相交于O,∠AOC=60°,射线OP从OA位置起始,绕点O逆时针旋转,终边OP与始边OA形成的角度为α.问题1:若OP逆时针旋转180°停止,则(1)α=时,OP平分∠AOC;(2)α=时,OP⊥OC;(3)α=时,∠AOP=2∠POC;问题2:若OP逆时针旋转的速度为每秒8°,在OP匀速旋转的同时,直线CD也从如图的位置开始绕点O逆时针匀速旋转,旋转速度为每秒5°,当OP完成旋转一周时,CD也同时停止旋转,设旋转时间为t(t>0)秒.(1)旋转时间t为多少时,射线OP与OC重合,请写出求解过程.(2)观察旋转全过程,判断旋转时间t为多少时,射线OP平分∠AOC.请直接写出t的值,(注:∠AOC指大于0°且小于180°的角)2018-2019学年河北省保定市竞秀区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共16个小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目的要求.)1.(3分)﹣的倒数是()A.B.C.﹣D.﹣【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣×()=1,∴﹣的倒数是.故选:D.2.(3分)下列图形中,能折成正方体的是()A.B.C.D.【分析】根据正方体展开图的类型,1﹣4﹣1型,2﹣3﹣1型,2﹣2﹣2型,3﹣3型,只有A不属于其中的类型型,不能折成正方体,据此解答即可.【解答】解:由分析可得,能折成正方体的图形是C.故选:C.3.(3分)下列单项式中,能够与a2b合并成一项的是()A.﹣2a2b B.a2b2C.ab2D.3ab【分析】根据同类项的概念判断即可.【解答】解:能够与a2b合并成一项的是﹣2a2b,故选:A.4.(3分)下列调查中,采用的调查方式不适宜的是()A.了解我市中学生的节水意识采取抽样调查的方式B.为了调查一个省的环境污染情况,调查该省的省会城市C.了解观众对一部电影的评价情况,调查座号为奇数号的现众D.了解飞行员视力的达标率采取普查方式【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A.了解我市中学生的节水意识采取抽样调查的方式,正确;B.为了调查一个省的环境污染情况,调查该省的省会城市不具有代表性,错误;C.了解观众对一部电影的评价情况,调查座号为奇数号的现众具有代表性,正确;D.了解飞行员视力的达标率采取普查方式,正确;故选:B.5.(3分)化简﹣16(x﹣0.5)的结果是()A.﹣16x﹣0.5B.﹣16x+0.5C.16x﹣8D.﹣16x+8【分析】根据去括号的法则计算即可.【解答】解:﹣16(x﹣0.5)=﹣16x+8,故选:D.6.(3分)下列方程的变形正确的个数有()(1)由3+x=5,得x=5+3;(2)由7x=﹣4,得x=﹣;(3)由y=0得y=2;(4)由3=x﹣2得x=﹣2﹣3.A.1个B.2个C.3个D.4个【分析】此题主要考查解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1等,移项,系数化为1的依据是等式的性质.【解答】解:(1)由3+x=5;得x=5+3不正确,因为移项时,符号没有改变;(2)由7x=﹣4,得x=﹣正确;(3)由y=0得y=2不正确,系数化为1时,出现错误;(4)由3=x﹣2得x=﹣2﹣3不正确,因为移项时,符号没有改变.故选:A.7.(3分)“在山区建设公路时,时常要打通一条隧道,就能缩短路程”其中蕴含的数学道理是()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段的长度是两点间的距离【分析】根据线段的性质解答即可.【解答】解:由线段的性质可知,“在山区建设公路时,时常要打通一条隧道,就能缩短路程”这其中蕴含的数学道理是:两点之间,线段最短.故选:A.8.(3分)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.4【分析】把x=5代入已知方程,可以列出关于★的方程,通过解该方程可以求得★处的数字.【解答】解:将x=5代入方程,得:﹣3(★﹣9)=25﹣1,解得:★=1,即★处的数字是1,故选:A.9.(3分)若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是()A.﹣a和﹣b B.3a和3b C.a2和b2D.a3和b3【分析】直接利用互为相反数的定义分析得出答案.【解答】解:A、∵a和b互为相反数,∴﹣a和﹣b,互为相反数,故此选项错误;B、∵a和b互为相反数,∴3a和3b,互为相反数,故此选项错误;C、∵a和b互为相反数,∴a2和b2,相等,故此选项正确;D、∵a和b互为相反数,∴a3和b3,互为相反数,故此选项错误;故选:C.10.(3分)如图,一枚直径为4cm的圆形古钱币沿着直线滚动一周,圆心移动的距离是()A.2πcm B.4πcm C.8πcm D.16πcm【分析】由于直径为4cm的圆形古钱币沿着直线滚动一周,则圆心移动的距离等于圆的周长,然后利用圆的周长公式计算即可.【解答】解:∵一枚直径为4cm的圆形古钱币沿着直线滚动一周,∴圆心移动的距离等于圆的周长,即2π×=4π.故选:B.11.(2分)下列叙述:①最小的正整数是0;②单项式3x3y的次数是3;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C是线段AB的中点;⑤若x表示有理数,且|x|=x,则x>0.其中正确的个数有()A.0个B.1个C.2个D.3个【分析】根据正整数,单项式,平面截几何体,线段的中点的定义,绝对值等知识一一判断即可.【解答】解:①最小的正整数是0;错误,最小的正整数是1.②单项式3x3y的次数是3;错误,单项式的次数是4.③用一个平面去截正方体,截面不可能是六边形;错误,可以得到六边形.④若AC=BC,则点C是线段AB的中点;错误,A,B,C不一定在同一直线上.⑤若x表示有理数,且|x|=x,则x>0.错误,应该是x≥0.故选:A.12.(2分)定义运算“@”的运算法则为:x@y=xy﹣y,如:3@2=3×2﹣2=4.那么(﹣3)@(﹣2)的运算结果是()A.8B.﹣3C.4D.﹣4【分析】根据x@y=xy﹣y,可以求得所求式子的值,本题得以解决.【解答】解:∵x@y=xy﹣y,∴(﹣3)@(﹣2)=8,故选:A.13.(2分)已知线段AB=10cm,P A+PB=20cm,则下列说法正确的是()A.点P一定在线段AB的延长线上B.点P一定在线段BA的延长线上C.点P一定不在线段AB上D.点P一定不在直线AB外【分析】根据题意,P A+PB>AB,推出点P一定不在线段AB上.【解答】解:∵线段AB=10cm,P A+PB=20cm,∴P A+PB>AB,∴点P一定不在线段AB上.故选:C.14.(2分)已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a+b>0B.﹣a+b>0C.ab<0D.﹣a﹣b>0【分析】根据数轴可得b<a<0,|b|>|a|,再根据有理数的加法、乘法、有理数减法进行分析可得答案.【解答】解:由图可知b<a<0,|b|>|a|,所以a+b<0,﹣a+b<0,ab>0,﹣a﹣b>0,故选:D.15.(2分)一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣28B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x﹣28D.(1+50%x)×80%=x+28【分析】根据售价的两种表示方法解答,关系式为:标价×80%=进价+28,把相关数值代入即可.【解答】解:标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%;∴可列方程为:(1+50%)x×80%=x+28,故选:B.16.(2分)如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A、D两点表示的数分别为﹣5和6,点E为线段BD的中点,那么中点E表示的数为()A.0B.1C.2D.3【分析】由题意可得AD=11,以及数轴上线段AB、BC、CD之间的比例关系,设CD=x,分别表示出线段AB、BC、CD的长.依据等量关系可求出x,则可得出点B表示的数,再利用中点公式即可求出点E表示的数.【解答】解:由题意设CD=x,则AB=1.5x,BC=3x.∵AB+BC+CD=AD=11,∴1.5x+3x+x=11,解得x=2.则AB=3,BC=6,CD=2又∵AB=3,∴点B表示的数是﹣5+3=﹣2,∵点D表示的数是6,∴线段BD的中点E表示的数为.故选:C.二、填空题(本大题共3个小题,共10分.17-18小题各3分:19小题有两空,每空2分.把答案写在题中横线上)17.(3分)将数字617000000科学记数法表示,记为 6.17×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将617 000 000用科学记数法表示为6.17×108.故答案为:6.17×108.18.(3分)图1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图2的新几何体,则该新几何体的体积为60πcm3.(计算结果保留π).【分析】新几何体的体积=一个圆柱体加半个圆柱体.【解答】解:新几何体的体积=π×4×(6+4+4)+π×4×2×=60πcm3.19.(4分)如图所示的运算程序中,若开始输入的x值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,…第6次输出的结果8;第2019次输出的结果为1.【分析】分别计算出前10次输出的结果,据此得出除去前3个结果48、24、12,剩下的以6,3,8,4,2,1循环,根据“(2019﹣3)÷6=336”可得答案.【解答】解:根据运算程序得到:除去前3个结果48、24、12,剩下的以6,3,8,4,2,1循环,;第6次输出的结果为8∵(2019﹣3)÷6=336,则第2019次输出的结果为1,故答案为:8,1.三、解答题(本大题共68分,解答应写出文字说明或演算步骤)20.(16分)(1)计算:﹣45×(﹣0.4)(2)计算:﹣22+(﹣2)+(﹣)﹣|﹣1.5|(3)先化简,再求值:x2+(x2﹣4y)﹣2(x2﹣2y+1),其中x=﹣1,y=【分析】(1)根据有理数的混合计算解答即可;(2)根据有理数的混合计算解答即可;(3)根据整式的混合计算先化简后代入解答即可.【解答】解:(1)原式==﹣47;(2)原式==﹣8;(3)原式==x2+3y﹣2,把x=﹣1,y=代入x2+3y﹣2=1+1﹣2=0.21.(8分)计算题:(1)4x﹣3(20﹣x)+4=0 (2).【分析】(1)先去括号,然后通过移项、合并同类项,化系数为1进行计算;(2)先去分母,然后通过移项、合并同类项,化系数为1进行计算.【解答】解:(1)由原方程,得4x﹣60+3x+4=0,移项、合并同类项,得7x=56,化系数为1,得x=8;(2)去分母,得.10x+5=15﹣3x+3,移项、合并同类项,得13x=13,化系数为1,得x=1.22.(6分)在平整的桌面上,有若干个棱长为1cm的小正方体堆成一个几何体,如图所示(1)分别画出这个几何体从上面、左面看到的图形;(2)如果把露在外面的面都涂上颜色,求涂上颜色的面的面积;(3)若你手里还有一些相同的小正方体,如果保持从上面、左面看到的图形不变,最多可以再添加几个小正方体?直接写出结果.【分析】(1)从上面看得到从左往右4列正方形的个数依次为1,3,1,1;从左面看得到从左往右3列正方形的个数依次为3,1,1;依此画出图形即可;(2)有顺序的计算上面,左右面,前后面涂上颜色的面积之和即可;(3)根据保持这个几何体的三视图不变,可知添加小正方体是后面一排左2个,右4个,依此即可求解.【解答】解:(1)如图所示:(2)1×1×(6+5×2+6×2)=28(cm2).故涂上颜色的面的面积是28cm2;(3)由分析可知,如果保持从上面、左面看到的图形不变,最多可以再添加6个小正方体.23.(8分)2018年3月27日是全国中小学生安全教育日,某校为加强学生的安全意识,组织了全校学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计,绘制了图中两幅不完整的统计图.(1)学校共抽取了300名学生,a=75,n=54.(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?【分析】(1)由A组人数及其百分比求得总人数,再用总人数乘以C组百分比可得a的值,先求得E 组的百分比,用360°乘以E组百分比可得n的值;(2)总人数乘以B组的百分比可得其人数,据此补全图形可得;(3)总人数乘以样本中A、B百分比之和.【解答】解:(1)∵本次调查的总人数为30÷10%=300(人),∴a=300×25%=75,D组所占百分比为×100%=30%,所以E组的百分比为1﹣10%﹣20%﹣25%﹣30%=15%,则n=360°×15%=54°;故答案为:300,75,54;(2)B组人数为300×20%=60(人),补全频数分布直方图如下:(3)2000×(10%+20%)=600,答:该校安全意识不强的学生约有600人.24.(10分)如图,将连续的奇数1,3,5,7…按图1中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图2所示.(1)计算:若十字框的中间数为17,则a+b+c+d=68.(2)发现:移动十字框,比较a+b+c+d与中间的数.猜想:十字框中a、b、c、d的和是中间的数的4倍;(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.【分析】(1)直接相加即得到答案;(2)根据(1)猜想a+b+c+d=4x;(3)用x表示a、b、c、d,相加后即等于4x;(4)得到方程5x=2020,求出的x不符合数表里数的特征,故不能等于2020.【解答】解:(1)5+15+19+29=68故答案为:68(2)答案为:4倍(3)a=x﹣12,b=x﹣2,c=x+2,d=x+12∴a+b+c+d=x﹣12+x﹣2+x+2+x+12=4x∴猜想正确.(4)M=a+b+c+d+x=4x+x=5x若M=5x=2020,解得:x=404但整个数表所有的数都为奇数,故不成立∴M的值不能等于2020.25.(10分)某校篮球社团决定购买运动装备,经了解,甲、乙两家运动产品经销店以同样的价格出售某种品牌的队服和篮球,已知每套队服比每个篮球多50元,两套队服与三个篮球的费用相等.经洽谈,甲店的优惠方案是:每购买十套队服,送一个篮球,乙店的优惠方案是:若购买队服超过80套,则购买篮球打八折.(1)求每套队服和每个篮球的价格是多少?(2)若篮球社团购买100套队服和m个篮球(m是大于10的整数),请用含m的式子分别表示出到甲经销店和乙经销店购买装备所花的费用;(3)在(2)的条件下,若m=60,通过计算判断到甲、乙哪家经销店购买更划算.【分析】(1)设每个篮球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个篮球的费用相等列出方程,解方程即可;(2)根据甲、乙两经销店的优惠方案即可求解;(3)把m=60代入(2)中所列的代数式,分别求得在两个经销店购买所需要的费用,然后通过比较得到结论:在甲经销店购买比较合算.【解答】解:(1)设每个篮球的价格为x元,则每套队服的价格为(x+50)元,根据题意得:2(x+50)=3x,解得:x=100,∴x+50=150.答:每套队服的价格为150元,每个篮球的价格为100元.(2)到甲经销店购买所花的费用为:150×100+100(m﹣)=100m+14000(元),到乙经销店购买所花的费用为:150×100+0.8×100•m=80m+15000(元).(3)在甲经销店购买比较合算,理由如下:将m=60代入,得100m+14000=100×60+14000=20000(元).80m+15000=80×100+15000=23000(元),因为23000>20000,所以在甲经销店购买比较合算.26.(10分)如图所示,已知直线AB、CD相交于O,∠AOC=60°,射线OP从OA位置起始,绕点O 逆时针旋转,终边OP与始边OA形成的角度为α.问题1:若OP逆时针旋转180°停止,则(1)α=30°时,OP平分∠AOC;(2)α=150°时,OP⊥OC;(3)α=40°或120°时,∠AOP=2∠POC;问题2:若OP逆时针旋转的速度为每秒8°,在OP匀速旋转的同时,直线CD也从如图的位置开始绕点O逆时针匀速旋转,旋转速度为每秒5°,当OP完成旋转一周时,CD也同时停止旋转,设旋转时间为t(t>0)秒.(1)旋转时间t为多少时,射线OP与OC重合,请写出求解过程.(2)观察旋转全过程,判断旋转时间t为多少时,射线OP平分∠AOC.请直接写出t的值,(注:∠AOC指大于0°且小于180°的角)【分析】问题(1)当OP平分∠AOC时,∠AOP=∠POC这个等量关系即可解得α(2)当OP⊥OC时,∠AOP=∠AOC+∠COP即可解得α(3)要分类讨论:①当α<60°时,由∠AOP=2∠POC得∠AOC=∠AOP+∠POC解得∠POC,即可求出α②当α>60°时,有∠AOP=2∠POC且∠AOC=60°可得∠AOP=∠AOC+∠POC=2∠POC解得:∠POC,即可得∠AOP也就是α的值.问题2:(1)根据射线OP与OC重合时,有,∠AOP=∠COP+60°即可解得,(2)射线OP平分∠AOC且∠AOC指大于0°且小于180°的角,所以t=60÷2÷8=3.75秒即可.【解答】解:问题1(1)∵∠AOC=60°且射线OP从OA位置起始,绕点O逆时针旋转当OP平分∠AOC时,α=30°故答案为30°(2)∵∠AOC=60°且射线OP从OA位置起始,绕点O逆时针旋转当OP⊥OC;α=60°+90°=150°故答案为:150°(3)①当α<60°时,∵∠AOP=2∠POC且∠AOC=60°∴∠AOC=∠AOP+∠POC=60°解得∠POC=20°所以α=∠AOP=2∠POC=40°②当α>60°时,∵∠AOP=2∠POC且∠AOC=60°∴∠AOP=∠AOC+∠POC=2∠POC解得:∠POC=60°∴∠AOP=2∠POC=120°综合①②α=40°或120°故答案为:40°或120°问题2(1)依题意列方程:8t=5t+60解得:t=20答:旋转时间t为20秒时,射线OP与OC重合(2)当射线OP平分∠AOC,且∠AOC指大于0°且小于180°的角时t=60÷2÷8=3.75秒答:旋转时间t为3.75秒时,射线OP平分∠AOC。

最新冀教版七年级数学下册期末考试模拟试题及答案解析-精品试卷

最新冀教版七年级数学下册期末考试模拟试题及答案解析-精品试卷

2018—2019学年冀教版七年级(下)期末检测数学试卷一、选择(每小题2分)1.(2分)若a>b,则下列不等式变形正确的是()A.a+5<b+5 B.C.﹣4a>﹣4b D.3a﹣2<3b﹣22.(2分)不等式组的解集是()A.x≤2 B.x<﹣1 C.x≥2 D.﹣1<x≤23.(2分)如图,平面上直线a、b分别过线段AB两端点(数据如图),则a、b相交所成的锐角是()A.20°B.30°C.80°D.100°4.(2分)若(x﹣5)(x+20)=x2+mx+n,则m、n的值分别为()A.m=﹣15,n=﹣100 B.m=25,n=﹣100 C.m=25,n=100 D.m=15,n=﹣1005.(2分)已知是方程2x﹣ay=3的一个解,那么a的值是()A. 1 B. 3 C.﹣3 D.﹣16.(2分)如果在△ABC中,∠A=60°+∠B+∠C,则∠A等于()A.30°B.60°C.120°D.140°7.(2分)下列运算中正确的是()A.a5+a5=2a5B.a3a2=a6C.a6÷a3=a2D.(a3)4=a78.(2分)如图,将△ABC沿射线BC方向移动,使点B移动到点C,得到△DCE,连接AE,若△ABC的面积为2,则△ACE的面积为()A. 2 B. 4 C.8 D.169.(2分)如图,AF是∠BAC的平分线,EF∥AC交AB于点E,若∠1=35°,则∠BAF的度数为()A.60°B.70°C.35°D.17.5°10.(2分)若a m=15,a n=5,则a m﹣n等于()A.15 B.10 C.75 D. 311.(2分)有若干张面积分别为a2、b2、ab的正方形和长方形纸片,小明从中抽取了1张面积为b2的正方形纸片,6张面积为ab的长方形纸片.若他想拼成一个大正方形,则还需要抽取面积为a2的正方形纸片()A.4张B.8张C.9张 D.10张12.(2分)已知正整数中a、b、c,c=7且a<b<c,则以a、b、c为三边长的三角形共有()A.4个B.5个C.6个 D.7个二、填空题(共6小题,每小题3分,满分18分)13.(3分)计算:20152﹣20142=.14.(3分)如图,有一个与地面成30°角的斜坡,现要在斜坡上竖一电线杆,当电线杆与地面垂直时,它与斜坡所成的角α=°.15.(3分)若x2+mx+16=0是完全平方式,则m=.16.(3分)将一副直角三角尺如图放置,已知AB∥DE,则∠AFC=度.17.(3分)如图,一张长为20cm,宽为5cm的长方形纸片ABCD,分别在边AB、CD上取点M,N,沿MN折叠纸片,BM与DN交于点K,得到△MNK,则△MNK的面积的最小值是cm2.18.(3分)如图,点O、A在数轴上表示的数分别是0,0.1,将线段OA分成100等份,其分点由左向右依次为M1,M2…M99,再将线段OM1分成100等份,其分点由左向右依次为N1,N2,…N99,则点N15所表示的数用科学记数法表示为.三、细心解答(每小题6分)19.(6分)解方程组:.20.(6分)已知x2﹣3x=1,求代数式(x﹣1)(3x+1)﹣(x+2)2﹣4的值.21.(6分)解不等式组,并写出不等式组的整数解.22.(6分)如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37°,求∠D的度数.四、实验与应用23.(8分)如图,已知△ABC中,AB=2,BC=4(1)画出△ABC的高AD和CE;(2)若AD=,求CE的长.24.(8分)定义新运算:对于任意实数,a、b,都有a⊕b=a (a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2(2﹣5)+1=2×﹣(﹣3)+1=﹣6+1=﹣5(1)求3⊕(﹣4)的值;(2)若4⊕x的值大于9,求x的取值范围.25.(9分)已知△ABC中,AE平分∠BAC(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=是否成立,并说明理由.26.(9分)在实施防污减排战略之际,我市计划对A、B两类化工厂的排污设备进行改造,经预算,改造一个A类工厂和两个B类工厂共需320万元,改造两个A类工厂和一个B类化工厂黄需220万元.(1)改造一个A类化工厂和一个B类化工厂各需多少万元;(2)我市计划改造A、B两类化工厂共10个,改造资金一部分由工厂承担,一部分由市政府补贴,每个A类化工厂可投入自身改造资金20万元,每个B类化工厂可投入自身改造资金30万元,若市财政补贴的资金不超过600万元,那么至少改造几个A类化工厂?]参考答案与试题解析一、选择(每小题2分)1.(2分)若a>b,则下列不等式变形正确的是()A.a+5<b+5 B.C.﹣4a>﹣4b D.3a﹣2<3b﹣2考点:不等式的性质.专题:计算题.分析:利用不等式的基本性质变形得到结果,即可做出判断.解答:解:由a>b,变形得:>,故选B点评:此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.2.(2分)不等式组的解集是()A.x≤2 B.x<﹣1 C.x≥2 D.﹣1<x≤2考点:解一元一次不等式组.分析:先根据不等式的解法解各不等式,然后求出其公共解集即可.解答:解:,解①得:x≤2,解②得,x<﹣1,∴不等式的解集为:x<﹣1.故选B.点评:本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2分)如图,平面上直线a、b分别过线段AB两端点(数据如图),则a、b相交所成的锐角是()A.20°B.30°C.80°D.100°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:a,b相交所成的锐角=100°﹣80°=20°.故选:A点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.4.(2分)若(x﹣5)(x+20)=x2+mx+n,则m、n的值分别为()A.m=﹣15,n=﹣100 B.m=25,n=﹣100 C.m=25,n=100 D.m=15,n=﹣100考点:多项式乘多项式.专题:计算题.分析:已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出m与n的值.解答:解:∵(x﹣5)(x+20)=x2+15x﹣100=x2+mx+n,∴m=15,n=﹣100,故选D点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.5.(2分)已知是方程2x﹣ay=3的一个解,那么a的值是()A. 1 B. 3 C.﹣3 D.﹣1考点:二元一次方程的解.专题:计算题.分析:把方程的解代入方程,把关于x和y的方程转化为关于a的方程,然后解方程即可.解答:解:∵是方程2x﹣ay=3的一个解,∴满足方程2x﹣ay=3,∴2×1﹣(﹣1)a=3,即2+a=3,解得a=1.故选A.点评:本题主要考查了二元一次方程的解.解题关键是把方程的解代入原方程,使原方程转化为以系数a为未知数的方程.6.(2分)如果在△ABC中,∠A=60°+∠B+∠C,则∠A等于()A.30°B.60°C.120°D.140°考点:三角形内角和定理.分析:首先根据三角形内角和定理可得∠A和∠B+∠C的关系,再代入已知条件即可求出∠A的度数.解答:解:∵△ABC中,∠A+∠B+∠C=180°,∴∠B+∠C=180°﹣∠A,∵∠A=60°+∠B+∠C,∴∠A=240°﹣∠A,∴∠A=120°,故选C.点评:本题考查了三角形内角和定理:三角形内角和是180°,属于基础性提报,比较简单.7.(2分)下列运算中正确的是()A.a5+a5=2a5B.a3a2=a6C.a6÷a3=a2D.(a3)4=a7考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解答:解:A、a5+a5=2a5,故A选项正确;B、a3a2=a5,故B选项错误;C、a6÷a3=a3,故C选项正确;D、(a3)4=a12,故D选项错误.故选:A.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心.8.(2分)如图,将△ABC沿射线BC方向移动,使点B移动到点C,得到△DCE,连接AE,若△ABC的面积为2,则△ACE的面积为()A. 2 B. 4 C.8 D.16考点:平移的性质.分析:首先根据平移的性质,可得BC=CE;然后根据两个三角形的高相等时,面积和底成正比,可得△ACE的面积等于△ABC的面积,据此解答即可.解答:解:∵将△ABC沿射线BC方向移动,使点B移动到点C,得到△DCE,∴BC=CE,∴△ACE的面积等于△ABC的面积,又∵△ABC的面积为2,∴△ACE的面积为2.故选:A.点评:(1)此题主要考查了平移的性质和应用,要熟练掌握,解答此题的关键是要明确:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.(2)此题还考查了三角形的面积的求法,要熟练掌握,解答此题的关键是要明确:两个三角形的高相等时,面积和底成正比.9.(2分)如图,AF是∠BAC的平分线,EF∥AC交AB于点E,若∠1=35°,则∠BAF的度数为()A.60°B.70°C.35°D.17.5°考点:平行线的性质.分析:根据两直线平行,同位角相等可得∠FAC=∠1,再根据角平分线的定义可得∠BAF=∠FAC.解答:解:∵EF∥AC,∴∠FAC=∠1=35°,∵AF是∠BAC的平分线,∴∠BAF=∠FAC=35°,故选C点评:本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.10.(2分)若a m=15,a n=5,则a m﹣n等于()A.15 B.10 C.75 D. 3考点:同底数幂的除法.分析:根据同底数幂的除法,底数不变指数相减计算.解答:解:a m﹣n=a m÷a n=15÷5=3,故选D点评:本题考查同底数幂的除法,一定要记准法则才能做题.11.(2分)有若干张面积分别为a2、b2、ab的正方形和长方形纸片,小明从中抽取了1张面积为b2的正方形纸片,6张面积为ab的长方形纸片.若他想拼成一个大正方形,则还需要抽取面积为a2的正方形纸片()A.4张B.8张C.9张 D.10张考点:完全平方公式的几何背景.分析:由题意知拼成一个大正方形长为3a+b,宽也为3a+b,面积应该等于所有小卡片的面积.解答:解:∵要拼成正方形,∴b2+4ab+ka2是完全平方式,∵(b+3a)(b+3a)=b2+6ab+9a2,∴还需面积为a2的正方形纸片9张.故选:C.点评:主要考查了分解因式与几何图形之间的联系,从几何的图形来解释分解因式的意义.熟悉完全平方公式是解题的关键.12.(2分)已知正整数中a、b、c,c=7且a<b<c,则以a、b、c为三边长的三角形共有()A.4个B.5个C.6个 D.7个考点:三角形三边关系.分析:根据已知条件,得a的可能值是2,3,4,5,再结合三角形的三边关系,对应求得a的值即可.解答:解:∵三角形的三边a、b、c的长都是整数,且a<b <c,c最大为7,∴a=2,b=6,c=7;a=3,b=6,c=7;a=4,b=6,c=7;a=5,b=6,c=7;a=3,b=5,c=7;a=4,b=5,c=7;故存在以a、b、c为三边长的三角形的个数为6个.故选C.点评:考查了三角形三边关系,此题要注意根据“三角形的任意两边之和大于第三边,任意两边之差小于第三边”进行分析计算.二、填空题(共6小题,每小题3分,满分18分)13.(3分)计算:20152﹣20142=4029.考点:因式分解-运用公式法.分析:直接利用平方差公式分解因式得出即可.解答:解:20152﹣20142==4029.故答案为:4029.点评:此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.14.(3分)如图,有一个与地面成30°角的斜坡,现要在斜坡上竖一电线杆,当电线杆与地面垂直时,它与斜坡所成的角α=60°.考点:直角三角形的性质.分析:延长电线杆与地面相交构成直角三角形,然后根据直角三角形两锐角互余求出∠1,再根据对顶角相等解答.解答:解:如图,延长电线杆与地面相交,∵电线杆与地面垂直,∴∠1=90°﹣30°=60°,由对顶角相等,∠α=∠1=60°.故答案为:60.点评:本题考查了直角三角形两锐角互余的性质,对顶角相等的性质,熟记性质是解题的关键,难点在于作辅助线构造出直角三角形.15.(3分)若x2+mx+16=0是完全平方式,则m=±8.考点:完全平方式.专题:计算题.分析:利用完全平方公式的结构特征判断即可得到m的值.解答:解:∵x2+mx+16=0是完全平方式,∴m=±8.故答案为:±8.点评:此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.(3分)将一副直角三角尺如图放置,已知AB∥DE,则∠AFC=75度.考点:三角形的外角性质;平行线的性质.专题:计算题.分析:根据平行线的性质得到∠B=∠BCD=45°,根据三角形的外角性质得出∠AFC=∠D+∠BCD,代入即可.解答:解:∵AB∥DE,∴∠B=∠BCD=45°,∵∠D=30°,∴∠AFC=∠D+∠BCD=75°,故答案为:75°点评:本题主要考查对平行线的性质,三角形的外角性质等知识点的理解和掌握,理解三角形的外角性质得出∠AFC=∠D+∠BCD是解此题的关键.17.(3分)如图,一张长为20cm,宽为5cm的长方形纸片ABCD,分别在边AB、CD上取点M,N,沿MN折叠纸片,BM与DN交于点K,得到△MNK,则△MNK的面积的最小值是12.5cm2.考点:翻折变换(折叠问题).分析:由折叠的性质和矩形的性质得出∠KMN=∠KNM,证出KM=KN,当KM=KN=BC=5cm时,△MNK的面积最小,即可得出结果.解答:解:由折叠的性质得:∠1=∠KMN,∵四边形ABCD是矩形,∴AD=BC=5cm,AB∥DC,∴∠KNM=∠1,∴∠KMN=∠KNM,∴KM=KN,∴当KM=KN=BC=5cm时,△MNK的面积最小,△MNK的最小值=12×5×5=12.5(cm2);故答案为:12.5.点评:本题考查了矩形的性质、翻折变换的性质、等腰三角形的判定、最小值问题;熟练掌握翻折变换和矩形的性质,并能进行推理计算是解决问题的关键.18.(3分)如图,点O、A在数轴上表示的数分别是0,0.1,将线段OA分成100等份,其分点由左向右依次为M1,M2…M99,再将线段OM1分成100等份,其分点由左向右依次为N1,N2,…N99,则点N15所表示的数用科学记数法表示为1.5×10﹣4.考点:科学记数法—表示较小的数;规律型:图形的变化类.分析:首先N15表示的数,再用科学记数法表示,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:∵OM1=OA×=0.1×=0.001,ON1=OM1×=0.00001,∴点N15所表示的数为:0.00001×15=0.00015,∴0.00015=1.5×10﹣4,故答案为:1.5×10﹣4.点评:本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.三、细心解答(每小题6分)19.(6分)解方程组:.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,①+②得:7x=14,即x=2,把x=2代入①得:y=2,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(6分)已知x2﹣3x=1,求代数式(x﹣1)(3x+1)﹣(x+2)2﹣4的值.考点:整式的混合运算—化简求值.分析:首先利用整式的乘法和完全平方公式计算,化简后,再把x2﹣3x=1整体代入求得数值即可.解答:解:原式=3x2﹣2x﹣1﹣(x2+4x+4)﹣4=3x2﹣2x﹣1﹣x2﹣4x﹣4﹣4=2x2﹣6x﹣9.∵x2﹣3x=1.∴原式=2(x2﹣3x)﹣9=2﹣9=﹣7.点评:此题考查整式的化简求值,注意利用乘法公式先计算合并,再代入求得数值.21.(6分)解不等式组,并写出不等式组的整数解.考点:解一元一次不等式组;一元一次不等式组的整数解.分析:先求出两个不等式的解集,再求其公共解.解答:解:由①得:x≤3,由②得:x>﹣1,)∴不等式组的解集为:﹣1<x≤3;∴不等式组的整数解:0,1,2,3.点评:本题主要考查不等式组的解法,及根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.22.(6分)如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37°,求∠D的度数.考点:平行线的性质;垂线.专题:计算题.分析:根据AB∥CD,可知∠ECD=∠A,由DE⊥AE可知∠D与∠ECD互余,从而求出∠D的值.解答:解:∵AB∥CD,∠A=37°,∴∠ECD=∠A=37°.∵DE⊥AE,∴∠D=90°﹣∠ECD=90°﹣37°=53°.点评:本题考查的是平行线及余角的性质,比较简单.四、实验与应用23.(8分)如图,已知△ABC中,AB=2,BC=4(1)画出△ABC的高AD和CE;(2)若AD=,求CE的长.考点:作图—基本作图.分析:(1)利用钝角三角形边上的高线作法,延长各边作出即可;(2)利用三角形的面积公式可得×AD×BC=AB×CE,代入数据可得答案.解答:解:(1)如图:(2)∵S△ABC=×AD×BC=AB×CE,∴××4=×2×CE,∴CE=3.点评:此题主要考查了基本作图以及三角形的面积,关键是掌握三角形的面积公式.24.(8分)定义新运算:对于任意实数,a、b,都有a⊕b=a (a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2(2﹣5)+1=2×﹣(﹣3)+1=﹣6+1=﹣5(1)求3⊕(﹣4)的值;(2)若4⊕x的值大于9,求x的取值范围.考点:解一元一次不等式;有理数的混合运算.专题:新定义.分析:(1)按照定义新运算a⊕b=a(a﹣b)+1,求解即可;(2)先按照定义新运算a⊕b=a(a﹣b)+1,得出4⊕x,再令其小于9,得到一元一次不等式,解不等式求出x的取值范围即可.解答:解:(1)3⊕(﹣4)=3(3+4)+1=22;(2)4⊕x=4(4﹣x)+1=17﹣4x,则17﹣4x>9,解得:x<2.点评:本题考查了有理数的混合运算及一元一次不等式的解法,属于基础题,理解新定义法则是解题的关键.25.(9分)已知△ABC中,AE平分∠BAC(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=是否成立,并说明理由.考点:三角形内角和定理;三角形的外角性质.分析:(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.解答:证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==72°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.点评:本题考查了三角形的内角以及角平分线的性质,是基础题,准确识别图形是解题的关键.26.(9分)在实施防污减排战略之际,我市计划对A、B两类化工厂的排污设备进行改造,经预算,改造一个A类工厂和两个B类工厂共需320万元,改造两个A类工厂和一个B类化工厂黄需220万元.(1)改造一个A类化工厂和一个B类化工厂各需多少万元;(2)我市计划改造A、B两类化工厂共10个,改造资金一部分由工厂承担,一部分由市政府补贴,每个A类化工厂可投入自身改造资金20万元,每个B类化工厂可投入自身改造资金30万元,若市财政补贴的资金不超过600万元,那么至少改造几个A类化工厂?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设改造一个A类化工厂需资金x万元,改造一个B类化工厂需资金y万元,根据“改造一个A类工厂和两个B 类工厂共需320万元,改造两个A类工厂和一个B类化工厂黄需220万元.”列出方程组解答即可;(2)设可改造a个A类化工厂,则B类化工厂有(10﹣a)个可改造,根据“市财政补贴的资金不超过600万元,”列出不等式解答即可.解答:解:(1)设改造一个A类化工厂需资金x万元,改造一个B类化工厂需资金y万元,根据题意得:,解得:.答:改造一个A类化工厂需资金40万元,改造一个B类化工厂需资金140万元.(2)设可改造a个A类化工厂,则B类化工厂有(10﹣a)个可改造.根据题意得:a(40﹣20)+(10﹣a)(140﹣30)≤600,解得:a≥5.答:至少改造6个A类化工厂.点评:本题主要考查二元一次方程组即一元一次不等式(组)的应用,解题的关键是弄清题意找出题中的等量关系或不等关系.。

河北省保定市竞秀区乐凯中学2023-2024学年八年级上学期月考数学试题

河北省保定市竞秀区乐凯中学2023-2024学年八年级上学期月考数学试题

河北省保定市竞秀区乐凯中学2023-2024学年八年级上学期
月考数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
A.8B.9 10.下列说法中正确的是(A.81的平方根是9
A.输入值x为16时,输出y值为4
B.输入任意整数,都能输出一个无理数C.输出值y为3时,输入值x为9
二、填空题
三、解答题
的形状,并说明理由;
(1)判断ACD
(2)求图中阴影部分土地的面积.
22.某地为发展渔业,要挖一个长方形鱼塘.
则鱼塘的宽大约是多少米?(结果精确到
23.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙(1)此时梯子顶端离地面多少米?
(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?
(1)点H在数轴上表示的数是_______,点A
值为_______.
参考答案:
【点睛】本题为动点问题,考查了实数与数轴上的点的对应关系及分类讨论思想,。

河北省保定市竞秀区2023-2024学年七年级下学期期末数学试题(含答案)

河北省保定市竞秀区2023-2024学年七年级下学期期末数学试题(含答案)

2023—2024学年度第二学期期末学业质量监测七年级数学试卷注意事项:1.本试卷共8页,总分120分,考试时间120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡相应位置上.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.一、选择题(本大题共12个小题,每题3分,共36分.在每小题给出的四个选项中,只有一个选项符合题意)1.如图,点D 在直线上,,则图中的和的关系是()A .互为补角B .互为余角C .同位角D .对顶角2.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A .B .C .D .3.如图,为了估计一池塘岸边两点A ,B 之间的距离,小颖同学在池塘一侧选取了一点P ,测得,,那么点A 与点B 之间的距离不可能是( )A .B .C .D .4.计算的值为( )A .B .C .1D .25.事件①:射击运动员射击一次,命中靶心;事件②:随意翻到一本书的某页,这页的页码是奇数.则下列表述正确的是()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件AB CD ED ⊥1∠2∠100m PA =90m PB =90m 100m 150m 200m202420250.5(2)⨯-2-0.5-D .事件①和②都是必然事件6.如图,平分,,垂足为A ,,Q 是射线上的一个动点,则线段的最小值是( )A .10B .8C .6D .47.红外线是太阳光线中众多不可见光线中的一种,且应用广泛,某红外线遥控器发出的红外线波长约为,则下列说法正确的是( )A .是8位小数B .C .D .是7位小数8.如图,是一个可折叠衣架,是地平线,当,时,就可以确定点N 、P 、M 在同一直线上,这样判定的依据是()A .内错角相等,两直线平行B .过直线外一点有且只有一条直线与这条直线平行C .两点确定一条直线D .平行于同一直线的两直线平行9.在一次数学实践活动课上,老师指导学生进行折纸活动,下图是小明、小凡、小颖三位同学的折纸示意图(C 的对应点是),分析他们折纸情况说法正确的是()A .小明折出的是中的角平分线B .小凡折出的是边上的中线C .小颖折出的是中边上的高线D .上述说法都错误10.已知线段a ,b ,c 求作:,使,,.下面的作图顺序正确的是()OP MON ∠PA ON ⊥6PA =OM PQ 79.410m -⨯79.410-⨯779.410 1.4810--⨯-=⨯769.410109.410--⨯+=⨯79.410-⨯AB //PM AB //PN AB C 'ABC △BAC ∠BC ABC △BC ABC △BC a =AC b =AB c =①以点A 为圆心,以b 为半径画弧,以点B 为圆心,以a 为半径画弧,两弧交于C 点;②作线段等于c ;③连接,,则就是所求作图形.A .①②③B .③②①C .②①③D .②③①11.如图,已知,直线l 与直线a ,b 分别交于点A ,B ,分别以点A ,B为圆心,大于的长为半径画弧,两弧分别相交于点M ,N ,作直线,交直线b 于点C ,连接,若,则的度数是()A .B .C .D .12.如图,中,,D 是线段上一点(不与点B ,C 重合),连接,点E ,F 分别在线段,的延长线上,且.则以下结论:①;②;③;④D 从B 运动到C 的过程中,周长不变.正确的是()A .①②④B .①②③C .②③④D .①③④二、填空题(本大题共4个小题;每题3分,共12分.把答案写在题中横线上)13.已知,,则____________.14.如图,点P 是外的一点,点M ,N 分别是两边上的点,点P 关于的对称点Q 恰好落在线段上,点P 关于的对称点R 落在的延长线上,若,,,则线段的长为____________.15.不透明的盒子中装有红、白两色的小球共n (n 为正整数)个,这些球除颜色外无其他差别,随机摸出一个小球,记录颜色后放回并摇匀,不断重复这一过程.如图显示了用计算机模拟实验的结果.AB AC BC ABC △//a b 12AB MN AC 138∠=︒ACB∠76︒100︒102︒104︒ABC △AB AC BC ==BC AD AB AC DE DF AD ==60E BDE ∠+∠=︒60E CFD ∠+∠=︒EBD DCF △≌△BED △45x =42y=4x y+=AOB ∠AOB ∠OA MN OB MN 2.5PM = 3.5PN =3MN =QR若盒子中共装60个小球,可以根据本次实验结果,估算出盒子中红球有____________个.16.如图,长方形纸片中,,点E ,F 在边上,点G ,H 在边上,分别沿,折叠,使点D 和点A 都落在点M 处,若,则的度数是____________度.三、解答题(本大题共8个小题,共72分,解答应写出必要的文字说明,证明过程或演算步骤.)17.计算:(本小题满分8分,(1)题4分,(2)题4分)(1).(2)利用整式乘法公式计算:.18.(本小题满分6分)先化简,再求值:,其中.19.(本小题满分7分)小明和妈妈去超市买凳子,小明发现售货员把凳子按如图方式叠放在一起时,每叠放一个凳子,增加的高度是一样的.下表是叠放凳子的总高度h 与凳子数量n 的几组对应值.凳子的数量n (个)1234…叠放凳子的总高度h (厘米)46525864…根据以上信息,回答下列问题:(1)按照表格所示的规律,当凳子的数量为6时,叠放的凳子总高度为____________厘米;(2)直接写出叠放的凳子总高度h 与凳子的数量n 之间的关系式:____________;(3)按上表所示的规律,若将该种凳子按如图方式叠放在层高为92厘米的超市货架上,能叠放8个吗?ABCD //AD BC AD BC EG FH 12115∠+∠=︒EMF ∠1021(2024)(2)3π-⎛⎫-+--- ⎪⎝⎭2202320222024-⨯432(32)()()3x x x x x x -÷---⋅12x =-请说明理由.20.(本小题满分8分)如图,墙地面b ,嘉嘉想知道这堵墙上点A 到地面的高度,但又没有直接测量的工具,于是设计了下面的方案.第一步:找一根长度大于的直杆,使直杆斜靠在墙上,且顶端与点A 重合,记下直杆与地面的夹角;第二步:使直杆顶端竖直缓慢下滑,直到,标记此时直杆的底端点D ;第三步:测量的长度即为点A 到地面的高度.(1)请说明为什么的长度即为点A 到地面的高度;(2)若测得,,求梯子下滑的高度.21.(本小题满分9分)小明和小颖都想参加学校杜团组织的暑假实践活动,但只有一个名额,小明提议用如下的办法决定谁去参加活动:将一个转盘9等分,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小明去参加活动;转到3的倍数,小颖去参加活动;转到其它号码则重新转动转盘.(1)转盘转到号码7的概率是____________.(2)转盘转到2的倍数的概率是多少?(3)你认为这个游戏对小明和小颖公平吗?请说明理由.22.(本小题满分11分)题目:如图,中,F 为边上一点,点D 为延长线上一点.(1)在图中按要求完成尺规作图:①在右侧作,交于点G ;②作的角平分线.(不写作图步骤,保留作图痕迹,作图要用2B 铅笔,如果笔迹太细、太轻,可以描重一些.)(2)在(1)的条件下,若.①请说明.a ⊥AN NA ABN ∠NCD ABN ∠=∠ND AN ND AN 1.2m BN = 2.5m DN =AC ABC △AB BC BF BFG A ∠=∠BC ACD ∠CE 180AFG ACE ∠+∠=︒//AB CE②与的关系是____________.下面是嘉嘉的解答过程,请在(1)中完成尺规作图,并补全(2)中的说理依据:解:(1)(2)①因为,根据________________________,得到;因为,根据________________________,得到;因为已知,所以可以得到;进而根据________________________,得到.②与的关系是____________.23.(本小题满分11分)如图1,在长方形中,,E 为边中点.动点P 从点B 开始,以的速度沿路线运动,到点A 停止.图2是点P 出发t 秒后,的面积随时间变化的图象.根据图中提供的信息,回答下列问题:(1)____________;点M 表示的实际意义是________________________;(2)当点P 在上运动时,求的面积为时t 的值;(3)如图3,当点P 从点B 出发时,动点Q 同时以的速度从C 点出发,沿边运动,当点P 运动到点C 时,P 、Q 两点停止运动.当x 为何值时,与全等,请直接写出x 的值.24.(本小题满分12分)活动探究:数学活动课上,王老师准备了若干个图1所示的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a的长方形.AFG ∠B ∠BFG A ∠=∠//FG AC //FG AC 180AFG A ∠+∠=︒180AFG ACE ∠+∠=︒A ACE ∠=∠//AB CE AFG ∠B ∠ABCD 6cm AB =AB 3cm/s B C D A →→→BPE △2(cm )S (s)t BC =cm DA BPE △29cm cm/s x CD PBE △PCQ △(1)若小明想用图1中的三种纸片拼出一个面积为的大长方形,则需要C 种纸片____________张;(2)小兰用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成了图2所示的大正方形,在用两种不同的方法求此大正方形的面积时,小兰发现了代数式,,之间的等量关系式,这个关系式是:________________________;实践应用:(3)如图3,学校在长方形空地里铺了地砖,地砖有三种,一种是5个相同的黑色小长方形,另两种是两个白色大正方形和两个白色小正方形.已知长方形空地的周长为8.4米,每个黑色小长方形地砖的面积均为0.36平方米.设每个黑色小长方形地砖的长为m 米,宽为n 米.①____________;②求空地中白色地砖的总面积.2023-2024学年度第二学期期末学业质量监测七年级数学试卷参考答案及评分标准(仅供参考,其他解法,参照给分)一、选择题(本大题共12个小题,每题3分,共36分。

2024届河北省保定市竞秀区乐凯中学八年级数学第二学期期末经典模拟试题含解析

2024届河北省保定市竞秀区乐凯中学八年级数学第二学期期末经典模拟试题含解析

2024届河北省保定市竞秀区乐凯中学八年级数学第二学期期末经典模拟试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每小题3分,共30分)1.甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数都是7,方差,,则射击成绩较稳定的是( ) A .甲B .乙C .一样D .不能确定2.已知()32213m ⎛⎫=-⨯- ⎪ ⎪⎝⎭,则( )A .65m -<<-B .56m <<C .76m -<<-D .67m <<3.一个多边形的内角和等于1260°,则从此多边形一个顶点引出的对角线有( ) A .4条 B .5条 C .6条 D .7条4.如图,购买一种苹果,所付款金额y (元)与购买量x (千克)之间的函数图象由线段OA 和射线AB 组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省( )元.A .4B .5C .6D .75.如图所示,E 、F 分别是□ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =2cm 2,S △BQC =4cm 2,则阴影部分的面积为( )A .6 cm 2B .8 cm 2C .10 cm 2D .12 cm 26.若关于x 的一元二次方程kx 2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >1B .k <1C .k >1且k≠0D .k <1且k≠07.在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是( )A .84分B .87.6分C .88分D .88.5分8.下列运算错误的是 A .532-=B .632÷=C .6332⨯=D .2333-=9.当52a a +-有意义时,a 的取值范围是( ) A .a≥2B .a >2C .a≠2D .a≠-210.若23a +在实数范围内有意义,则a 的取值范围是( ) A .a≥32-B .a≤32-C .a>32-D .a<32-二、填空题(每小题3分,共24分) 11.计算tan30︒的倒数是_____.12.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y x =的图象上,从左向右第3个正方形中的一个顶点A 的坐标为()84,,阴影三角形部分的面积从左向右依次记为1S 、2S 、3S 、⋯、n S ,则n S 的值为______.(用含n 的代数式表示,n 为正整数)13.已知x +y =0.2,2x +3y =2.2,则x 2+4xy +4y 2=_____.14.如图,在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,DE 是AB 边的垂直平分线,垂足为D ,交边BC 于点E ,连接AE ,则△ACE 的周长为________.15.当1≤x≤5()215_____________x x --=16.如图,平行四边形ABCD 的对角线相交于点O ,且OM AC ⊥,平行四边形ABCD 的周长为8,则CDM ∆的周长为______.17.如图,正方形ABCD 的边长为4,P 为对角线AC 上一点,且CP = 32,PE ⊥PB 交CD 于点E ,则PE =____________.18.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________. 三、解答题(共66分)19.(10分)如图,在菱形ABCD 中,AB=4cm ,∠BAD=60°.动点E 、F 分别从点B 、D 同时出发,以1cm/s 的速度向点A 、C 运动,连接AF 、CE ,取AF 、CE 的中点G 、H ,连接GE 、FH .设运动的时间为ts (0<t <4). (1)求证:AF ∥CE ;(2)当t 为何值时,四边形EHFG 为菱形;(3)试探究:是否存在某个时刻t ,使四边形EHFG 为矩形,若存在,求出t 的值,若不存在,请说明理由.20.(6分)解方程:1x x +1x=1. 21.(6分)某厂为支援灾区人民,要在规定时间内加工1500顶帐篷.在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,结果提前4天完成任务,求该厂原来每天加工多少顶帐篷?22.(8分)为了从甲、乙两名选手中选拔出一个人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表. 甲、乙射击成绩统计表 平均数(环) 中位数(环) 方差 命中10环的次数 甲7乙 1甲、乙射击成绩折线统计图(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么? 23.(8分)如图,在ABCD 中,E 是AD 的中点,BA ,CE 的延长线相交于点F ,(1)求证:AEF DEC ∆≅∆;(2)若90FCB ∠=︒,30D ∠=︒且3CD cm =,求BC 的长.24.(8分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示 (1)本次共抽查学生____人,并将条形图补充完整; (2)捐款金额的众数是_____,平均数是_____;(3)在八年级700名学生中,捐款20元及以上(含20元)的学生估计有多少人?25.(10分)八年级(1)班张山同学利用所学函数知识,对函数|2|1y x x =+--进行了如下研究:x … 5-4-3-2-1-0 1 2 3 … y…753m1n111…描点并连线(如下图)(1)自变量x 的取值范围是________; (2)表格中:m =________,n =________;(3)在给出的坐标系中画出函数|2|1y x x =+--的图象;(4)一次函数3y x =-+的图象与函数|2|1y x x =+--的图象交点的坐标为_______. 26.(10分)23x -+x =1.参考答案一、选择题(每小题3分,共30分) 1、B 【解题分析】根据方差的定义,方差越小数据越稳定. 【题目详解】解:∵两人命中环数的平均数都是7,方差S 甲2=3,S 乙2=1.8, ∴S 甲2>S 乙2,∴射击成绩较稳定的是乙;【题目点拨】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 2、B 【解题分析】先利用二次式的乘法法则与二次根式的性质求出 ,再利用夹值法即可求出m 的范围. 【题目详解】解:(m ⎛=⨯- ⎝⎭∵25<28<36, ∴56m <<. 故选:B. 【题目点拨】本题考查了二次根式的运算,二次根式的性质,估算无理数的大小,将m 是解题的键. 3、C 【解题分析】这个多边形的内角和是1260°.n 边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数. 【题目详解】 根据题意,得 (n-2)•180=1260, 解得n=9,∴从此多边形一个顶点引出的对角线有9-3=6条, 故选C . 【题目点拨】本题考查了多边形的内角和定理:n 边形的内角和为(n-2)×180°. 4、C 【解题分析】观察函数图象找出点的坐标,利用待定系数法求出线段OA 和设AB 的函数关系式,再分别求出当x=1和x=5时,y 值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数. 【题目详解】解:设y 关于x 的函数关系式为y=kx+b ,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b 中,020b k b =⎧⎨+=⎩,解得:100k b =⎧⎨=⎩, ∴y=10x(0≤x≤2);当x>2时,将(2,20),(4,36)代入y=kx+b 中,220436k b k b +=⎧⎨+=⎩,解得:84k b =⎧⎨=⎩, ∴y=8x+4(x≥2). 当x=1时,y=10x=10, 当x=5时,y=44, 10×5-44=6(元), 故选C . 【题目点拨】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA 和设AB 的函数关系式是解题的关键. 5、A 【解题分析】连接E 、F 两点,由三角形的面积公式我们可以推出S △EFC =S △BCF ,S △EFD =S △ADF ,所以S △EFG =S △BCQ ,S △EFP =S △ADP ,因此可以推出阴影部分的面积就是S △APD +S △BQC . 【题目详解】 连接E 、F 两点,∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∴△EFC 的FC 边上的高与△BCF 的FC 边上的高相等,∴S△EFC=S△BCF,∴S△EFQ=S△BCQ,同理:S△EFD=S△ADF,∴S△EFP=S△ADP,∵S△APD=1cm1,S△BQC=4cm1,∴S四边形EPFQ=6cm1,故阴影部分的面积为6cm1.故选A.【题目点拨】本题主要考查平行四边形的性质,三角形的面积,解题的关键在于求出各三角形之间的面积关系.6、D【解题分析】根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.【题目详解】∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范围为k<1且k≠1.故选D.【题目点拨】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2﹣4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.7、B【解题分析】根据加权平均数的计算方法进行计算即可得出答案.故选B.【题目详解】解:84488392387.6433⨯+⨯+⨯=++(分).【题目点拨】本题考查了加权平均数.理解“权”的含义是解题的关键.8、A【解题分析】根据二次根式的加减法、乘法、除法逐项进行计算即可得.【题目详解】A.B. =,正确,不符合题意;C. =,正确,不符合题意;D. =,正确,不符合题意.故选A.【题目点拨】本题考查了二次根式的运算,熟练掌握二次根式的乘除法、加减法的运算法则是解题的关键.9、B【解题分析】根据二次根式及分式有意义的条件即可解答.【题目详解】有意义,∴a-2>0,∴a>2.【题目点拨】本题考查了二次根式及分式有意义的条件,熟知二次根式及分式有意义的条件是解决问题的关键.10、A【解题分析】直接利用二次根式有意义则2a+3≥0,进而得出答案.【题目详解】在实数范围内有意义,则2a+3≥0,解得:3a2≥-.故选:A.【题目点拨】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.二、填空题(每小题3分,共24分)11【解题分析】求出tan30°,根据倒数的概念计算即可.【题目详解】tan30︒=,=则tan30︒,【题目点拨】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.12、452n-【解题分析】由题意可知S n是第2n个正方形和第(2n-1)个正方形之间的阴影部分,先由已知条件分别求出图中第1个、第2个、第3个和第4个正方形的边长,并由此计算出S1、S2,并分析得到S n与n间的关系,这样即可把S n给表达出来了. 【题目详解】∵函数y=x与x轴的夹角为45°,∴直线y=x与正方形的边围成的三角形是等腰直角三角形,∵A(8,4),∴第四个正方形的边长为8,第三个正方形的边长为4,第二个正方形的边长为2,第一个正方形的边长为1,…,第n个正方形的边长为12n-,2n-,第(n-1)个正方形的边长为2由图可知,S 1=111111(12)2(12)22222⨯⨯+⨯+⨯-⨯+⨯=, S 2=11144(48)8(48)88222⨯⨯+⨯+⨯-⨯+⨯=, …,由此可知S n =第(2n-1)个正方形面积的一半,∵第(2n-1)个正方形的边长为222n -,∴Sn=452224445112(2)2222n n n n ----=⨯=⨯=. 故答案为:452n -.【题目点拨】通过观察、计算、分析得到:“(1)第n 个正方形的边长为12n -;(2)S n =第(2n-1)个正方形面积的一半.”是正确解答本题的关键.13、4【解题分析】因为x 2+4xy +4y 2=(x+2y)²,只要求出x+2y 即可,因为2x +3y =2.2减去x +y =0.2,刚好得到x+2y=2,所以结果为4,当然后你也可以用解二元一次方程组求出x ,y 然后再求代数x 2+4xy +4y 2的值【题目详解】解:用方程+3y =2.2减去方程x +y =0.2,得x+2y=2,故x 2+4xy +4y 2=(x+2y)²=4【题目点拨】本题利用了整式的乘法解决的,还可以用解一元二次方程的方法求解。

保定市2018-2019学年度七年级下期末调研考试数学试卷(有答案)【精品】.doc

保定市2018-2019学年度七年级下期末调研考试数学试卷(有答案)【精品】.doc

2018-2019学年度第二学期期末调研考试七年级数学试卷注意:本试卷共8页,三道大题,26个小题。

总分120分。

时间120分钟。

一、 选择题(本大题有16个小题,共42分。

1~10小题,各3分;11~16小题,各2分。

在每题给出的四个选项中,只有一项符合题目要求。

请将正确选项的代号填写在下面的表格中)A B .36C .0D .﹣1020、 0.101001中,无理数有( )个 A .1 B .2 C .3 D .43.如右图,给出了过直线外一点作已知直线的平行线的方法,其依据是( ) A. 同旁内角互补,两直线平行 B. 内错角相等,两直线平行 C. 同位角相等,两直线平行 D. 两直线平行,同位角相等 4.如右图,数轴上点P 表示的数可能是( ) A B C D.5.下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④ 19的平方根是,其中正确的有( ) A. 个 B. 个 C. 个 D. 个 6.若a <b ,则下列结论中,不成立...的是( ) -1 0 1 2 43 PA. a +3<b +3B. a -2>b -2C. -2a >-2b D . 12a <12b7.用加减法解方程组32104150x y x y -=⎧⎨-=⎩①②时,最简捷的方法是( )A. ①×4﹣②消去 B .①×4+②×3消去 C.②×2+①消去y D.②×2﹣①消去y 8.如右图,点A (﹣2,1)到轴的距离为( )A .﹣2B .1C .2D .9.为了了解某校1500名学生的体重情况,从中抽取了100名学生的体重。

就这个问题;说,下面说法正确的是( ) A.1500名学生的体重是总体 B.1500名学生是总体C.每个学生是个体D.100名学生是所抽取的一个样本 10.如右图,能判定EC ∥AB 的条件是( )A .∠B=∠ACEB .∠B=∠ACBC .∠A=∠ECD D .∠A=∠ACE 11.如果点P (2+6,﹣4)在平面直角坐标系的第四象限内,那么的取值范围在数轴上的简图可表示为( ).12A .9-B .3-C .3D .913. 如右图,直线AC ∥BD ,AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为( ) A .互余 B .互补 C .相等 D .不等 14. 如右图所示正方形格中,连接AB AC AD 、、,观测1+2+3∠∠∠=( )A .120° B. 125° C.130° D. 135°15. 某种商品的进价为600元,出售时标价为900元,后;由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打( ) A .9折B .8折C .7折D .6折16. 《孙子算经》中有一道题,原文是:“今有木,不知长短。

【35套试卷合集】河北省保定市竞秀区乐凯中学2019-2020学年数学七上期末模拟试卷含答案

【35套试卷合集】河北省保定市竞秀区乐凯中学2019-2020学年数学七上期末模拟试卷含答案

2019-2020学年七上数学期末模拟试卷含答案一、选择题:1.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( )千米.A.0.34×108B.3.4×106 C.34×106D.3.4×1072.如图是一个正方体,则它的表面展开图可以是()3.一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为( )A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%4.下列方程中,以-2为解的方程是( )A.3x-2=2x B.4x-1=2x+3 C.5x-3=6x-2 D.3x+1=2x-15.计算1-(-2)的正确结果是( )A.-2 B.-1 C.1 D.36.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xy C.3y2﹣2y2=1 D.3x2+2x=5x37.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①.AP=BP;②.AB=2BP;③.AB=2AP;④.AP+PB=AB.A.1个B.2个C.3个D.4个8.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°9.钟表在3点30分时,它的时针和分针所成的角是()A.75°B.80°C.85°D.90°10.如图,在数轴上有A.B、C、D、E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A.E两点表示的数的分别为 -13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A,-2 B.-1 C,0 D,211.在深圳体育馆召开的第八届中国(深圳)国际茶业文化博览会上某茶商将甲、乙两种茶叶卖出,甲种茶叶卖出1200元,盈利20%,乙种茶叶卖出1200元,亏损20%,则此人在这次交易中是( ) A .盈利50元B .盈利100元C .亏损150元D .亏损100元12.有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是 ( ) A .2015 B .1036C .518D .259二 、填空题:13.x ,y ,z 在数轴上的位置如图所示,则化简|x-y|+|z-y|的结果是______.14.18.36°= ° ′ ″.15.如图,在自来水株管道AB 的两旁有两个住宅小区C,D,现要在住管道上开一个接口P 往C,D 两小区铺设水管,为节约材料,接口P 应开在主管AB 的什么位置可以用学过的数学知识来解决这个问题。

河北省保定市2018-2019学年七年级下期末数学试卷含答案解析

河北省保定市2018-2019学年七年级下期末数学试卷含答案解析

2019-2019学年河北省保定市七年级(下)期末数学试卷一、选择题1.下列实数是负数的是()A.B.3 C.0 D.﹣12.如图,AO⊥OB,若∠AOC=50°,则∠BOC的度数是()A.20°B.30°C.40°D.50°3.2的平方根是()A.±B.±4 C.D.44.如图,数轴上的点P表示的数可能是()A.﹣2.3 B.﹣C.D.﹣5.﹣是的()A.绝对值B.相反数C.倒数D.算术平方根6.如图,与∠5是同旁内角的是()A.∠1 B.∠2 C.∠3 D.∠47.设n为正整数,且n<<n+1,则n的值为()A.5 B.6 C.7 D.88.下列生活现象中,不是平移现象的是()A.站在运行着的电梯上的人B.左右推动推拉窗C.躺在火车上睡觉的旅客D.正在荡秋千的小明9.下列语句中,是真命题的是()A.若ab>0,则a>0,b>0 B.内错角相等C.若ab=0,则a=0或b=0 D.相等的角是对顶角10.如图,AB∥CD,若∠C=30°,则∠B的度数是()A.30°B.40°C.50°D.60°11.若|a+b+5|+(2a﹣b+1)2=0,则(a﹣b)2019的值等于()A.﹣1 B.1 C.52019 D.﹣5201912.在下列各式中,正确的是()A.=±2 B.=﹣0.2 C.=﹣2 D.(﹣)2+()3=013.不等式x<2的解集在数轴上表示为()A.B.C.D.14.若关于x的一元一次的不等式组有解,则m的取值范围是()A.m>B.m C.m>1 D.m≤115.在平面直角坐标系下,若点M(a,b)在第二象限,则点N(b,a﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限16.下列调查中,适宜采用全面调查方式的是()A.调查市场上某灯泡的质量情况B.调查某市市民对伦敦奥运会吉祥物的知晓率C.调查某品牌圆珠笔的使用寿命D.调查乘坐飞机的旅客是否携带了违禁物品二、填空题(共4小题,每小题3分,满分12分)17.不等式4﹣3x>2x﹣6的非负整数解是.18.如果把点P(﹣2,﹣3)向右平移6个单位,再向上平移5个单位,那么得到的对应点是.19.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是.20.一个样本含有下面10个数据:51,52,49,50,54,48,50,51,53,48.其中最大的值是,最小的值是.在画频数分布直方图时,如果设组距为1.5,则应分成组.三、解答题21.(10分)计算题.(1)|﹣6|+(﹣3)2;(2)﹣.22.(10分)解方程组或不等式组①;②.23.(10分)将一副三角尺拼图,并标点描线如图所示,然后过点C作CF平分∠DCE,交DE于点F.(1)求证:CF∥AB;(2)求∠EFC的度数.24.(12分)为绿化城市,我县绿化改造工程正如火如荼的进行.某施工队计划购买甲、乙两种树苗共400棵,对光明路的某标段道路进行绿化改造.已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为85000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不多于购买乙种树苗的金额,至多应购买甲种树苗多少棵?25.(12分)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过12.85万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,而且每年新增电动车数量相同,(1)设从今年年初起,每年新增电动车数量是x万辆,则今年年底电动车的数量是,明年年底电动车的数量是万辆.(用含x的式子填空)如果到明年年底电动车的拥有量不超过12.85万辆,请求出每年新增电动车的数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)26.(12分)体育委员统计了全班同学60秒跳绳的次数,并列出下面的频数分布表:(1)全班有多少同学?(2)组距是多少?组数是多少?(3)跳绳次数x在120≤x<180范围的同学有多少?占全班同学的百分之几?(4)画出适当的统计图表示上面的信息.2019-2019学年河北省保定市七年级(下)期末数学试卷参考答案与试题解析一、选择题1.下列实数是负数的是()A.B.3 C.0 D.﹣1【考点】实数.【分析】根据小于零的数是负数,可得答案.【解答】解:由于﹣1<0,所以﹣1为负数.故选D.【点评】本题考查了实数,小于零的数是负数.2.如图,AO⊥OB,若∠AOC=50°,则∠BOC的度数是()A.20°B.30°C.40°D.50°【考点】垂线.【分析】根据OA⊥OB,可知∠BOC和∠AOC互余,即可求出∠BOC的度数.【解答】解:∵AO⊥OB,∴∠AOB=90°.又∵∠AOC=50°,∴∠BOC=90°﹣∠AOC=40°.故选C.【点评】本题考查了垂线,余角的知识.要注意领会由垂直得直角这一要点.3.2的平方根是()A.±B.±4 C.D.4【考点】平方根.【分析】依据平方根的性质求解即可.【解答】解:2的平方根是±.故选:A.【点评】本题主要考查的是平方根的性质,掌握平方根的性质是解题的关键.4.如图,数轴上的点P表示的数可能是()A.﹣2.3 B.﹣C.D.﹣【考点】实数与数轴.【分析】根据数轴得:点P表示的数大于﹣1且小于﹣2,A、﹣2.3<﹣2,B、﹣2<﹣<﹣1,C、>1,D、﹣<﹣2.【解答】解:由数轴可知:点P在﹣2和﹣1之间,即点P表示的数大于﹣1且小于﹣2,故选B.【点评】本题考查了实数和数轴,实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大.5.﹣是的()A.绝对值B.相反数C.倒数D.算术平方根【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣是的相反数,故选:B.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.6.如图,与∠5是同旁内角的是()A.∠1 B.∠2 C.∠3 D.∠4【考点】同位角、内错角、同旁内角.【分析】根据图象可以得到各个角与∠1分别是什么关系,从而可以解答本题.【解答】解:由图可知,∠1与∠5是同旁内角、∠2与∠5没有直接关系,∠3与∠5是内错角、∠4与∠5是邻补角,故选A.【点评】本题考查同位角、内错角、同旁内角,解题的关键是明确题意,利用数形结合的思想解答.7.设n为正整数,且n<<n+1,则n的值为()A.5 B.6 C.7 D.8【考点】估算无理数的大小.【分析】先找出与60最为接近的两个完全平方数,然后分别求得它们的算术平方根,从而可求得n的值.【解答】解:∵49<60<64,∴7<<8.∴n=7.故选:C.【点评】本题主要考查的是估算无理数的大小,明确被开放数越大,对应的算术平方根也越大是解题的关键.8.下列生活现象中,不是平移现象的是()A.站在运行着的电梯上的人B.左右推动推拉窗C.躺在火车上睡觉的旅客D.正在荡秋千的小明【考点】生活中的平移现象.【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,可得答案.【解答】解:根据平移的性质,D正在荡秋千的小明,荡秋千的运动过程中,方向不断的发生变化,不是平移运动.故选:D.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻折.9.下列语句中,是真命题的是()A.若ab>0,则a>0,b>0 B.内错角相等C.若ab=0,则a=0或b=0 D.相等的角是对顶角【考点】命题与定理.【分析】可以判定真假的语句是命题,根据其定义对各个选项进行分析,从而得到答案.【解答】解:A,不是,因为可以判定这是个假命题;B,不是,因为可以判定其是假命题;C,是,因为可以判定其是真命题;D,不是,因为可以判定其是假命题;故选C.【点评】此题主要考查学生对命题的理解及运用,难度较小,属于基础题.10.如图,AB∥CD,若∠C=30°,则∠B的度数是()A.30°B.40°C.50°D.60°【考点】平行线的性质.【分析】两直线平行,内错角相等.根据平行线的性质进行计算.【解答】解:∵AB∥CD,∴∠B=∠C,又∵∠C=30°,∴∠B的度数是30°,故选(A).【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.11.若|a+b+5|+(2a﹣b+1)2=0,则(a﹣b)2019的值等于()A.﹣1 B.1 C.52019 D.﹣52019【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据非负数的性质求出a、b的值,再代入代数式进行计算即可.【解答】解:∵|a+b+5|+(2a﹣b+1)2=0,∴,解得,∴(a﹣b)2019=1.故选B.【点评】本题考查的是非负数的性质,熟知几个非负数的和为0时,每一项必为0是解答此题的关键.12.在下列各式中,正确的是()A.=±2 B.=﹣0.2 C.=﹣2 D.(﹣)2+()3=0【考点】立方根;算术平方根.【分析】分别利用立方根以及算术平方根的定义分析得出答案.【解答】解:A、=2,故此选项错误;B、无法化简,故此选项错误;C、=﹣2,正确;D、(﹣)2+()3=4,故此选项错误.故选:C.【点评】此题主要考查了立方根以及算术平方根,正确把握定义是解题关键.13.不等式x<2的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示方法可画出图形.【解答】解:不等式x<2的解集在数轴上表示方法应该是:2处是空心的圆点,向左画线.故应选B.【点评】本题考查在数轴上表示不等式的解集,需要注意当包括原数时,在数轴上表示时应用实心圆点来表示,当不包括原数时,应用空心圆圈来表示.14.若关于x的一元一次的不等式组有解,则m的取值范围是()A.m>B.m C.m>1 D.m≤1【考点】不等式的解集.【分析】根据不等式有解,可得关于m的不等式,根据解不等式,可得答案.【解答】解:解不等式组,得3﹣m<x<2m.由题意,得3﹣m<2m,解得m>1,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.在平面直角坐标系下,若点M(a,b)在第二象限,则点N(b,a﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数判断出a、b的正负情况,然后解答即可.【解答】解:∵点M(a,b)在第二象限,∴a<0,b>0,∴a﹣2<0,∴点N(b,a﹣2)在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).16.下列调查中,适宜采用全面调查方式的是()A.调查市场上某灯泡的质量情况B.调查某市市民对伦敦奥运会吉祥物的知晓率C.调查某品牌圆珠笔的使用寿命D.调查乘坐飞机的旅客是否携带了违禁物品【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:调查市场上某灯泡的质量情况适宜采用抽样调查方式;调查某市市民对伦敦奥运会吉祥物的知晓率适宜采用抽样调查方式;调查某品牌圆珠笔的使用寿命适宜采用抽样调查方式;调查乘坐飞机的旅客是否携带了违禁物品适宜采用全面调查方式,故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题(共4小题,每小题3分,满分12分)17.不等式4﹣3x>2x﹣6的非负整数解是0,1.【考点】一元一次不等式的整数解.【分析】求出不等式2x+1>3x﹣2的解集,再求其非负整数解.【解答】解:移项得,﹣2x﹣3x>﹣6﹣4,合并同类项得,﹣5x>﹣10,系数化为1得,x<2.故其非负整数解为:0,1.【点评】本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.18.如果把点P(﹣2,﹣3)向右平移6个单位,再向上平移5个单位,那么得到的对应点是(4,2).【考点】坐标与图形变化-平移.【分析】根据点的坐标平移规律求解.【解答】解:点P(﹣2,﹣3)向右平移6个单位,再向上平移5个单位,则所得到的对应点的坐标为(4,2)故答案为(4,2).【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.19.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是同位角相等,两直线平行.【考点】作图—复杂作图;平行线的判定.【分析】关键题意得出∠1=∠2;∠1和∠2是同位角;由平行线的判定定理即可得出结论.【解答】解:如图所示:根据题意得出:∠1=∠2;∠1和∠2是同位角;∵∠1=∠2,∴a∥b(同位角相等,两直线平行);故答案为:同位角相等,两直线平行.【点评】本题考查了复杂作图以及平行线的判定方法;熟练掌握平行线的判定方法,根据题意得出同位角相等是解决问题的关键.20.一个样本含有下面10个数据:51,52,49,50,54,48,50,51,53,48.其中最大的值是54,最小的值是48.在画频数分布直方图时,如果设组距为1.5,则应分成4组.【考点】频数(率)分布直方图.【分析】根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.【解答】解:在51,52,49,50,54,48,50,51,53,48中最大的值是54,最下的值是48,在画频数分布直方图时,如果设组距为1.5,则应分成=4,故答案为:54,48,4.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.三、解答题21.(10分)(2019春•保定期末)计算题.(1)|﹣6|+(﹣3)2;(2)﹣.【考点】实数的运算.【分析】(1)原式利用绝对值的代数意义,以及乘方的意义计算即可得到结果;(2)原式利用平方根、立方根定义计算即可得到结果.【解答】解:(1)原式=6+9=15;(2)原式=7﹣(﹣4)=7+4=11.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(10分)(2019春•保定期末)解方程组或不等式组①;②.【考点】解一元一次不等式组;解二元一次方程组.【分析】(1)①×﹣②得出7y=14,求出y,把y的值代入②求出x即可;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出即可.【解答】解:①①×2﹣②得:7y=14,解得:y=2,把y=2代入②得:2x﹣6=6,解得:x=6,所以原方程组的解为:;②∵解不等式①得:x>2,解不等式②得:x≤4,∴不等式组的解集是2<x≤4.【点评】本题考查了解一元一次不等式组和解二元一次方程组的应用,能把二元一次方程组转化成一元一次方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.23.(10分)(2019春•保定期末)将一副三角尺拼图,并标点描线如图所示,然后过点C作CF平分∠DCE,交DE于点F.(1)求证:CF∥AB;(2)求∠EFC的度数.【考点】平行线的判定.【分析】(1)根据内错角相等,两直线平行进行判定即可;(2)根据三角形EFC的内角和为180°,求得∠EFC的度数.【解答】解:(1)∵CF平分∠DCE,且∠DCE=90°,∴∠ECF=45°,∵∠BAC=45°,∴∠BAC=∠ECF,∴CF∥AB;(2)在△FCE中,∵∠FCE+∠E+∠EFC=180°,∴∠EFC=180°﹣∠FCE﹣∠E,=180°﹣45°﹣30°=105°.【点评】本题主要考查了平行线的判定以及三角形内角和定理的运用,解题时注意:内错角相等,两直线平行.解题的关键是熟知三角板的各角度数.24.(12分)(2019春•保定期末)为绿化城市,我县绿化改造工程正如火如荼的进行.某施工队计划购买甲、乙两种树苗共400棵,对光明路的某标段道路进行绿化改造.已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为85000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不多于购买乙种树苗的金额,至多应购买甲种树苗多少棵?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设需购买甲种树苗x棵,需购买乙种树苗y棵,根据“购买两种树苗的总金额为85000”列二元一次方程组求解即可得;(2)设购买甲种树苗a棵,则需购买乙种树苗(400﹣a)棵,根据“购买甲种树苗的金额≥购买乙种树苗的金额”列不等式求解可得.【解答】(1)解:设需购买甲种树苗x棵,需购买乙种树苗y棵,根据题意得:,解得:,答:需购买甲种树苗350棵,需购买乙种树苗50棵;(2)解:设购买甲、乙树苗的棵数分别是x,y.根据题意得:,解得:x≤240.答:至多应购买甲种树苗240棵.【点评】本题主要考查二元一次方程组与一元一次不等式的应用,根据题意抓住相等关系与不等关系列出方程或不等式是解题的关键.25.(12分)(2019春•保定期末)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过12.85万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,而且每年新增电动车数量相同,(1)设从今年年初起,每年新增电动车数量是x万辆,则今年年底电动车的数量是10(1﹣10%)+x,明年年底电动车的数量是[10(1﹣10%+x)](1﹣10%)+x万辆.(用含x的式子填空)如果到明年年底电动车的拥有量不超过12.85万辆,请求出每年新增电动车的数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)【考点】一元二次方程的应用;近似数和有效数字.【分析】(1)根据题意分别求出今年将报废电动车的数量,进而得出明年报废的电动车数量,进而得出不等式求出即可;(2)分别求出今年年底电动车数量,进而求出今年年底到明年年底电动车拥有量的年增长率.【解答】解:(1)今年年底电动车数量是10(1﹣10%)+x万辆,明年年底电动车的数量是[10(1﹣10%+x)](1﹣10%)+x万辆;根据题意得:[10(1﹣10%+x)](1﹣10%)+x≤12.85,解得:x≤2.5,答:每年新增电动车的数量最多是2.5万辆;(2)今年年底电动车的拥有量是10(1﹣10%)+x=11.5设今年年底到明年年底电动车拥有量的年增长率是y,则11.5(1+y)=12.85,解得:y≈11.7%,答:今年年底到明年年底电动车拥有量的年增长率是11.7%.【点评】此题主要考查了一元一次不等式的应用以及一元一次方程的应用,分别表示出今年与明年电动车数量是解题关键.26.(12分)(2019春•保定期末)体育委员统计了全班同学60秒跳绳的次数,并列出下面的频数分布表:(1)全班有多少同学?(2)组距是多少?组数是多少?(3)跳绳次数x在120≤x<180范围的同学有多少?占全班同学的百分之几?(4)画出适当的统计图表示上面的信息.【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)将各组频数相加即可得;(2)由频率分布表即可知组数和组距;(3)将120≤x<180范围的两分组频数相减可得,再将其人数除以总人数即可得百分比;(4)根据各分组频数可制成条形图.【解答】解:(1)全班有同学16+25+9+7+3=60(人);(2)组距是30,组数是5;(3)跳绳次数x在120≤x<180范围的同学有9+7=16人,占全班同学的×100%≈26.7%;(4)如下图所示:【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.;zhjh;蓝月梦;星期八;。

2018-2019学年七年级(下)期末数学试卷及答案详解

2018-2019学年七年级(下)期末数学试卷及答案详解

2018-2019学年七年级(下)期末数学试卷一、选择题(共14小题,每小题3分,满分42分)1.(3分)如图所示,把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是( )A .垂线段最短B .过一点确定一条直线与已知直线垂直C .两点之间线段最短D .以上说法都不对2.(3分)实数27-的立方根是( )A .3-B .3±C .3D .13- 3.(3分)如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A .(2,1)-B .(2,3)C .(3,5)-D .(6,2)--4.(3分)如图,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角是同位角的是()A .BAC ∠和ACB ∠ B .B ∠和DCE ∠C .B ∠和BAD ∠ D .B ∠和ACD ∠5.(3分)下列各图中, 能够由12∠=∠得到//AB CD 的是( )A .B .C .D .6.(3分)有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A .1B .2C .3D .47.(3分)若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P的坐标是( )A .(4,3)-B .(4,3)-C .(3,4)-D .(3,4)-8.(3分)如图,//a b ,点B 在直线b 上,且AB BC ⊥,135∠=︒,那么2(∠=)A .45︒B .50︒C .55︒D .60︒9.(380;3π327227;1.1010010001⋯,无理数的个数是( ) A .5 B .4 C .3 D .210.(3分)在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)11.(3分)如果点(3,1)P m m ++在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,4)-12.(3分)如图,若12∠=∠,//DE BC ,则:①//FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠,⑥FGC DEC DCE ∠=∠+∠,其中正确的结论是( )A .①②③B .①②⑤⑥C .①③④⑥D .③④⑥13.(3分)观察下列各数:1,43,97,1615,⋯,按你发现的规律计算这列数的第6个数为( )A .2531B .3635C .47D .626314.(3分)定义:直线a 与直线b 相交于点O ,对于平面内任意一点M ,点M 到直线a 与直线b 的距离分别为p 、q ,则称有序实数对(,)p q 是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是( )A .1B .2C .3D .4二、填空题(共5小题,每小题3分,满分15分)15.(3分)81的平方根是 .16.(3分)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D 、交AC 于F ,若4AB =,3AC =,则ADF ∆周长为 .17.(3分)点(,)p q 到y 轴距离是 .18.(3 3.65 1.91036.5 6.042365000≈ .19.(3分)已知//AB x 轴,A 点的坐标为(3,2)-,并且4AB =,则B 点的坐标为 .三、解答题(共7小题,满分63分)20.(6分)完成下面的证明 (在 括号中注明理由) .已知: 如图,//BE CD ,1A ∠=∠,求证:C E ∠=∠.证明://BE CD (已 知) ,2∴∠= ( )又1A ∠=∠(已 知) ,//AC ∴ ( ),2∴∠= ( ),C E ∴∠=∠(等 量代换)21.(8分)求下列x 的值:(1)2(32)16x +=(2)3(21)27x -=-.22.(8分)如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分.(1)直接写出图中AOC ∠的对顶角: ,EOB ∠的邻补角:(2)若70AOC ∠=︒且:2:3BOE EOD ∠∠=,求AOE ∠的度数.23.(9分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.24.(10分)将一副直角三角板如图放置, 已知//AE BC ,求AFD ∠的度数 .25.(10分)已知:如图,12∠=∠,3E ∠=∠.求证://AD BE .26.(12分)ABC ∆与△A B C '''在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A ' ;B ' ;C ' ;(2)说明△A B C '''由ABC ∆经过怎样的平移得到? .(3)若点(,)P a b 是ABC ∆内部一点,则平移后△A B C '''内的对应点P '的坐标为 ;(4)求ABC ∆的面积.参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.(3分)如图所示,把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是( )A .垂线段最短B .过一点确定一条直线与已知直线垂直C .两点之间线段最短D .以上说法都不对【分析】根据垂线段的性质,可得答案.【解答】解:把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是垂线段最短,故选:A .【点评】本题考查了垂线段最短,利用垂线段的性质是解题关键.2.(3分)实数27-的立方根是( )A .3-B .3±C .3D .13- 【分析】根据立方根的定义进行解答.【解答】解:3(3)27-=-,27∴-3273-=-,故选:A .【点评】本题主要考查了立方根的定义,找出立方等于27-的数是解题的关键.3.(3分)如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A .(2,1)-B .(2,3)C .(3,5)-D .(6,2)--【分析】根据平面直角坐标系内各象限内点的坐标特点解答即可.【解答】解:由图可知小猫位于坐标系中第四象限,所以小猫遮住的点的坐标应位于第四象限,故选:C .【点评】本题主要考查点的坐标,掌握平面直角坐标系内各象限内点的坐标特点是解题的关键.4.(3分)如图,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角是同位角的是()A .BAC ∠和ACB ∠ B .B ∠和DCE ∠C .B ∠和BAD ∠ D .B ∠和ACD ∠【分析】利用同位角、内错角及同旁内角的定义分别判断后即可确定正确的选项.【解答】解:A 、BAC ∠和ACB ∠是同旁内角,不符合题意;B 、B ∠和DCE ∠是同位角,符合题意;C 、B ∠和BAD ∠是同旁内角,不符合题意;D 、B ∠和ACD ∠不属于同位角、内错角及同旁内角的任何一种,不符合题意,故选:B .【点评】本题考查了同位角、内错角及同旁内角的知识,牢记它们的定义是解答本题的关键,难度不大.5.(3分)下列各图中, 能够由12∠=∠得到//AB CD 的是( )A .B .C .D .【分析】根据对等角相等可得13∠=∠,再由12∠=∠,可得32∠=∠,根据同位角相等, 两直线平行可得//AB CD .【解答】解:13∠=∠,12∠=∠,32∴∠=∠,//AB CD ∴,故选:B .【点评】此题主要考查了平行线的判定, 关键是掌握平行线的判定定理 .6.(3分)有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A .1B .2C .3D .4【分析】(1)根据无理数的定义即可判定;(2)根据无理数的定义即可判定;(3)根据无理数的分类即可判定;(4)根据无理数和数轴上的点对应关系即可判定.【解答】解:(1)开方开不尽的数是无理数,但是无理数不仅仅是开方开不尽的数,故(1)说法错误;(2)无理数是无限不循环小数,故(2)说法正确;(3)0是有理数,故(3)说法错误;(4)无理数都可以用数轴上的点来表示,故(4)说法正确.故选:B .【点评】此题主要考查了无理数的定义.无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001⋯,等有这样规律的数.7.(3分)若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P的坐标是( )A .(4,3)-B .(4,3)-C .(3,4)-D .(3,4)-【分析】首先根据题意得到P 点的横坐标为负,纵坐标为正,再根据到x 轴的距离与到y 轴的距离确定横纵坐标即可. 【解答】解:点P 在第二象限,P ∴点的横坐标为负,纵坐标为正,到x 轴的距离是4,∴纵坐标为:4,到y 轴的距离是3,∴横坐标为:3-,(3,4)P ∴-,故选:C .【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.8.(3分)如图,//a b ,点B 在直线b 上,且AB BC ⊥,135∠=︒,那么2(∠=)A .45︒B .50︒C .55︒D .60︒【分析】先根据135∠=︒,//a b 求出3∠的度数,再由AB BC ⊥即可得出答案.【解答】解://a b ,135∠=︒,3135∴∠=∠=︒.AB BC ⊥,290355∴∠=︒-∠=︒.故选:C .【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.9.(380;3π327227;1.1010010001⋯,无理数的个数是( ) A .5 B .4 C .3 D .2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 80不是无理数;3π3273=不是无理数;227不是无理数;1.1010010001⋯是无理数,故选:C .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数.10.(3分)在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 【分析】根据A 点的坐标及对应点的坐标可得线段AB 向右平移4个单位,然后可得B '点的坐标.【解答】解:(1,1)A --平移后得到点A '的坐标为(3,1)-,∴向右平移4个单位,(1,2)B ∴的对应点坐标为(14,2)+,即(5,2).故选:B .【点评】此题主要考查了坐标与图形的变化--平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.11.(3分)如果点(3,1)++在x轴上,则点P的坐标为()P m mA.(0,2)B.(2,0)C.(4,0)D.(0,4)-【分析】根据点P在x轴上,即0y=,可得出m的值,从而得出点P的坐标.【解答】解:点(3,1)++在x轴上,P m m∴=,y∴+=,m10解得:1m=-,∴+=-+=,3132m∴点P的坐标为(2,0).故选:B.【点评】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m 的值是解题关键.12.(3分)如图,若12∠=∠,//∠=∠;③CD平FG DC;②AED ACBDE BC,则:①//分ACB∠=∠+∠,其中正∠=∠,⑥FGC DEC DCE∠+∠=︒;⑤BFG BDC∠;④190B确的结论是()A.①②③B.①②⑤⑥C.①③④⑥D.③④⑥【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出∠=∠,得出//FG DC,①正确;由平行线的性质得出⑤正确;进而得出⑥2DCB∠=∠+∠正确,即可得出结果.FGC DEC DCE【解答】解://DE BC,∠=∠,故②正确;1∴∠=∠,AED ACBDCB∠=∠,12∴∠=∠,2DCBFG DC∴,故①正确;//∴∠=∠,故⑤正确;BFG BDC∴∠=∠+∠,故⑥正确;FGC DEC DCE而CD不一定平分ACB∠,1B∠+∠不一定等于90︒,故③,④错误;故选:B.【点评】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.13.(3分)观察下列各数:1,43,97,1615,⋯,按你发现的规律计算这列数的第6个数为()A.2531B.3635C.47D.6263【分析】观察数据,发现第n个数为221nn-,再将6n=代入计算即可求解.【解答】解:观察该组数发现:1,43,97,1615,⋯,第n个数为221nn-,当6n=时,22664 21217nn==--.故选:C.【点评】本题考查了数字的变化类问题,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是发现第n个数为221nn-.14.(3分)定义:直线a与直线b相交于点O,对于平面内任意一点M,点M到直线a与直线b的距离分别为p、q,则称有序实数对(,)p q是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1B.2C.3D.4【分析】画出两条相交直线,到a的距离为1的直线有2条,到b的距离为2的直线有2条,看所画的这些直线的交点有几个即为所求的点的个数.【解答】解:如图所示,所求的点有4个,故选:D.【点评】综合考查点的坐标的相关知识;得到到直线的距离为定值的直线有2条是解决本题的突破点.二、填空题(共5小题,每小题3分,满分15分)15.(3分)81的平方根是 3± .【分析】根据平方根、算术平方根的定义即可解决问题.【解答】解:819=,9的平方根是3±,∴81的平方根是3±.故答案为3±.【点评】本题考查算术平方根、平方根的定义,解题的关键是记住平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,属于基础题,中考常考题型.16.(3分)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D 、交AC 于F ,若4AB =,3AC =,则ADF ∆周长为 7 .【分析】根据角平分线的定义可得EBD EBC ∠=∠,ECF ECB ∠=∠,再根据两直线平行,内错角相等可得EBC BED ∠=∠,ECB CEF ∠=∠,然后求出EBD DEB ∠=∠,ECF CEF ∠=∠,再根据等角对等边可得ED BD =,EF CF =,即可得出DF BD CF =+;求出ADF ∆的周长AB AC =+,然后代入数据进行计算即可得解.【解答】解:E 是ABC ∠,ACB ∠平分线的交点,EBD EBC ∴∠=∠,ECF ECB ∠=∠,//DF BC ,DEB EBC ∴∠=∠,FEC ECB ∠=∠,DEB DBE ∴∠=∠,FEC FCE ∠=∠,DE BD ∴=,EF CF =,DF DE EF BD CF ∴=+=+,即DE BD CF =+,ADF ∴∆的周长()()AD DF AF AD BD CF AF AB AC =++=+++=+,4AB =,3AC =,ADF ∴∆的周长437=+=,故答案为7.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.17.(3分)点(,)p q 到y 轴距离是 ||p .【分析】点到y 轴的距离等于横坐标的绝对值.【解答】解:点(,)p q 到y 轴距离||p =故答案为||P .【点评】本题考查点的坐标,记住点到坐标轴的距离与坐标的关系是解题的关键.18.(3 3.65 1.91036.5 6.042365000≈ 604.2 .【分析】根据被开方数扩大100倍,算术平方根扩大10倍,可得答案. 3.65 1.910≈36.5 6.042≈365000604.2,故答案为:604.2.【点评】本题考查了算术平方根,利用被开方数与算术平方根的关系是解题关键.19.(3分)已知//AB x 轴,A 点的坐标为(3,2)-,并且4AB =,则B 点的坐标为 (1,2)或(7,2)- .【分析】在平面直角坐标系中与x 轴平行,则它上面的点纵坐标相同,可求B 点纵坐标;与x 轴平行,相当于点A 左右平移,可求B 点横坐标.【解答】解://AB x 轴,∴点B 纵坐标与点A 纵坐标相同,为2,又4AB =,可能右移,横坐标为341-+=-;可能左移横坐标为347--=-,B ∴点坐标为(1,2)或(7,2)-,故答案为:(1,2)或(7,2)-.【点评】此题考查平面直角坐标系中平行特点和平移时坐标变化规律,解决本题的关键是分类讨论思想.三、解答题(共7小题,满分63分)20.(6分)完成下面的证明 (在 括号中注明理由) .已知: 如图,//BE CD ,1A ∠=∠,求证:C E ∠=∠.证明://BE CD (已 知) ,2∴∠= C ∠ ( )又1A ∠=∠(已 知) , //AC ∴ ( ),2∴∠= ( ),C E ∴∠=∠(等 量代换)【分析】先根据两直线平行, 得出同位角相等, 再根据内错角相等, 得出两直线平行, 进而得出内错角相等, 最后根据等量代换得出结论 .【解答】证明://BE CD (已 知)2C ∴∠=∠(两 直线平行, 同位角相等)又1A ∠=∠(已 知)//AC DE ∴(内 错角相等, 两直线平行)2E ∴∠=∠(两 直线平行, 内错角相等)C E ∴∠=∠(等 量代换)【点评】本题主要考查了平行线的性质, 解题时注意区分平行线的性质与平行线的判定的区别, 条件与结论不能随意颠倒位置 .21.(8分)求下列x 的值:(1)2(32)16x +=(2)3(21)27x -=-.【分析】(1)利用平方根的定义,即可求得32x +,即可转化成一元一次方程即可求得x 的值;(2)利用立方根的定义,即可转化成一元一次方程即可求得x 的值.【解答】解:(1)2(32)16x +=,324x +=±, 23x ∴=或2x =;(2)3(21)27x -=-,213x -=-,1x ∴=-.【点评】本题考查了平方根与立方根的定义,理解定义是关键.22.(8分)如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分.(1)直接写出图中AOC ∠的对顶角: BOD ∠ ,EOB ∠的邻补角:(2)若70AOC ∠=︒且:2:3BOE EOD ∠∠=,求AOE ∠的度数.【分析】(1)根据对顶角和邻补角的定义直接写出即可;(2)根据对顶角相等求出BOD ∠的度数,再根据:2:3BOE EOD ∠∠=求出BOE ∠的度数,然后利用互为邻补角的两个角的和等于180︒即可求出AOE ∠的度数.【解答】解:(1)AOC ∠的对顶角是BOD ∠,EOB ∠的邻补角是AOE ∠,故答案为:BOD ∠,AOE ∠;(2)70AOC ∠=︒,70BOD AOC ∴∠=∠=︒,:2:3BOE EOD ∠∠=, 2702832BOE ∴∠=⨯︒=︒+, 18028152AOE ∴∠=︒-︒=︒.AOE ∴∠的度数为152︒.【点评】本题主要考查了对顶角和邻补角的定义,利用对顶角相等的性质和互为邻补角的两个角的和等于180︒求解是解答此题的关键.23.(9分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.【分析】根据题意建立平面直角坐标系进而得出各点坐标即可.【解答】解:如图所示:实验楼(2,2)-,行政楼(2,2)--,大门(0,4)-,食堂(3,4),图书馆(4,2)-.【点评】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.24.(10分)将一副直角三角板如图放置, 已知//AE BC ,求AFD ∠的度数 .【分析】根据平行线的性质及三角形内角定理解答 .【解答】解: 由三角板的性质, 可知45EAD ∠=︒,30C ∠=︒,90BAC ADE ∠=∠=︒.因为//AE BC ,所以30EAC C ∠=∠=︒,所以453015DAF EAD EAC ∠=∠-∠=︒-︒=︒,所以180180901575AFD ADE DAF ∠=︒-∠-∠=︒-︒-︒=︒.【点评】本题考查的是平行线的性质及三角形内角和定理, 解题时注意: 两直线平行, 内错角相等 .25.(10分)已知:如图,12∠=∠,3E ∠=∠.求证://AD BE .【分析】先根据题意得出132E ∠+∠=∠+∠,再由25E ∠+∠=∠可知,135∠+∠=∠,即5ADC ∠=∠,据此可得出结论.【解答】证明:12∠=∠,3E ∠=∠,132E ∴∠+∠=∠+∠.25E ∠+∠=∠,135∴∠+∠=∠,5ADC ∴∠=∠,//AD BE ∴.【点评】本题考查的是平行线的判定,用到的知识点为:同位角相等,两直线平行.26.(12分)ABC∆与△A B C'''在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A'(3,1)-;B';C';(2)说明△A B C'''由ABC∆经过怎样的平移得到?.(3)若点(,)P a b是ABC∆内部一点,则平移后△A B C'''内的对应点P'的坐标为;(4)求ABC∆的面积.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A'的变化写出平移方法即可;(3)根据平移规律逆向写出点P'的坐标;(4)利用ABC∆所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)(3,1)A'-;(2,2)B'--;(1,1)C'--;(2)先向左平移4个单位,再向下平移2个单位;或:先向下平移2个单位,再向左平移4个单位;(3)(4,2)P a b'--;(4)ABC∆的面积111 23131122 222=⨯-⨯⨯-⨯⨯-⨯⨯6 1.50.52=---2=.故答案为:(1)(3,1)-,(2,2)--,(1,1)--;(2)先向左平移4个单位,再向下平移2个单位;(3)(4,2)a b--.【点评】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.。

河北省保定市竞秀区乐凯中学2017-2018学年七年级第一学期数学期末试卷

河北省保定市竞秀区乐凯中学2017-2018学年七年级第一学期数学期末试卷

河北省保定市竞秀区乐凯中学2017-2018学年七年级第一学期数学期末试卷一、单选题(★★) 1 . -12的绝对值是()A.12B.-12C.D.(★★) 2 . 下列调查中,适宜采用抽样调查方式的是()A.调查我市中学生每天体育锻炼的时间B.调查每班学生的视力情况C.调查一架“歼20”隐形战机各零部件的质量D.调查广州亚运会100米决赛参赛运动员兴奋剂使用情况(★★) 3 . 如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短(★★★) 4 . 今年参观博物馆的总人数约为489000人,将489000用科学计数法表示为()A.B.C.D.(★★★) 5 . 如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Φ45.02B.Φ44.9C.Φ44.98D.Φ45.01(★) 6 . 下列图形经过折叠不能围成棱柱的是()A. (A)B. (B)C. (C)D. (D)(★★★) 7 . 化简的结果为()A.2x-3B.2x+9C.11x-3D.18x-3(★★★) 8 . 若,则m+2n的值为()A.-4B.-1C.0D.4(★★★) 9 . 如右图,如图,把一张长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠AED′=50°,则∠D′EF等于()A. 50°B. 55°C. 60°D. 65°(★★) 10 . 如图是一个正方体纸盒的外表面展开图,则这个正方体是()(★★★) 11 . (2016威海)若,则的值为()A.4B.﹣4C.16D.﹣16(★★★) 12 . 在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27B.51C.69D.72(★★) 13 . 甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°.乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A. 甲乙都对B. 甲对乙错C. 甲错乙对D. 甲乙都错(★★★) 14 . 如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A. 在A的左边B. 介于A、B之间C. 介于B、C之间D. 在C的右边(★★★) 15 . 下列图像都是由相同大小的星星按一定规律组成的,其中第①个图形中一共有4颗星星,第②个图形中一共有11颗星星,第③个图形中一共有21颗星星,.....按此规律排列下去,第⑨个图形中星星的颗数为()A.116B.144C.145D.150二、填空题(★★★) 16 . 如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.(★★★) 17 . 如图,点A. D. C.B在一条直线上,已知CB=4cm,DB=7cm,且D是AC的中点,求线段AB的长度为_____(★★★) 18 . 对于实数p,q我们有符号表示p,q两数中较小的数,如,因此______;若,则x=_______三、解答题(★★★) 19 . 计算:;(2)(3)先化简,在求值:,其中,(★★★) 20 . 解方程:(1);(2)(★★★) 21 . 如图,是由7个大小相同的小立方块搭成的一个几何体.(1)请在指定位置画出该几何体从左面、上面看到的形状图;(2)若从该几何体中移走一个小立方块,所得新几何体与原几何体相比,从左面、上面看到的形状图保持不变,请画出新几何体从正面看到的形状图。

2019-2020学年保定市乐凯中学七年级(下)期末数学试卷

2019-2020学年保定市乐凯中学七年级(下)期末数学试卷

2019-2020学年保定市乐凯中学七年级(下)期末数学试卷一、选择题(本大题共16小题,共42.0分)1.下列四个汉字中,可以看作是轴对称图形的有()A. 1个B. 2个C. 3个D. 4个2.若a m=3,a n=1,则a2m−n的值是()2A. 6B. 8C. 11D. 183.下列事件中,属于必然事件的是()A. 打开电视,它正在播广告B. 掷两枚质地均匀的骰子,点数之和一定大于6C. 某射击运动员射击一次,命中靶心D. 早晨的太阳从东方升起4.已知:如图,已知直线AB,CD被直线GH所截,直线PQ、MN分别过点E、F,如果AB//CD,那么由下列条件不能推出MN//PQ的是()A. ∠1=∠2B. ∠3=∠4C. ∠2=∠3D. ∠PEG=∠MFG5.如图,△ABC中,AB=AC.将△ABC沿AC方向平移到△DEF位置,点D在AC上,连结BF.若AD=4,BF=8,∠ABF=90°,则AB的长是()A. 5B. 6C. 7D. 86.点P在∠AOB的角平分线上,点P到OA边的距离等于10,点Q是OB边上的任意一点,下列选项正确的是()A. PQ<10B. PQ>10C. PQ≥10D. PQ≤107.若a m=5,a n=2,则a2m−n的值为()A. 52B. 252C. 254D. 548.已知y与x之间有下列关系:y=x2−1.显然,当x=1时,y=0;当x=2时,y=3.在这个等式中()A. x是变量,y是常量B. x是变量,y是常量C. x是常量,y是变量D. x是变量,y是变量9.下列运算正确的是()A. x3+x3=2x6B. x⋅x2=x3C. (−x3)2=−x6D. x6÷x3=x210.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),若想配一块与原来大小一样的三角形玻璃?应该带()去.A. 第1块B. 第2块C. 第3块D. 第4块11.如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是()A. 13B. 14C. 16D. 1812.图中是形状、大小都相同的两个长方形,第一个长方形的阴影面积为m,第二个长方形的阴影面积为n,则m与n关系为()A. m>nB. m=nC. m<nD. 不确定13.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若矩形的面积为16√3,AE=B′D,∠EFB=60°,则线段DE的长是()A. 4√3B. 5C. 6D. 6√314.如图,将边长为a的正方形沿虚线剪去边长为b的小正方形后,剩余图形的周长是()A. 2a+2bB. 4aC. 4a+2bD. 4a−2b15.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中一定和△ABC全等的图形是()A. 甲.乙.丙B. 甲.乙C. 甲.丙D. 乙.丙16.如图,将△ABC沿直线AC翻折得到△ADC,连接BD交AC于点E,AF为△ACD的中线,若BE=2,AE=3,△AFC的面积为2,则CE长为()A. 12B. 23C. 1D. 2二、填空题(本大题共3小题,共8.0分)17.科学记数法表示:−0.0001010123=______.18.如图:△ABC中,∠A=50°,BE平分∠ABC,CE是△ABC的外角∠ACF的角平分线,则∠E=______ .19.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别在AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠1+∠2=140°,则∠A=______.三、解答题(本大题共7小题,共68.0分)20.计算:(1)(8x4−6x3−4x2+10x)÷(−2x)(2)(x+2y−1)(x−2y+1)(3)20152−2014×2016.21.如图,D,E,F,G,H,Ⅰ是三角形ABC三边上的点,且EF//BC,GH//AC,DI//AB,连结EI.(1)判断∠GHC与∠FEC是否相等,并说明理由.(2)若EI平分∠FEC,∠C=54°,∠B=49°.求∠EID的度数.22.某公司的一批某品牌衬衣的质量抽检结果如下:抽检件数50100200300400500次品件数0416192430(1)请结合表格数据直接写出这批衬衣中任抽1件是次品的概率.(2)如果销售这批衬衣600件,至少要准备多少件正品衬衣供买到次品的顾客退换?23. 已知,在△ABC中,AC=BC,∠ACB=90°,直线CP不过点A,B,且不平分∠ACB,点B关于直线CP的对称点为E,直线AE交直线CP于点F.(1)如图1,直线CP与线段AB相交,若∠PCB=25°,求∠CAF的度数;(2)如图1,当直线CP绕点C旋转时,记∠PCB=α(0°<α<90°,且α≠45°).①∠FEB的大小是否改变,若不变,求出∠FEB的度数;若改变,请用含α的式子表示).②找出线段AF,EF,BC的数量关系,并给出证明.(3)如图2,当直线CP在△ABC外侧,且0°<∠ACP<45°时.若BC=5√2,EF=8,求CF的长.24. 2018个人排成一个排从排头向排尾1至2报数,再从排尾向排头1至5报数,两次报到的数都为偶数的共有多少人?25. 如图线段AB是辆轿车油箱中剩余油量y(升)关于行驶时间x(小时)的函数图象,请解答下列问题:(1)写出y关于x的函数解析式,并写出函数定义域;(2)轿车行驶1小时后油箱中的剩余油量是多少升?(3)当油箱中剩余油量为12升时,轿车油表灯亮.①试问轿车行驶多少小时后油表灯亮?②如果轿车的行驶速度平均每小时80千米,问轿车油表灯亮后最多还能行驶多少千米?26. 在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.【答案与解析】1.答案:B解析:解:四个汉字中,可以看作轴对称图形的是:营,口,共2个.故选:B.利用轴对称图形定义判断即可.此题考查了轴对称图形,熟练掌握轴对称图形的定义是解本题的关键.2.答案:D解析:解:∵a m=3,a n=12,∴a2m−n=(a m)2÷a n=9÷1 2=18.故选:D.直接利用同底数幂的除法运算法则计算得出答案.此题主要考查了同底数幂的除法运算,正确将原式变形是解题关键.3.答案:D解析:解:A、打开电视,它正在播广告,是随机事件,故本选项错误;B、掷两枚质地均匀的骰子,点数之和一定大于6是不确定事件,故本选项错误;C、某射击运动员射击一次,命中靶心是随机事件,故本选项错误;D、早晨的太阳从东方升起是必然事件,故本选项正确;故选:D.根据事件的分类判断,必然事件就是一定发生的事件,根据定义即可解决.本题考查的是随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.4.答案:C解析:解:当∠1=∠2时,MN//PQ;∵AB//CD,∴∠1+∠3=∠2+∠4,∴当∠3=∠4时,∠1=∠2,∴MN//PQ;当∠2=∠3时,不能判断MN//PQ;当∠PEG=∠MFG时,MN//PQ.故选C.根据同位角相等,两直线平行可对A、D进行判断;根据平行线的性质由AB//CD得∠1+∠3=∠2+∠4,则根据同位角相等,两直线平行可对B进行判断;根据平行线的判定方法对C进行判断.本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等.5.答案:B解析:解:∵将△ABC沿AC方向平移到△DEF位置,∴AD=CF=4,∵AB=AC,∴在直角三角形ABF中,AF=AC+CF=AB+4,根据勾股定理可得:AB2+BF2=AF2,即AB2+82=(AB+4)2,解得:AB=6,故选:B.根据平移的性质和勾股定理解答即可.此题考查等腰三角形的性质,关键是根据平移的性质和勾股定理解答.6.答案:C解析:解:过P作PD⊥OB于D,∵PC⊥OA,PD⊥OB,OP平分∠AOB,∴PC=PD,∵点P到OA边的距离等于10,∴PD=PC=10,∴PQ≥10(当Q与点D重合时,PQ=10),故选:C.过P作PD⊥OB于D,根据角平分线的性质得出PC=PD=10,再根据垂线段最短得出即可.本题考查了角平分线的性质和垂线段最短,能求出PD=PC是解此题的关键.7.答案:B解析:解:当a m=5,a n=2时,a2m−n=a2m÷a n=(a m)2÷a n=52÷2=25,2故选:B.将原式变形为a2m−n=a2m÷a n=(a m)2÷a n,再代入计算可得.本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方和幂的乘方及同底数幂的除法运算法则.8.答案:D解析:解:y=x2−1中,x、y是变量,−1是常量,故选:D.根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得x、y是变量.此题主要考查了常量和变量的定义,管家暗示正确理解定义的意思.9.答案:B解析:试题分析:根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.A、应为x3+x3=2x3,故本选项错误;B、x⋅x2=x3,正确;C、应为(−x3)2=x6,故本选项错误;D、应为x6÷x3=x3,故本选项错误.故选B.10.答案:B解析:解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.11.答案:B解析:解:由图形知阴影部分的面积是大矩形面积的14,∴飞镖落在阴影区域的概率是14,故选:B.由图形知阴影部分的面积是大矩形面积的14,据此可得答案.本题主要考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.12.答案:B解析:解:由图形可得:第一个矩形中阴影部分的面积m=12(x+y+z)b=12ab;第二个矩形中阴影部分的面积n=12(c+d)a=12ab;∴m=n.故选:B.设长方形的长为a,宽为b,各线段的长度如图所示,则可表示出两个矩形中阴影部分的面积,从而可得出m、n的关系.此题考查了矩形的性质及三角形的面积,属于基础题,解答本题的关键是设出一些未知线段的长度,表示出各阴影部分的面积,难度一般.13.答案:C解析:此题考查了矩形的性质、折叠的性质、勾股定理以及等边三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.根据题意易证得△EFB′是等边三角形,继而可得△A′B′E中,B′E=2A′E,A′B′=√3A′E=√3AE,结合矩形面积以及AE=B′D,可求出AE,AD的长,继而求得答案.解:在矩形ABCD中,∵AD//BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°,∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°−60°=30°,∴B′E=2A′E,A′B′=√3A′E=√3AE,∵矩形的面积为16√3,AE=B′D,则AD=4AE,AB=√3AE,则AD·AB=4√3AE2=16√3,∴AE=2,AD=8,∵AD=AE+DE=8,AE=2,∴DE=6,故选C.14.答案:B解析:解:如图,∵四边形CDEG与ABGF都是正方形,∴DE=CG=CD=EG=b,AB=BG=GF=FA=a,∴剩余图形的周长=AB+BC+CD+DE+EF+FA=AB+BC+EG+CG+EF+FA=AB+BG+GF+FA=4a.故选:B.利用平移可得剩余图形的周长是大正方形的周长.本题考查了列代数式,平移的性质,正方形的性质,利用平移将线段DE、CD分别平移到CG、GE 是解题的关键.15.答案:D解析:本题考查三角形全等的判定,根据所给条件,判断是否符合四种三角形全等的判定方法即可.解:由图形可知,甲有两角和△ABC对应相等,但这两角的夹角不对应,不能判断两个三角形全等,乙有两角及一角的对边对应相等,可以判定两个三角形全等,丙有两边及其夹角对应相等,可以判定两个三角形全等,根据全等三角形的判定得,乙、丙正确.故选D.16.答案:C解析:解:∵AF为△ACD的中线,△AFC的面积为2,∴S△ACD=2S△AFC=4,∵△ABC沿直线AC翻折得到△ADC,∴S△ABC=S△ADC,BD⊥AC,BE=ED,=8,∴S四边形ABCD×AC×BD=8,∴12∵BE=2,AE=3,∴BD=4,∴AC=4,∴CE=AC−AE=4−3=1.故选:C.由三角形中线的性质得出S△ACD=2S△AFC=4,由折叠的性质可得出S△ABC=S△ADC,BD⊥AC,BE= ED,则可得出答案.本题考查了折叠的性质,三角形的面积,熟练掌握折叠的性质是解题的关键.17.答案:−1.010123×10−4解析:解:−0.0001010123=−1.010123×10−4.故答案为:−1.010123×10−4.绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18.答案:25°解析:本题主要考查的是三角形内角和定理和外角的性质,熟知三角形内角和是180°是解答此题的关键.由题中角平分线可得∠E=∠ECF−∠EBC=12∠ACF−12∠ABC,进而得出∠A=∠ACF−∠ABC,得到∠A和∠E的关系即可得出结论.解:如图,∵EB、EC是∠ABC与∠ACF的平分线,∴∠ECF=12∠ACF=∠E+∠EBC=∠E+12∠ABC,∴∠E=12∠ACF−12∠ABC,∴∠A=∠ACF−∠ABC,∵∠A=50°,∴∠E=12∠A=25°.故答案为25°.19.答案:70°解析:解:如图,连接AA′,∵∠1是△AA′E的外角,∴∠1=∠EAA′+∠EA′A,同理可得,∠2=∠DAA′+∠DA′A,由折叠可得,∠EAD=∠EA′D,∴∠1+∠2=∠EAA′+∠EA′A+∠DAA′+∠DA′A=2∠A=140°,∴∠A=70°;故答案为:70°.连接AA′,依据∠1是△AA′E的外角,可得∠1=∠EAA′+∠EA′A,同理可得,∠2=∠DAA′+∠DA′A,再依据角的和差关系进行计算即可.本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.20.答案:解:(1)(8x4−6x3−4x2+10x)÷(−2x)=−4x3+3x2+2x−5;(2)(x+2y−1)(x−2y+1)=[x+(2y−1)][x−(2y−1)]=x2−(2y−1)2=x2−4y2+4y−1;(3)20152−2014×2016=20152−(2015−1)×(2015+1)=20152−20152+1=1.解析:(1)根据多项式除以单项式法则进行计算即可;(2)先变形,再根据平方差公式进行计算即可;(3)先变形,再根据平方差公式进行计算,最后合并即可.本题考查了整式的混合运算和实数的运算的应用,能正确根据运算法则进行计算和化简是解此题的关键,注意:运算顺序.21.答案:解:(1)∠GHC=∠FEC,理由:∵EF//BC,∴∠FEC+∠C=180°,∵GH//AC,∴∠GHC+∠C=180°,∴∠GHC=∠FEC;(2)∵EF//BC,∠C=54°,∴∠FEC+∠C=180°,∴∠FEC=126°,∵EI平分∠FEC,∴∠FEI=63°,∴∠EIC=63°,∵DI//AB,∠B=49°,∴∠DIC=49°,∴∠EID=14°.解析:(1)依据同角的补角相等,即可得到∠GHC=∠FEC;(2)依据平行线的性质以及角平分线的定义,即可得到∠EID的度数.本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补.22.答案:解:(1)抽查总体数m=50+100+200+300+400+500=1550,次品件数n=0+4+16+19+24+30=93,=0.06.这批衬衣中任抽1件是次品的概率为931550(2)根据(1)的结论:这批衬衣中任抽1件是次品的概率为0.06,则600×0.06=36(件).答:准备36件正品衬衣供顾客调换.解析:(1)根据概率的求法,找准两点:1、符合条件的情况数目;2、全部情况的总数;二者的比值就是其发生的概率;(2)需要准备调换的正品衬衣数=销售的衬衫数×次品的概率,依此计算即可.此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m.种结果,那么事件A的概率P(A)=mn23.答案:解:(1)如图(1)a,连接CE,∵B、E关于CP对称,∴CB=CE,∠ECP=∠PCB=25°,∵CB=CA,∴CE=CA,∵∠ACB=90°,∴∠ACE=40°,∴∠CAF=70°;(2)①如图(1),∠FEB的大小不变,当PC在CB的上方时,如图(1)a,∵∠PCB=α,则∠ECP=α,∴∠ACE=90°−2α,∠AEC=45°+α,∠CEB=90°−α,∴∠AEB=135°∴∠FEB=45°;当PC在CB的下方时,如图(1)b,连接CE,∵∠PCB=∠ECP=α,∴∠ACE=90°+2α,∠AEC=45°−α,∠CEB=90°−α,∴∠AEB=∠FEB=∠CEB−∠AEC=(90°−α)−(45°−α)=45°,综上,∠FEB的大小不变,都是45°;②AF2+EF2=2BC2,理由是:连接FB,∵点B关于直线CP的对称点为E,∠FEB=∠FBE=45°,∴∠AFB=90°,∴AF2+FB2=AB2,∵AB2=2BC2,EF=BF,∴AF2+EF2=2BC2;(9分)(3)连接BF,过C作CH⊥AE,同(2):记∠PCB=α,则∠PCE=α∴∠ACP=α−90°∴∠ACE=2α−90°∵AC=CE∴∠AEC=180°−(2α−90°)2=135°−α∵∠CEB=α−90°∴∠FEB=α−90°+135°−α=45°可得:∠EFC=45°,∴∠EFC=∠BFC=45°∴∠AFB=90°同理得:AF2+EF2=2BC2,∵BC=5√2,EF=8,∴AF=6,∴AE=14,∵BC=CE=AC,∴AH=7,∴FH=1,∴CF=√2.解析:(1)如图1,根据轴对称的性质得:CB=CE,∠ECP=∠PCB=25°,由等边对等角和三角形内角和可得结论;(2)①存在两种情况:当P在直线BC的上方时,根据CB=CE,CP⊥BE,得∠PCB=∠ECP=α,计算∠AEC=45°+α,∠CEB=90°−α,根据角的和可得∠AEB=135°,最后由平角的定义得结论;当P在直线BC的下方时,同得可得∠FEB的度数是45°;②连接FB,证明∠AFB=90°,根据勾股定理可得结论;(3)连接BF,过C作CH⊥AE,同(2)可得:∠EFC=45°,AF2+EF2=2BC2,根据△ACE是等腰三角形和勾股定理可计算CF的长.本题是三角形的综合题,考查了等腰直角三角形的性质和判定、轴对称的性质、线段垂直平分线的性质、等腰三角形的性质以及勾股定理,解决问题的关键是结合图形,根据参数表示各角的度数,解决问题.24.答案:解:这2018人按排头到排尾的顺序编为1~2018号.显然编号为偶数的第一次报数时都报偶数2;第二次报数时,2018~2009十人中,由于最先是由偶数号2018开始报,前5人报名中,偶数号的人报的都是奇数,奇数号的人报的都是偶数,后5人从2013号开始报,则2个偶数号的人报到偶数,3个奇数号的人报到奇数.接下来2008~1999十人也是同样的情况,即每10人只有2人是两次报数均为偶数.∵2018÷10=201……8,∴从2018~9号,两次报偶数的有201×2=402人,最后的8~1号中,前五人中没有,只有后三人中有1人,∴两次报数均为偶数的人数是402+1=403,答:两次报到的数都为偶数的共有403人.解析:根据题意,可以得到第一次报数为偶数的个数和第二次报数为偶数的个数,从而可以得到两次报到的数都为偶数的共有多少人.本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出两次报到的数都为偶数的人数.25.答案:解:(1)由图象可知:A(0,60),B(4,0),设y =kx +b ,∴{60=b 0=4k +b, 解得:{k =−15b =60, ∴y =−15x +60,其中0≤x ≤4.(2)当x =1时,∴y =−15+60=45,答:轿车行驶1小时后油箱中的剩余油量是45升(3)①当y =12,∴12=−15x +60,∴x =3.2,答:轿车行驶3.2小时后油表灯亮.②轿车油表灯亮后,轿车还能行驶0.8小时,∴轿车油表灯亮后最多还能行驶80×0.8=64km ,答:轿车油表灯亮后最多还能行驶64km .解析:(1)由图象可知:A(0,60),B(4,0),根据待定系数法即可求出答案.(2)令x =1,代入y =−15x +60即可求出y 的值.(3)①令y =12,代入y =−15x +60即可求出x 的值.②轿车油表灯亮后,轿车还能行驶0.8小时,根据速度、路程、时间之间的关系即可求出答案. 本题考查一次函数,解题的关键是正确找出题中的等量关系,本题属于中等题型.26.答案:(1)解:如图1中,在AB 上取一点M ,使得BM =ME ,连接ME .在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=√3x,∵AB2+AE2=BE2,∴(2x+√3x)2+x2=22,∴x=√6−√2(负根已经舍弃),2∴AB=AC=(2+√3)⋅√6−√2,2∴BC=√2AB=√3+1.(2)作CQ⊥AC,交AF的延长线于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.解析:(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=√3x,根据AB2+AE2=BE2,可得方程(2x+√3x)2+x2=22,解方程即可解决问题.(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.。

2019-2020学年河北省保定市乐凯中学七年级下学期期末数学试卷 (含部分答案)

2019-2020学年河北省保定市乐凯中学七年级下学期期末数学试卷 (含部分答案)

2019-2020学年河北省保定市乐凯中学七年级第二学期期末数学试卷一.选择题(共16小题).1.下面的图形是用数学家名字命名的,其中是轴对称图形的是()A.赵爽弦图B.马螺线C.笛卡尔心形线D.斐波那契螺旋线2.下列运算中,计算结果正确的是()A.2x3•x2=2x6B.x8÷x2=x4C.(﹣3a2)3=﹣9a6D.(﹣a3)2=a63.下列事件:①掷一次骰子,向上一面的点数是3;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球;③13个人中至少有两个人的生日是在同一个月份;④射击运动员射击一次,命中靶心;⑤冬去春来;其中是必然事件的有()A.4个B.3个C.2个D.1个4.如图,下列条件能判定a∥b的是()A.∠2+∠3=180°B.∠1+∠2=180°C.∠1=∠2D.∠3=∠45.等腰三角形的两边长为4cm,8cm,则该三角形的周长为()A.16cm B.20cm C.16cm或20cm D.不能确定6.小明参加跳远比赛,他从地面踏板P处起跳落到沙坑中,两脚后跟与沙坑的接触点分别为A,B,小明未站稳,一只手撑到沙坑C点,则跳远成绩测量正确的图是()A.B.C.D.7.若a x=8,a y=4,则a2x+y的值为()A.32B.256C.12D.208.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.当空气温度为20℃时,声音5s可以传播1740mC.温度越高,声速越快D.当温度每升高10℃,声速增加6m/s9.某同学在计算﹣3x2乘一个多项式时错误的计算成了加法,得到的答案是x2﹣x+1,由此可以推断该多项式是()A.4x2﹣x+1B.x2﹣x+1C.﹣2x2﹣x+1D.无法确定10.小红家有一个小口瓶(如图所示),她很想知道它的内径是多少?但是尺子不能伸到里边直接测,于是她拿来了两根长度相同的细木条,并且把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么△OAB≌△OCD理由是()A.边边边B.角边角C.边角边D.角角边11.如图,在3×3的正方形网格中,有三个小正方形已经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A.B.C.D.12.如图,△ABC的面积为8,AD为BC边上的中线,E为AD上任意一点,连接BE,CE,图中阴影部分的面积为()A.5B.4C.3D.213.如图,对长方形ABCD中进行如下作图,依据尺规作图的痕迹,则∠a的余角等于()A.68°B.56°C.44°D.34°14.小淇用大小不同的9个长方形拼成一个大的长方形ABCD,则图中阴影部分的面积是()A.(a+1)(b+3)B.(a+1)(b+4)C.(a+3)(b+1)D.(a+4)(b+1)15.如图,AB=DC,BF=CE,需要补充一个条件,就能使△ABE≌△DCF,小明给出了四个答案:①AE=DF;②AE∥DF;③AB∥DC;④∠A=∠D,其中正确的是()A.①②B.①③C.①②③D.①②③④16.已知:如图①,长方形ABCD中,E是边AD上一点,且AE=6cm,AB=8cm,点P 从B出发,沿折线BE﹣ED﹣DC匀速运动,运动到点C停止.P的运动速度为2cm/s,运动时间为t(s),△BPC的面积为y(cm2),y与t的函数关系图象如图②,则下列结论正确的有()①a=7 ②b=10③当t=3s时△PED为等腰三角形④当t=10s时,y=12cm2A.1个B.2个C.3个D.4个二.填空题(本大题共3个小题;第17、18题各3分,第19题每空2分,共10分)17.把0.0308写成a×10n(1≤a<10,n为整数)的形式,则a为.18.如图,已知△ABC中,∠BAC=135°,现将△ABC进行折叠,使顶点B、C均与顶点A重合,则∠DAE的度数为.19.如图1,△ABC中,有一块直角三角板PMN放置在△ABC上(P点在△ABC内),使三角板PMN的两条直角边PM、PN恰好分别经过点B和点C.(1)若∠A=52°,则∠1+∠2=°;(2)如图2,改变直角三角板PMN的位置;使P点在△ABC外,三角板PMN的两条直角边PM、PN仍然分别经过点B和点C,∠1,∠2与∠A的关系是.三.解答题(本大题共7个小题,共68分)20.计算(1)﹣32+(﹣1)2020×(π﹣3)0﹣(﹣)﹣3(2)(﹣2x)3•x6÷(﹣3x3)2(3)5m(m﹣n)﹣(5m+n)(m﹣n)(4)先化简,再求值:a(a+8)﹣(a+3)(a﹣3)+(a﹣2)2,其中a2+4a+2=0 21.在△ABC中,(1)如图①,点D、E、F分别在边AB、BC、AC上,且DE∥AC.DF∥BC,若∠ACB =55°,求∠EDF的度数.请填空:解:∵DE∥AC(已知)∴∠EDF=∠()∵DF∥BC∴∠=∠ACB()∴∠EDF=∠ACB()∵∠ACB=55°∴∠EDF=应用:(2)如图②,点D、E、F分别在边BA、BC、CA的延长线上,且DE∥AC,DF∥BC,若∠ACB=α,求∠EDF的大小为.(用含α的代数式表示)22.已有两根长度分别为3cm和5cm的线段,现将7张完全相同的卡片上分别写上2cm、3cm、4cm、5cm、6cm、7cm、8cm后投入A袋,从A袋中随机取出一张卡片,以卡片上的数据作为第三条线段的长度,回答以下问题:(1)卡片上的哪些数据能够与长为3cm和5cm的线段组成三角形?(2)求取出卡片上的数据能够与长为3cm和5cm的线段组成三角形的概率;(3)若第一次从袋中取出写有5cm的卡片不放回,再从A袋中随机取出一张卡片,卡片上的数据能够与长为3cm和5cm的线段组成等腰三角形的概率是.23.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD=°;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则△PMN的周长为.24.仔细观察下列等式:第1个:52﹣12=8×3第2个:92﹣52=8×7第3个:132﹣92=8×11第4个:172﹣132=8×15…(1)请你写出第6个等式:;(2)请写出第n个等式,并加以验证;(3)运用上述规律,计算:8×7+8×11+…+8×399+8×403.25.甲骑摩托车从A地去B地.乙开汽车从B地去A地.同时出发,匀速行驶.各自到达终点后停止.甲、乙两人间的距离为S(km)与甲行驶的时间为t(h)之间的关系如图所示.(1)以下是点M、点N、点P所代表的实际意义,请将M、N、P填入对应的括号里.①甲到达终点.②甲乙两人相遇.③乙到达终点.(2)AB两地之间的路程为千米;(3)求甲、乙各自的速度;(4)甲出发h后甲、乙两人相距180千米;26.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE=,∠DCE=,BC、DC、CE之间的数量关系为;(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程).参考答案一、选择题1.A;2.A;3.A;4.A;5.A;6.A;7.A;8.A;9.A;10.A;11.A;12.A;13.A;14.A;15.A;16.A;。

河北省保定市竞秀区乐凯中学2018-2019学年八上数学期末试卷

河北省保定市竞秀区乐凯中学2018-2019学年八上数学期末试卷

河北省保定市竞秀区乐凯中学2018-2019学年八上数学期末试卷一、选择题1.若分式2424x x --的值为零,则x 等于( ) A .0B .2C .±2D .﹣2 2.若关于x 的方程4233x m x x +=+--有增根,则m 的值是( ) A .7B .3C .5D .0 3.如果把分式-x x y中的x 、y 的值都扩大为原来的2倍,那么分式的值( ) A .扩大为原来的2倍 B .缩小为原来的一半C .扩大为原来的4倍D .保持不变4.在下列各式中,运算结果为x 2的是( )A .x 4-x 2B .x 6÷x 3C .x 4⋅x -2D .(x -1)2 5.下列计算正确的是( )A.a•a 2=a 2B.(a 2)2=a 4C.3a+2a =5a 2D.(a 2b )3=a 2•b 3 6.现定义一种运算“⊕”,对任意有理数m 、n,规定:m ⊕n=mn(m −n),如1⊕2=1×2(1−2)=−2,则(a+b) ⊕ (a −b)的值是( )A.2ab 2−2b 2B.2ab 2+2b 2C.2a 2b −2b 3D.2ab −2ab 27.如图,在△ABC 中,AB =6,AC =4,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 分别交AB 、AC 于M 、N ,则△AMN 的周长为( )A .12B .10C .8D .不确定8.点M(﹣2,1)关于y 轴的对称点N 的坐标是( )A .(﹣2,﹣1)B .(2,1)C .(2,﹣1)D .(1,﹣2)9.下列手机软件图标中,是轴对称图形的是( )A. B. C. D.10.如图,OA 平分BAC ∠,OM AC ⊥于点M ,ON AB ⊥于点N ,若ON 8cm =,则OM 长为( )A.4cmB.5cmC.8cmD.20cm11.如图,在△ABC 中,BD 、CD 分别是∠ABC 、∠ACB 的平分线,过点D 作EF ∥BC 分别交AB ,AC 于点E ,F ,已知△ABC 的周长为6,BC=6(0)y x x =>,△AEF 的周长为6(0)y x x =>,则表示6(0)y x x =>与6(0)y x x=>的函数图象大致是( )A .B .C .D .12.已知:如图,点P 是线段AB 外,且PA PB =,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A.作APB ∠的平分线PC 交AB 于点CB.过点P 作PC AB ⊥于点C 且AC BC =C.取AB 中点C ,连接PCD.过点P 作PC AB ⊥,垂足为C13.如图,已知//a b ,直角三角板的直角顶点在直线b 上,若158∠=,则下列结论正确的是( )A.342∠=B.4138∠=C.542∠=D.258∠=14.要组成一个三角形,三条线段长度可取( )A .3、5、9B .2、3、5C .18、9、8D .9、6、1315.有下列长度的三条线段,能组成三角形的是( )A .2cm ,3cm ,4cmB .1cm ,4cm ,2cmC .1cm ,2cm ,3cmD .6cm ,2cm ,3cm二、填空题16.计算:=_____.17.将一个完全平方式展开后得到4x 2﹣mx+121,则m 的值为_____.【答案】±4418.以下四个命题:①全等三角形的面积相等;②最小角等于50°的三角形是锐角三角形;③等腰△ABC 中,D 是底边BC 上一点,E 是一腰AC 上的一点,若∠BAD=60°且AD=AE ,则∠EDC=30°;④将多项式2532xy y x y +-因式分解,其结果为-y(2x+1)(x-3).其中正确命题的序号为___________.19.三角形三个内角的比为1:3:5,则最大的内角是___________,最大的外角是__________.20.如图,在△ABC 中,AB =AC =10cm ,BC =8cm ,AB 的垂直平分线交AB 于点M ,交AC 于点N ,在直线MN 上存在一点P ,使P 、B 、C 三点构成的△PBC 的周长最小,则△PBC 的周长最小值为______ .三、解答题21.小明要把一篇社会调查报告录入电脑,当他以100字/分的速度录入文字时,经240分钟能完成录入,设他录入文字的速度为v 字/分时,完成录入的时间为t 分。

2023届河北省保定市初一下学期期末数学教学质量检测试题

2023届河北省保定市初一下学期期末数学教学质量检测试题

2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.2018年全国高考报名总人数是975万人,用科学记数法表示为( ) A .30.97510⨯人B .29.7510⨯人C .69.7510⨯人D .70.97510⨯人2.下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短;⑤同角或等角的余角相等;⑥经过直线外一点,有且只有一条直线与这条直线平行,其中假命题有( ) A .1个B .2个C .3个D .4个3.如图,在下列条件中,不能判定直线a 与b 平行的是( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°4.小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元,设每支铅笔x 元,每本笔记本y 元,则可列方程组( ) A .203011010585x y x y +=⎧⎨+=⎩B .201011030585x y x y +=⎧⎨+=⎩C .205110301085x y x y +=⎧⎨+=⎩D .520110103085x y x y +=⎧⎨+=⎩5.下列各式中,化简后能与2合并的是( ) A .12B .8C .23D .0.26.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( ) A .562.5元B .875元C .550元D .750元7.如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A .先向下平移3格,再向右平移2格B .先向下平移3格,再向右平移1格C .先向下平移2格,再向右平移1格D .先向下平移2格,再向右平移2格 8.已知关于x ,y 的方程组343x y ax y a+=-⎧⎨-=⎩,给出下列结论:①当2a =-时,x ,y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③当x ,y 都为正数时,112a -<<;其中正确的是( ) A .②③B .①②C .①③D .①②③9.在直角坐标系中,点 P ( 2 x - 6 , x - 5 ) 在第四象限,则 x 的取值范围为( ) A .3< x < 5B .-3 < x < 5C .-5 < x < 3D .-5 < x < -310.如图所示,AB CD ∥,则A ∠,E ∠,C ∠关系正确的是A .180A E C ∠+∠+∠=︒B .180C A E ∠-∠+∠=︒ C .180C E A ∠-∠+∠=︒D .C AE ∠=∠+∠二、填空题题11.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是 °.12.在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y+1,x+2)叫做点P (x ,y )的终结点,已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n ,若点P 1的坐标为(2,0),则点P 3的坐标为______.13.如图所示,在Rt ABC 中,90ACB ∠=︒,30ABC ∠=︒,将ABC 绕点C 顺时针旋转至A B C ''',使得点A '恰好落在AB 上,则旋转角度为______.(注:等腰三角形的两底角相等)14.写出命题“两直线平行,同旁内角互补.”的逆命题________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下学期期末数学试题含答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,满分30分)1在实数0,-2,,2中,最大的是()A0 B-2 C D22下列调查适合用抽样调查的是()A了解中央电视台《朗读者》节目的收视率B了解某校七年级班主任的身体健康情况C了解某班学生对“叙利亚”局势关注情况D对“解放军航母001A”下海前零部件的检查3下列各式中,正确的是()A B C D4已知方程组,则的值为()A-1 B0 C2 D35一元一次不等式组的解集在数轴上表示正确的是()6已知是方程组的解,则a、b的值为()A a=-1,b=3B a=1,b=3C a=3,b=1D a=3,b=-17关于、的方程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是()A B C D8一副直角三角板按如图所示的方式摆放,其中点C在FD的延长线上,且AB∥FC,则∠CBD的度数为()A30 B25 C20 D159不等式组的解集在数轴上表示正确的是()10如图,直角坐标平面oy内,动点P按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点P第2018次运动到点()A(2018,0) B(2018,0) C(2018,1) D(2018,-2)二、填空题(共5小题,每小题3分,满分15分)11计算:。

12点A(2,-3)在第象限13不等式组的最小整数解是。

14某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题。

如图所示,已知AB∥CD,∠BAE=87,∠DCE=121,则∠E的度数是。

15运行程序如图所示,规定:从“输入一个值”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么的取值范围是。

三、解答题(共8小题,满分75分)16(12分)(1)计算:(2)解方程组:17(8分)解不等式组并判断是否为该不等式组的解。

18(8分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行。

为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解 B、比较了解 C、基本了解D、不了解。

根据调查统计结果,绘制了如图所示的不完整的三种统计图表。

(1)本次调查的样本容量是,n= ;(2)请补全条形统计图;(3)学校准备开展冬奥会的知识竞赛,该校共有4000名学生,请你估计这所学校本次竞赛“非常了解”和“比较了解”的学生总数。

19(8分)如图,已知DCFP,∠1=∠2,∠FED=30,∠AGF=80,FH平分∠EFG(1)说明:DC∥AB;(2)求∠PFH的度数。

20(9分)规定:{}表示不小于的最小整数,如{4}=4,{-26}=-2,{-5}=-5。

在此规定下任意数都能写出如下形式:={}-b,其中(1)直接写出{},,+1的大小关系:;(2)根据(1)中的关系式解决下列问题:满足{+7}=4的的取值范围是;求适合{35-2}=2+的的值。

21(10分)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克。

大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元。

(1)大樱桃和小樱桃的进价分别是每千克多少元?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变。

但在运输过程中小樱桃损耗了20%。

若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?22(10分)如图1,将一副直角三角板放在同一条直线AB上,其中∠ONM=30,∠OCD=45(1)观察猜想将图1中的三角尺OCD沿AB的方向平移至图②的位置,使得点O与点N重合,CD与MN相交于点E,则∠CEN= (2)操作探究将图1中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图3,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;(3)深化拓展将图1中的三角尺OCD绕点O按沿顺时针方向旋转一周,在旋转的过程中,当边OC旋转时,边CD恰好与边MN平行。

(直接写出结果)23(10分)如图,在平面直角坐标系中,AB⊥轴,垂足为A,BC⊥y轴,垂足为C已知A(a,0),C(0,c),其中a,c满足关系式,点P从O点出发沿折线OA-AB-BC的方向运动到点C停止,运动的速度为每秒1个单位长度,设点P的运动时间为t秒。

(1)写出B点坐标;在运动过程中,当点P到AB的距离为2个单位长度时,t= ;(2)当时,在点P的运动过程中,设三角形ACP的面积为S,用含t的代数式表示S;(3)当点P在线段AB上的运动过程中,有一个角∠MPN=70,PM边与射线AO相交于点E,PN边与射线OC相交于点F,直接写出∠AEP与∠PFC的数量关系数学试卷参考答案1C 2A 3C 4D 5C 6B 7 A 8D 9A 10B118 12四 13 3 1434° 1511<≤2316(1)原式=-1+4-(2-3)……………………………………………………4分=3-2+3=1+3………………………………………………………6分(2),②代入①得+2+1=4,解得=1,…………………………………………2分把=1代入②得y=3.故方程组的解为;……………………………………………………6分17解:,∵由①得,<3,由②得,≥﹣1,……………………………………………………4分∴此不等式组的解集为:﹣1≤<3,………………………………………6分∵﹣<﹣1,∴=﹣不是该不等式组的解.……………………………………………8分18(1)400,n=40,……………………………………………………2分(2)400-40-60-140=160,补全条形统计图略。

…………………………………4分(3)4000 (10%+15%)=1000(名)答:这所学校本次竞赛“非常了解”和“比较了解”的学生总数为1000 ………8分19解:(1)∵DC∥FP,∴∠3=∠2,又∵∠1=∠2,∴∠3=∠1,∴DC∥AB;……………………………………………………4分(2)∵DC∥FP,DC∥AB,∠DEF=30°,∴∠DEF=∠EFP=30°,AB∥FP,又∵∠AGF=80°,∴∠AGF=∠GFP=80°,∴∠GFE=∠GFP+∠EFP=80°+30°=110°,又∵FH平分∠EFG,∴∠GFH=∠GFE=55°,∴∠PFH=∠GFP﹣∠GFH=80°﹣55°=25°.…………………………………8分20(1)≤{}<+1 …………………………………………………2分(2)﹣4<≤﹣3 …………………………………………………4分(3)由(1)得:35-2≤{35-2}<(35-2)+1,且2+为整数,∴35-2≤2+<(35-2)+1,解得:<≤,…………………………………………………6分∴<2+≤3,…………………………………………………7分∴整数2+为2,3,当2+=2时=当2+=3时=1…………………………………………………9分∴=或或=1.21解:(1)设小樱桃的进价为每千克元,大樱桃的进价为每千克y元,根据题意可得:,……………………………………………………3分解得:,……………………………………………………4分答:小樱桃的进价为每千克10元,大樱桃的进价为每千克30元……………5分(2)设大樱桃的售价为a元/千克,(1﹣20%)×200×16+200a﹣8000≥3200×90% …………………………8分解得:a≥416,答:大樱桃的售价最少应为416元/千克.………………………………10分22解:(1)105°;……………………………………………………2分(2)∵OD平分∠MON,∴∠DON=∠MPN=×90°=45°,∴∠DON=∠D=45°,∴CD∥AB,∴∠CEN=180°﹣∠MNO=180°﹣30°=150°;…………………………………8分(3)75°或255°时,边CD恰好与边MN平行………………………………10分23(1)B(6,﹣8),4或16 ……………………………………………………4分(2)如图1中,①当6<t≤14时,S=•A P•CB=•(t-6)•6=3t-18.………………………………………………6分②当14<t<20时,S=•PC•AB=•(20﹣t)•8=﹣4t+80,………………………………………8分综上略.(3)∠PFC+∠PEA=160°或∠PFC﹣∠AEP=20°…………………………………10分七年级下学期期末数学试题含答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题2分,共12分)1.若,y为实数,且|+2|+=0,则()2009的值为()A.1 B.﹣1 C.2 D.﹣22.为了解某校七年级500名学生身高情况,从中抽取了50名学生进行检测,这50名学生的身高是()A.总体 B.个体C.样本容量 D.总体的一个样本3.不等式组的解集在数轴上表示为()4.如图,直线a∥b,直线l与a,b分别交于点A,B,过点A作AC⊥b于点C,若∠1=50°,则∠2的度数为()A.130° B.50° C.40° D.25°5.如图所示,三角形ABC沿直线m向右平移a厘米,得到三角形DEF,下列说法中错误的是()A.AC∥DF B.CF∥AB C.CF=a厘米 D.BD=a厘米6.以二元一次方程组的解为坐标的点(,y)在平面直角坐标系的()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每小题3分,共24分)7.已知“与y的和不大于6”;用不等式表示为:.8.若式子在实数范围内有意义,则的取值范围是.9.若是关于、y的二元一次方程a﹣3y=1的解,则a的值为.10.妈妈煮一道菜时,为了了解菜的咸淡是否适合,于是妈妈取了一点品尝,这应该属于.(填普查或抽样调查)11.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=32°,则∠2= 度.12.如图,∠C=90°,将直角三角形ABC沿着射线BC方向平移5cm,得三角形A′B′C′,已知BC=3cm,AC=4cm,则阴影部分的面积为cm2.13.已知关于的不等式组的解集在数轴上表示如图所示,则的值为.14.两个同样的直角三角板如图所示摆放,使点F,B,E,C在一条直线上,则有DF∥AC,理由是.三、解答题(每小题5分,共20分)15.用适当的方法解方程组16.已知一个正数的平方根是2a﹣3与5﹣a,求正数.17.解不等式组并把它的解集在数轴上表示出来.18.如图,把一张长方形的纸片ABCD沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,E′的位置上,若∠EFG=58°.求∠2的度数.四解答题(每小题7分,共28分)19.(7分)列方程或方程组:鸡兔同笼问题是我国古代著名趣题之一.《孙子算经》中这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头从下面数,有94只脚.求笼中各有几只鸡和兔?20.(7分)小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.21.(7分)如图,AD∥BC,∠1=∠C,∠B=60°.(1)求∠C的度数;(2)如果DE是∠ADC的平分线,那么DE与AB平行吗?请说明理由.22.(7分)大学生小王积极相应“自主创业”的号召,准备投资销售一种进价为每件40元的小家电,通过试营销发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价(元)之间满足等式y=a+b,其中a、b为常数.(1)根据图中提供的信息,求a、b的值;(2)求销售该款家电120件时所获利润是多少?(提示:利润=实际售价﹣进价)五、解答题:(每小题8分,共16分)23.(8分)请你根据右框内所给的内容,完成下列各小题.(1)若m※n=1,m※2n=﹣2,分别求出m和n的值;(2)若m满足m※2<0,且3m※(﹣8)>0,求m的取值范围.24.(8分)威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?六解答题(每小题10分,共20分)25.(10分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a= ,b= ;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的15倍,甲组得分最少为多少?26.(1)问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC= .(2)问题迁移:如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.当点P在A、B两点之间运动时,∠CPD、∠α、∠β之间有何数量关系?请说明理由.(3)结论运用:如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β之间的数量关系.七年级下学期期末数学试题含答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

相关文档
最新文档