《九章算术》中的多元一次方程组及其解法

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《九章算术》中的多元一次方程组及其解法

《九章算术》方程章中所谓“方程”是专指多元一次方程组而言,与现在“方程”的含义并不相同.《九章算术》中多元一次方程组的解法,是将它们的系数和常数项用算筹摆成“方阵”(所以称之谓“方程”).消元的过程相当于现代大学课程高等代数中的线性变换.

方程章第一题:“今有上禾(指上等稻子)三秉(指捆)中禾二秉,下禾一秉,实(指谷子)三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗.问上、中、下禾实一秉各几何”,这一题若按现代的记法.设x、y、z依次为上、中、下禾各一秉的谷子数,则上述问题是求解三元一次方程组:

《九章算术》用算筹演算:

“方程术曰,置上禾三秉,中禾二秉,下禾一秉,实三十九斗,于右方.中、左行列如右方(图1-28)以右行上禾徧乘(即遍乘)中行而以直除(这里“除”是减,“直除”即连续相减.)……(引文下略)”.

现将遍乘直除法解方程组的过程,按算筹演算如图1-29所示:

答曰:上禾一秉,九斗四

这题的答案《九章算术》方程章第一题“

《九章算术》方程章中共计18个题,其中二元的8题,三元的6题,四元、五元的各2题都用上述的演算法解决,直除法是我国古代解方程组的最早的方法.

多元一次方程组解法在印度最早出现于第七世纪(约628年)在欧洲最早提

出三元一次方程组和解法的是16世纪中(1559年)的法国数学家布丢(Buteo).至于线性方程组的一般理论直到18世纪(1779年)才由法国数学家别

朱(E.Be-zout)建立.可见《九章算术》中的方程术,不但是中国古代数学中的伟大成就,在世界数学史上,也是一份值得我们自豪的宝贵遗产.

相关文档
最新文档