解三角形中有关图形的计算
用共底或等高三角形面积比的性质解有关面积问题
用共底或等高三角形面积比的性质解有关面积问题
等高三角形或共底三角形面积比的性质是一个重要而经典的数学概念。
其本质
思维可以应用到解决涉及到三角形面积计算的实际问题。
等高三角形指的是两个三角形,其具有相同高度h,并向同一方向延伸,但两
个三角形的底边长度可以不同,记作a和b。
则满足该形状的两个三角形的面积比
等于其对应的底边长度的比,即:
S1/S2=a/b
同理,共底三角形则指两个三角形,其具有相同的底边长,该共边因此具有相
同的斜边,但高可以不相等;那么其面积比为:
S1/S2=h1/h2
等高或共底三角形的面积比的性质可以应用于许多实际的问题,包括工程计算、雕塑制作,绘画等。
例如,有一个a,b两边长相同的三角形,面积分别是S1,
S2,若想在底边变长的情况下,让两个三角形保持面积比不变,可以利用等高三角形或共底三角形面积比的性质,即改变高h即可。
进一步,等高或共底三角形可进一步应用于计算其他形状多边形的面积和周长,例如以多边形mi1,mw2构成的矩形,这些相关性质可与等高或共底三角形面积比
结合。
例如,以矩形边长mi和mw构成四边形时,其面积可由四个等高三角形的面积之和得出;矩形的周长同样可通过两个等高三角形的高之和来计算。
综上所述,等高或共底三角形面积比的性质可广泛应用于涉及三角形、多边形
面积计算的实际问题,因此,解答包括计算面积和周长的问题也非常容易。
解三角形题型总结
解三角形题型分类解析类型一:正弦定理1、计算问题: 例1、(2013•北京)在△ABC 中,a=3,b=5,sinA=,则sinB=_________例2、已知∆ABC 中,∠A 60=︒,a =sin sin sin a b c A B C ++++=.例3、在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2asinB=b . 求角A 的大小;2、三角形形状问题例3、在ABC ∆中,已知,,a b c 分别为角A ,B ,C 的对边,1)B A b cos cos a =试确定ABC ∆形状。
2)若cos cos a B b A=,试确定ABC ∆形状。
4)在ABC ∆中,已知A b B a tan tan 22=,试判断三角形的形状。
5)已知在ABC ∆中,C c B b sin sin =,且C B A 222sin sin sin +=,试判断三角形的形状。
例4、(2016年上海)已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于______类型二:余弦定理1、 判断三角形形状:锐角、直角、钝角在△ABC 中,若222a b c +=,则角C 是直角;若222a b c +<,则角C 是钝角;若222a b c +>,则角C 是锐角.例 1、在△ABC 中,若a =9,b =10,c =12,则△ABC 的形状是_________。
2、求角或者边例2、(2016年天津高考)在△ABC 中,若AB ,120C ∠= ,则AC =.例 3、在△ABC 中,已知三边长3a =,4b =,c =,求三角形的最大内角.例 4、在△ABC 中,已知a=7,b=3,c=5,求最大的角和sinC?3、余弦公式直接应用例 5、:在∆ABC 中,若222a b c bc =++,求角A .例 6、:(2013重庆理20)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2ab =c 2.(1)求C ;例7、设△的内角,,所对的边分别为,,. 若,则角例8、(2016年北京高考) 在ABC 中,.(1)求 的大小;(2的最大值.类型三:正弦、余弦定理基本应用例1.【2015高考广东,理11】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若a = 1sin 2B =,6C =π,则b =. 例2.1)(22=-+acb c a ,则B 等于。
解直角三角形
〖归纳小结二〗
• 转化思想贯穿全章。把实际问题转化为数学问题。 • 数形结合思想。画出图形,使已知元素和未知元素更直观。 • 函数思想。锐角的四个三角函数,角度与函数值一一对应。 • 方程思想。若某个元素无法直接求解,往往设未知数,根据三角形
A
BC
E
D
外国船只,除特许外,不得进入我国海洋100海里以内的 区域。如图,设A、B是我们的观察站,A和B之间的距离为 160海里,海岸线是过A、B的一条直线。一外国船只在P点, 在A点测得∠BAP=450,同时在B点测得∠ABP=600,问此时 是否要向外国船只发出警告,令其退出我国海域.
100海里
距离.(精确到1米)
A 2000 B
解:在RtΔABC中,
D 300
∵ ∠CAB = 900 - ∠DAC = 600
∵ tan ∠CAB = BC
AB
C
∴ BC = AB·tan ∠CAB
=2000× tan 600 ≈3464(米)
又∵cos ∠CAB =
AB AC
AC
AB COS 600
2000 400(0 米) 0.5
A
B
C
例1 如图所示,一棵大树在一次强烈的 地震中于离地面10米处折断倒下,树顶落 在离树根24米处.大树在折断之前高多少?
解:设RtΔABC中,∠C=900,
AC =10m,BC=24m.
10m
则 AB= BC 2 AC 2
242 102 = 26(米)
24m A
26+AB,小强从点B沿山坡向上
解直角三角形(5种题型)(解析版)
解直角三角形(5种题型)【知识梳理】一.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A=∠A的对边斜边=ac,cos A=∠A的邻边斜边=bc,tan A=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)二.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.三.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.四.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.在视线与水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角;五.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.【考点剖析】一.解直角三角形1.(2022春•闵行区校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,点D在边AC上,且AD =2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余弦值.【分析】(1)根据题意,AC=BC=6,AD=2CD,可得AD的长度,根据等腰直角三角形的性质可得AB=√2AC,由AE=sin45°•AD的长度,则BE=AB﹣AE,计算即可得出答案;(2)过点E作EF⊥BC,垂足为F,如图,根据等腰直角三角形的性质可得,EF=BF=sin45°•BE,则CF=BC﹣BF,根据勾股定理可得CE=√EF2+CF2,在Rt△ECF中,由cos∠ECB=CFCE 计算即可得出答案.【解答】解:(1)∵AC=BC=6,AD=2CD,∴AD=4,∵∠ACB=90°,∴AB=√2AC=6√2,∴∠DAE=45°,DE⊥AB,∴AE=sin45°•AD=√22×4=2√2,∴BE=AB﹣AE=6√2−2√2=4√2;(2)过点E作EF⊥BC,垂足为F,如图,∵∠B=45°,∴EF=BF=sin45°•BE=√22×4√2=4,∴CF=BC﹣BF=2,∴CE=√EF2+CF2=√42+22=2√5,在Rt△ECF中,cos∠ECB=CFCE =2√5=√55.【点评】本题主要考查了解直角三角形及等腰直角三角形形的性质,应用等腰直角三角形性质进行计算是解决本题的关键.2.(2022春•浦东新区校级期中)如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=45.(1)求高CD的长;(2)求tan∠EAB的值.【分析】(1)在Rt△BCD中,由已知条件cos∠ABC=BDBC =45,即可算出BC的长,根据勾股定理即可得出答案;(2)过点E作EF⊥AB,垂足为F,如图,可得CD∥EF,由E为BC的中点,可得EF是△BCD的中位线,即可算出EF=12CD,DF的长度,即可算出AF=AD+DF的长度,在Rt△AEF中,根据tan∠EAB=EFAF即可得出答案.【解答】解:(1)在Rt△BCD中,∵cos∠ABC=BDBC =45,∴4BC =45,∴BC=5,∴CD=√BC2−BD2=√52−42=3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×3=32,DF=12BD=12×4=2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB=EFAF =3210=15.【点评】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.3.(2022•黄浦区二模)如图,在Rt△ABC中,∠ACB=90°,AC=3,sin∠ABC=13,D是边AB上一点,且CD=CA,BE⊥CD,垂足为点E.(1)求AD 的长; (2)求∠EBC 的正切值.【分析】(1)过C 点作CH ⊥AD 于H ,如图,利用等腰三角形的性质得到AH =DH ,再证明∠ACH =∠ABC ,则sin ∠ACH =sin ∠ABC =13,然后利用正弦的定义求出AH ,从而得到AD 的长;(2)在Rt △ABC 中先求出AB =9,则BD =7,再证明∠HCD =∠EBD ,则sin ∠EBD =DE BD =13,利用正弦的定义求出DE =73,接着利用勾股定理计算出BE ,然后根据正切的定义求解.【解答】解:(1)过C 点作CH ⊥AD 于H ,如图, ∵CD =CA , ∴AH =DH ,∵∠ABC+∠BCH =90°,∠ACH+∠BCH =90°, ∴∠ACH =∠ABC , ∴sin ∠ACH =sin ∠ABC =13, 在Rt △ACH 中,sin ∠ACH =AH AC =13,∴AD =2AH =2;(2)在Rt △ABC 中,sin ∠ABC =AC AB=13,∴AB =3AC =9,∴BD =AB ﹣AD =9﹣2=7, ∵∠E =90°, 而∠EDB =∠HDC , ∴∠HCD =∠EBD , ∴sin ∠EBD =DE BD =13,∴DE =13BD =73,∴BE =√72−(73)2=14√23,在Rt △EBC 中,tan ∠EBC =EC EB=3+7314√23=4√27.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质. 二.解直角三角形的应用4.(2022•长宁区二模)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光的照射,所以冬至是选房买房时确定阳光照射的最好时机.某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼前面20米处要盖一栋高25米的新楼.已知上海地区冬至正午的阳光与水平线夹角为29°(参考数据:sin29°≈0.48;cos29°≈0.87;tan29°≈0.55)(1)冬至中午时,超市以上的居民住房采光是否有影响,为什么?(2)若要使得超市全部采光不受影响,两楼应至少相距多少米?(结果保留整数)【分析】(1)延长光线交CD 于点F ,过点F 作FG ⊥AB ,垂足为G ,根据题意可得∠AFG =29°,GF =BC =20米,GB =FC ,然后在Rt △AGF 中,利用锐角三角函数的定义求出AG ,从而求出GB 的长,进行比较,即可解答;(2)延长光线交直线BC 于点E ,根据题意可得∠AEB =29°,然后在Rt △ABE 中,利用锐角三角函数的定义求出BE 的长,即可解答.【解答】解:(1)冬至中午时,超市以上的居民住房采光有影响,理由:延长光线交CD于点F,过点F作FG⊥AB,垂足为G,则∠AFG=29°,GF=BC=20米,GB=FC,在Rt△AGF中,AG=FG•tan29°≈20×0.55=11(米),∵AB=25米,∴GB=AB﹣AG=25﹣11=14(米),∴FC=GB=14米,∵14米>6米,∴冬至中午时,超市以上的居民住房采光有影响;(2)延长光线交直线BC于点E,则∠AEB=29°,在Rt△ABE中,AB=25米,∴BE=ABtan29°≈250.55≈45(米),∴若要使得超市全部采光不受影响,两楼应至少相距45米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2022•徐汇区二模)激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.【点评】本题考查了解直角三角形的应用,分式方程的应用,视点,视角和盲区,解决本题的关键是根据题意找到等量关系准确列出方程.6.(2022•崇明区二模)为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)点在最高位置与最低位置时的高度差.(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?【分析】(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,然后在Rt△BOD中,利用锐角三角函数的定义求出OD的长,进行计算即可解答;(2)先设小杰原计划x小时完成锻炼,然后根据实际每小时的能量消耗﹣原计划每小时的能量消耗=100,列出方程进行计算即可解答.【解答】解:(1)过点B作BD⊥OA垂足为D,由题意得:OB=OA=80cm,在Rt△BOD中,∠BOA=25°,∴OD=BO•cos25°≈80×0.906=72.48(cm),∴AD=OA﹣OD=80﹣72.48≈7.5(cm),∴踏板中心点在最高位置与最低位置时的高度差约为7.5厘米;(2)设小杰原计划x小时完成锻炼,由题意得:,解得:,经检验:都是原方程的根,但不符合题意,舍去,答:小杰原计划锻炼1小时完成.【点评】本题考查了解直角三角形的应用,分式方程的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.(2022•宝山区二模)某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)【分析】(1)根据每级台阶高度都是0.25米,然后计算出3个台阶的总高度,即可解答;(2)连接BC,根据题意可得:AB=DC,AB∥DC,从而可得四边形ABCD是平行四边形,然后利用平行四边形的性质可得AD=BC,AD∥BC,从而求出∠CBH=66°,最后在Rt△CBH中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)∵每级台阶高度都是0.25米,∴BH=3×0.25=0.75(米),∴点B与点C离地面的高度差BH的长度为0.75米;(2)连接BC,由题意得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAB=∠CBH=66°,在Rt△CBH中,BH=0.75米,∴BC=≈=1.875(米),∴扶手AD的长度约为1.875米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三.解直角三角形的应用-坡度坡角问题8.(2021秋•闵行区期末)如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为.【分析】根据坡度的概念计算,得到答案.【解答】解:斜面AB的坡度为20:30=1:1.5,故答案为:1:1.5.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.9.(2022春•浦东新区校级期中)工厂的传送带把物体从地面送到离地面5米高的地方,如果传送带与地面所成的斜坡的坡度i=1:2.4,那么物体所经过的路程为米.【分析】根据坡度的概念求出AC,根据勾股定理求出AB.【解答】解:∵传送带与地面所成的斜坡的坡度i=1:2.4,∴BCAC =12.4,即5AC=12.4,解得,AC=12,由勾股定理得,AB=√AC2+BC2=√122+52=13(米),故答案为:13.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.10.(2022•黄浦区二模)某传送带与地面所成斜坡的坡度i=1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为米.【分析】根据坡度的概念求出水平距离,根据勾股定理计算,得到答案.【解答】解:∵传送带与地面所成斜坡的坡度i=1:2.4,它把物体从地面送到离地面10米高,∴水平距离为:2.4×10=24,∴物体所经过的路程为:√102+242=26(米),故答案为:26.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.11.(2022•浦东新区二模)如图,一个高BE为√3米的长方体木箱沿坡比为1:√3的斜面下滑,当木箱滑至如图位置时,AB=3米,则木箱端点E距地面AC的高度EF为米.【分析】根据坡度的概念求出∠DAF=30°,根据正弦的定义求出DE,进而求出BD,得到答案.【解答】解:设AB、EF交于点D,∵斜坡的坡比为1:√3,∴tan∠DAF=√3=√33,∴∠DAF=30°,∴∠ADF=90°﹣30°=60°,∴∠BDE=60°,在Rt△BDE中,sin∠BDE=BEDE,∴√3DE =√32,解得,DE=2(米),∴BD=1m,∴AD=AB﹣BD=2(米),在Rt△ADF中,∠DAF=30°,∴DF=12AD=1(米),∴EF=DE+DF=3(米),故答案为:3.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念是解题的关键.四.解直角三角形的应用-仰角俯角问题12.(2021秋•浦东新区期末)在离旗杆20米处的地方,用测角仪测得旗杆顶的仰角为α,如测角仪的高为1.5米,那么旗杆的高为()米.A.20cotαB.20tanαC.1.5+20tanαD.1.5+20cotα【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.【解答】解:根据题意可得:旗杆比仪器高20tanα,测角仪高为1.5米,故旗杆的高为(1.5+20tanα)米.故选:C.【点评】本题考查了解直角三角形的应用﹣仰角俯角,熟练掌握解直角三角形的方法是解题的关键.13.(2022•徐汇区二模)如图,小明在某次投篮中刚好把球打到篮板的点D处后进球,已知小明与篮板底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD与水平线的夹角为α,已知tanα的值为0.3,则点D到地面的距离CD的长为米.【分析】根据题意可得AE=BC=5米,EC=AB=1.7米,然后在Rt△ADE中,利用锐角三角函数的定义求出DE的长,进行计算即可解答.【解答】解:由题意得:AE=BC=5米,EC=AB=1.7米,在Rt△ADE中,tanα=0.3,∴DE=AE•tanα=5×0.3=1.5(米),∴DC=DE+EC=1.5+1.7=3.2(米),∴点D到地面的距离CD的长为3.2米,故答案为:3.2.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.14.(2022•青浦区二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A点测得古树顶的仰角为α,向前走了100米到B点,测得古树顶的仰角为β,则古树的高度为米.【分析】设CD=x米,用含x的代数式表示出AD和BD的长,再根据AD﹣BD=100可得x的值.【解答】解:设CD=x米,在Rt△ACD中,tanα=CDAD,∴AD=xtanα,在Rt△BCD中,tanβ=CDBD,∴BD=xtanβ,∵AD﹣BD=100,∴xtanα−xtanβ=100,解得x=100⋅tanβ⋅tanαtanβ−tanα,故答案为:100⋅tanβ⋅tanαtanβ−tanα.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.五.解直角三角形的应用-方向角问题15.(2021秋•黄浦区期末)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在距码头西端M的正西方向58千米处有一观测站O,现测得位于观测站O的北偏西37°方向,且与观测站O相距60千米的小岛A处有一艘轮船开始航行驶向港口MN.经过一段时间后又测得该轮船位于观测站O的正北方向,且与观测站O相距30千米的B处.(1)求AB两地的距离;(结果保留根号)(2)如果该轮船不改变航向继续航行,那么轮船能否行至码头MN靠岸?请说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37≈0.75.)【分析】(1)过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与OM+MN的大小即可得出结论.【解答】解:(1)过点A作AC⊥OB于点C.由题意,得OA=60千米,OB=30千米,∠AOC=37°.∴AC=OAsin37°≈60×0.60=36(千米).在Rt△AOC中,OC=OA•cos∠AOC≈60×0.8=48(千米).∴BC=OC﹣OB=48﹣30=18(千米).在Rt△ABC中,AB=.(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵∠ABC=∠OBD,∠ACB=∠BOD=90°.∴△ABC∽△DBO,∴,∴,∴OD=60(千米).∵60>58+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.【点评】本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.16.(2021秋•嘉定区期末)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).(参考数据:,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)根据特殊角三角函数即可解决问题;(2)根据三角函数定义可得CN的长,进而可以求该轮船航行的速度.【解答】解:(1)由题意,得∠ACM=∠BDM=90°,AC=3,BD=4,∠CAM=∠DBM=60°,在Rt△ACM中,,∴cos60°=,∴AM=6,在Rt△BDM中,,∴cos60°=,∴BM=8,∴AB=AM+BM=14千米.答:两个灯塔A和B之间的距离为14千米.(2)在Rt△ACM中,,∴,∴,在Rt△BDM中,,∴, ∴, ∴,在Rt △BDN 中,,由题意,得∠DBN =53°∴, ∴DN =4tan53°,∴,设该轮船航行的速度是V 千米/小时,由题意,得,∴V ≈40.7(千米/小时 ),答:该轮船航行的速度是40.7千米/小时. 【点评】本题考查了解直角三角形的应用中的仰角俯角问题、矩形的判定与性质等知识;掌握仰角俯角定义是解题的关键.【过关检测】一、单选题 九年级假期作业)已知在ABC 中,【答案】B 【分析】过点C 作CD AB ⊥,垂足为D ,根据60A ∠=︒,得出30ACD ∠=︒,进而求得CD ,由已知条件得出CD BD =,进而得出45BCD ∠=︒,即可求解.【详解】解:如图所示,过点C 作CD AB ⊥,垂足为D ,在Rt ADC 中,60A ∠=︒,∴30ACD ∠=︒, ∴sin ,cos CD AD A A AC AC ==sin 602CD =︒∴⨯=11BD AB AD ∴=−=∴CD BD =,在Rt BCD 中,CD BD =45BCD ∴∠=︒75ACB ACD BCD ∴∠=∠+∠=︒故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,掌握直角三角形的边角关系是解题的关键.【答案】D【分析】在直线y=2x 上任取一点P (a ,2a),过点P 作x 轴的垂线,垂足为点B ,则可求得α的正余弦、正余切值,从而可得答案.【详解】如图,在直线y=2x 上任取一点P (a ,2a),过点P作x 轴的垂线,垂足为点B则OB=|a|,PB=2|a| 由勾股定理得:|OPa ==在直角△POB 中,sin 5PB OP α==,cos 5OB OP α===, 2tan =2a PB OB a α==,1cot =22a OB PB a α==故选项D 正确故选:D【点睛】本题考查了正比例函数的图象与性质,锐角三角函数,关键是画出图形,并在直线任取一点,作x 轴的垂线得到直角三角形.【答案】D【分析】先求出120°的补角为60°,然后再把60°放在直角三角形中,所以过点C作CD⊥AB,交BA的延长线于点D,在Rt△ACD中可求出AD与CD的长,最后在Rt△BDC中利用勾股定理求出BC即可解答.【详解】解:过点C作CD⊥AB,交BA的延长线于点D,∵∠BAC=120°,∴∠CAD=180°-∠BAC=60°,在Rt△ACD中,AC=2,∴AD=ACcos60°=2×12=1,CD=ACsin60°=2×∵AB=4,∴BD=AB+AD=4+1=5,∴tanB=CD BD=, 故选:D .【点睛】本题考查了解直角三角形,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键. 4.(2023·上海·九年级假期作业)如图,45ACB ∠=︒,125PRQ ∠=︒,ABC 底边BC 上的高为1h ,PQR 底边QR 上的高为2h ,则有( )A .12h h =B .12h h <C .12h h >D .以上都有可能【答案】B 【分析】由已知可知高所对的斜边都为5,由正弦的定义可得到高关于正弦的表达式,比较正弦值即可得到答案.【详解】解:如图,分别作出两三角形的高12,h h∵45,5ACB AC ∠=︒=∴1sin 455sin 45h AC =⨯︒=︒ ∵125,5PRQ PR ∠=︒=∴()2sin 1801255sin55h PR =︒−︒=︒ ∵sin 55sin 45︒︒>∴21h h > 故选:B .【点睛】本题考查解直角三角形,依题意作高构造直角三角形是解题的关键.5.(2023·上海·九年级假期作业)小杰在一个高为h 的建筑物顶端,测得一根高出此建筑物的旗杆顶端的仰【答案】C 【分析】过A 作AE BC ⊥于E ,在Rt ACE △中,已知了CE 的长,可利用俯角CAE ∠的正切函数求出AE 的值;进而在Rt ABE △中,利用仰角BAE ∠的正切函数求出BE 的长;从而可得答案.【详解】解:如图,过A 作AE BC ⊥于E ,则四边形ADCE 是矩形,CE AD h ==.∵在Rt ACE △中,CE h =,60CAE ∠=︒,∴tan 60CE AE ==︒,∵在Rt ABE △中,30BAE ∠=︒,∴1tan 303BE AE h =︒==,∴1433BC BE CE h h h =+=+=. 即旗杆的高度为43h .故选C .【点睛】本题考查了解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再运用三角函数的定义解题,是中考常见题型,解题的关键是作出高线构造直角三角形.6.(2021·上海·九年级专题练习)如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )【答案】C【分析】根据题意可知:所得图形是菱形,设菱形ABCD,由已知得∠ABE=α,过A作AE⊥BC于E,由勾股定理可求BE、AB、BC的长度,根据菱形的面积公式即可求出所填答案.【详解】解:由题意可知:重叠部分是菱形,设菱形ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,设BE=x,∵∠ABE=α,∴AB=1sin sinAEαα=,∴BC=AB=1sinα,∴重叠部分的面积是:1sinα×1=1sinα.故选:C.【点睛】本题主要考查了菱形的性质,勾股定理,含30°角的直角三角形的性质,菱形的面积公式等知识点,把实际问题转化成数学问题,利用所学的知识进行计算是解此题的关键.二、填空题7.(2023·上海·九年级假期作业)小球沿着坡度为1:1.5i=的坡面滚动了13m,则在这期间小球滚动的水平距离是___________m.【答案】【分析】设高度为x ,根据坡度比可得水平距离为1.5x ,根据勾股定理列方程即可得到答案;【详解】解:设高度为x ,∵坡度为1:1.5i =,∴水平距离为1.5x ,由勾股定理可得,222(1.5)13x x +=,解得:x =∴水平距离为1.5⨯=故答案为:【点睛】本题考查坡度比及勾股定理,解题的关键是根据坡度比得到高度与水平距离的关系.【答案】13【分析】根据斜坡AB 的坡度1i =AB 的值先求出AH ,再根据斜坡AC 的坡度21:2.4i =,求得AC ,即可求解.【详解】解:∵1i =∴tan 3ABH ∠==, ∴30ABH ∠=︒,∴152AH AB ==, ∵21:2.4i =,∴1tan 2.4AH ACB CH ∠==,∵5AH =,∴12=CH ,在Rt ACH 中,13AC ==,故答案为:13.【点睛】本题考查的是解直角三角形的应用,坡度问题,熟知锐角三角函数的定义是解答此题的关键.【答案】10【分析】作BH AC ⊥于H .由四边形ABCD 是矩形,推出OA OC OD OB ===,设5OA OC OD OB a ====,由余切函数,可得4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,求出a 即可解决问题.【详解】解:如图,作BH AC ⊥于H .∵四边形ABCD 是矩形,∴OA OC OD OB ===,设5OA OC OD OB a ====,则10AC a =.∵根据题意得:3cot 4OH BOH BH ∠==, ∴4BH a =,3OH a =,由题意:12104402a a ⨯⨯⨯=,∴1a =,∴10AC =.故答案为10.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 10.(2023·上海·九年级假期作业)已知:在ABC 中,60A ∠=︒,45B ∠=︒,8AB =.则ABC 的面积为____(结果可保留根号).【答案】48−【分析】过C 作CD AB ⊥于D ,利用直角三角形的性质求得CD 的长.已知AB 的长,根据三角形的面积公式即可求得其面积.【详解】解:过C 作CD AB ⊥于D ,在Rt ADC 中,90CDA ∠=︒Q ,∴tan tan 60CD DAC AD =∠=︒=即AD 在Rt BDC 中,45B ∠=︒, 45BCD ∴∠=︒, CD BD ∴=.8AB DB DA CD =+==,12CD ∴=−.118(124822ABC S AB CD ∴=⨯=⨯⨯−=−故答案为:48−【点睛】本题考查解直角三角形,直角三角形的性质及三角形的面积公式,熟练掌握通过作三角形的高,构造直角三角形是解题的关键.分别在DEF 的边,ABE 沿直线 【答案】67【分析】根据题意和翻折的性质可得ABCABE 是等腰直角三角形,ABC 是等腰直角三角形,所以AC BE ∥,得23DA AC DE HE ==,设2AC AE x ==,则3HE x =,4AD x =,所以7FE x =,6DE x =,然后根据锐角三角函数即可解决问题.【详解】解:如图所示:90DEF ∠=︒,45EBA ∠=︒,ABE ∴是等腰直角三角形,AE BE ∴=,ABE 沿直线AB 翻折,翻折后的点E 落在DEF 内部的点C ,ABC ∴是等腰直角三角形,∴∥AC BE ,∴23DA AC DE HE ==,FH AD =,设2AC AE x ==,则3HE x =,4AD x =,7FE x ∴=,6DE x =, ∴67DE FE =,6cot 7DE D FE ∴==. 故答案为:67.【点睛】本题考查了翻折变换,解直角三角形,解决本题的关键是掌握翻折的性质. 统考二模)在ABC 中,,那么ABC 的重心到【答案】4【详解】解:如下图所示,设点D 为BC 的中点,点E 为三角形的重心,∵AB AC =,∴AD BC ⊥,∵152BD BC ==,5cos 13B =,cos BD B AB = ∴13AB =,∴12AD ==,∵点E 为三角形的重心,∴21AE ED =, ∴4ED =,∵AD BC ⊥,∴ABC 的重心到底边的距离为4,故答案为:4.【点睛】本题考查解直角三角形、三角形重心的性质和勾股定理,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:1. 13.(2023·上海·一模)平面直角坐标系内有一点()1,2P ,那么OP 与x 轴正半轴的夹角为α,tan α=________.【答案】2【分析】过点P 作PA x ⊥轴于点A ,由P 点的坐标得PA 、OA 的长,根据正切函数的定义得结论.【详解】解:过点P 作PA x ⊥轴于点A ,如图:∵点PA x ⊥,∴2PA =,1OA =,∴2an 21t PA OA α===.故答案为:2.【点睛】本题考查了点在平面直角坐标系里的意义及解直角三角形.解决本题的关键是构造直角三角形. 一模)如图,已知在ABC 中, 【答案】95【分析】如图,设AP m =.证明AP MQ m ==,根据3cos cos 5A CMQ =∠=,构建方程求解.。
初中数学《三角形中的经典模型》九大题型含解析
三角形中的经典模型【1A字模型 1【28字模型 3【3飞镖模型 6【4双垂直模型 9【5老鹰抓小鸡模型 15【6两内角角平分线模型 19【7两外角角平分线模型 21【8一内一外角角平分线模型 26【9三角形折叠模型 29知识点1:A字模型已知△ABC,AB至D,AC至E,∠1+∠2=∠A+180°【1A字模型1.(23-24八·全·专)如△ABC中∠A=65°,DE交AB于D,AC于E,∠BDE+∠CED=( ).A.180°B.215°C.235°D.245°【答案】D【分析】根据三角形内角和定理求出∠ADE+∠AED,根据平角的概念计算即可.【详解】解:∵∠A=65°,∴∠ADE+∠AED=180°-65°=115°,∴∠BDE+∠CED=360°-115°=245°,故选:D.【点睛】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.2.(23-24八年级·全国·专题练习)如图是某建筑工地上的人字架,若∠1=120°,那么∠3-∠2的度数为.【答案】60°【分析】根据平角的定义求出∠4,再利用三角形的外角的性质即可解决问题.【详解】解:如图∵∠1+∠4=180°,∠1=120°,∴∠4=60°,∵∠3=∠2+∠4,∴∠3-∠2=∠4=60°,故答案为:60°.【点睛】本题考查三角形外角的性质、平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考基础题.3.(23-24八年级·河北沧州·期中)琪琪在操作课上将三角形剪掉一个角后得到四边形ABCD,则下列判断错误的是()A.变成四边形后对角线增加了两条B.变成四边形后内角和增加了360°C.外角和没有发生变化D.若剪掉的角的度数是60°,则∠1+∠2=240°【答案】B【分析】本题考查了多边形的对角线,内角和与外角和,三角形内角和定理,解题的关键是【详解】解:A、三角形没有对角线,变成四边形后对角线为两条,即增加了两条,故正确,不合题意;B、三角形内角和为180°,变成四边形后内角和为360°,增加了180°,故错误,不合题意;C、任意多边形的外角和是360°,故正确,不合题意;D、若剪掉的角的度数是60°,则∠A+∠B=120°,则∠1+∠2=360°-120°=240°,故正确,不合题意;故选:B.4.(23-24·浙江杭州·二模)将一把直尺与一块三角板在同一平面内按如图所示的方式放置,若∠1=130°,则∠2的度数为.【答案】40°/40度【分析】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键,根据平行线的性质可得∠FGH=∠1=130°,然后利用三角形外角的性质进行计算即可解答.【详解】解:如图:由题意得:AD∥BC,∴∠FGH=∠1=130°,∵∠FGH是△EFG的一个外角,∴∠FGH=∠2+∠E,∵∠E=90°,∴∠2=130°-90°=40°,故答案为:40°.知识点2:8字模型①已知AD,BC相交于O,则∠A+∠B=∠C+∠D②已知线段AP平分∠BAD,线段CP平分∠BCD,则∠P=12(∠B+∠D)【题型28字模型】5.(23-24八年级·浙江金华·期末)如图,BP平分∠ABC,交CD于点F,DP平分∠ADC交AB于点E,AB与CD相交于点G,∠A=42°.(1)若∠ADC=60°,求∠AEP的度数;(2)若∠C=38°,求∠P的度数.【答案】(1)72°;(2)40°.【分析】(1)根据角平分线的定义可得∠ADP=12∠ADC,然后利用三角形外角的性质即可得解;(2)根据角平分线的定义可得∠ADP=∠PDF,∠CBP=∠PBA,再根据三角形的内角和定理可得∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,所以∠A+∠C=2∠P,即可得解.【详解】解:(1)∵DP平分∠ADC,∴∠ADP=∠PDF=12∠ADC,∵∠ADC=60°,∴∠ADP=30°,∴∠AEP=∠ADP+∠A=30°+42°=72°;(2)∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠PDF,∠CBP=∠PBA,∵∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,∴∠A+∠C=2∠P,∵∠A=42°,∠C=38°,∴∠P=12(38°+42°)=40°.【点睛】本题考查了三角形的内角和定理及三角形外角的性质,角平分线的定义,熟记定理并理解“8字形”的等式是解题的关键.6.(23-24八年级·河南漯河·期末)如图,AB和CD相交于点O,∠A=∠C,则下列结论中不能完全确定正确的是()A.∠B=∠DB.∠1=∠A+∠DC.∠2>∠DD.∠C=∠D【答案】D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∵∠A+∠AOD+∠D=180°,∠C+∠COB+∠B=180°,∠A=∠C,∠AOD=∠BOC,∴∠B=∠D,∵∠1=∠2=∠A+∠D,∴∠2>∠D,故选项A,B,C正确,故选D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键.7.(23-24八年级·北京怀柔·期末)如图,在由线段AB,CD,DF,BF,CA组成的平面图形中,∠D=28°,则∠A+∠B+∠C+∠F的度数为( ).A.262°B.152°C.208°D.236°【答案】C【分析】如图标记∠1,∠2,∠3,然后利用三角形的外角性质得∠1=∠B+∠F=∠D+∠3,∠2=∠A+∠C,再利用∠2,∠3互为邻补角,即可得答案.【详解】解:如下图标记∠1,∠2,∠3,∵∠1=∠B+∠F=∠D+∠3,∵∠D=28°,∴∠3=∠B+∠F-28°,又∵∠2=∠A+∠C,∴∠2+∠3=∠A+∠C+∠B+∠F-28°,∵∠2+∠3=180°∴180°=∠A+∠C+∠B+∠F-28°,∴∠A+∠C+∠B+∠F=180°+28°=208°,故选C.【点睛】此题考查了三角形的外角性质与邻补角的意义,熟练掌握并灵活运用三角形的外角性质与邻补角的意义是解答此题的关键.8.(23-24八年级·全国·专题练习)如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H六个角的和.【答案】360°【分析】根据三角形内角和外角的性质可得:∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H=∠2,再根据三角形内角和定理可得答案.【详解】解:∵∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H=∠2,∴∠G+∠D+∠F+∠C+∠E+∠H=∠3+∠4+∠2,∵∠B+∠2+∠1=180°,∠3+∠5+∠A=180°,∴∠A+∠B+∠2+∠4+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°.【点睛】此题主要考查了三角形内角与外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.知识点3:飞镖模型①已知四边形ABCD,则∠C=∠A+∠B+∠D②已知四边形ABCD,线段BO平分∠ABC,线段OD平分∠ADC,则∠O=12(∠A+∠C)【题型3飞镖模型】9.(23-24·河北秦皇岛·一模)如图,用铁丝折成一个四边形ABCD(点C在直线BD的上方),且∠A=70°,∠BCD=120°,若使∠ABC、∠ADC平分线的夹角∠E的度数为100°,可保持∠A不变,将∠BCD(填“增大”或“减小”)°.【答案】增大10【分析】利用三角形的外角性质先求得∠ABE+∠ADE=30°,根据角平分线的定义得到∠ABC+∠ADC= 60°,再利用三角形的外角性质求解即可.【详解】解:如图,连接AE并延长,连接AC并延长,∠BED=∠BEF+∠DEF=∠ABE+∠BAD+∠ADE=100°,∵∠BAD=70°,∴∠ABE+∠ADE=30°,∵BE,DE分别是∠ABC、∠ADC平分线,∴∠ABC+∠ADC=2(∠ABE+∠ADE)=60°,同上可得,∠BCD=∠BAD+∠ABC+∠ADC=130°,130°-120°=10°,∴∠BCD增大了10°.故答案为:增大,10.【点睛】本题考查了三角形的外角性质,三角形的内角和定理,角平分线的定义等知识,熟练运用题目中所给的结论是解题的关键.10.(23-24八年级·江苏苏州·阶段练习)在社会实践手工课上,小茗同学设计了如上图这样一个零件,如果∠A=52°,∠B=25°,∠C=30°,∠D=35°,∠E=72°,那么∠F=°.【答案】70【分析】延长BE、CF,交于点G,连接AG,根据三角形内角和定理和四边形的内角和为360°即可求解.【详解】解:延长BE、CF,交于点G,连接AG,如图,∴∠AGB=180°-∠B-∠BAG,∠AGC=180°-∠C-∠CAG,∴∠AGB+∠AGC=180°-∠B-∠BAG+180°-∠C-∠CAG=360°-∠B-∠C-∠BAC=253°,∴∠CGB=360°-∠AGB+∠AGC=107°.∵∠BED=72°,∴∠GED=108°,∴∠GFD=360°-∠GED-∠D-∠CGB=110°,∴∠CFD=70°.故答案为:70.【点睛】本题主要考查三角形内角和定理.正确的作出辅助线是解题关键.11.(23-24八年级·全国·专题练习)如图,若∠EOC=115°,则∠A+∠B+∠C+∠D+∠E+∠F=.【答案】230°【分析】根据三角形外角的性质,得到∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∠EOC=∠1+∠F=115°,∠1=∠A+∠B,即可得到结论.【详解】解:如图∵∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∴∠E+∠D+∠C=115°,∵∠EOC=∠1+∠F=115°,∠1=∠A+∠B,∴∠A+∠B+∠F=115°,∴∠A+∠B+∠C+∠D+∠E+∠F=230°,故答案为:230°.【点睛】本题主要考查三角形内角和定理和三角形外角的性质,解决本题的关键是要熟练掌握三角形外角性质.12.(23-24·河北邯郸·一模)嘉嘉在作业本上画了一个四边形,并标出部分数据(如图),淇淇说,这四个数据中有一个是标错的;嘉嘉经过认真思考后,进行如下修改:若∠A,∠B,∠BCD保持不变,则将图中∠D(填“增大”或“减小”)度,淇淇说,“改得不错”.【答案】增大5【分析】连接BD,利用三角形的内角和计算即可.【详解】解:连接BD,∵∠CDB+∠CBD=180°-∠A-∠ABC-∠ADC∠CDB +∠CBD =180°-∠BCD∴∠A +∠ABC +∠ADC =∠BCD∵∠A =90°,∠ABC =25°,∠BCD =145°∴∠ADC =145°-25°-90°=30°∴30°-25°=5°故答案为:增大,5【点睛】本题主要考查三角形的内角和,添加辅助线利用三角形内角和计算是解决本题的关键.知识点4:双垂直模型已知∠B =∠D =∠ACE =90°.则∠BAC =∠DCE ,∠ACB =∠CED .【证明】∵∠B =∠D =∠ACE =90°;∴∠BAC +∠ACB =90°;又∠ECD +∠ACB =90°;∴∠BAC =∠DCE 同理,∠ACB +∠DCE =90°,且∠CED +∠DCE =90°;∴∠ACB =∠CED ,得证.【题型4双垂直模型】13.(23-24八年级·广东珠海·期末)如图1,AB ⊥BC 于点B ,CD ⊥BC 于点C ,点E 在线段BC 上,且AE ⊥DE .(1)求证:∠EAB =∠CED ;(2)如图2,AF 、DF 分别平分∠BAE 和∠CDE ,则∠F 的度数是(直接写出答案即可);(3)如图3,EH 平分∠CED ,EH 的反向延长线交∠BAE 的平分线AF 于点G .求证:EG ⊥AF .(提示:三角形内角和等于180°)【答案】(1)见解析;(2)45°;(3)见解析【分析】(1)利用同角的余角相等即可证明;(2)过点F 作FM ∥AB ,利用∠DFA =∠DFM +∠AFM =12∠CDE +12∠EAB =12(∠CDE +∠EAB )即可解决问题;(3)想办法证明∠EAG +∠AEG =90°即可解决问题.【详解】解:(1)∵AB ⊥BC ,CD ⊥BC ,∴∠B =∠C =90°,∴∠BAE +∠AEB =90°,∵AE ⊥DE ,∴∠AED =90°,∴∠AEB +∠CED =90°,∴∠BAE =∠CED .(2)解:答案为45°;过点F 作FM ∥AB ,如图,∵AB ⊥BC ,CD ⊥BC ,∴∠B =∠C =90°,∴AB ∥CD ,∵∠C =90°,∴∠CED +∠CDE =90°,∵∠BAE =∠CED ,∴∠BAE +∠CDE =90°,∵AF 、DF 分别平分∠BAE 和∠CDE ,∴∠CDF =12∠CDE ,∠BAF =12∠BAE ,∴∠CDF +∠BAF =12(∠BAE +∠CDE )=45°,∵FM ∥AB ∥CD ,∴∠CDF =∠DFM ,∠BAF =∠AFM ,∴∠AFD =∠CDF +∠BAF =45°.(3)∵EH 平分∠CED ,∴∠CEH =12∠CED ,∴∠BEG =12∠CED ,∵AF 平分∠BAE ,∴∠BAG =12∠BAE ,∵∠BAE =∠CED ,∴∠BAG =∠BEG ,∵∠BAE +∠BEA =90°,∴∠BAG +∠GAE +∠AEB =90°,即∠GAE +∠AEB +∠BEG =90°,∴∠AGE =90°,∴EG ⊥AF .【点睛】本题考查三角形内角和定理、平行线的性质、角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.14.(23-24八年级·陕西西安·期末)如图,在等腰Rt △ABC 中,∠ACB =90°,D 为BC 的中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF .(1)求证:AD⊥CF.(2)连接AF,试判断△ACF的形状,并说明理由.【答案】(1)见解析(2)△ACF为等腰直角三角形;理由见解析【分析】本题考查了全等三角形的判定和性质及等腰三角形性质和判定.(1)欲求证AD⊥CF,先证明∠CAG+∠ACG=90°,需证明∠CAG=∠BCF,利用三角形全等,易证.(2)要判断△ACF的形状,看其边有无关系.根据(1)的推导,易证CF=AF,从而判断其形状.【详解】(1)证明:在等腰直角△ABC中,∵∠ACB=90°,∴∠CBA=∠CAB=45°,∵DE⊥AB,∴∠DEB=90°,∴∠BDE=45°,∵BF∥AC,∴∠CBF=180°-∠ACB=90°,∴∠BFD=45°=∠BDE,∴BF=DB,又∵D为BC的中点,∴CD=DB,即BF=CD,在△CBF和△ACD中,BF=CD∠CBF=∠ACD=90°CB=AC,∴△CBF≌△ACD(SAS).∴∠BCF=∠CAD.∵∠BCF+∠GCA=90°,∴∠CAD+∠GCA=90°,即AD⊥CF.(2)解:△ACF是等腰三角形,理由为:连接AF,如图所示,由(1)知:△CBF≌△ACD,∴CF=AD,∵△DBF是等腰直角三角形,且BE是∠DBF的平分线,∴BE垂直平分DF,∴AF=AD,∵CF=AD,∴CF=AF,∴△ACF是等腰三角形.15.(23-24八年级·山西晋中·期中)请把下面的证明过程补充完整如图,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F,求证:CF=CE.证明:∵AE平分∠CAB(已知),∴∠CAE=∠FAB(①),∵∠ACE=90°(已知),∴∠CAE+∠CEF=90°(②),∵CD是△ABC的高(已知),∴∠CDA=90°(三角形高的定义),∴(③),(直角三角形的两个锐角互余),∴∠CEF=∠AFD(④),∵∠CFE=∠AFD(⑤),∴∠CFE=∠CEF(⑥),∴CF=CE(⑦).【答案】①角平分线的定义;②直角三角形的两锐角互余;③∠FAD+∠AFD=90°;④等角的余角相等;⑤对顶角相等;⑥等量代换;⑦等角对等边【分析】本题考查的是直角三角形的性质、角平分线的定义,等腰三角形的判定,掌握直角三角形的两锐角互余是解题的关键.根据角平分线的定义、直角三角形的性质、对顶角相等、等角对等边解答即可.【详解】证明:∵AE平分∠CAB(已知),∴∠CAE=∠FAB(角平分线的定义),∵∠ACE=90°(已知),∴∠CAE+∠CEF=90°(直角三角形的两锐角互余),∵CD是△ABC的高(已知),∴∠CDA=90°(三角形高的定义),∴∠FAD+∠AFD=90°(直角三角形的两锐角互余),∴∠CEF=∠AFD(等角的余角相等),∵∠CFE=∠AFD(对顶角相等),∴∠CFE=∠CEF(等量代换),∴CF=CE(等角对等边).故答案为:角平分线的定义;直角三角形的两锐角互余;∠FAD+∠AFD=90°;等角的余角相等;对顶角相等;等量代换;等角对等边.16.(23-24八年级·江苏扬州·阶段练习)在Rt △ABC 中,∠CAB =90°,AB =AC ,点O 是BC 的中点,点P 是射线CB 上的一个动点(点P 不与点C 、O 、B 重合),过点C 作CE ⊥AP 于点E ,过点B 作BF ⊥AP 于点F ,连接EO ,OF.(问题探究)如图1,当P 点在线段CO 上运动时,延长EO 交BF 于点G .(1)求证:△AEC ≌△BFA ;(2)BG 与AF 的数量关系为:(直接写结论,不需说明理由);(拓展延伸)(3)①如图2,当P 点在线段OB 上运动,EO 的延长线与BF 的延长线交于点G ,∠OFE 的大小是否变化?若不变,求出∠OFE 的度数;若变化,请说明理由;②当P 点在射线OB 上运动时,若AE =2,CE =6,直接写出△OEF 的面积,不需证明.【答案】(1)见解析;(2)BG =AF ;(3)①∠OFE 的大小不变,∠OFE =45°;②满足条件的△OEF 的面积为8或16【分析】(1)根据等角的余角相等得出∠CAE =∠ABF ,证明△AEC ≌△BFA AAS ;(2)证明△COE ≌△BOG AAS 得出CE =BG ,则CE =AF ,等量代换可得AF =BG ;(3)①证明△AEC ≌△BFA AAS ,进而证明∠CEO =∠BGO 证明△COE ≌△BOG AAS 得出∠EFO =12∠EFG =45°;②根据题意画出图形,分类讨论,根据三角形的面积公式,即可求解.【详解】(1)证明:如图1中,∵CE ⊥AE ,BF ⊥AE ,∴∠AEC =∠BFA =∠CAB =90°,∴∠CAE +∠BAF =90°,∠BAF +∠ABF =90°,∴∠CAE =∠ABF ,在△AEC 和△BFA 中,∠AEC =∠BFA∠CAE =∠ABF AC =BA,∴△AEC ≌△BFA AAS ;(2)解:结论:BG =AF .理由:∵CE ⊥AE ,BF ⊥AE ,∴CE ∥BG ,∴∠CEO =∠BGO ,∵O 是BC 的中点,∴OC =OB ,在△COE 和△BOG 中,∠CEO =∠BGO∠AOE =∠BOG OC =OB,∴△COE ≌△BOG AAS ,∴CE =BG ,∵△AEC ≌△BFA ,∴CE =AF ,∴AF =BG .故答案为:BG =AF .(3)解:①如图2中,结论:∠OFE 的大小不变,∠OFE =45°.理由:∵CE ⊥AE ,BF ⊥AE ,∴∠AEC =∠BFA =∠CAB =90°,∴∠CAE +∠BAF =90°,∠BAF +∠ABF =90°,∴∠CAE =∠ABF ,在△AEC 和△BFA 中,∠AEC =∠BFA∠CAE =∠ABF AC =BA,∴△AEC ≌△BFA AAS ;∴CE =AF ,AE =BF ,∵CE ⊥AE ,BF ⊥AE ,∴CE ∥BG ,∴∠CEO =∠BGO ,∵O 是BC 的中点,∴OC =OB ,在△COE 和△BOG 中,∠CEO =∠BGO∠AOE =∠BOG OC =OB,∴△COE ≌△BOG AAS ,∴CE =BG ,OE =OG ,∴AF =BG ,∴EF =FG ,根据△EFO ≌△GFO SSS 可得:∠EFO =∠GFO∴∠EFO =12∠EFG =45°;②如图2中,当AE =2,CE=6时,EF =FG =6-2=4,∴S △EOF =12S △EFC =12×12×4×4=4如图3中,当AE =2,CE =6时,EF =FG =6+2=8,∴S △EOF =12S △EFG =12×12×8×8=16综上所述,满足条件的△OEF 的面积为8或16.【点睛】本题考查了全等三角形的证明与性质,等腰三角形的判定和性质,三角形的动点问题以及三角形求面积的问题,正确掌握知识点是解题的关键.知识点5:老鹰抓小鸡模型如图,∠A+∠O=∠1+∠2;口诀:腋下两角之和等于上下两角之和【题型5老鹰抓小鸡模型】17.(23-24八年级·江苏扬州·阶段练习)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.35°C.30°D.25°【答案】D【分析】根据三角形内角和定理可得∠AEF+∠AFE=120°,再根据邻补角的性质可得∠FEB+∠EFC= 360°-120°=240°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,然后计算出∠1+∠2的度数,即可求得∠2的度数.【详解】∵∠A=60°,∴∠AEF+∠AFE=180°-60°=120°,∴∠FEB+∠EFC=360°-120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°-120°=120°,∵∠1=95°,∴∠2=120°-95°=25°,故选D.【点睛】本题考查了三角形的内角和定理,翻折变换的性质,熟记定理及性质并准确识图是解题的关键.18.(23-24八年级·重庆渝北·阶段练习)如图,将△ABC沿着DE翻折,使B点与B 点重合,若∠1+∠2=80°,则∠B的度数为.【答案】40°/40度【分析】由翻折的性质可知,∠B=∠B ,∠BED=∠B ED,∠BDE=∠B DE,由∠BED+∠B ED+∠1= 180°,∠BDE+∠B DE+∠2=180°,∠1+∠2=80°,可得∠BED+∠BDE=140°,根据∠B=180°-∠BED+∠BDE,计算求解即可.【详解】解:由翻折的性质可知,∠B=∠B ,∠BED=∠B ED,∠BDE=∠B DE,∵∠BED+∠B ED+∠1=180°,∠BDE+∠B DE+∠2=180°,∠1+∠2=80°,∴∠BED+∠BDE=140°,∴∠B=180°-∠BED+∠BDE=40°,故答案为:40°.【点睛】本题考查了翻折的性质,三角形内角和定理.解题的关键在于对知识的熟练掌握与灵活运用.19.(23-24八年级·安徽铜陵·期中)如图,将△ABC纸片沿DE折叠,使点A落在点A′处,且A′B平分∠ABC,A′C平分∠ACB,若∠1+∠2=120°,则∠BA′C的度数为()A.120°B.110°C.100°D.90°【答案】A【详解】由∠BDE、∠CED是△ADE的两个外角知∠BDE=∠A+∠AED、∠CED=∠A+∠ADE,据此得∠BDE+∠CED=∠A+∠AED+∠A+∠ADE,推出∠1+∠2=2∠A得到∠A=60°,根据BA'平分∠ABC,CA'平分∠ACB知∠A'BC+∠A'CB=12(∠ABC+∠ACB)=90°-12∠A.利用∠BA'C=180°-(∠A'BC+∠A'CB)可得答案.解:∵∠BDE、∠CED是△ADE的两个外角,∴∠BDE=∠A+∠AED,∠CED=∠A+∠ADE,∴∠BDE+∠CED=∠A+∠AED+∠A+∠ADE,∴∠1+∠ADE+∠2+∠AED=2∠A+∠AED+∠ADE,即∠1+∠2=2∠A,∵∠1+∠2=120°,∴∠A=60°,∵BA'平分∠ABC,CA'平分∠ACB,∴∠A'BC+∠A'CB=12(∠ABC+∠ACB)=12(180°-∠A )=90°-12∠A .∴∠BA 'C =180°-(∠A 'BC +∠A 'CB ),=180°-90°-12∠A =90°+12∠A =90°+12×60°=120°.故选:A .【点睛】本题考查三角形的内角和定理、角平分线的定义、三角形的外角的性质等知识,解题的关键是灵活运用所学知识,属于中考常考题型.20.(23-24八年级·山东烟台·期中)折纸是我国一项古老的传统民间艺术,这项具有中国特色的传统文化在几何中可以得到新的解读.已知在△ABC 中,请根据题意,探索不同情境中∠1+∠2(或∠1-∠2)与∠A 的数量关系.(1)如图①,若∠A =80°,沿图中虚线DE 截去∠A ,则∠1+∠2=.(2)如图②,若∠A =80°,沿图中虚线DE 将∠A 翻折,使点A 落在BC 上的点A '处,则∠1+∠2=.(3)如图③,翻折后,点A 落在点A '处,若∠1+∠2=80°,求∠B +∠C 的度数(4)如图④,△ABC 纸片沿DE 折叠,使点A 落在点A '处,若∠1=80°,∠2=24°,求∠A 的度数.【答案】(1)260°(2)160°(3)∠B +∠C =140°(4)∠A =28°【分析】(1)根据三角形内角和定理得出∠B +∠C =180°-80°=100°,再由平角进行求解即可;(2)利用翻折的性质得出∠EDA '=∠ADE ,∠AED =∠DEA ',根据三角形内角和定理得出∠ADE +∠AED =100°,结合图形,由平角及各角之间的关系进行计算即可‘(3)连接AA .根据三角形外角的性质得出∠1=∠DAA '+∠DA 'A ,∠2=∠EAA '+∠EA 'A ,然后利用各角之间的数量关系得出∠EAD =40°,再由三角形内角和定理即可求解;(4)设AB 与DA 交于点F ,根据三角形外角得出∠1=∠DFA +∠A ,∠DFA =∠A +∠2,再由折叠的性质得出∠A =∠A ,结合图形及各角之间的数量关系进行求解即可【详解】(1)解:∵∠A=80°,∴∠ADE+∠AED=180°-80°=100°,∴∠1+∠2=360°-∠ADE-∠AED=260°,故答案为:260°;(2)∵∠A=80°,∴∠ADE+∠AED=180°-80°=100°,∵翻折,∴∠EDA'=∠ADE,∠AED=∠DEA',∴∠ADA'+∠AEA'=2(∠ADE+∠AED)=200°,∴∠1+∠2=360°-(∠ADA'+∠AEA')=160°,故答案为:160°;(3)解:连接AA .如图所示:∵∠1=∠DAA'+∠DA'A,∠2=∠EAA'+∠EA'A,∴∠1+∠2=∠DAA'+∠DA'A+∠EAA'+∠EA'A=∠EAD+∠EA'D,∵∠EAD=∠EA D,∴∠1+∠2=2∠EAD=80°,∴∠EAD=40°,∴∠B+∠C=180°-40°=140°.(4)解:如图,设AB与DA 交于点F,∵∠1=∠DFA+∠A,∠DFA=∠A +∠2,由折叠可得,∠A=∠A ,∴∠1=∠A+∠A +∠2=2∠A+∠2,又∵∠1=80°,∠2=24°,∴80°=2∠A+24°,∴∠A=28°.【点睛】题目主要考查三角形内角和定理及三角形外角的性质,平角的定义等,理解题意,作出相应辅助线求解是解题关键.知识点6:两内角角平分线模型在△ABC 中,BI 、CI 分别是∠ABC 和∠ACB 的角平分线,且相交于点I .则∠I =90°+12∠A【题型6两内角角平分线模型】21.(23-24八年级·河南信阳·开学考试)如图,AD ,CE 都是△ABC 的角平分线,且交于点O ,∠DAC =30°,∠ECA =35°,则∠ABO 的度数为.【答案】25°/25度【分析】本题考查了三角形内角和定理、角平分线,利用角平分线的定义结合三角形内角和定理找出∠ABO 的度数是解题的关键.根据角平分线的定义可得出∠BAC =60°、∠ACB =70°,结合三角形内角和可得出∠ABC =50°,由三角形的三条角平分线交于一点,可得出BO 平分∠ABC ,进而可得出∠ABO 的度数,此题得解.【详解】解:∵AD 平分∠BAC ,CE 平分∠ACB ,∠DAC =30°,∠ECA =35°,∴∠BAC =2∠DAC =60°,∠ACB =2∠ECA =70°,∴∠ABC =180°-∠BAC -∠ACB =50°.∵△ABC 的三条角平分线交于一点,∴BO 平分∠ABC ,∴∠ABO =12∠ABC =25°.故答案为:25°.22.(23-24八年级·全国·课后作业)如图,在△ABC 中,∠ABC 和∠ACB 的平分线BE ,CF 相交于点G ,若∠A =66°,则∠BGC 的度数为.【答案】123°/123度【分析】本题考查角平分线和三角形内角和定理,熟练利用角平分线的性质和三角形内角和定理找出题目中角的等量关系是解答本题的关键.由角平分线的性质可知∠GBC =12∠ABC ,∠GCB =12∠ACB ,再由三角形内角和定理可知∠BGC =180°-∠GBC +∠GCB ,即可求解.【详解】∵∠A =66°,∴∠ABC +∠ACB =180°-∠A =114°,∵BE 和CF 分别是∠ABC 和∠ACB 的平分线,∴∠GBC =12∠ABC ,∠GCB =12∠ACB ,∴∠BGC =180°-∠GBC +∠GCB =180°-12∠ABC +∠ACB =123°,故答案为:123°.23.(23-24八年级·河南信阳·开学考试)如图,在△ABC 中,AD 是BC 边上的高,AE ,BF 分别是∠BAC 和∠ABC 的角平分线,它们相交于点O ,∠AOB =125°.求∠CAD 的度数.【答案】∠CAD =20°.【分析】本题考查了角平分线的性质,三角形的内角和定理,以及余角的性质,解题的关键是熟练掌握所学的知识,正确求出∠C =70°,从而求出答案.根据角平分线的性质,由∠AOB =125°,得到∠CAB +∠CBA =110°,然后得到∠C ,由余角的性质,即可求出答案.【详解】解:∵AE ,BF 分别是∠BAC 和∠ABC 的角平分线,∴∠OAB =12∠BAC ,∠OBA =12∠ABC .∴∠CAB +∠CBA =2(∠OAB +∠OBA )=2180°-∠AOB∵∠AOB =125°,∴∠CAB +∠CBA =110°,∴∠C =70°.∵AD 是BC 边上的高∴∠ADC =90°,∴∠CAD =20°.24.(23-24八年级·山东烟台·期末)如图,在△ABC 中,∠A =90°,BE ,CD 分别平分∠ABC 和∠ACB ,且相交于F ,EG ∥BC ,CG ⊥EG 于点G ,则下列结论:①∠CEG =2∠DCA ;②∠DFE =130°;③∠EFC =12∠G :④∠ADC =∠GCD ;⑤△EGC 是等腰直角三角形,其中正确的结论是()A.①③④⑤B.①②③④C.①②③D.①③④【答案】D 【分析】本题主要考查了平行线的性质,角平分线的定义,三角形内角和定理,熟知平行线的性质,角平分线的定义是解题的关键.根据平行线的性质与角平分线的定义即可判断①;只需要证明∠ADC +∠ACD =90°,∠GCD +∠BCD =90°,即可判断④;根据角平分线的定义和三角形内角和定理先推出∠BFC=135°,即可判断②③;根据现有条件无法推出⑤.【详解】解:∵CD平分∠ACB,∴∠ACB=2∠DCA,∠ACD=∠BCD∵EG∥BC,∴∠CEG=∠ACB=2∠DCA,故①正确;∵∠A=90°,CG⊥EG,EG∥BC,∴∠ADC+∠ACD=90°,CG⊥BC,即∠BCG=90°,∴∠GCD+∠BCD=90°,又∵∠BCD=∠ACD,∴∠ADC=∠GDC,故④正确;∵∠A=90°,∴∠ABC+∠ACB=90°,∵BE,CD分别平分∠ABC,∠ACB,∴∠FBC=12∠ABC,∠FCB=12∠ACB,∴∠BFC=180°-∠FBC-∠FCB=180°-12(∠ACB+∠ABC)=135°,∴∠EFC=180°-∠BFC=45°,∵CG⊥EG∴∠G=90°,∴∠EFC=12∠G,故③正确;∵∠BFC=135°,∴∠DFE=∠BFC=135°,故②错误;∵∠G=90°∴△EGC是直角三角形,根据现有条件,无法推出CG=CE,即无法得到△EGC是等腰直角三角形,故⑤错误;∴正确的有①③④,故选:D.知识点7:两外角角平分线模型在△ABC中,BI、CI分别是△ABC的外角的角平分线,且相交于点O.则∠O=90°-12∠A.【证明】∵BO是∠EBC平分线,∴∠2=12∠EBC,∵CO是∠FCB平分线,∴∠5=12∠FCB由△BCO中内角和定理可知:∠O=180°-∠2-∠5=180°-12∠EBC-12∠FCB=180°-12(180°-∠ABC)-12(180°-∠ACB)=12(∠ABC+∠ACB)=12(180°-∠A)=∠O=90°-12∠A【题型7两外角角平分线模型】25.(23-24八年级·全国·专题练习)如图,在△ABC中,∠B=58°,三角形两外角的角平分线交于点E,则∠AEC=.【答案】61°【分析】先根据三角形的内角和定理和平角定义求得∠DAC+∠ACF的度数,再根据角平分线的定义求得∠EAC+∠ECA的度数,即可解答.【详解】解:∵∠B+∠BAC+∠BCA=180°,∠B=58°,∴∠BAC+∠BCA=180°-∠B=180°-58°=122°,∵∠BAC+∠DAC=180°,∠BCA+∠ACF=180°,∴∠DAC+∠ACF=360°-(∠BAC+∠BCA)=360°-122°=238°,∵AE平分∠DAC,CE平分∠ACF,∴∠EAC=12∠DAC,∠ECA=12∠ACF,∴∠EAC+∠ECA=12(∠DAC+∠ACF)=119°,∵∠EAC+∠ECA+∠AEC=180°,∴∠AEC=180°-(∠EAC+∠ECA)=180°-119°=61°,故答案为:61°.【点睛】本题考查三角形的内角和定理、角平分线的定义、平角定义,熟练掌握三角形的内角和定理和角平分线的定义是解答的关键.26.(23-24八年级·河南郑州·阶段练习)如图,G是ΔAFE两外角平分线的交点,P是ΔABC的两外角平分线的交点,F,C在AN上,又B,E在AM上;如果∠FGE=66°,那么∠P=度.【答案】66【分析】利用角平分线的定义和三角形、四边形的内角和可求得:∠G=180°-12×[360°-(180°-∠A)]=90°-1 2∠A,∠P=180°-12×[360°-(180°-∠A)]=90°-12∠A,所以∠P=∠FGE=66°.【详解】解:因为G是△AFE两外角平分线的交点,∴∠FGE=180°-12×[360°-(180°-∠A)]=90°-12∠A,∵P是△ABC两外角平分线的交点,∴∠P=180°-12×[360°-(180°-∠A)]=90°-12∠A,∴∠P=∠FGE=66°.故答案为:66.【点睛】本题考查了三角形内角和定理、角平分线的性质和三角形外角的性质,结合图形熟练运用定理和性质进行求解是解题的关键.27.(23-24八年级·山东聊城·期末)如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,D是∠ACF与∠ABC平分线的交点,E是△ABC的两外角平分线的交点,若∠BOC=130°,则∠D的度数为()A.25°B.30°C.40°D.50°【答案】C【分析】根据角平分线的定义和平角定义可得∠OCD=∠ACO+∠ACD=90°,根据外角的性质可得∠BOC =∠OCD+∠D,继而即可求解.【详解】解:∵CO平分∠ACB,CD平分∠ABC的外角,∴∠ACO=12∠ACB,∠ACD=12∠ACF,∵∠ACB+∠ACF=180°,∴∠OCD=∠ACO+∠ACD=12∠ACB+∠ACF=90°,∴∠BOC=∠OCD+∠D,∴∠D=∠BOC-∠OCD=130°-90°=40°,故选择C.【点睛】本题考查角平分线的定义,平角定义,三角形的外角性质,解题的关键是根据角平分线定义和平角定义可得∠OCD=90°,根据外角的性质求得∠BOC=∠OCD+∠D.28.(23-24八年级·全国·课后作业)(分类讨论思想)△ABC的两外角平分线交于点F.(1)如图1,若∠A=30°,则∠BFC的度数为.(2)如图2,过点F作直线MN∥BC,分别交射线AB,AC于点M,N,若设∠MFB=α,∠NFC=β,则∠A与α+β的数量关系是.(3)在(2)的条件下,将直线MN绕点F转动.①如图3,当直线MN与线段BC没有交点时,试探索∠A与α,β之间的数量关系,并说明理由.②当直线MN 与线段BC 有交点时,试问①中∠A 与α,β之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请给出三者之间的数量关系.【答案】(1)75°(2)α+β-12∠A =90°(3)①α+β-12∠A =90°,见解析;②不成立,β-α-12∠A =90°或α-β-12∠A =90°【分析】(1)由三角形内角和定理可得∠ACB +∠ABC =180°-∠A ,从而可得∠CBD +∠BCE =180°+∠A ,再由角平分线的定义可得∠CBF +∠BCF =90°+12∠A ,最后由三角形内角和定理可得∠BFC =90°-12∠A ,进行计算即可;(2)由(1)可得由(1)可得∠BFC =90°-12∠A ,再由α+∠BFC +β=180°代入进行计算即可;(3)①根据(1)中的结论∠BFC =90°-12∠A ,以及平角的定义,即可得到答案;②分两种情况进行讨论:根据(1)中的结论∠BFC =90°-12∠A ,以及平角的定义,即可得到答案.【详解】(1)解:∵∠A +∠ACB +∠ABC =180°,∴∠ACB +∠ABC =180°-∠A ,∵∠ACB +∠BCE =180°,∠ABC +∠CBD =180°,∴∠CBD +∠BCE=180°-∠ABC +180-∠ACB=360°-∠ABC +∠ACB=360°-180°-∠A=180°+∠A ,∵BF 和CF 分别是∠DBC 和∠BCE 的平分线,∴∠CBF =12∠CBD ,∠BCF =12∠BCE ,∴∠CBF +∠BCF ,=12∠CBD +12∠BCE =12∠CBD +∠BCE =12×180°+∠A =90°+12∠A ,∵∠BFC +∠CBF +∠BCF =180°,∴∠BFC =180°-∠CBF +∠BCF =180°-90°+12∠A =90°-12∠A =75°,故答案为:75°;(2)解:α+β-12∠A =90°,由(1)可得∠BFC =90°-12∠A ,∵α+∠BFC +β=180°,∴α+β+90°-12∠A =180°,即α+β-12∠A =90°.(3)解:①当直线MN 与线段BC 没有交点时,α+β-12∠A =90°,理由如下:∵∠BFC =90°-12∠A ,∠MFB +∠NFC +∠BFC =180°,∴α+β+90°-12∠A =180°,即α+β-12∠A =90°;②当直线MN 与线段BC 有交点时,①中∠A 与α,β之间的数量关系不成立,需分两种情况讨论:a .如图1,当M 在线段AB 上,N 在射线AC 上时,β-α-12∠A =90°,,∵∠BFC =90°-12∠A ,∠BFC -∠MFB +∠NFC =180°,∴90°-12∠A -α+β=180°,即β-α-12∠A =90°,b .如图2,当M 在射线AB 上,N 在线段AC 上时,α-β-12∠A =90°,,∵∠BFC =90°-12∠A ,∠BFC -∠NFC +∠MFB =180°,∴90°-12∠A -β+α=180°,即α-β-12∠A =90°.【点睛】本题考查了三角形内角和定理、角平分线的定义、平角的定义等知识,熟练掌握以上知识点,采用分类讨论的思想解题,是解此题的关键.知识点8:一内一外角角平分线模型已知△ABC 中,BP 、CP 分别是△ABC 的内角和外角的角平分线,且相交于点P .则∠P =12∠A【证明】∵BP 是∠ABC 平分线,∴∠3=12∠ABC ∵CP 是∠ACE 平分线,∴∠1=12∠ACE 由△ABC 外角定理可知:∠ACE =∠ABC +∠A 即:2∠1=2∠3+∠A ⋯⋯①对①式两边同时除以2,得:∠1=∠3+12∠A⋯⋯②又在△BPC中由外角定理可知:∠1=∠3+∠P⋯⋯③比较②③式子可知:∠P=12∠A.【题型8一内一外角角平分线模型】29.(23-24八年级·江苏泰州·期末)如图,点B、C分别在AM、AN上运动(不与A重合),CD是∠BCN的平分线,CD的反向延长线交∠ABC的平分线于点P.知道下列哪个条件①∠ABC+∠ACB;②∠A;③∠NCD -∠ABP;④∠ABC的值,不能求∠P大小的是()A.①B.②C.③D.④【答案】D【分析】本题考查三角形外角的性质与内角和定理,根据三角形外角的性质及角平分线的定义可得∠P=∠NCD-∠ABP,可判断③,再利用三角形外角的性质得到∠A=∠NCB-∠ABC,等量代换可判断②,根据三角形内角和定理及等量代换可判断①和④,即可求解.【详解】解:∵CD是∠BCN的平分线,CD的反向延长线交∠ABC的平分线于点P,∴∠NCD=∠BCD,∠ABP=∠CBP,∵∠P=∠DCB-∠CBP,∴∠P=∠NCD-∠ABP,∴③能求出∠P的大小;∵∠A=∠NCB-∠ABC=2∠NCD-∠ABP,∠P=∠NCD-∠ABP∴∠P=12∠A,∴②能求出∠P的大小;∵∠ABC+∠ACB=180°-∠A,∴∠A=180°-∠ABC+∠ACB∵∠P=12∠A,∴∠P=12180°-∠ABC+∠ACB=90°-12∠ABC+∠ACB,∴①能求出∠P的大小,④不能求出∠P的大小;故选:D.30.(23-24八年级·四川遂宁·开学考试)如图,点D为△ABC边BC的延长线上一点,若∠A:∠ABC=3:4,∠ACD=140°,∠ABC的角平分线与∠ACD的角平分线交于点M,则∠M=度.【答案】30【分析】本题考查了三角形的外角定理,与角平分线有关的计算.解题的关键是掌握三角形的一个外角等于与它不相邻的两个内角之和,以及角平分线的定义.先根据∠A:∠ABC=3:4,∠ACD=140°,求出∠ABC=80°,进而得出∠CBM=12∠ABC=40°,∠CDM=12∠ACD=70°,最后根据三角形的外角定理即可解答.【详解】解:∵∠ACD=140°,∴∠A+∠ABC=140°∵∠A:∠ABC=3:4,∴∠ABC=140°×43+4=80°,∵BM平分∠ABC,CM平分∠ACD,∴∠CBM=12∠ABC=40°,∠CDM=12∠ACD=70°,∴∠M=∠DCM-∠CBM=30°,故答案为:30.31.(23-24八年级·四川眉山·开学考试)如图,∠ABC=∠ACB,AD、BD、CD分别平分∠EAC、∠ABC和∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③DB平分∠ADC;④∠ADC=90°-∠ABD.其中正确的结论有.(填序号)【答案】①②④【分析】证明∠EAD=∠DAC,由三角形外角得∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,得出∠EAD =∠ABC,再由平行线的判定即可判断出①是否正确;由AD∥BC,得出∠ADB=∠DBC,再由BD平分∠ABC,所以∠ABD=∠DBC,∠ABC=2∠ADB,进而可判断出②是否正确;假设DB平分∠ADC,推出与题干不符的结论,进而可判断出③是否正确,由∠ADC+∠CAD+∠ACD=180°,利用角的关系得∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,进而可判断出④是否正确;【详解】解:①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确;②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确;③若DB 平分∠ADC ,∴∠ADB =∠CDB ,∵∠ADB =∠DBC =∠ABD ,∴∠ADB =∠DBC =∠ABD =∠CDB ,∴∠ABC =∠ADC ,与题干条件矛盾.故③错误.④在△ADC 中,∠ADC +∠CAD +∠ACD =180°,∵CD 平分△ABC 的外角∠ACF ,∴∠ACD =∠DCF ,∵AD ∥BC ,∴∠ADC =∠DCF ,∠ADB =∠DBC ,∠CAD =∠ACB ,∴∠ACD =∠ADC ,∠CAD =∠ACB =∠ABC =2∠ABD ,∴∠ADC +∠CAD +∠ACD =∠ADC +2∠ABD +∠ADC =2∠ADC +2∠ABD =180°,∴∠ADC +∠ABD =90°,∴∠ADC =90°-∠ABD ,故④正确;故答案为:①②④【点睛】此题考查三角形的外角性质,平行线的判定与性质,三角形的内角和定理的应用,解题关键在于掌握外角性质.32.(23-24八年级·河南开封·期末)如图,在△ABC 中,∠A =48°,△ABC 的内角∠ABC 与外角∠ACD 的平分线相交于点A 1,得到∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得到∠A 2;⋯⋯按此规律继续下去,∠A n -1BC 与∠A n -1CD 的平分线相交于点A n ,要使∠A n 的度数为整数,则n 的最大值为()A.3B.4C.5D.6【答案】B 【分析】本题主要考查了三角形的内角和,三角形的外角定理,角平分线的定义,熟练掌握三角形内角和是解题的关键.先根据外角和定理得出∠ACD =∠ABC +∠A ,再根据题意总结出规律,∠A n =12n ∠A 即可得到答案.【详解】解:∵∠ACD 是△ABC 的一个外角,∴∠ACD =∠ABC +∠A ,∵△ABC 的内角∠ABC 与外角∠ACD 的平分线相交于点A 1,得到∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,∴∠A 1BC =12∠ABC ,∠A 1CA =12∠ACD ,∴∠A 1=180°-∠A 1BC -∠A 1CB=180°-12∠ABC -(∠ACB +∠A 1CA )=180°-12∠ABC -∠ACB -12∠ACD =180°-12∠ABC -∠ACB -12(∠ABC +∠A )。
专题11 解三角形中的面积和周长计算问题(解析版)
专题11 解三角形中的面积和周长计算问题一、重点题型目录【题型】一、正余弦定理判断三角形的形状 【题型】二、证明三角形中的恒等式或不等式 【题型】三、几何图形中的计算【题型】四、求三角形中的边长最值或范围 【题型】五、求三角形中的周长最值或范围 【题型】六、求三角形面积的最值或范围 二、题型讲解总结【题型】一、正余弦定理判断三角形的形状 例1.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,下列结论正确的是( )A .若2220b c a +->,则ABC 为锐角三角形B .若ABC 为钝角三角形,则2220b c a +-< C .若cos cos a A b B =,则ABC 为等腰直角三角形D .若8a =,10c =,60B =︒,则符合条件的ABC 只有一个 【答案】D【分析】A 选项,只能证明A 为锐角,不能说明B 和C 的大小,故不能得到ABC 是锐角三角形;B 选项,不确定哪个角是钝角,所以222b c a +-可能大于0,也可能小于0;C 选项,由正弦定理得到A B =或π2A B +=,得到ABC 为等腰三角形或直角三角形,故C 错误;由余弦定理求出b =1个.【详解】2220b c a +->,则222cos 02b c a A bc+-=>,只能说明A 为锐角, 不能说明B 和C 的大小,故不能得到ABC 是锐角三角形,A 错误;若ABC 为钝角三角形,但不确定哪个角是钝角,若角A 为锐角,则2220b c a +->, 若角A 为钝角,则2220b c a +-<,B 错误;cos cos a A b B =,由正弦定理得:sin cos sin cos A A B B =,即sin 2sin 2A B =,所以22A B =或22πA B +=,故A B =或π2A B +=,则ABC 为等腰三角形或直角三角形,故C 错误;由余弦定理得:2222cos 641008084b a c ac B =+-=+-=,因为0b >,所以b =ABC 只有1个,D 正确. 故选:D例2.(2023·全国·高三专题练习)在△ABC 中,“222sin sin sin A B C +>”是“△ABC 是锐角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【分析】由222sin sin sin A B C +>不能得到ABC 是锐角三角形,但ABC 是锐角三角形,则222sin sin sin A B C +>,根据必要不充分条件的定义,即可求解.【详解】由正弦定理可知,222222sin sin sin cos 0A B C a b c C +>⇔+>⇔>, 222sin sin sin A B C +>不能得到ABC 是锐角三角形,但ABC 是锐角三角形,则222sin sin sin A B C +>.故“222sin sin sin A B C +>”是“ABC 是锐角三角形”的必要不充分条件, 故选:B .例3.(2023·全国·高三专题练习)已知ABC 中,三内角,,A B C 满足2=B A C +,三边,,a b c 满足2b ac =,则ABC 是( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .钝角三角形【答案】C【分析】由三角形内角和定理及2=A B C +可得3B π=,余弦定理及2b ac =可得a c =,即可得ABC ∆为等边三角形.【详解】ABC 中,△2B A C =+且A B C π++=,△3B π=,将2b ac =,3B π=代入余弦定理2222cos b a c ac B =+-可得22122ac a c ac =+-⨯,化简可得()20a c -=,即a c =,又△3B π=,由等边三角形判定定理可知ABC ∆为等边三角形.故选:C.例4.(2023·全国·高三专题练习)设ABC 的三个内角, , A B C 满足2B A C =+,又2sin sin sin B A C =,则这个三角形的形状是( )A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形【答案】B【分析】根据给定条件可得3B π=,再利用正弦定理角化边,借助余弦定理计算判断作答.【详解】因ABC 的三个内角++ =A B C π,而2B A C =+,则3B π=,又2sin sin sin B A C =,由正弦定理得:2b ac =,由余弦定理2222cos b a c ac B =+-得:22ac a c ac =+-,整理得2()0a c -=,即a c =,ABC 是等腰三角形,所以ABC 是等边三角形. 故选:B【题型】二、证明三角形中的恒等式或不等式 例5.(2021·全国·高三专题练习(理))下列命题中,不正确的是( ) A .线性回归直线ˆˆˆybx a =+必过样本点的中心(),x y B .若平面α⊥平面γ,平面β⊥平面γ,则平面//α平面β C .若“11a b <,则a b >”的逆命题为假命题D .若ABC 为锐角三角形,则sin cos A B >. 【答案】B【分析】根据回归方程的特征可判定A 正确;根据线面位置关系的判定与性质,可判断B 不正确;根据不等式的性质,可判断C 正确;根据三角形的性质和正弦函数的单调性,可判定D 正确.【详解】对于A 中,由回归直线的概念知线性回归直线ˆˆˆybx a =+必过样本点的中心(),x y ,所以A 正确;对于B 中,若平面α⊥平面γ,平面β⊥平面γ,则平面//α平面β或平面α与平面β相交,所以B 不正确; 对于C 中,命题“11a b <,则a b >”逆命题为“a b >,则11a b<” 因为11b aa b ab--=,其中ab 的符号不确定,所以为假命题,所以C 正确;对于D 中,若ABC 为锐角三角形,可得2A B π+>,即2A B π>-, 又由sin y x =在区间(0,)2π上为增函数,所以sin sin()cos 2A B B π>-=,所以D 正确.故选:B.例6.(2021·湖南·长郡中学高三阶段练习)下列说法正确的是( )A .函数()4cos 23f x x π⎛⎫=+ ⎪⎝⎭的一个对称中心为(512π-,0)B .在△ABC 中,AB =1,AC =3,D 是BC 的中点,则4AD BC ⋅= C .在△ABC 中,A B <是cos2A >cos2B 的充分不必要条件D .定义{},min ,,a a b a b b a b ≤⎧=⎨>⎩,已知(){}min sin ,cos f x x x =,则()f x【答案】ABD【分析】代入法验证对称中心判断A ;将AD BC ⋅转化为()()12AB AC AC AB +⋅-求值判断B ;利用三角形内角的性质、正弦定理,从充分性、必要性两方面判断C ;根据新函数定义,结合正余弦函数的周期性及图象求函数最大值判断D.【详解】A :521232πππ⎛⎫⨯-+=- ⎪⎝⎭,所以5,012π⎛⎫- ⎪⎝⎭是()f x 的一个对称中心,正确;B :()1,2AD AB AC BC AC AB =+=-,则()()()2211422AD BC AB AC AC AB AC AB ⋅=+⋅-=-=,正确; C :充分性:A B <,则a b <,由正弦定理可知,sin sin A B <,又sin ,sin 0A B >有22sin sin A B <,则2212sin 1sin A B ->-,即cos2cos2A B >,充分性成立,必要性:由cos2cos2A B >,可知:sin sin A B <,则A B <,必要性成立,不正确; D :sin ,cos y x y x ==是周期为2π的函数,{}3sin ,2244min sin ,cos 5cos ,2244x k x k y x x x k x k ππππππππ⎧-+≤≤+⎪⎪==⎨⎪+≤≤+⎪⎩,Z k ∈且周期为2π的函数,当[]0,2x π∈时,由图象知,()f x的最大值是944f f ππ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭. 故选:ABD.例7.(2021·辽宁沈阳·高三阶段练习)在ABC 中,给出下列四个命题,其中正确的命题是( )A .若AB <,则sin sin A B < B .若sin sin A B <,则A B <C .若A B >,则11tan 2tan 2A B> D .若A B >,则22cos cos A B >【答案】AB【分析】对ABD ,利用正弦定理,同角三角函数的基本关系来判断,对D 变形112sin()cos()tan 2tan 2sin 2sin 2B A B A A B A B---=,逐一判断每个因式的正负. 【详解】解:对于A :在ABC 中,2sin 2sin sin sin A B a b R A R B A B <⇔<⇔<⇔<, 所以若A <B ,则sin A <sin B 正确; 若sin A <sin B ,则A <B ,所以B 正确; 对于C :11cos 2cos 2cos 2sin 2cos 2sin 2tan 2tan 2sin 2sin 2sin 2sin 2A B A B B A A B A B A B --=-= sin 2()2sin()cos()sin 2sin 2sin 2sin 2B A B A B A A B A B---==A B >0A B π∴<-<sin()sin()0B A A B ∴-=--<当0,022A B ππ<≤<≤时,0<2A ≤π,0<2B ≤π,0≤2A B π-≤,sin2A >0,sin2B >0,cos (B −A )>0 △则11110,tan 2tan 2tan 2tan 2A B A B -<∴<; 当,022A B πππ<<<≤时(A 和B 不可能同时在第二象限),π<2A <2π,0<2B ≤π,△sin2A <0,sin2B >0 当0≤A −B ≤2π时,cos (B −A )>0, △则11110,tan 2tan 2tan 2tan 2A B A B->∴>, 当2A B ππ<-≤时,cos (B −A )<0,11110,tan 2tan 2tan 2tan 2A B A B∴-<∴<;故C 错误; 对于D :222222sin sin 0sin sin 1co 1cos cos s s co A A B B A B A B A B >⇔>>⇔>⇔⇔<>--,故D 错误; 故选:AB .【题型】三、几何图形中的计算 例8.(2023·全国·高三专题练习)已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且60C =︒,3a =,ABC S =△,则AB 边上的中线长为( )A .49B .7C .494D .72【答案】D【分析】根据面积公式结合已知数据,即可求得b ,根据余弦定理即可求得c ,结合中线的向量表达即可求得中线长度.【详解】因为ABCS11sin 322ab C b ==⨯⨯=5b =,根据余弦定理可得2222cos 19c a b ab C =+-=,故c = 不妨取AB 中点为M ,故()12CM CA CB =+,故22172cos 22CM CA CB CA CB C =++=. 即AB 边上的中线长为72.故选:D .例9.(2023·全国·高三专题练习)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a =4,b =3,c =2,则中线AD 的长为( )A B CD 【答案】D【分析】利用余弦定理即得.【详解】如图,由余弦定理得AB 2=DA 2+DB 2-2DA ·DB cos△ADB , AC 2=DA 2+DC 2-2DA ·DC cos△ADC ,又cos△ADB =-cos△ADC两式相加得AB 2+AC 2=2DA 2+DB 2+DC 2, 即22+32=2DA 2+22+22, △2DA 2=5,△DA 故选:D例10.(2023·全国·高三专题练习)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2 min ,从D 沿着DC 走到C 用了3 min .若此人步行的速度为每分钟50 m ,则该扇形的半径为________m .A .B .C .D .【答案】C【分析】由题意,可得,OD CD 长度,△CDO =60°,在△OCD 中,利用余弦定理可得解【详解】连结OC ,在△OCD 中,OD =250⨯=100,CD =350⨯=150,△CDO =60°, 由余弦定理可得OC 2=1002+1502-2×100×150×12=17 500,解得OC =(m). 故选:C【题型】四、求三角形中的边长最值或范围 例11.(2022·上海·高三专题练习)在锐角ABC 中,2A B ∠=∠,B C ∠∠、的对边长分别是b 、c ,则+bb c的取值范围是( ) A .1,4⎛⎫+∞ ⎪⎝⎭B .11,42⎛⎫ ⎪⎝⎭C .11,43⎛⎫⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭【答案】D【分析】确定B 的范围,利用正弦定理化简表达式,求出范围即可. 【详解】在锐角ABC 中,20,0,2264A B A C B ππππ⎛⎫∠=∠<<<<∴∠∈ ⎪⎝⎭,,cos B ∈⎝⎭,213cos ,24B ⎛⎫∈ ⎪⎝⎭, 而()()sin sin sin 3sin3C A B B B ππ=--=-=,()sin3sin +2sin cos2+cos sin 2B B B B B B B ==,()22sin 2cos 1+2sin cos B B B B =-所以()223sin34cos sin sin 41sin sin sin 3sin 4sin B B B B B B B B B =-=--=-,所以由正弦定理可知:32sin sin sin 111,sin sin sin sin(3)sin 3sin 4sin 4cos 32b B B B b c B C B B B B B B π⎛⎫====∈ ⎪+++-+-⎝⎭, 故选:D例12.(2022·辽宁·本溪满族自治县高级中学高三阶段练习)在ABC 中,角,,A B C 所对边长为,,a b c ,3A π=,角A 的平分线AD 交BC 于D ,且2AD =,则下列说法正确的是( )A .若2c =,则BD =B .若2c =,则ABCCb c =+ D .163bc ≥【答案】ABD【分析】在ABD △中,利用余弦定理可直接求得BD ,知A 正确;根据长度关系可求得512B π=,由此可得4C π=,由正弦定理即可求得B 正确;利用ABCABDADCSSS=+可整理得到C 错误;()2b c =+,利用基本不等式可构造不等式求得结果,知D 正确.【详解】对于A ,在ABD △中,由余弦定理得:2222cos 88cos 26A BD AB AD AB AD π=+-⋅=-28=-=,BD ∴=A 正确;对于B ,当2c =时,ABD △为等腰三角形,则52212AB ππ-==,()4C A B ππ∴=-+=; 设ABC 外接圆半径为R,则2sin c R C ===R ∴B 正确; 对于C ,ABCABDADCS SS=+,111sin sin sin 22222A A bc A c AD b AD ∴=⋅+⋅,1122c b =+,()2b c =+,C 错误;对于D ()2b c =+()2b c =+≥b c =时取等号),163bc ∴≥,D 正确.故选:ABD.例13.(2023·全国·高三专题练习)在ABC 中,三边长分别为a ,b ,c ,且2abc =,则下列结论正确的是( )A .222<+a b abB .++>ab a bC .224++≥a b cD .++≤a b c 【答案】ABC【分析】根据题意得()2ab a b abc -<=,结合边的关系即可判断A ;根据边的关系及基本不等式即可判断BC ;用边长为D【详解】对于A ,222<+a b ab ,即222-<a b ab ,也就是()2ab a b abc -<=, 另一方面,在ABC 中,0,>-<ab a b c ,则()-<ab a b abc 成立,故A 正确;对于B ,++>+≥=ab a b ab c B 正确;对于C ,2224++≥+≥=a b c a bc ,当且仅当222a b c ===时取等号,故C 正确;对于D ,边长为2abc =,但1++=+a b c D 错误. 故选:ABC .例14.(2022·江苏·高三专题练习)已知ABC 的内角A ,B ,C 的对边长a ,b ,c 成等比数列,1cos()cos 2A CB -=+,延长BA 至D .则下面结论正确的是( ) A .6A π= B .3B π=C .若3CD =,则ACD 周长的最大值为3 D .若4BD =,则ACD【答案】BCD【解析】根据题中条件,利用三角恒等变换,以及正弦定理,求得1cos cos 4A C =,2sin sin sin B A C =,两式作差求出角B ,进而可求出3A C π==,判定A 错B 正确;再利用基本不等式,分别判断CD 两选项即可.【详解】因为在ABC 中,A B C π++=,则()A C B π-+=, 由1cos()cos 2A C B -=+可得()1cos()cos 2A C A C -=-++,即1cos cos sin sin cos cos sin sin 2A C A C A C A C +=-++,所以1cos cos 4A C =△,又a ,b ,c 成等比数列,所以2b ac =,由正弦定理可得:2sin sin sin B A C =△, 由△△可得:21cos cos sin sin sin 4A C A CB -=-,则()21cos sin 4AC B +=-,所以()21cos sin 4B B π-=-,则23cos cos 4B B -=-+,即()()2cos 32cos 10B B +-=, 所以1cos 2B =, 因为角B 为三角形内角,所以()0,B π∈,则3B π=;又1cos()cos 2A CB -=+,所以cos()1A C -=; 角A ,C 为三角形内角,所以()0,A π∈,()0,C π∈,则(),A C ππ-∈-, 所以0A C -=,即3A C π==;即ABC 为等边三角形;故A 错,B 正确;延长BA 至D ,连接CD ,则23CAD π∠=, 若3CD =,在ACD 中,由余弦定理可得:2222cos CD AD AC AC AD CAD =+-⋅∠, 即()2229AD AC AC AD AD AC AC AD =++⋅=+-⋅()()()222344AD AC AD AC AD AC ++≥+-=,所以AD AC +≤当且仅当AD AC ==此时ACD 周长的最大值为3AD AC CD ++=;故C 正确;若4BD =,设2AB x =,则ABC 的高为h ==,所以ACD 的面积为 ())2112422222ACDx x SAD h x x x -+⎫=⋅=⋅-=-⋅≤=⎪⎭当且仅当2x x -=,即1x =时,等号成立;即ACD 故D 正确.故选:BCD. 【点睛】方法点睛:求解三角形中有关边长、角、面积的最值(范围)问题时,常利用正弦定理、余弦定理与三角形面积公式,建立a b +,ab ,22a b +之间的等量关系与不等关系,然后利用函数或基本不等式求解.【题型】五、求三角形中的周长最值或范围例15.(2022·全国·高三专题练习)在ABC 中,ABC ∠的平分线交AC 于点D ,23ABC π∠=,4BD =,则ABC 周长的最小值为( )A.8+B .8+C .16+D .16+【答案】C【分析】根据等面积法得4aca c +=,进而结合基本不等式得16a c +≥,64ac ≥,当且仅当8a c ==时等号成立,再结合余弦定理得b ≥≥当且仅当8a c ==时等号成立,进而得周长最小值. 【详解】根据题意,设,,AB c BC a AC b ===, 因为ABCABDCBDS SS=+,243ABC BD π∠==,,ABD CBD ∠=∠,所以111sin sin sin 222AB BC ABC AB BD ABD CB BD CBD ⋅⋅∠=⋅⋅∠+⋅⋅∠,=, 所以4aca c +=,因为根据基本不等式有22a c ac +⎛⎫≤ ⎪⎝⎭,a c +≥所以16a c +≥,64ac ≥,当且仅当8a c ==时等号成立, 由余弦定理得b ==当且仅当8ac ==时等号成立,所以16a b c ++≥+,当且仅当8a c ==时等号成立.所以ABC 周长的最小值为16+故选:C例16.(2022·全国·高三专题练习)在锐角三角形ABCcos 2B B +=,且满足关系式cos cos sin sin 3sin B C A Bb c C⋅+=,则ABC 的周长最大值为( ) AB.C.D.【答案】D【分析】cos 2B B +=,推导出3B π=,由cos cos sin sin 3sin B C A Bb c C+=,推导出b =再由正弦定理可得4sin a A =,24sin 4sin()3c C A π==-,由此能求出周长的取值范围.【详解】cos 2B B +=,∴112cos B B +=,sin()16B π∴+=,262B k πππ∴+=+,2B π<,3Bπ∴=,cos cos sin sin 3sin B C A B b c C +=,∴2222222223a c b a b c abc abc c+-+-+=,∴a bc,b ∴=4sin sin sin a c bA CB ===, 4sin a A ∴=,24sin 4sin()3c C A π==-,214sin 4sin()3(cos ))326a c A A A A A ππ∴+=+-==+, 三角形ABC 为锐角三角形,∴62A ππ<<,∴2363A πππ<+<,∴sin 16A π⎛⎫<+≤ ⎪⎝⎭66A π⎛⎫∴<+≤ ⎪⎝⎭6a c <+≤b =△a b c ++≤△ABC的周长最大值为 故选:D例17.(2022·全国·高三专题练习)在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sin sin cos cos 3sin B C A CA a c=+,且)222ABCSa b c =+-,则2c a b+的取值范围是( ) A.(B.(6,C.12⎡⎢⎣⎭D.)2【答案】D【分析】根据给定条件利用正弦定理、余弦定理、三角形面积定理求出角C 及边c ,再求出a b +的范围即可计算作答.【详解】在锐角ABC中,由余弦定理及三角形面积定理得:222)cos ABCSa b c C +-=1sin 2ab C =,即有tan C =(0,)2C π∈,则π3C =,又sin sin cos cos 3sin B C A C A a c =+,由正弦定理、余弦定理得,2222222223b c a a b c b bc ab a a c+-+-=+,化简得:c =,由正弦定理有:4sin sin sin a b c A B C ====,即4sin a A =,4sin b B =, ABC 是锐角三角形且π3C =,有π(0,)2A ∈,2ππ(0,)32B A =-∈,解得ππ(,)62A ∈, 因此2π4(sin sin )4[sin sin()]3a b A B A A +=+=+-1π4(sin sin ))26A A A A =+=+, 由ππ(,)62A ∈得:π2(,)633A ππ+∈,sin()6A π+∈,所以2122))6c a b A π=∈++. 故选:D【点睛】思路点睛:涉及求三角形周长范围问题,时常利用三角形正弦定理,转化为关于某个角的函数,再借助三角函数的性质求解.例18.(2022·全国·高三专题练习)在ABC 中,已知60C =︒,4AB =,则ABC 周长的最大值为( ) A .8 B .10C .12D .14【答案】C【分析】根据余弦定理算出2()163a b ab +=+,再利用基本不等式即可得8a b +,从而可得到ABC 周长的最大值.【详解】解:在ABC 中,60C =︒,4AB c ==, ∴由余弦定理,得2222cos c a b ab C =+-,即2222162cos 60a b ab a b ab =+-︒=+-2()3a b ab =+-,由基本不等式有22a b ab +⎛⎫≤ ⎪⎝⎭,所以222216()3()(3144)()a b ab a b a b a b -==+-≥+++,∴8a b +(当且仅当4a b ==时等号成立),ABC ∴周长8412a b c +++=(当且仅当4a b ==时等号成立),即当且仅当4a b ==时,ABC 周长的最大值为12, 故选:C .【点睛】关键点点睛:先用余弦定理得216()3a b ab =+-,再结合基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭即可求a b +的最大值,从而得ABC 周长的最大值.例19.(2022·江苏·高三专题练习)已知ABC 的内角A ,B ,C 的对边长a ,b ,c 成等比数列,1cos()cos 2A CB -=+,延长BA 至D .则下面结论正确的是( ) A .6A π= B .3B π=C .若3CD =,则ACD 周长的最大值为3 D .若4BD =,则ACD【答案】BCD【解析】根据题中条件,利用三角恒等变换,以及正弦定理,求得1cos cos 4A C =,2sin sin sin B A C =,两式作差求出角B ,进而可求出3A C π==,判定A 错B 正确;再利用基本不等式,分别判断CD 两选项即可.【详解】因为在ABC 中,A B C π++=,则()A C B π-+=, 由1cos()cos 2A C B -=+可得()1cos()cos 2A C A C -=-++, 即1cos cos sin sin cos cos sin sin 2A C A C A C A C +=-++,所以1cos cos 4A C =△,又a ,b ,c 成等比数列,所以2b ac =,由正弦定理可得:2sin sin sin B A C =△, 由△△可得:21cos cos sin sin sin 4A C A CB -=-,则()21cos sin 4AC B +=-,所以()21cos sin 4B B π-=-,则23cos cos 4B B -=-+,即()()2cos 32cos 10B B +-=, 所以1cos 2B =, 因为角B 为三角形内角,所以()0,B π∈,则3B π=;又1cos()cos 2A CB -=+,所以cos()1A C -=; 角A ,C 为三角形内角,所以()0,A π∈,()0,C π∈,则(),A C ππ-∈-, 所以0A C -=,即3A C π==;即ABC 为等边三角形;故A 错,B 正确;延长BA 至D ,连接CD ,则23CAD π∠=, 若3CD =,在ACD 中,由余弦定理可得:2222cos CD AD AC AC AD CAD =+-⋅∠, 即()2229AD AC AC AD AD AC AC AD =++⋅=+-⋅()()()222344AD AC AD AC AD AC ++≥+-=,所以AD AC +≤当且仅当AD AC ==此时ACD 周长的最大值为3AD AC CD ++=;故C 正确;若4BD =,设2AB x =,则ABC 的高为h ==,所以ACD 的面积为 ())2112422222ACDx x SAD h x x x -+⎫=⋅=⋅-=-⋅≤=⎪⎭当且仅当2x x -=,即1x =时,等号成立;即ACD故D 正确.故选:BCD. 【点睛】方法点睛:求解三角形中有关边长、角、面积的最值(范围)问题时,常利用正弦定理、余弦定理与三角形面积公式,建立a b +,ab ,22a b +之间的等量关系与不等关系,然后利用函数或基本不等式求解.例20.(2022·全国·高三专题练习)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sinsin2B Cb a B +=,a =△ABC 周长的最大值为________.【答案】【分析】根据正弦定理,结合三角恒等变换可得3A π=,再根据余弦定理与基本不等式求解周长最大值即可.【详解】由正弦定理,sinsin 2B C b a B +=即sin sin sin sin 22A B A B π⎛⎫-= ⎪⎝⎭,又sin 0B ≠,故sin sin 22A A π⎛⎫-= ⎪⎝⎭,即cos sin 2A A =.由二倍角公式有cos 2sin cos 222A A A =,因为0,22A π⎛⎫∈ ⎪⎝⎭,故cos 02A ≠,所以1sin 22A =,所以26A π=,即3A π=.222cos3b c bc π=+-,结合基本不等式有()()2222332b c b c bc b c +⎛⎫=+-≥+-⨯ ⎪⎝⎭,即()2124b c +≤,()28b c +≤,故b c +≤仅当b c =.故△ABC 周长的最大值为a b c ++故答案为:【题型】六、求三角形面积的最值或范围例21.(2023·全国·高三专题练习)已知圆锥的高为1,则过此圆锥顶点的截面面积的最大值为( )A .2B .52C D .3【答案】D【分析】先根据圆锥的高和母线,求出顶角范围,结合面积公式可得最大值. 【详解】如图ABC 是圆锥的轴截面,由题意母线=BC 1CO =, 则1sin2CBO ∠=<,CBO ∠是锐角, 所以30CBO ∠<,于是得轴截面顶角12090ACB ∠>>,设截面三角形的顶角为θ,则过此圆锥顶点的截面面积21sin 2S θ=⨯,当两条母线夹角为90θ=时,截面面积为2132S =⨯=为所求面积最大值,故选:D.例22.(2023·全国·高三专题练习)在ABC 中,角,,A B C 所对的边分别为,,a b c ,2a =,2cos 2cos 24sin C A B =+,则ABC 面积的最大值是( ) A .23B .1C .43D .2【答案】A【分析】利用二倍角公式和正弦定理化简已知等式可得22224a c b =+=;利用余弦定理可构造等量关系求得cos A ,进而得到sin A ;利用三角形面积公式,将ABCS 表示为以2b 为自变量的二次函数的形式,利用二次函数最值的求法可求得所求最大值. 【详解】由2cos 2cos 24sin C A B =+得:22212sin 12sin 4sin C A B -=-+, 即222sin sin 2sin A C B =+,由正弦定理得:22224a c b =+=;由余弦定理得:2222cos 4a b c bc A =+-=,222222cos c b b c bc A ∴+=+-,即cos 2bA c =,()0,A π∈,sin A ∴1sin 2ABCSbc A ∴=== 2224c b +=,2242c b ∴=-,ABCS∴=则当289b =时,42max996481644448199b b ⎛⎫-+=-⨯+⨯= ⎪⎝⎭,()max142233ABC S∴=⨯=. 故选:A.例23.(2023·全国·高三专题练习)ABC 的内角,,A B C 所对的边分别为,,a b c .已知()sin sin sin ,cos cos 2b c B c C a A b C c B -+=+=,则ABC 的面积的最大值( )A .1B C .2D .【答案】B【分析】根据()sin sin sin b c B c C a A -+=,利用正弦定理化角为边,结合余弦定理求得角A ,再根据cos cos 2b C c B +=,利用余弦定理化角为边求得边a ,再利用余弦定理结合基本不等式求得bc 的最大值,再根据三角形的面积公式即可得出答案. 【详解】解:因为()sin sin sin b c B c C a A -+=, 所以222b bc c a -+=, 所以1cos 2A =, 又()0,A π∈,所以3A π=,因为cos cos 2b C c B +=,所以222222222a b c a c b b c ab ac+-+-+=,所以2a =,由2222cos a b c bc A =+-,得224b c bc bc =+-≥, 所以4bc ≤,当且仅当2b c ==时,取等号,则1sin 2ABC S bc A ==≤△,所以ABC 故选:B.例24.(2022·江西·芦溪中学高三阶段练习(理))在锐角ABC 中,a b c ,,分别为角A B C ,,的对边,已知2222b c a bc b +=+=,,则ABC 的面积S 的取值范围是( )A .⎣B .⎝C .⎝D .⎝ 【答案】C【分析】根据条件求出π3A =,利用三角形面积公式得到1sin 2ABCSbc A ==,采用极端值方法求出c 的最值,进而得到c 的范围,求出面积的取值范围. 【详解】2221cos 22b c a A bc +-==,因为ABC 为锐角三角形,故π3A =,1sin 2ABCSbc A ==,当BC △AB 时,cos 1c b A ==,当CB △AC 时,4cos b c A ==,故()1,4c ∈,所以ABCS∈⎝=. 故选:C例25.(2022·全国·信阳高中高三阶段练习(理))我国南宋著名数学家秦九韶发现了“三斜”求积公式,即ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,则ABC 的面积S =已知在ABC 中,cos 8ac B =,b =ABC 面积的最大值为( )A B .C .2D 【答案】A【分析】根据题意,结合余弦定理得22282a c b +-=,2228a c +=,22142a c ac +≤=,再根据公式求解即可.【详解】解:△222222cos 822a cb ac b ac B ac ac +-+-=⋅==,又△b =△2228a c +=.△22142a c ac +≤=(当且仅当a c ==.△ABCS ==△△ABC 故选:A.例26.(2022·全国·高三专题练习)在ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且()()()sin sin sin a b A B c b C +-=+,则下列叙述正确的有( ) A .3A π=B .若2a =,则ABC C .若2AB =,3AC =,且2CE EB =,则23AE CB ⋅=D.若b =ABC 不存在,则边a 的取值范围是a >【答案】BC【分析】利用正弦定理以及余弦定理可判断A 选项的正误;利用余弦定理、基本不等式结合三角形的面积公式可判断B 选项的正误;利用平面向量数量积的运算性质可判断C 选项的正误;利用ABC 不存在结合已知条件求出a 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,由正弦定理可得()()()a b a b b c c +-=+,可得222b c a bc +-=-, 由余弦定理可得2221cos 22b c a A bc +-==-,因为()0,A π∈,故23A π=,A 选项错误; 对于B 选项,因为222423a b c bc bc bc bc ==++≥+=,则43bc ≤,当且仅当b c ==21sin 2ABC S bc A =≤=⎝⎭△ B 选项正确;对于C 选项,2cos33AB AC AB AC π⋅=⋅=-,2CE EB =,即()2AE AC AB AE -=-,所以,()123AE AB AC =+, 所以,()()()22112233AE CB AB AC AB AC AB AB AC AC ⋅=+⋅-=-⋅- ()2212223333=⨯+-=,C 选项正确;对于D 选项,因为23A π=,b =且满足条件的ABC 不存在,则a b ≤=D 选项错误. 故选:BC.例27.(2022·全国·高三专题练习)如图,△ABC 的三个内角A ,B ,C 对应的三条边长分别是a ,b ,c ,△ABC 为钝角,BD △AB ,7225cos ABC ∠=-,c =2,b =则下列结论正确的有( )A .sin A =B .BD =2C .53CD DA = D .△CBD 的面积为45【答案】AC【解析】由已知利用二倍角的余弦函数公式可求cos ABC ∠的值,利用余弦定理求得c 的值,再计算sin A ,由同角的三角函数关系求出cos A ,根据直角三角形边角关系求出AD ,BD ,CD 的值,再计算BCD ∆的面积从而得解.【详解】解:由7cos 225ABC ∠=-,得:272cos 125ABC ∠-=-, 又角ABC ∠为钝角, 解得:3cos 5ABC ∠=-,由余弦定理2222cos c a c ac ABC =+-∠,得:264344()55a a =+--, 解得2a =,可知ABC ∆为等腰三角形,即A C =, 所以()23cos cos 212sin 5ABC A A ∠=-=--=-,解得sin A =,故A 正确,可得cos A ==在Rt ABD ∆中,cos c A AD=,得AD =1BD ,故B 错误,CD b AD =-==,可得353555CD DA ==,可得53CD DA =,故C 正确,所以BCD ∆的面积为113sin 2225BCD S a CD C ∆=⨯=⨯=,故D 错误. 故选:AC . 【点睛】利用正弦、余弦定理解三角形,利用1sin 2BCD S a CD C ∆=⨯⨯求三角形的面积.。
解三角形图形类问题
解三角形图形类问题三角形是几何学中的基本形状之一,它有着丰富的性质和特点。
解三角形图形类问题是数学学习中的重要内容之一。
本文将通过实例来解释和探讨不同类型的三角形图形问题,并给出相应的解决方法。
一、等边三角形问题等边三角形是一种特殊的三角形,它的三边长度相等,三个角也都是60度。
求解等边三角形问题需要考虑到等边三角形的性质以及利用相应的公式进行计算。
实例1:已知等边三角形的周长是18cm,求其面积。
解:设等边三角形的边长为a,则根据周长的定义,有3a=18cm,解得a=6cm。
等边三角形的面积公式为S=(√3/4)a²,带入边长a=6cm,即可计算得到三角形的面积S=9√3 cm²。
二、直角三角形问题直角三角形是一种至少有一个直角的三角形,其特点是其中一边的平方等于另外两边平方的和。
求解直角三角形问题通常包括求解三角形的边长、角度、面积等。
实例2:已知直角三角形的直角边长分别为3cm和4cm,求其斜边的长度。
解:根据直角三角形的性质,设斜边长度为c,根据勾股定理,有a²+b²=c²。
代入已知的直角边长,得到3²+4²=c²,解得c=5cm。
因此,直角三角形的斜边长度为5cm。
三、等腰三角形问题等腰三角形是一种至少有两边长度相等的三角形,其特点是两个底角也相等。
求解等腰三角形问题常常需要考虑到等腰三角形的性质和相关定理。
实例3:已知等腰三角形的顶角为30度,底边长度为8cm,求其周长和面积。
解:设等腰三角形的腰长为a,根据等腰三角形的性质,有顶角的度数等于底角的度数,所以底角度数为30度。
根据三角形角度和的性质,可以得到腰角的度数为(180-30)/2=75度。
根据正弦定理,可以得到a/√3=sin75°/sin30°。
通过计算,得到a≈6.93cm。
因此,等腰三角形的周长等于2a+8=21.86cm,面积等于(1/2)×8×6.93=27.72cm²。
§2 三角形中的几何计算
(10 分) (12 分)
栏目,c 间的关系,再利用余弦定理,是本题关键.
栏目 导引
第二章 解三角形
判断(正确的打“√”,错误的打“×”) (1)三角形的面积公式适用于所有的三角形.( √ ) (2)已知三角形两边及其夹角不能求出其面积.( × ) (3)已知三角形的两内角及一边不能求出它的面积.( × )
栏目 导引
第二章 解三角形
在△ABC 中,若 a=7,b=3,c=8,则△ABC 的面积等于
栏目 导引
第二章 解三角形
(2)由 S△ABC=12acsin B= 3,得 ac=4. 又 b2=a2+c2+ac=(a+c)2-ac=16. 所以 a+c=2 5,所以△ABC 的周长为 4+2 5.
栏目 导引
第二章 解三角形
解三角形综合问题的策略 (1)三角形中的综合应用问题常常把正弦定理、余弦定理、三角 形面积公式、三角恒等变形等知识联系在一起,要注意选择合 适的方法、知识进行求解. (2)解三角形常与向量、三角函数及三角恒等变形等知识综合考 查,解答此类题目,首先要正确应用所学知识“翻译”题目条 件,然后要根据题目条件和要求选择正弦或余弦定理求解.
2.在△ABC 中,A,B,C 是三角形的三内角, a,b,c 是三内角对应的三边,已知 b2+c2-a2=bc.若 a= 13, 且△ABC 的面积为 3 3,求 b+c 的值. 解:cos A=b2+2cb2c-a2=2bbcc=12, 又 A 为三角形内角, 所以 A=π3.
栏目 导引
第二章 解三角形
=
1-2
5
52=
55,sin
A=sin(B+∠ACB)
=sin Bcos ∠ACB+cos Bsin ∠ACB
三角形中的特殊模型-燕尾(飞镖)型、风筝(鹰爪)模型(解析版)
三角形中的特殊模型-燕尾(飞镖)型、风筝(鹰爪)模型近年来各地考试中常出现一些几何导角模型,该模型主要涉及角度的计算(内角和定理、外角定理等)。
熟悉这些模型可以快速得到角的关系,求出所需的角。
本专题就燕尾(飞镖)型、风筝(鹰爪)模型进行梳理及对应试题分析,方便掌握。
模型1、“飞镖”模型(“燕尾”模型)图1图2条件:如图1,凹四边形ABCD ;结论:①∠BCD =∠A +∠B +∠D ;②AB +AD >BC +CD 。
条件:如图2,线段BO 平分∠ABC ,线段OD 平分∠ADC ;结论:∠O =12(∠A +∠C )。
飞镖模型结论的常用证明方法:例1.(2023·重庆·八年级专题练习)请阅读下列材料,并完成相应的任务:有趣的“飞镖图”1如图,这种形似飞镖的四边形,可以形象地称它为“飞镖图”.当我们仔细观察后发现,它实际上就是凹四边形.那么它具有哪些性质呢?又将怎样应用呢?下面我们进行认识与探究:凹四边形通俗地说,就是一个角“凹”进去的四边形,其性质有:凹四边形中最大内角外面的角等于其余三个内角之和.(即如图1,∠ADB=∠A+∠B+∠C)理由如下:方法一:如图2,连接AB,则在△ABC中,∠C+∠CAB+∠CBA=180°,即∠1+∠2+∠3+∠4+∠C =180°,又∵在△ABD中,∠1+∠2+∠ADB=180°,∴∠ADB=∠3+∠4+∠C,即∠ADB=∠CAD +∠CBD+∠C.方法二:如图3,连接CD并延长至F,∵∠1和∠3分别是△ACD和△BCD的一个外角,. . . . . .大家在探究的过程中,还发现有很多方法可以证明这一结论,你有自己的方法吗?任务:(1)填空:“方法一”主要依据的一个数学定理是;(2)探索:根据“方法二”中辅助线的添加方式,写出该证明过程的剩余部分;(3)应用:如图4,AE是∠CAD的平分线,BF是∠CBD的平分线,AE与BF交于G,若∠ADB =150°,∠AGB=110°,请你直接写出∠C的大小.【答案】(1)三角形内角和定理(或三角形的内角和等于180°);(2)见解析;(3)70°【分析】(1)根据三角形内角和定理,即可求解;(2)根据三角形外角的性质可得∠1=∠2+∠A,∠3=∠4+∠B,从而得到∠1+∠3=∠2+∠A+∠4+∠B,即可求证;(3)由(2)可得:∠ADB=∠CAD+∠CBD+∠C,∠AGB=∠CAE+∠CBF+∠C,从而得到∠CAE+∠CBF=110°-∠C,∠CAD+∠CBD=150°-∠C,再由AE是∠CAD的平分线,BF是∠CBD的平分线,可得150°-∠C=2(110°-∠C),即可求解.【详解】(1)解:三角形内角和定理(或三角形的内角和等于180°)(2)证明:连接CD并延长至F,∵∠1和∠2分别是△ACD和△BCD的一个外角,∴∠1=∠2+∠A,∠3=∠4+∠B,∴∠1+∠3=∠2+∠A+∠4+∠B,即∠ADB=∠A+∠B+∠ACB;(3)解:由(2)得:∠ADB=∠CAD+∠CBD+∠C,∠AGB=∠CAE+∠CBF+∠C,∵∠ADB=150°,∠AGB=110°,∴∠CAD+∠CBD+∠C=150°,∠CAE+∠CBF+∠C=110°,∴∠CAE+∠CBF=110°-∠C,∠CAD+∠CBD=150°-∠C,∵AE是∠CAD的平分线,BF是∠CBD的平分线,∴∠CAD=2∠CAE,∠CBD=2∠CBF,∴∠CAD+∠CBD=2(∠CAE+∠CBF),∴150°-∠C=2(110°-∠C),解得:∠C=70°.【点睛】本题主要考查了三角形的内角和定理,三角形外角的性质,有关角平分线的计算,熟练掌握三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.2(2023·成都市·七年级专题练习)如图,BE平分∠ABD,CF平分∠ACD,BE与CF交于点G,若∠BDC =140°,∠BGC=100°,则∠A=()A.80°B.75°C.60°D.45°【答案】C【分析】连接BC,先求解∠DBC+∠DCB, 再求解∠GBC+∠GCB, 可得∠GBD+∠GCD, 再利用角平分线的定义可得:∠ABD+∠ACD, 从而可得:∠ABC+∠ACB, 再利用三角形的内角和定理可得∠A的大小.【详解】解:连接BC, ∵∠BDC=140°, ∴∠DBC+∠DCB=180°-140°=40°,∵∠BGC=100°, ∴∠GBC+∠GCB=180°-100°=80°,∴∠GBD+∠GCD=∠GBC+∠GCB-∠DBC-∠DCB=40°,∵BE平分∠ABD,CF平分∠ACD,∴∠ABD+∠ACD=2∠GBD+∠GCD=80°,∴∠ABC+∠ACB=∠ABD+∠ACD+∠DBC+∠DCB=80°+40°=120°,∴∠A=180°-∠ABC+∠ACB=60°. 故选:C.【点睛】本题考查的是三角形的内角和定理的应用,角平分线的定义,熟练利用三角形的内角和定理求解与之相关的角的大小是解题的关键.3(2023·湖北·八年级专题练习)在社会实践手工课上,小茗同学设计了一个形状如图所示的零件,如果∠A=52°,∠B=25°,∠C=30°,∠D=35°,∠E=72°,那么∠F的度数是( ).A.72°B.70°C.65°D.60°【答案】B【分析】延长BE交CF的延长线于O,连接AO,根据三角形内角和定理求出∠BOC,再利用邻补角的性质求出∠DEO,再根据四边形的内角和求出∠DFO,根据邻补角的性质即可求出∠DFC的度数.【详解】延长BE交CF的延长线于O,连接AO,如图,∵∠OAB+∠B+∠AOB=180°, ∴∠AOB=180°-∠B-∠OAB,同理得∠AOC=180°-∠OAC-∠C,∵∠AOB+∠AOC+∠BOC=360°,∴∠BOC=360°-∠AOB-∠AOC=360°-(180°-∠B-∠OAB)-(180°-∠OAC-∠C)=∠B+∠C+∠BAC=107°,∵∠BED=72°, ∴∠DEO=180°-∠BED=108°,∴∠DFO=360°-∠D-∠DEO-∠EOF=360°-35°-108°-107°=110°,∴∠DFC=180°-∠DFO=180°-110°=70°,故选:B.【点睛】本题考查三角形内角和定理,多边形内角和,三角形的外角的性质,邻补角的性质,解题关键是会添加辅助线,将已知条件联系起来进行求解.三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和;邻补角性质:邻补角互补;多边形内角和:180°(n-2).4(2023·广东·八年级期中)如图,在三角形ABC中,AB>AC>BC,为三角形内任意一点,连结AP,并延长交BC于点D. 求证:(1)AB+AC>AD+BC;(2)AB+AC>AP+BP+CP.【详解】(1)∵AB>AC,∴∠ABD<∠ACD∵∠ADB >∠ACD ,∴∠ADB >∠ABD ,∴AB >AD∵AC >BC ,∴AB +AC >AD +BC(2)过点P 作EF ∥BC ,交AB 、AC 于E 、F ,则∠AEF =∠ABC ,∠AFE =∠ACB由(1)知AE +AF >AP +EF∵BE +EP >BP ,CF +FP >CP∴(AE +BE )+(AF +CF )+(EP +FP )>AP +BP +CP +EF即AB +AC >AP +BP +CP(几何证明中后一问常常要用到前一问的结论)5(2023·福建三明·八年级统考期末)如图1所示的图形,像我们常见的符号--箭号.我们不妨把这样图形叫做“箭头四角形”.探究:(1)观察“箭头四角形”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由;应用:(2)请你直接利用以上结论,解决以下两个问题:①如图2,把一块三角尺XYZ 放置在ΔABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =60°,则∠ABX +∠ACX =;②如图°3,∠ABE 、∠ACE 的2等分线(即角平分线)BF 、CF 相交于点F ,若∠BAC =60°,∠BEC =130°,求∠BFC 的度数;拓展:(3)如图4,BO i ,CO i 分别是∠ABO 、∠ACO 的2020等分线(i =1,2,3,⋯,2018,2019),它们的交点从上到下依次为O 1、O 2、O 3、⋯、O 2019.已知∠BOC =m °,∠BAC =n °,则∠BO 1000C =度.【答案】(1)∠BDC =∠A +∠B +∠C ,理由见详解;(2)①30;②95°;(3)50m +51n 101【分析】(1)连接AD 并延长至点E ,利用三角形外角的性质得出∠BDE =∠BAD +∠B ,∠CDE =∠CAD +∠C ,左右两边相加即可得出结论;(2)①直接利用(1)中的结论有∠BXC =∠A +∠ABX +∠ACX ,再把已知的角度代入即可求出答案;②先根据∠BEC =∠BAC +∠ABE +∠ACE 求出∠ABE +∠ACE ,然后结合角平分线的定义再利用∠BFC =∠BAC +∠ABF +∠ACF =∠BAC +12(∠ABE +∠ACE )即可求解;(3)先根据∠BOC =∠BAC +∠ABO +∠ACO 求出∠ABO +∠ACO ,再求出∠ABO 1000+∠ACO 1000的度数,最后利用∠BO 1000C =∠BAC +∠ABO 1000+∠ACO 1000求解即可.【详解】(1)如图,连接AD 并延长至点E∵∠BDE=∠BAD+∠B,∠CDE=∠CAD+∠C,又∵∠BDC=∠BDE+∠CDE,∠BAC=∠BAD+∠CAD,∴∠BDC=∠BAC+∠B+∠C (2)①由(1)可知∠BXC=∠A+∠ABX+∠ACX∵∠A=60°,∠BXC=90°∴∠ABX+∠ACX=∠BXC-∠A=90°-60°=30°②由(1)可知∠BEC=∠BAC+∠ABE+∠ACE∵∠BAC=60°,∠BEC=130°∴∠ABE+∠ACE=∠BEC-∠BAC=130°-60°=70°∵BF平分∠ABE,CF平分∠ACE∴ABF=12ABE,ACF=12ACE∴∠BFC=∠BAC+∠ABF+∠ACF=∠BAC+12(∠ABE+∠ACE)=95°(3)由(1)可知∠BOC=∠BAC+∠ABO+∠ACO∵∠BOC=m°,∠BAC=n°∴∠ABO+∠ACO=∠BOC-∠BAC=m°-n°∵BO i,CO i分别是∠ABO、∠ACO的2020等分线(i=1,2,3,⋯,2018,2019)∴∠ABO1000+∠ACO1000=m°-n°2020×1000=50m°-50n°101∴∠BO1000C=∠BAC+∠ABO1000+∠ACO1000=50m°+51n°101【点睛】本题主要考查三角形外角的性质,角平分线的定义,掌握三角形外角的性质和角平分线的定义是解题的关键.模型2、风筝模型(鹰爪模型)或角内翻模型图1图21)鹰爪模型:结论:∠A+∠O=∠1+∠2;2)鹰爪模型(变形):结论:∠A+∠O=∠2-∠1。
1.2.2三角形当中的几何计算(1)
(5)sin(A-B)=0⇔A=B;
(6)在ABC中,A B a b sin A sin B.
(7)sin sin 或 若、是三角形的内角则有
(8)在△ABC 中,三边分别为 a,b,c(a<b<c) (1)若 a2+b2>c2,则△ABC 为锐角三角形. (2)若 a2+b2=c2,则△ABC 为直角三角形. (3)若 a2+b2<c2,则△ABC 为钝角三角形.
.
[解]
证法一(角化边):左边=ab- -ccab22+ +22abcccc22- -ba22
=a2-2ca2+b2·b2-2cb2+a2=ba=22RR
sin sin
Hale Waihona Puke B A=ssiinn
B A
=右边,
其中 R 为△A BC 外接圆的半径.
∴ab- -ccccooss
B A
=ssiinn
B A
.
[针对训练 2]
人教版高中数学必修5第一章《解三角形》
1.2.2三角形中的几何计算
学习目标
1.记住正弦定理、三角形的面积公式及余弦定理和 其推论; 2.会用正弦定理、余弦定理、三角形的面积公式, 余弦定理的推论计算三角形中的一些量
难点:探寻解题的思路与方法.
知识点梳理 1.正弦定理
a b c 2R(其中R为ABC外接圆的半径) sin A sinB sinC
【典例 3】
(3)∵|A→B+A→C |= 6, ∴|A→B|2+|A→C |2+2A→B·A→C =6, 即 c2+b2+2=6,∴c2+b2=4. ∵c2=2,∴b2=2,b= 2. ∴△A B C 为正三角形. ∴S△ABC= 43×( 2)2= 23.
解决三角形中有关角的计算问题必备策略
解决三角形中有关角的计算问题必备策略有关三角形中角的计算问题是初中阶段的一类重要问题,下面就如何解决这类问题的一些常用思路通过例题剖析如下:1.“三角形的内角和”和“外角的性质”是解决这类问题的两个基本性质.例1 如图,D 是AB 上一点,E 是AC 上一点,BE 、CD 相交于点F ,∠A = 62,∠ACD =35 ,∠ABE =28 .求:(1)∠BDC 的度数;(2)∠BFD 的度数. 分析 (1)要求∠BDC 的度数,注意到∠A 和∠ACD 的度数均 已知,容易想到利用∠BDC 是∆ACD 的外角来计算;(2)在∆BDF 中, 已知两个角的度数,可利用三角形的内角和来求第三个角的度数.解 (1)因为∠BDC 是∆ACD 的外角,所以∠BDC=∠A+∠ACD = 62+35 =97 .(2)在∆BDF 中,因为∠ABE+∠BDC+∠BFD =180 , 所以∠BFD=180 -∠ABE -∠BDC= 559728180=--.解后反思:求角的度数时,常可利用“三角形的内角和”和“外角的性质”来找数量关系,这是最常用的两个基本性质.同时,注意在解决涉及图形的问题时,常可以先把已知条件尽可能地在图中标出来,这样可使已知条件直观明了,有助于分析题意,有助于找到解决问题 28 3562 F D E CB A的方法.如本题,把已知角的度数在图中都标了出来,这样有利于直观地分析已知条件.2.列方程(组)求解是一类重要的解题方法.例2 已知在∆ABC 中,∠A +∠B =80 ,∠C =2∠B .试求∠A 、∠B 、∠C 的度数.解法一(列一元一次方程求解)由∠A +∠B =80 ,可得∠A =80 -∠B ,又在∆ABC 中,∠A +∠B +∠C =180 .于是有80 -∠B +∠B +2∠B =180 ,解这个方程,得∠B =50 , 从而 ∠A =80 -50 =30 ,∠C =2⨯50 =100 ,所以∠A =30 ,∠B =50 ,∠C =100 .解法二(列二元一次方程组求解)在∆ABC 中,因为∠A +∠B +∠C =180 ,又∠C =2∠B ,所以∠A +∠B +2∠B =180 ,即∠A +3∠B =180 ,于是可列方程组为⎪⎩⎪⎨⎧=∠+∠=∠+∠ 180380B A B A ,解这个方程组,得⎪⎩⎪⎨⎧=∠=∠ 5030B A ,从而∠C =2⨯50 =100 .所以∠A =30 ,∠B =50 ,∠C =100 .解后反思:通过设未知数列方程或方程组,是求角度的常用方法之一.其中,三角形的内角和为180 是列方程的一个重要的隐含的相等关系.例3 三角形的三个外角之比为2:3:4,则与它对应的三个内角中最小的角为 .解析 三角形的外角和为360 .根据题意,设三角形的三个外角分别为 x x x 4,3,2.于是有360432=++x x x ,解这个方程,得40=x .从而三个外角分别为80 、120 、160 ,对应的三个内角分别为100 、60 、20 ,所以最小的内角应为20.解后反思:本题是抓住三角形的外角和为360 来列方程求解的.同时,注意本题设未知数的方法.练一练:1.若∆ABC 中,∠A+∠B =80 ,∠C=2∠B ,则∠A= ,∠B= ,∠C= .2.如图,DE 交ABC ∆的边AB 、AC 于点D 、点E .已知 67=∠B , 74=∠C , 48=∠AED ,求BDE ∠的度数.3.如图,D 是BC 上的一点,DAC ADC BAD B ∠=∠=∠=∠,30,50 ,求C ∠的度数.(第2题) (第3题) 参考答案:1.30,50,100. D CBA D EC B A2.提示:在ABC ∆中,由 180=∠+∠+∠C B A ,可得 39=∠A ;因为BDE ∠为ADE ∆的外角,所以BDE ∠= 87=∠+∠AED A .3.提示:因为A D ∠是ABD ∆的外角,所以 80=∠+∠=∠BADB ADC .ADC ∆中,由 180=∠+∠+∠C DAC ADC ,又 80=∠=∠ADC DAC ,可得 20=∠C .。
思维点拨:巧解三角形典型例题
思维点拨:巧解三角形典型例题【例1】如图,已知五角星ABCDE,求∠A+∠B+∠C+∠D+∠E的度数和.【思考与分析】我们可以连结DE,在由三角形ACF和三角形DEF构成的图形中,∠A+∠C=∠CED+∠EDA,从而把五角星ABCDE的五个内角放到了三角形BED中,根据三角形内角和定理即可求出∠A+∠B+∠C+∠D+∠E的度数.解:连结DE,由以上结论可知:∠A+∠C=∠CED+∠EDA,又因为在三角形BED中,∠B+∠BEC+∠BDA+∠CED+∠EDA=180°,所以∠B+∠BEC+∠BDA+∠A+∠C=180°.即∠A+∠B+∠C+∠D+∠E=180°.【例2】如图,求∠1+∠2+∠3+∠4+∠5的度数和.【思考与分析】我们按照例1的思路,连结CD,则在三角形AEF和三角形DCF 所构成的图形中,∠3+∠4=∠EDC+∠DCA,这样就把∠1、∠2、∠3、∠4、∠5同时放到了三角形BDC中,即可求出∠1+∠2+∠3+∠4+∠5的度数和.解:连结CD,则∠3+∠4=∠EDC+∠DCA,又因为在三角形BDC中,∠1+∠5+∠2+∠EDC+∠DCA=180°,所以∠1+∠5+∠2+∠3+∠4=180°,即∠1+∠2+∠3+∠4+∠5=180°.【小结】按照这种思路,以上两题还有多种解法,大家不妨试一试,看能找到多少种解法.【例3】如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,下列四个式子中正确的是().【思考与解】因为EG⊥AD,交点为H,AD平分∠BAC,所以在直角三角形AHE中,∠1=90°-12BAC在三角形ABC中,易知∠BAC=180°-(∠2+∠3),所以∠1=90°-12[180°-(∠2+∠3)]=12(∠3+∠2).又因为∠1是三角形EBG的外角,所以∠1=∠2+∠G.所以∠G=∠1-∠2=12(∠3+∠2)-∠2=12(∠3-∠2).所以应选C.【例4】如图,点D为三角形ABC内的一点,已知∠ABD=20°,∠ACD=25°,∠A=35°.你能求出∠BDC的度数吗?【思考与解】延长BD,与AC交于E点,因为∠DEC是三角形ABE的外角,所以∠DEC=∠A+∠ABD=35°+20°=55°.又因为∠BDC是三角形CDE的外角,所以∠BDC=∠DEC+∠ACD=55°+25°=80°.【小结】记准一些常用的结论,有助于我们快速地、正确地解题.【例5】如图,已知∠B=10°,∠C=20°,∠BOC=110°,能求出∠A的度数吗?【思考与分析】要求∠A的度数,我们可以设法让∠A成为某个与已知角相关的三角形的内角.我们可延长BO交AC于D,则∠A、∠B即为三角形ABD 的两个内角.根据三角形外角的性质,欲求∠A的度数,可先求∠ODC的度数,由∠BOC=110°,∠C=20°即可求出∠ODC的度数.解:延长BO交AC于D.因为∠BOC是三角形ODC的外角,所以∠BOC=∠ODC+∠C.因为∠BOC=110°,∠C=20°,所以∠ODC=110°-20°=90°.因为∠ODC是三角形ABD的外角,所以∠ODC=∠A+∠B.因为∠B=10°,所以∠A=90°-10°=80°.【例6】如图,点D是三角形ABC内一点,连结BD、CD,试说明∠BDC>∠BAC.【思考与分析】∠BDC和∠BAC在两个不同的三角形内,而且不能直接比较它们的大小,必须做辅助线把这两个角联系起来.我们延长BD交AC于P,或连结AD并延长交BC于Q,都可以利用三角形外角的性质解题.解:延长BD交AC于P,则∠BDC>∠DPC,∠DPC>∠BAC,所以∠BDC>∠BAC.【反思】我们还可以连结AD并延长交BC于Q,如图,请大家试一试,看能不能得到相同的结论.【例7】已知三角形ABC的一个内角度数为40°,且∠A=∠B,你能求出∠C的外角的度数吗?【思考与分析】在三角形ABC中,∠A=∠B,因此三角形ABC是一个等腰三角形,我们必须要讨论40°的角是三角形ABC的顶角还是底角,应分两种情况解答.解:(1)设∠α=40°,当∠α是等腰三角形的顶角时,则∠α的外角等于180°-40°=140°,而∠C=∠α,所以∠C的外角的度数为140°.(2)设∠α=40°,当∠α是等腰三角形的底角时,∠A=∠B=∠α=40°,此时∠C的外角=∠A+∠B=80°.【例8】已知非直角三角形ABC中,∠A=45°,高BD和CE所在的直线交于H,你能求出∠BHC的度数吗?【思考与分析】三角形的形状不同,高的交点的位置也就不同.高的交点的位置可能在三角形的内部,也可能在三角形的外部,因此我们应该分两种情况进行讨论.解:(1)当三角形ABC为锐角三角形时,如图1所示.因为BD、CE是三角形ABC的高,∠A=45°,所以∠ADB=∠BEH=90°,∠ABD=90°-45°=45°.所以∠BHC=∠ABH+∠BEH=45°+90°=135°.(2)当三角形ABC为钝角三角形时,如图2所示.因为H是三角形的两条高所在直线的交点,∠A=45°,所以∠ABD=90°-45°=45°.所以在直角三角形EBH中,∠BHC=90°-∠ABD=90°-45°=45°.由(1)、(2)可知,∠BHC的度数为135°或45°.【小结】我们在解题中,经常遇到题目中某些条件交代不清,此时,我们一定要注意分情况考虑,用分类讨论的方法使解完整.【例9】如图,已知三角形ABC中,∠B=∠C=2∠A,你能求出∠A的度数吗?【思考与分析】我们由三角形内角和可知,∠A+∠B+∠C=180°,又因为∠B=∠C=2∠A,可得∠A+∠B+∠C=∠A+2∠A+2∠A=180°,即可求出∠A 的度数.我们还可以用方程来解这道题,根据三角形内角和定理与∠B=∠C=2∠A 这两个已知条件求未知量∠A的度数.用方程解决问题,我们必须在弄清题中已知数量和未知数量的关系的基础上,要抓住题中的不变量,建立等量关系.题中的不变量是三角形内角和等于180°,其等量关系是∠A+∠B+∠C=180°,然后我们用数学语言把这个等量关系式转化为方程.设∠A的度数为x,则可以用2x分别表示∠B、∠C的度数,将这个等式转化为方程x+2x+2x=180°,即可求出∠A的度数.解法一:因为∠B=∠C=2∠A,∠A+∠B+∠C=180°,所以∠A+∠B+∠C=∠A +2∠A+2∠A=180°,即∠A=36°.解法二:设∠A的度数为x,则∠B、∠C的度数都为2x,列方程得x+2x+2x=180°,解得x=36°,即∠A=36°.【例10】判断适合下列条件的三角形ABC是锐角三角形、钝角三角形还是直角三角形.(1)∠A=80°,∠B=25°;(2)∠A-∠B=30°,∠B-∠C=36°;【思考与分析】根据角判断三角形的形状,我们只需求出三角形中各角的度数就可以了,本题判断三角形是否是锐角三角形、钝角三角形、直角三角形,只需求出三角形中最大角的度数即可.(1)题通过直接计算就可以求出∠C的度数,(2)(3)题不便于直接计算,可以运用方程思想抓住等量关系,列方程进行求解.解:(1)因为∠A=80°,∠B=25°,所以∠C=180°-80°-25°=75°,所以三角形ABC是锐角三角形.(2)设∠B=x°,则∠A=(30+x)°,∠C=(x-36)°,所以x°+(30+x)°+(x-36)°=180°,解得x=62,所以最大角∠A=92°,所以三角形ABC是钝角三角形.(3)设∠A=x°,∠B=2x°,∠C=6x°,则x°+2x°+6x°=180°,解得x =20,所以∠C=120°,所以三角形ABC是钝角三角形.【小结】利用方程求角度是我们常用的方法之一.在三角形中,给出的条件不能直接求出结果,且各角之间有相互关系,我们可以设其中一个角为未知数,再把其它角用此未知数表示,然后列方程即可求解.1.利用高线与边垂直的性质求度数【例11】已知△ABC的高为AD,∠BAD=70°,∠CAD=20°,求∠BAC的度数.【思考与分析】由于AD为底边BC上的高,过A做底边BC的垂线时,垂足D可能落在底边BC上,也有可能落在BC的延长上.因此,我们需要分情况讨论.解:(1)当垂足D落在BC边上时,如图,因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD+∠CAD=70°+20°=90°.(2)当垂足D落在BC的延长线上时,如图,因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD-∠CAD=70°-20°=50°.所以∠BAC为90°或50°.【小结】由于三角形可以分为锐角三角形、直角三角形与钝角三角形,在题目所给条件中如果没有确切说明三角形的具体类型时,我们就要分类讨论,以防遗漏.2. 利用三角形面积公式求线段的长度【例12】如图,△ABC中,AD,CE是△ABC的两条高,BC=5cm,AD=3cm,CE=4cm,你能求出AB的长吗?【思考与分析】由于三角形面积等于底与高乘积的一半.因此,三角形的面积就有三种不同的表达方式.我们若设△ABC的三边长分别为a,b,c,对应边上的高分别为h a,h b,h c,那么三角形的面积S=12ah a=12bh b=12ch c.本题中已知三角形的两条高与其中一条高所对应的边,求另一条边,利用三角形面积S△ABC=12BC·AD=12AB·CE,解决十分方便.解:S△ABC =12BC·AD=12AB·CE1 2×5×3=12AB·4,解得AB=154(cm).【小结】用同一个三角形不同的面积表达式建立等式求线段的长度,是一种很重要的方法,在今后的学习中,我们应注意这种方法的运用.【例13】如图,已知AD、AE分别是三角形ABC的中线、高,且AB=5cm,AC=3cm,则三角形ABD与三角形ACD的周长之差为,三角形ABD 与三角形ACD的面积之间的关系为.【思考与解】(1)三角形ABD与三角形ACD的周长之差=(AB+BD+AD)-(AD+CD+AC)=AB+BD-CD-AC.而BD=CD ,所以上式=AB-AC=5-3=2(cm ).(2)因为S 三角形ABD =12BD×AE ,S 三角形ACD =12CD×AE ,而BD=CD ,所以S 三角形ABD =S 三角形ACD .【例14】如图,在三角形ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于为AB 上的一点,CF ⊥AD 于H.下列判断正确的有( ).(1)AD 是三角形ABE 的角平分线.(2)BE 是三角形ABD 边AD 上的中线.(3)CH 为三角形ACD 边AD 上的高.个 个 个 个【思考与解】由∠1=∠2,知AD 平分∠BAE ,但AD 不是三角形ABE 内的线段,所以(1)不正确;同理,BE 虽然经过三角形ABD 边AD 的中点G ,但BE 不是三角形ABD 内的线段,故(2)不正确;由于CH ⊥AD 于H ,故CH 是三角形ACD 边AD 上的高,(3)正确.应选A.【例15】如图,在直角三角形ABC 中,∠ACB =90°,CD 是AB 边上的高,AB =13cm ,BC=12cm ,AC=5cm.(1)求三角形ABC 的面积.(2)求CD 的长.【思考与分析】求直角三角形的面积,有两种方法:①S △=12ab (a 、b 为两条直角边的长);②S △=12ch (c 为直角三角形斜边的长,h 为斜边上的高).由此可知ab =ch ,在a 、b 、c 、h 四个量中,已知其中三个量,就可以求出第四个量.解:(1)在直角三角形ABC 中,∠ACB =90°,BC=12cm ,AC=5cm ,所以S△ABC =12AC×BC=30(cm2).(2)因为CD是AB边上的高,所以S△ABC =12AB×CD,即12×13×CD=30.解得CD=6013cm.【例16】如图1所示,你能求出∠A+∠B+∠C+∠D+∠E+∠F的度数吗?【思考与解】我们可以连结EF,把∠A+∠B+∠C+∠D+∠E+∠F的度数转化为求四边形BCEF的内角和.如图2所示.因为∠A+∠D+∠AOD=∠OFE+∠EOF+∠OEF=180°,所以∠A+∠B+∠C+∠D+∠E+∠F=∠OFE+∠OEF+∠C+∠B+∠E+∠F=360°.【例17】如图3,凸六边形ABCDEF的六个角都是120°,边长AB=2cm,BC=8cm,CD=11cm,DE=6cm,你能求出这个六边形的周长吗?【思考与分析】要求六边形的周长,必须先求出边EF和AF的长.由六边形ABCDEF的六个角都是120°,可知六边形的每一个外角的度数都是60°,如图4,如果延长BA,得到的∠PAF=60°,延长EF,得到的∠PFA=60°,两条直线相交形成三角形APF,在三角形APF中,∠P的度数为180°-60°-60°=60°,因此三角形APF是等边三角形.同样的道理,我们分别延长AB、DC,交于点G,那么三角形BGC为等边三角形.分别延长FE、CD交于点H,则三角形DHE也是等边三角形.所以∠P=∠G=∠H=60°.所以三角形GHP也是等边三角形.于是我们得到三角形APF、三角形BGC、三角形DHE、三角形GHP四个等边三角形.于是就把多边形的问题转化为和等边三角形有关的问题.利用等边三角形的三边相等的性质,可以轻松的求出AF和EF的长,从而求出六边形ABCDEF的周长.解:如图4,分别作直线AB、CD、EF的延长线使它们交于点G、H、P.因为六边形ABCDEF的六个角都是120°,所以六边形ABCDEF的每一个外角的度数都是60°.所以三角形APF、三角形BGC、三角形DHE、三角形GHP都是等边三角形.所以GC=BC=8cm,DH=DE=6cm.所以GH=8+11+6=25cm,FA=PA=PG-AB-BG=25-2-8=15cm,EF=PH-PF-EH=25-15-6=4cm.所以六边形的周长为2+8+11+6+4+15=46cm.【反思】本题解题的关键是利用多边形和三角形的关系,通过添加辅助线,利用六边形构造出等边三角形,从而利用转化的思想,把多边形问题转化为和三角形有关的问题,利用三角形的性质、定理来解答多边形的问题.方程思想是我们学习数学的重要思想方法之一.用方程思想求解数学问题时,应从题中的已知量与未知量的关系入手,找出相等关系,运用数学符号语言将相等关系转化为方程,再通过解方程,使问题得到解决.方程思想应用非常广泛.我们不但能用方程思想解决代数问题,而且还能够解决有关的几何问题.【例18】已知三角形的第一个内角是第二个内角的倍,第三个内角比这两个内角的和大30°,求这三个内角的度数.【思考与分析】题中的已知量是“第一个内角是第二个内角的倍,第三个内角比这两个内角的和大30°”,未知量是这三个角的度数.题中没有给出三角形内角的度数.但第一个内角和第三个内角与第二个内角的度数相关联,所以解这道题的关键是求出第二个内角的度数.要想解决这个问题,不妨设第二个内角的度数为x,利用方程思想来解.根据三角形的内角和为180°,由此我们可以得到这样的等式关系:第一个内角+第二个内角+第三个内角=180°.当我们用数学语言表示第二个内角为x,第一个内角为,第三个内角为x++30°,利用代换法,将上述的等量关系转化为方程:x++(x++30°)=180°.通过解这个方程就能使问题得到解决.解:设这个三角形的第二个内角的度数为x,则第一个内角的度数为,第三个内角的度数为(x++30°),列方程可得x++(x++30°)=180°,解得x=30°.所以三角形的三个内角分别为45°,30°,105°.【例19】如图,已知在三角形ABC中,∠C=∠ABC=2∠A,BD是AC 边上的高,求∠DBC的度数.【思考与分析】我们欲求∠DBC的度数,因为∠DBC是直角三角形DBC 的一个内角,因此问题转化为求∠C的度数,由已知条件知三角形ABC的三个内角关系为∠C=∠ABC=2∠A,又根据三角形内角和定理有等量关系:∠A+∠ABC+∠C=180°,从而我们用一个角的度数来表示另外两个角,代入这个等量关系求三个内角的度数,即用方程的方法解决问题.可设∠A=x,则∠C=∠ABC=2x,代入上述等量关系得方程x+2x+2x=180°,可解得x的值,从而可求得∠DBC的度数.解:设∠A=x,∠C=∠ABC=2x,在三角形ABC中,x+2x+2x=180°,解得x=36°,则∠C=72°.因为BD是AC边上的高,所以∠BDC=90°.在直角三角形BDC中,∠DBC=90°-72°=18°.。
第二节解直角三角形
第二节解直角三角形第二节解直角三角形知识要点已知三角形的某些元素求其它元素的问题称为解三角形,解一般的三角形至少需要已知三个元素(其中至少要有一条边)在直角三角形中,一个元素(直角)是已知的,只需要知道其他两个元素(其中至少要有一条边),就可以求出该三角形的其他元素(边长和角)及面积,这类问题称为“解直角三角形”.一、直角三角形中的边角关系解直角三角形包括“已知一边一角”和“已知两边”两类情况,都可以利用三角比的边角关系或勾股定理来解.例题精讲例1△中,∠C=°,AC=BC,点D在BC上,∠DAC=°已知AD=6,求BD的长.举一反三1-1旗杆上的绳子从顶端垂到地面还多8米.当把绳子下端沿地面拉直后,绳子与地面成45°角,则与绳子长度最接近的整数值是()A.27;B.28;C.29;D.301-2在△中,∠C=°,点D在BC上,BD=4,AD=BC,cos∠ADC =(2)求sinB的值.点评在直角三角形中,已知某锐角的三角比但相关的两条线段都不知道,则必需引入比例系数k,再按题意根据等量关系列出方程求k.注意不可直接写DC=3,AD=5,因为比例系数k并不一定等于1(在本题中比例系数k=2).1-3△中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sinB=0.8(1)求线段DC的长;(2)求tan∠EDC的值.点评在斜三角形中,要求某锐角内角的三角比,可通过作垂线构造直角三角形,或通过相等角的代换将该角转移到直角三角形中,寻找新的关系.二、等腰三角形中的边角关系根据三线合一定理,作底边上的高线可以把等腰三角形分成两个全等的直角三角形,从而把解等腰三角形的问题化为解直角三角形的问题例2△ABC中,AB=AC,BC=6,(1)求边AB的长;(2)求边AC上的高.求三角形的面积也是解三角形的内容之一,下面看一道利用三角比计算三角形面积的问题.举一反三2-1在△中,AB=AC=10,∠B=°,求△的面积.点评由本题中的方法二可归纳出新的面积公式:,其中为AB、AC的夹角2-2已知△中,AB=AC=10,△的面积为,求顶角A的大小.点评在已知三角形面积的问题中,经常要按照以上两种情况进行分类讨论.2-3在△中,AB=AC=10,BC=12.(1)求∠B的正切值;(2)求∠A的正弦值.三、一般三角形的边角关系例3在△ABC中,∠A=°,∠C=°,AB=12. (1)求边AC的长;(2)求sinC.点评(1)对于一般三角形,通过作一条高可以把它分成两个直角三角形,如果原三角形中含特殊角,那么尽量不要把特殊角分开,在本例中,如果一上来就作AE⊥BC,固然在Rt△ABE中由AB=12,∠B=60°可以求出AE和BE,接着在Rt△ACE中都是非特殊角,计算无法进行下去了.(2)本题的计算结果使我们又获得了一个“扩大的特殊角”的三角比:sin75°=.举一反三3-1已知在△中,∠B、∠C都是锐角,BC=20,,,求AC的长.3-2在△中,D在边BC上,BD=2CD,且AD⊥AB,若,求∠B的度数.点评本题中的两个条件“∠BAD=90°和“tan∠CAD=”不在同一个三角形中,添辅助线的目的就是要把这两个条件集中到同一个直角三角形中.3—3在上海旅游节期间举办了彩车巡回展览活动.上海锦江集团制作的彩车上有一副钢制的三脚架安置在一辆平板车上,如图2—2一15所示,平板车底板离地面为1.6米,三脚架为△ABC,其中BC长20米,∠B和∠C分别为45°和30°.彩车要穿过南北高架路驶往外滩,已知南京路成都路道口的高架路离地面高8米,延安路成都路道口的高架路离地面高10米.这辆彩车在这两处道口是否都能安全通过?(参考数据:≈1.732)点评抛开题目的实际背景,本题的数学含义是:“在△ABC中,已知BC=20,∠B=45°,∠C=30°,求高AD.”解题中以AD=x为中间量,根据BD+DC=BC建立方程求解.四、复合图形中的边角关系在这里,“复合图形”是指由有两个三角形拼合或叠合而成的图形°四边形被它的一条对角线分成两个三角形,因此解四边形的问题可以化归为解三角形的问题.例4已知四边形ABCD中,BC=CD=DB,∠ADB=°,,求S△ABD:S△BCD.举一反三4-1将两块三角板如图放置,其中∠C=∠EDB=°,∠A=45°,∠E=30°,AB=DE=6求重叠部分四边形DBCF的面积.点评用“割补法”求四边影DBCF的面积可以有两种方法:一是由点C作垂线CG上AB于G,把四边形DBCF分成Rt△BCG和梯形DGCF;二是如本题中的解法,看作是两个等腰直角三角形(△ABC和△ADF)的面积之羞.后者只需要求出AD和AC’的长,是同一种图形的面积相减,因此后一种解法比前者顺畅.将两块三角板换一种叠法得到下面的问题.4-2将一副三角板如图放置,其中∠A=∠BCD=°,AB=AC,∠DBC=°,已知BC=6,求它们重叠部分△EBC的面积.4-3已知△ABC是边长为a的等边三角形,△DBC是以BC为斜边的等腰直角三角形,求线段AD的长.点评不给图形的题目,往往藏有玄机.在自己画图的过程中要仔细考虑:这个图有没有不同的画法?要不要进行分类讨论?内容提炼1.解直角三角形时,除了“已知两边求第三边”用勾股定理、“已知一个锐角求另一个锐角”用“两锐角互余”之外,其它各种情况都可以用三角比的定义求解;2.解斜三角形时,我们把它化为直角三角形来解,经常遇到的题目有两类:①已知两边夹角解三角形.如图2—2—22,△ABC中,已知AC=b,AB=c,∠A=a,可作高CD⊥AB,则CD=b·sina,AD=b·cosb,BD=c—bcosa,再在Rt△BCD中用勾股定理求,利用三角比定义tanB=,最后求出∠C=180°一∠A一∠B·②已知两角一边解三角形.如图2—2—23,△ABC中,已知∠A=a,∠B=,AB=c,作高CD,设CD=x,列方程xcota+xcot=c,得x=求出CD后计算习题精炼1.△ABC中,∠C=°,已知以下边或角的大小不能解该三角形的是()A.∠A、a;B.∠B、c;C.∠A、∠B;D.a、c2.△ABC中,∠A=90°,若AB=c,∠B=;B.;C.;D.3.若△ABC的两条边长分别为AB=20cm,AC=30cm,S△ABC=150cm2,则∠A的度数为()A.30°;B.60°;C.30°或150°;D.60°或120°4.Rt△中,∠C=°,若AC=6,,则AB=.5.△中,∠A=°,若∠B=θ,AC=b,则AB=(用θ和b的三角比表示)6.△AB中,若AB=AC=10cm,BC=12cm,则tanB=.7.如图,△ABC中,若AB=AC,∠A=90°,BD是角平分线,则tanDBC=.8.△中,若AB=AC=,BC=6,则∠BAC=度9.在ABC中,=0°,B=AC,将ABC绕着点B旋转使点落在直线B上C','C'=________.中,∠C=°,CD是边AB上的中线,,BC=6.(1)求CD的长;(2)求sin∠BCD.11.如图,在△中,已知∠A、∠B都是锐角,,BC=20,,AB=29,求△ABC的面积.12.如图,梯形ABCD中,AB∥CD,∠B=°,点F在BC上,∠AFD =°,已知AB=8,DC=3,tan∠BAD=2.(1)求AD的长;(2)求tan∠FAD.互动探究如图,Rt△中,AB=AC,∠BAC=°,D、E分别为AB、AC上的点,AE=BD,联结DE、BE.(1)当AD=2DB时,分别计算tan∠ADE和tan∠EBC的值.从这个计算结果你能得出什么结论?(2)以第(1)小题中的探究结论为条件,求的值.2014/11/29第8页共8页74-84。
解直角三角形的常见模型及思路
解直角三角形的常见模型及思路
1、直角三角形常见模型
直角三角形是最常见的几何图形,用于在特定的情况下进行计算,并且能够求出三角形内部和外部特征,如长度、面积等。
一、正弦定理
正弦定理是解决直角三角形的一种常见模型,用于求解三角形的面积,即有:
S=1/2×a×b×sinC
其中a和b分别表示直角三角形的两条直角边,而C表示其直角角度。
二、勾股定理
勾股定理是一种经典的角三角形解模型,可以根据三条边的长度求出其它两边的长度,即:
a2+b2=c2
其中a和b分别表示直角三角形的两条直角边,而c表示其斜边的长度。
三、余弦定理
余弦定理是解直角三角形的一种常用方法,可以根据三角形已知的两边长度,求出其它一边的长度,即:
c2=a2+b2-2ab×cosC
其中a和b分别表示直角三角形的两条直角边,而C表示其直角角度,c表示其斜边的长度。
2、解直角三角形的思路
解决直角三角形的一般思路为:
(1) 根据题目给出的信息,判断已知的三条边的长度;
(2) 根据已知的信息,选择合适的解法,运用正弦定理、勾股定理或余弦定理等,求出未知边及其他相关参数;
(3) 根据求出的参数,进一步判断直角三角形的形状及其它参数;
(4) 如果题目要求,调用各种函数,求出需要的参数,如面积、周长、外接圆半径等。
三角形的内角和掌握三角形内角和的计算方法解决三角形问题
三角形的内角和掌握三角形内角和的计算方法解决三角形问题三角形是几何学中最基本的图形之一,它由三条边和三个内角组成。
对于任意一个三角形,其内角和是固定的,掌握计算三角形内角和的方法对于解决三角形相关问题非常重要。
本文将介绍三角形内角和的计算方法,并探讨如何利用这些方法来解决三角形问题。
一、三角形内角和的计算方法1. 等腰三角形:对于等腰三角形,即两边相等的三角形,其底角(与底边相对的角)必然相等。
因此,对于等腰三角形,其内角和可以通过底角的两倍加上顶角来计算。
2. 直角三角形:直角三角形是指其中一个角为直角(即90度)的三角形。
根据直角三角形的性质,其两个锐角相加等于90度。
因此,对于直角三角形,其内角和为90度。
3. 一般三角形:对于一般三角形,我们可以利用三角形内角和180度的性质来计算。
假设一个一般三角形的三个内角分别为A、B、C,则有A + B + C = 180度。
二、解决三角形问题1. 已知两个角度求第三个角度:当已知一个三角形的两个内角时,可以通过内角和180度的性质来计算第三个角度。
例如,已知一个三角形的两个内角分别为60度和80度,那么第三个角度为180度减去这两个角度之和,即180度 - 60度 - 80度 = 40度。
2. 已知两个边长求第三个角度:当已知一个三角形的两个边长时,可以利用三角形的余弦定理或正弦定理来计算第三个角度。
例如,已知一个三角形的两边分别为a和b,夹角为C,则可以运用余弦定理计算第三个角度C。
余弦定理公式为cos(C) = (a^2 + b^2 - c^2) / (2ab),其中c为未知的第三边长。
3. 已知三个边长求角度:当已知一个三角形的三个边长时,可以利用三角形的余弦定理或正弦定理来计算内角。
例如,已知一个三角形的三边分别为a、b和c,则可以运用余弦定理计算内角。
余弦定理公式为cos(A) = (b^2 + c^2 - a^2) / (2bc)。
通过掌握这些计算方法,我们可以解决各种涉及三角形的问题。
高考数学解三角形中的要素基础知识与典型例题讲解
高考数学解三角形中的要素基础知识与典型例题讲解一、基础知识: 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化。
其原则为关于边,或是角的正弦值是否具备齐次的特征。
如果齐次则可直接进行边化角或是角化边,否则不可行 例如:(1)222222sin sin sin sin sin A B A B C a b ab c +−=⇔+−= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+−变式:(1)222cos 2b c a A bc+−=① 此公式通过边的大小(角两边与对边)可以判断出A 是钝角还是锐角 当222b c a +>时,cos 0A >,即A 为锐角;当222b c a +=(勾股定理)时,cos 0A =,即A 为直角; 当222b c a +<时,cos 0A <,即A 为钝角② 观察到分式为齐二次分式,所以已知,,a b c 的值或者::a b c 均可求出cos A(2)()()2221cos a b c bc A =+−+ 此公式在已知b c +和bc 时不需要计算出,b c 的值,进行整体代入即可3、三角形面积公式:(1)12S a h =⋅ (a 为三角形的底,h 为对应的高) (2)111sin sin sin 222S ab C bc A ac B ===(3)()12S a b c r =++⋅ (r 为三角形内切圆半径,此公式也可用于求内切圆半径)(4)海伦公式:()12S p a b c ==++(5)向量方法:()()22S a ba b=⋅−⋅ (其中,a b 为边,a b 所构成的向量,方向任意)证明:()2222222111sin sin 1cos 244S ab C S a b C a b C =⇒==−S ∴=cos a b ab C ⋅=∴ ()()22S a b a b =⋅−⋅坐标表示:()()1122,,,a x y b x y =,则122112S x y x y =− 4、三角形内角和A B C π++=(两角可表示另一角)。
(完整版)三角形中几何计算、解三角形实际应用举例
三角形中的几何计算、解三角形的实质应用举例1.仰角和俯角在视野和水平线所成的角中,视野在水平线的角叫仰角,在水平线的角叫俯角 (如图① ).2.方向角从指北方向顺时针转到目标方向线的水平角,如 B 点的方向角为α(如图② ).3.方向角相关于某一正方向的水平角(如图③ )(1)北偏东α°即由指北方向顺时针旋转α°抵达目标方向.(2)北偏西α°即由指北方向逆时针旋转α°抵达目标方向.(3)南偏西等其余方向角近似.【思虑研究】 1.仰角、俯角、方向角有什么差别?以平面几何图形为背景,求解相关长度、角度、面积、最值和优化等问题,往常是转变到三角形中,利用正、余弦定理加以解决.在解决某些详细问题时,常先引入变量 (如边长、角度等 ),而后把要解的三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之.以平面几何图形为背景,求解相关长度、角度、面积、最值和优化等问题,往常是转变到三角形中,利用正、余弦定理加以解决.在解决某些详细问题时,常先引入变量 (如边长、角度等 ),而后把要解的三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之.如右图, D 是直角△ ABC 斜边 BC 上一点, AB=AD,记∠ CAD=,∠ ABC=β.(1)证明: sin+cos 2β=0;(2)若 AC= 3 DC,求β的值.【变式训练】 1.如图,在四边形ABCD 中,已知 AD⊥ CD,AD =10,AB=14,∠ BDA= 60°,∠ BCD= 135°,则 BC 的长为________.求距离问题要注意:(1)选定或确立要创立的三角形,要第一确立所求量所在的三角形,若其余量已知则直接解;如有未知量,则把未知量放在另一确立三角形中求解.(2)确立用正弦定理仍是余弦定理,假如都可用,就选择更便于计算的定理.例题 2.如下图,甲船由A岛出发向北偏东45°的方向作匀速直线航行,速度为15 2海里 /小时,在甲船从 A 岛出发的同时,乙船从 A 岛正南 40 海里处的 B 岛1出发,朝北偏东θtanθ=2的方向作匀速直线航行,速度为10 5海里 /小时.(1)求出发后 3 小时两船相距多少海里?(2)求两船出发后多长时间距离近来?近来距离为多少海里?丈量高度问题一般是利用地面上的观察点,经过丈量仰角、俯角等数据计算物体的高度,这种问题一般用到立体几何知识,先把立体几何问题转变为平面几何问题,再经过解三角形加以解决.例题 3,如图,丈量河对岸的塔形建筑 AB,A 为塔的顶端, B 为塔的底端,河两岸的地面上随意一点与塔底端 B 处在同一海拔水平面上,现给你一架测角仪 (能够丈量仰角、俯角和视角 ),再给你一把尺子 (能够丈量地面上两点间距离 ),图中给出的是在一侧河岸地面 C 点测得仰角∠ ACB=,请设计一种丈量塔建筑高度 AB 的方法 (此中测角仪支架高度忽视不计,计算结果可用丈量数据所设字母表示 ).【变式训练】3. A、B 是海平面上的两个点,相距800 m,在A 点测得山顶C 的仰角为 45°,∠ BAD=120°,又在 B 点测得∠ ABD=45°,此中 D 是点 C 到水平面的垂足,求山高 CD.丈量角度问题也就是经过解三角形求角问题,求角问题能够转变为求该角的函数值.假如是用余弦定理求得该角的余弦,该角简单确立,假如用正弦定理求得该角的正弦,就需要议论解的状况了.例题 4,在海岸A处,发现北偏东45°方向,距离A处(3-1) n mile的 B 处有一艘走私船,在 A 处北偏西 75°的方向,距离 A 处 2 n mile 的 C 处的缉私船受命以 10 3 n mile/h 的速度追截走私船.此时,走私船正以 10 nmile/h 的速度从 B 处向北偏东 30°方向逃跑,问缉私船沿什么方向能最快追上走私船?【变式训练】 4.如下图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西 105°方向的 B1处,此时两船相距20海里.当甲船航行20分钟抵达 2 处时,A乙船航行到甲船的北偏西120°方向的 B2处,此时两船相距 10 2海里,问乙船每小时航行多少海里?1.解三角形的一般步骤(1)剖析题意,正确理解题意分清已知与所求,特别要理解应用题中的相关名词、术语,如坡度、仰角、俯角、方向角等.(2)依据题意画出表示图.(3)将需求解的问题归纳到一个或几个三角形中,经过合理运用正弦定理、余弦定理等相关知识正确求解.演算过程中,要算法精练,计算正确,并作答.(4)查验解出的答案能否拥有实质意义,对解进行弃取.2.解斜三角形实质应用举例(1)常有几种题型丈量距离问题、丈量高度问题、丈量角度问题、计算面积问题、航海问题、物理问题等.(2)解题时需注意的几个问题①要注意仰角、俯角、方向角等名词,并能正确地找出这些角;②要注意将平面几何中的性质、定理与正、余弦定理联合起来,发现题目中的隐含条件,才能顺利解决.从近两年的高考试题来看,利用正弦定理、余弦定理解决与丈量、几何计算相关的实质问题是高考的热门,一般以解答题的形式考察,主要考察计算能力和剖析问题、解决实质问题的能力,常与解三角形的知识及三角恒等变换综合考察.1.(2012 ·江西卷 )E,F 是等腰直角△ ABC 斜边 AB 上的三平分点,则tan∠ECF= ()16233A.27B.3C. 3D.42.(2012 ·陕西卷 )如图, A,B 是海面上位于东西方向相距5(3+ 3 )海里的两个观察点,现位于 A 点北偏东 45°, B 点北偏西 60°的 D 点有一艘轮船发出求救信号,位于 B 点南偏西 60°且与 B 点相距 20 3 海里的C点的营救船立刻前去营救,其航行速度为 30 海里 / 时,该营救船抵达 D 点需要多长时间?。
§2 三角形中的几何计算
公式的 作用有 哪些?
可解的三 角形
①已知两角和任一边, ①已知三边,求各角. 求另一角和其他两条边. ②已知两边和它们的夹 ②已知两边和其中一边 角,求第三边和其他两 的对角,求另一边和其 个角. 他两角.
1.能够正确运用正弦定理、余弦定理等知识、方法 解决一些与测量以及几何计算有关的实际问题.(重 点、难点) 2.通过对全章知识的总结提高,系统深入地掌握本 章知识及典型问题的解决方法.
答:该机器人最快可在线段 AD 上离点 A 7 dm 的点 C 处截住足球.
【变式练习】
在△ABC 中,已知 AB=4 6,cos∠ABC= 6,AC 边上的中
3
6
线 BD= 5,求 sin A 的值.
【解题关键】要求 sin A 的值,需根据“D 是 AC 的中点”这个条件,取 BC 的
中点 E,连结 DE,则 DE∥AB,所以∠ABE+∠BED=180°,根据题目中的条件
求解.
【变式练习】
已知⊙O 的半径为 R,在它的内接三角形 ABC 中,有 2R(sin2A -sin2C)=( 2a-b)sin B 成立,求△ABC 面积 S 的最大值.
【解题关键】 先根据已知式子由正弦定理把角转化为边的关 系,然后运用余弦定理整理求出△ABC面积S的最大值.
解析: 由已知条件得
3
2
(1)求 b 的值.
(2)求 ABC 的面积.
【解析】(1)由题意知: sin A
1 cos2 A
3 3
,
sin B sin(A ) sin Acos cos Asin cos A
2
2
2
6 3
,
由正弦定理得:
2023学年人教版高一数学下学期期中期末必考题精准练04 解三角形(解析版)
必考点04 解三角形题型一 利用正余弦定理解三角形例题1[在△ABC 中,内角A ,B ,C 的对边a ,b ,c 成公差为2的等差数列,C =120°. (1)求边长a ;(2)求AB 边上的高CD 的长.【解析】(1)由题意得,b =a +2,c =a +4,由余弦定理cos C =a 2+b 2-c 22ab 得cos 120°=a 2+(a +2)2-(a +4)22a (a +2),即a 2-a -6=0,所以a=3或a =-2(舍去).所以a =3. (2)法一:由(1)知a =3,b =5,c =7, 由三角形的面积公式得 12ab sin ∠ACB =12c ×CD , 所以CD =ab sin ∠ACBc =3×5×327=15314,即AB 边上的高CD =15314.法二:由(1)知a =3,b =5,c =7, 由正弦定理得3sin A =7sin ∠ACB =7sin 120°.即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314.即AB 边上的高CD =15314.例题1(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C . (1)求A ;(2)若2a +b =2c ,求sin C .[【解析】(1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22.由于0°<C <120°,所以sin(C +60°)=22,故 sin C =sin(C +60°-60°)=sin(C +60°)cos 60°-cos(C +60°)sin 60°=6+24. 【解题技巧提炼】1.已知△ABC 中的某些条件(a ,b ,c 和A ,B ,C 中至少含有一条边的三个条件)求边长时可用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin C sin A ,a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .2.已知△ABC 的外接圆半径R 及角,可用公式a =2R sin A ,b =2R sin B ,c =2R sin C . [提醒] 已知△ABC 的两边及其一边的对角求边时可用正弦定理,但要对解的个数作出判断,也可用余弦定理解一元二次方程求得.涉及解三角形中的最值(范围)问题时若转化为边求解可利用基本不等式或二次函数;若转化为角求解可利用三角函数的有界性、单调性.1.已知△ABC 中某些条件求角时,可用以下公式sin A =a sin Bb ,sin B =b sin Aa,sin C =c sin Aa ,cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab . 2.已知△ABC 的外接圆半径R 及边,可用公式sin A =a 2R ,sin B =b 2R ,sin C =c2R. [提醒] (1)注意三角形内角和定理(A +B +C =π)的应用. (2)解三角形中经常用到两角和、差的三角函数公式.题型二 判断三角形形状例题1设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不确定【答案】B 【解析】(1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A=1,故A =π2,因此△ABC 是直角三角形.例题2在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( ) A .直角三角形 B .等腰非等边三角形 C .等边三角形 D .钝角三角形【答案】C【解析】因为sin A sin B =a c ,所以a b =ac ,所以b =c .又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形. 【解题技巧提炼】[解题技法]1.判定三角形形状的2种常用途径2.判定三角形的形状的注意点在判断三角形的形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响,在等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.题型三 三角形面积问题例题1△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【解析】(1)由题设及正弦定理得sin A sin A +C 2=sin B sin A .因为sin A ≠0,所以sin A +C2=sinB由A +B +C =180°,可得sin A +C 2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,所以sin B 2=12,所以B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a . 由(1)知A +C =120°,由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 由(1)知,A +C =120°,所以30°<C <90°, 故12<a <2,从而38<S △ABC <32. 因此,△ABC 面积的取值范围是⎝⎛⎭⎫38,32. 【解题技巧提炼】 1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键. 2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.题型四 解三角形的实际应用例题1如图,为了测量两座山峰上P ,Q 两点之间的距离,选择山坡上一段长度为300 3 m 且和P ,Q 两点在同一平面内的路段AB 的两个端点作为观测点,现测得∠P AB =90°,∠P AQ =∠PBA =∠PBQ =60°,则P ,Q 两点间的距离为________ m. 【答案】900【解析】由已知,得∠QAB =∠P AB -∠P AQ =30°. 又∠PBA =∠PBQ =60°,所以∠AQB =30°,所以AB =BQ . 又PB 为公共边,所以△P AB ≌△PQB ,所以PQ =P A . 在Rt △P AB 中,AP =AB ·tan 60°=900,故PQ =900, 所以P ,Q 两点间的距离为900 m.例题2如图,为了测量河对岸电视塔CD 的高度,小王在点A 处测得塔顶D 的仰角为30°,塔底C 与A 的连线同河岸成15°角,小王向前走了1 200 m 到达M 处,测得塔底C 与M 的连线同河岸成60°角,则电视塔CD 的高度为________m. [【答案】6002[【解析】在△ACM 中,∠MCA =60°-15°=45°,∠AMC =180°-60°=120°,由正弦定理得AM sin ∠MCA =AC sin ∠AMC ,即1 20022=AC32,解得AC =6006(m).在△ACD 中,因为tan ∠DAC =DC AC =33,所以DC =6006×33=6002(m). 例题3游客从某旅游景区的景点A 处至景点C 处有两条线路.线路1是从A 沿直线步行到C ,线路2是先从A 沿直线步行到景点B 处,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处同时出发匀速步行,甲的速度是乙的速度的119倍,甲走线路2,乙走线路1,最后他们同时到达C 处.经测量,AB =1 040 m ,BC =500 m ,则sin ∠BAC 等于________. [【答案】513[【解析】依题意,设乙的速度为x m/s , 则甲的速度为119x m/s ,因为AB =1 040 m ,BC =500 m , 所以AC x =1 040+500119x ,解得AC =1 260 m.在△ABC 中,由余弦定理得,cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =1 0402+1 2602-50022×1 040×1 260=1213,所以sin ∠BAC =1-cos 2∠BAC=1-⎝⎛⎭⎫12132=513.【解题技巧提炼】测量距离问题的2个策略(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.测量高度问题的基本思路高度也是两点之间的距离,其解法同测量水平面上两点间距离的方法是类似的,基本思想是把要求解的高度(某线段的长度)纳入到一个可解的三角形中,使用正、余弦定理或其他相关知识求出该高度.测量角度问题的基本思路测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.[提醒] 方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.题型五 正余弦定理在平面几何中的应用例题1如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列. (1)求sin ∠CED ; (2)求BE 的长. 【解析】设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理得EC sin ∠EDC =CD sin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin∠CED =217. (2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,cos ∠AEB =EA BE =2BE =714,所以BE =47. 【解题技巧提炼】与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.题型六 解三角形与三角函数的综合问题例题1已知函数f (x )=cos 2x +3sin(π-x )cos(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.【解析】(1)f (x )=cos 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.【解题技巧提炼】解三角形与三角函数综合问题的一般步骤题型一 利用正余弦定理解三角形1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( ) A.π6 B.π3 C.2π3 D.5π6【答案】A【解析】∵a sin B cos C +c sin B cos A =12b ,∴由正弦定理得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sinB .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6,故选A.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.【解析】(1)由正弦定理可得b 2+c 2=a 2+bc , 由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A =3×(3+22)32×6=1+263.题型二 判断三角形形状1.在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形【答案】A【解析】已知等式变形得cos B +1=a c +1,即cos B =ac ①.由余弦定理得cos B =a 2+c 2-b 22ac ,代入①得a 2+c 2-b 22ac =ac ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.2.[在△ABC 中,已知sin A +sin C sin B =b +c a 且还满足①a (sin A -sin B )=(c -b )(sin C +sin B );②b cos A +a cos B =c sin C 中的一个条件,试判断△ABC 的形状,并写出推理过程. 【解析】由sin A +sin C sin B =b +c a 及正弦定理得a +c b =b +ca ,即ac +a 2=b 2+bc ,∴a 2-b 2+ac -bc =0, ∴(a -b )(a +b +c )=0,∴a =b . 若选①△ABC 为等边三角形.由a (sin A -sin B )=(c -b )(sin C +sin B )及正弦定理,得a (a -b )=(c -b )(c +b ),即a 2+b 2-c 2=ab .所以cos C =a 2+b 2-c 22ab =12,又C ∈(0,π),所以C =π3.∴△ABC 为等边三角形. 若选②△ABC 为等腰直角三角形,因b cos A +a cos B =b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac =2c 22c =c =c sin C ,∴sin C =1,∴C =90°,∴△ABC 为等腰直角三角形.题型三 三角形面积问题1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 【答案】63【解析】由余弦定理得b 2=a 2+c 2-2ac cos B . 又∵ b =6,a =2c ,B =π3,∴ 36=4c 2+c 2-2×2c 2×12,∴ c =23,a =43,∴ S △ABC =12ac sin B =12×43×23×32=6 3.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.【解析】(1)由已知及正弦定理得(2sin B -sin A )·cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.题型四 解三角形的实际应用1.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,相距a 海里的B 处,乙船正向北行驶,若甲船是乙船速度的 3 倍,甲船为了尽快追上乙船,朝北偏东θ方向前进,则θ=( )A .15°B .30°C .45°D .60°【答案】B【解析】设两船在C 处相遇,则由题意得∠ABC =180°-60°=120°,且AC BC=3,由正弦定理得AC BC =sin 120°sin ∠BAC =3,所以sin ∠BAC =12.又因为0°<∠BAC <60°,所以∠BAC =30°. 所以甲船应沿北偏东30°方向前进.2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 【答案】103【解析】如图,OM =AO tan 45°=30(m), ON =AO tan 30°=33×30=103(m), 在△MON 中,由余弦定理得,MN =900+300-2×30×103×32=300=103(m). 3.为了测量某新建的信号发射塔AB 的高度,先取与发射塔底部B 的同一水平面内的两个观测点C ,D ,测得∠BDC =60°,∠BCD =75°,CD =40 m ,并在点C 的正上方E 处观测发射塔顶部A 的仰角为30°,且CE =1 m ,则发射塔高AB =________ m. 【答案】202+1【解析】如图,过点E 作EF ⊥AB ,垂足为F ,则EF =BC ,BF =CE =1,∠AEF =30°.在△BCD 中,由正弦定理得, BC =CD ·sin ∠BDC sin ∠CBD=40·sin 60°sin 45°=20 6.所以EF =206,在Rt △AFE 中,AF =EF ·tan ∠AEF =206×33=20 2. 所以AB =AF +BF =202+1(m).题型五 正余弦定理在平面几何中的应用1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________. 【答案】66【解析】设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3.在△ABD 中,cos ∠ADB =a 2+4a 23-a 22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63.在△BDC中,BD sin C =BC sin ∠BDC ,sin C =BD ·sin ∠BDC BC =66.2.如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2. (1)求AD 的长; (2)求△CBD 的面积.【解析】(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD=255,又∠BCD =2∠ABD ,在平面四边形ABCD 中,∠BCD ∈(0,π),所以∠ABD ∈⎝⎛⎭⎫0,π2,所以cos ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·cos ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =cos ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·cos ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54,所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58. 题型六 解三角形与三角函数的综合问题1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.【解析】(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z ),得x =k π+5π12(k ∈Z ),即当x =k π+5π12(k ∈Z )时,f (x )取得最大值1.一、单选题1.如图,某城市有一条公路从正西方MO 通过市中心O 后转向东北方ON ,为了缓解城市交通压力,现准备修建一条绕城高速公路L ,并在,MO ON 上分别设置两个出口,A B ,若AB 部分为直线段,且要求市中心O 与AB 的距离为20千米,则AB 的最短距离为( )A .()2021-千米 B .()4021-千米C .)201D .)401【答案】D【解析】在ABC 中,135AOB ∠=︒, 设,AO a BO b ==,则(222222cos1352AB a b ab a b ab =+-︒=+≥,当且仅当a b =时取等号,设BAO α∠=,则45ABO α∠=︒-,又O 到AB 的距离为20千米,所以20sin a α=,()20sin 45b α=︒-,故()400sin sin 45ab αα==︒-(22.5α=︒时取等号),所以)221600216001AB ≥=,得)401AB ≥,故选:D2.某生态公园有一块圆心角为π3的扇形土地,打算种植花草供游人欣赏,如图所示,其半径100OA =米.若要在弧AB 上找一点C ,沿线段AC 和BC 铺设一条观光道路,则四边形OACB 面积的最大值为( )A .2500平方米B .25003平方米C .5000平方米D .50003平方米【答案】C【解析】连接OC ,2211sin sin 22OAC OCB OACB OA S S AOC OA CS BO =⋅∠+∠+⋅=四边形△△2π1sin sin 23OA AOC AOC ⎡⎤⎛⎫=∠+-∠ ⎪⎢⎝⎭⎣⋅⎥⎦15000(sin )322cos AOC AOC +=∠∠π5000sin 50003AOC ⎛⎫=∠+≤ ⎪⎝⎭,当π6AOC ∠=时,等号成立. 所以四边形OACB 面积的最大值为5000.故选:C3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2b =,1c =,则B C +=( )A .90°B .120°C .60°D .150°【答案】C【解析】因为a =2b =,1c =, 所以2221471cos 22122c b a A bc +-+-===-⨯⨯,由0180A <<︒︒,则120A =︒,18060B C A ∴+=︒-=︒故选:C4.已知某圆锥的轴截面是腰长为3的等腰三角形,且该三角形顶角的余弦值等于19,则该圆锥的表面积等于( ) A .4π B .6π C .10π D .203π【答案】C【解析】设圆锥的底面半径为r ,则()2221233162339r -⨯=+⨯⨯=,解得2r =,故该圆锥的表面积等于12234102πππ⨯⨯⨯+=.故选:C.5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cA b<,则ABC 必为( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等腰三角形【答案】A【解析】因为cos cA b <,由正弦定理可得sin cos sin C A B<,即sin cos sin C A B <, 又因为sin sin()sin cos cos sin C A B A B A B =+=+,所以sin cos cos s co si in s n A B A B A B +<,即sin cos 0A B <,因为,(0,)A B π∈,所以sin 0,0cos A B ><,所以(,)2B ππ∈,所以ABC 为钝角三角形.故选:A. 二、多选题6.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且2a =、3b =、4c =,下面说法错误的是( ) A .sin sin sin 234A B C =:::: B .ABC 是锐角三角形C .ABC 的最大内角是最小内角的2倍D .ABC 内切圆半径为12 【答案】BCD 【解析】A 选项,∵sin sin sin a b cA B C==,2a =、3b =、4c =,∵sin sin sin 234A B C =::::,对,B 选项,由于a b c <<,则ABC 中最大角为角C ,∵222222234cos 02223a b c C ab +-+-==<⨯⨯,∵2C π>,∵ABC 是钝角三角形,错,C 选项,假设ABC 的最大内角是最小内角的2倍,则2C A =, 即sin sin22sin cos C A A A ==⋅,又sin sin 12A C =::,即sin 2sin cos 12A A A ⋅=::,cos 1A =,不符合题意,错,D 选项,∵22222224311cos 222416a c b B ac +-+-===⨯⨯,∵sin B ==,∵11sin 2422ABCSac B =⋅=⨯⨯设ABC 的内切圆半径为r ,则()()1123422ABCS a b c r r =++⋅=⨯++⨯=∵r =故选:BCD.7.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin sin 2sin B C A +=( ) A .若π3A =,1c =,则1a =B .若π3A =,1c =,则ABC 的面积为πC .若2b =,则A 的最大值为π3D .若2b =,则ABC 周长的取值范围为()4,12【答案】ACD【解析】因为sin sin 2sin B C A +=,所以2b c a +=. 对于A ,B ,若1c =,则21b a =-,22223421cos 2422b c a a a A bc a +--+===-,解得1a =,ABC 的面积1sin 2S bc A ==,A 正确,B 错误. 对于C ,若2b =,则22c a =-,222238831cos 12128881b c a a a A a bc a a +--+⎛⎫===-++- ⎪--⎝⎭312182⎡⎤≥-=⎢⎥⎣⎦,当且仅当2a =时,等号成立,所以A 的最大值为π3,C 正确.对于D ,若2b =,则根据三边关系可得,,a c b a b c +>⎧⎨+>⎩即222,222,a a a a +->⎧⎨+>-⎩解得443a <<,则4312a <<,ABC 的周长为3a b c a ++=,故ABC 周长的取值范围为()4,12,D 正确.故选:ACD 三、填空题8.在ABC 中,D 为BC 的中点,若4AB =,2AC =,AD =BC =______.【答案】【解析】法一:设BD x =,因为180ADB ADC ∠+∠=︒,所以cos cos 0ADB ADC ∠+∠=,由余弦定理,得22222222BD AD AB DC AD AC BD AD DC AD+-+-+=⋅⋅220=,所以x BC =法二:由D 为BC 的中点,得()12AD AB AC =+,所以()222124AD AB AB AC AC =+⋅+,即()1816242cos 44BAC =+⨯⨯∠+,所以3cos 4BAC ∠=,所以22232cos 16424284BC AB AC AB AC BAC =+-⋅∠=+-⨯⨯⨯=,所以BC =故答案为:9.如图所示,OA 是一座垂直与地面的信号塔,O 点在地面上,某人(身高不计)在地面的C 处测得信号塔顶A 在南偏西70°方向,仰角为45°,他沿南偏东50°方向前进20m 到点D 处,测得塔顶A 的仰角为30°,则塔高OA 为______m .【答案】20【解析】设塔高m OA x =,由题意得在直角AOC △中,45ACO ∠=︒,所以m OA OC x ==,由题意得在直角AOD △中,30ADO ∠=︒,所以m OD =, 由题意得在OCD 中,120,20m OCD CD ∠=︒=, 所以由余弦定理得2222cos OD OC CD OC CD OCD =+-⋅∠,所以22134002202x x x ⎛⎫=+-⋅⋅- ⎪⎝⎭,化简得2102000--=x x ,解得20x 或10x =-(舍去),所以塔高OA 为20m ,故答案为:20 四、解答题10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知1a b c ===. (1)求sin ,sin ,sin A B C 中的最大值; (2)求AC 边上的中线长. 【解析】(1)521>,故有sin sin sin b a c B A C >>⇒>>,由余弦定理可得cos B =又(0,)B π∈,34B π∴=,故sin B(2)AC 边上的中线为BD ,则1()2BD BA BC =+,2222223(2)()2cos 121cos 14BD BA BC c a ca B π∴=+=++=++⨯=, 1||2BD ∴=,即AC 边上的中线长为12.11.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c sin cos A a B a =+.(1)求角B 的值;(2)若8c =,ABC 的面积为BC 边上中线AD 的长.【解析】(1)sin sin cos sin B A A B A =+,()0,πA ∈,sin 0A ≠cos 1B B =+,则π1sin 62B ⎛⎫-= ⎪⎝⎭,()0,πB ∈,π3B ∴=;(2)1sin 2S ac B ==8c =,10a ∴=,由余弦定理22212cos 6425404922a AD c ac B ⎛⎫=+-⨯=+-= ⎪⎝⎭,得249AD =,7AD ∴=,12.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且()(sin sin )()sin a b B A b c C +-=-.(1)求A ;(2)若2a =,求ABC 面积的最大值.【解析】(1)由正弦定理及()(sin sin )()sin a b B A b c C +-=-, 得()()()b a b a b c c -+=-,即222b c a bc +-=, 由余弦定理,得2221cos 22b c a A bc +-==, ∵0A π<<,可得3A π=.(2)由余弦定理得222222cos a b c bc A b c bc =+-=+-, 因为222b c bc +≥, 所以22a bc bc ≥-,即24bc a ≤=,当且仅当2b c ==时取等号,∵11sin 422ABC S bc A =≤⨯=△ABC13.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,向量()7,1m =,()cos ,1n C =,(),2cos p b B =,且0m n ⋅=.(1)求sin C 的值;(2)若8c =,//m p ,求B 的大小.【解析】(1)因为()7,1m =,()cos ,1n C =,且0m n ⋅=,所以7cos 10C +=,即1cos 7C =-,因为0C π<<,所以sin C ==. (2)因为()7,1m =,(),2cos p b B =,//m p ,所以14cos b B =, 在ABC 中,由正弦定理得sin sin c Bb C=,又8c =,sin C =b B ,14cos B B =,即tan B =0B π<<,所以3B π=.14.已知向量()2sin ,2cos 1m x x =-,()2cos ,1n x =,()f x m n =⋅.(1)求函数()y f x =的最小正周期;(2)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()1f A =,a =ABC 的面积的最大值.【解析】(1)()22sin cos 2cos 1f x m n x x x =⋅=+-,sin 2cos 224x x x π⎛⎫=+=+ ⎪⎝⎭,则其最小正周期22T ππ==; (2)由()214f A A π⎛⎫=+= ⎪⎝⎭,且()0,A π∈,所以4A π=,由余弦定理得2222cos a b c bc A =+-,即(2222b c bc =+≥,所以2bc ≤=b c =时取等号,所以ABC 的面积21sin 244S bc π==≤,15.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A C B A C +=+. (1)求B ;(2)若点M 在AC 上,且满足BM 为ABC ∠的平分线,2,cos BM C ==BC 的长. 【解析】(1)在ABC 中,222sin sin sin sin sin A C B A C +=+,由正弦定理得:222a c b ac +=+.由余弦定理得:2221cos 22a cb B ac +-==. 因为()0,B π∈,所以3B π=.(2)因为()cos 0,C C π=∈,所以sin C = 因为3B π=,BM 为ABC ∠的平分线,所以6MBC π∠=.所以[]sin sin BMC MBC C π∠=-∠-∠()sin MBC C =∠+∠sin cos cos sin MBC C MBC C =∠∠+∠∠12==.在MBC △中,由正弦定理得:sin sin MB BC C BMC =∠=BC = 16.在ABC 中,角A 、B 、C 的对边分别是a 、b 、c,且)cos b c aC C +=+. (1)求角A ;(2)若2a =,ABCb c +的值.【解析】(1)由)cos b c a C C +=+及正弦定理得sin sin sin cos sin B C A C A C +=,又()sin sin sin cos cos sin B A C A C A C =+=+,所以cos sin sin sin A C C A C +=,又sin 0C ≠cos 1A A -=,即2sin 16A π⎛⎫-= ⎪⎝⎭,可得1sin 62A π⎛⎫-= ⎪⎝⎭, 因为0A π<<,则5666A πππ-<-<,所以,66A ππ-=,因此,3A π=. (2) 解:由余弦定理,得2222cos 3a b c bc π=+-,即()234b c bc +-=,又1sin 2ABC bc S A ==4bc =,所以4b c +=.17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin 2sin 2cos 02A A A ++=.(1)求A ;(2)若cos cos 2b C c B +=,求ABC 面积的最大值. 【解析】(1)ABC 中,角A ,B ,C 所对的边分别为a ,b ,c , 且2sin 2sin 2cos 2sin cos sin cos 102AA A A A A A ++=+++=,2(sin cos )(sin cos )0A A A A ∴+++=, 即(sin cos )(sin cos 1)0A A A A +++=, sin cos 1A A +>-,sin cos 0A A ∴+=,所以tan 1A =-, 又()0,A π∈,34A π∴=; (2)ABC 中,由正弦定理可得sin sin a b A B =,sin b B ∴==⋅,同理可得,sin c C =⋅,cos cos 2b C c B +=,∴sin cos sin cos 2B C C B ⋅⋅+⋅⋅=,∴sin()2B C ⋅+=sin 24π⋅=,2a ∴=,由余弦定理可得22424cos 22b c bc A bc bc+--=-=, 当且仅当b c =时,取等号,422bc ∴+,即bcABC ∴面积⋅⋅=≤1sin 2bc A 1=-,所以ABC 1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形的有关计算:
方法归纳:对于解三角形图形的相关问题,是涉及到2个或多个三角形的解三角形问题,关键是找到这些三角形之间的具有特殊关系的量,作为把不同三角形中的条件联系在一起的“桥梁”“纽带”,从而达到解三角形的综合问题。
一、解三角形有关图形的计算:
1、如图,ACD △是等边三角形,ABC △是等腰直角三角形,
90ACB =∠,BD 交AC 于E ,2AB =.
(Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE .
2、在△ABC 中,B =π4,BC 边上的高等于1
3BC ,则cos A =( )
A .310
10
B .1010
C .-
1010
D .-31010
3、如图所示,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°. (1)若PB =1
2
,求P A ;
(2)若∠APB =150°,求tan ∠PBA . 4、如图,ABC ∆中,2,3
3
2sin
==∠AB ABC ,点D 在线段AC 上,且3
34,2=
=BD DC AD . (1)求BC 的长;(2)求DBC ∆的面积.
5、如图,△ABC 中,AB=AC=2,BC=23 D 在BC 边上,∠ADC=45°, 则AD 的长度等于______。
6、在ΔABC 中,AD AB ⊥,3
BC =BD ,1AD =,则AC AD ⋅=
7、ABC ∆中,D 为边BC 上的一点,33BD =,5sin 13B =
,3
cos 5
ADC ∠=,求AD .
8、在△ABC 中,已知B=45°,D 是BC 边上的一点,AD=10,AC=14,DC=6,求AB 的长. 9、如图所示,在△ABC ,已知46AB =
,6
cos B =AC 边上的中线5BD =求:(1)BC 的长度; (2)sin A 的值。
B
A
C D E
A
D
C
B
10、如图5,在平面四边形ABCD 中,1=AD ,2=CD ,7=AC .
(1) 求CAD ∠cos 的值; (2) 若147cos -=∠BAD ,6
21
sin =∠CBA ,求BC 的长. 11、在ABC ∆中,,6,324
A A
B A
C π
=
==,点D 在BC 边上,AD BD =,求AD 的长。
12、如图,在ABC ∆中,8,3
==
∠AB B π
,点D 在BC 边上,且7
1
cos ,2=
∠=ADC CD (1)求BAD ∠sin (2)求AC BD ,的长
13、如图,D 是直角△ABC 斜边BC 上一点,AB=AD,记∠CAD=α, ∠ABC=β.
(1)证明 sin cos 20αβ+=;(2)若AC=3DC,求β的值. 14、在△ABC 中,D 是边AC 上的点,且BD BC BD AB AD AB 2,32,==
=,则sin C 的值为
A .
33
B .3
6 C .
63
D .66
15、如图,在ΔABC 中,AD AB ⊥,3BC =BD ,1AD =,则AC AD ⋅=( )
(A )23 (B )
32 (C )33
(D )3 16、如图,在ABC ∆中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则
AD BC =· .
16、已知三角形△ABC ,∠B=450,AC=10,cosC=
55
2
. (I )求BC 边的长; (II )记AB 的中点为D ,求中线CD 的长。
17、如图所示,在△ABC ,已知463AB =
,6
cos 6
B =,A
C 边上的中线5B
D =,求:(1)BC 的长度;(2)sin A 的值。
B D
C
α
β
A
图。