分式全章教案

合集下载

第十五章 分式【教案】八年级上册数学

第十五章  分式【教案】八年级上册数学

一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“分式”.1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,“数与式”是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.“数与式”是代数的基本语言,现阶段关注用字母表述代数式,以及代数式的运算,字母可以像数一样进行运算和推理,通过字母运算和推理得到的结论具有一般性.“数与式”的教学:教师应该把握“数与式”的整体性,一方面,通过负数、有理数和实数的认识,帮助学生进一步感悟数是对数量的抽象,知道绝对值是对数量大小和线段长度的表述,进而体会实数与数轴上的点一一对应的数形结合的意义,会进行实数的运算;另一方面,通过代数式和代数式运算的教学,让学生进一步理解字母表示数的意义,通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.2.本单元教学内容分析人教版教材八年级上册第十五章“分式”,本章包括三个小节:15.1分式;15.2分式的运算;15.3分式方程.“数与式”主题通过从计算物体个数的活动中抽象出整数的概念,从把一个具体物体分为若干份的活动中抽象出分数的概念,这是一种从实物到数的抽象;为更好地反映这个一般规律,在研究整数和分数的过程中,又抽象出整式和分式的概念,这是一种从数到式的抽象.分数与分式是具体与抽象、特殊与一般的关系,即相对于分式而言,分数是具体的、特殊的对象,分式是把具体的分数一般化后的抽象形式.本单元强调的是“从具体到抽象,从特殊到一般”的认识事物的一般规律,处处突出类比在本单元学习中的重要作用,在概念、基本性质、约分与通分、四则运算法则等方面,分数与分式均相对应,两者具有一致性,也可以说是数式通性.本单元自始至终重视分式与实际的联系,选择一些适合分式内容又接近学生生活的实际问题展开编写.一方面要体现与研究分数类似,研究分式同样也是实际需要;另一方面以分式为工具,分析、解决实际问题,提高学生把实际问题转化为数学问题的能力,让学生认识到代数式(包含分式)、分式方程是解决现实问题的数学模型,体会数学中的建模思想,进一步培养学生应用数学知识解决实际问题的兴趣和意识,这将有助于培养学生的创新精神.三、单元学情分析本单元内容是人教版教材数学八年级上册第十五章分式,它是“数与代数”中重要的一部分,学生在前面已经学习了整数与整式、一元一次方程、二元一次方程组等知识,初步积累了一定的用字母表示数以及四则混合运算的数学学习经验,特别是对一元一次方程的解法及基本思路已经比较熟悉,因此本单元运用类比的数学思想来展开分式教学,大大降低了学生学习的难度,同时这种“从具体到抽象、由特殊到一般”的认识事物的基本方法,会潜移默化地引导学生养成良好的学习习惯.建立分式方程的模型来解决实际问题是本单元的一个重要任务,能否以分式方程为工具,分析和解决问题是对学生应用意识和模型观念的一个重要考量,也是教学的关键.虽然分式整章的学习接近学生的最近发展区,但利用分式方程解决问题的特殊性,对学生来说仍是一个难点,分式方程化整式方程的基本思路是基础,对解出的未知数进行检验确认是必不可少的步骤,所以在此体会解分式方程的基本思路是非常自然、合理的,这对学生认识水平的提高,知识体系的构建是不可缺少的.四、单元学习目标1.以描述实际问题中的数量关系为背景,抽象出分式的概念,在了解分式概念的基础上发展学生的抽象能力.2.能通过类比分数的基本性质,了解分式的基本性质,并利用分式的基本性质进行约分和通分,提高学生的知识类比和迁移能力,发展学生的推理能力.3.通过类比分数的四则运算法则,探究分式的四则运算法则,能进行简单的分式加、减、乘、除运算,逐步提高学生的运算能力.4.结合分式的运算,将指数的范围从正整数扩大到全体整数,了解整数指数幂的运算性质;能用科学记数法表示小于1的正数,发展学生的抽象能力、运算能力和模型观念.5.掌握可化分式方程为一元一次方程的解法,体会解分式方程过程中的化归思想,发展学生的运算能力和推理能力.6.经历利用分式方程解决实际问题的过程,进一步体会方程是刻画实际问题中数量关系的一种重要模型,培养学生的模型观念、应用意识和创新意识.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。

人教版八年级数学第十五章《分式》全章教案[1]

人教版八年级数学第十五章《分式》全章教案[1]

人教版八年级数学第十五章《分式》全章教案[1]-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第三章分式3.1 分式的基本性质(1)教学目标1.了解分式的基本性质,体会类比的思想方法.2.掌握分式的约分,了解最简分式的概念.教学重、难点分式的基本性质和分式的约分教学过程设计一、创设问题,激发兴趣问题1下列分数是否相等?追问这些分数相等的依据是什么?问题2你能叙述分数的基本性质吗?分数的基本性质:一个分数的分子、分母乘(或除以)同一个不为0的数,分数的值不变.问题3 你能用字母的形式表示分数的基本性质吗?问题4 类比分数的基本性质,你能想出分式有什么性质吗?分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.追问1 如何用式子表示分式的基本性质?二、知识应用,巩固提高追问2 应用分式的基本性质时需要注意什么?(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘(或除以)的必须是同一个整式;(3)所乘(或除以)的整式应该不等于零.例2 填空:问题5 观察上例中(1)中的两个分式在变形前后的分子、分母有什么变化类比分数的相应变形,你联想到什么像这样,根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.经过约分后的分式,其分子与分母没有公因式.像这样分子与分母没有公因式的式子,叫做最简分式.例3 约分:追问1 由上例你能归纳出在分式中,找分子和分母的公因式的方法是什么吗追问2 如果分式的分子或分母是多项式,那么该如何思考呢?三、应用提高、拓展创新教科书132页练习1四、归纳小结(1)本节课学习了哪些主要内容(2)运用分式的基本性质时应注意什么(3)分式约分的关键是什么如何找公因式(4)探究分式的基本性质和分式的约分的过程,你认为体现了哪些数学思想方法?五、布置作业:教科书习题15.1第4、6题.教后反思:3.1 分式的基本性质(2)教学目标1.了解最简公分母的概念,会确定最简公分母.2.通过类比分数的通分来探索分式的通分,能进行分式的通分,体会数式通性和类比的思想.教学重、难点准确确定分式的最简公分母教学过程设计一、创设问题,激发兴趣问题1 通分:追问1 分数通分的依据是什么?追问2 如何确定异分母分数的最小公分母?问题2 填空:像这样,根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.追问1 你认为分式通分的关键是什么?分式通分的关键是找出分式各分母的公分母.追问2 上面问题中的两个分式的公分母是什么?为通分要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.追问3 两个分式的最简公分母是如何确定的?最简公分母的确定方法:取各分母系数的最小公倍数与各字母因式的最高次幂的乘积.分母是多项式时,最简公分母的确定方法是:先因式分解,再将每一个因式看成一个整体,最后确定最简公分母.二、知识应用,巩固提高例通分:三、应用提高、拓展创新教科书132页练习1四、归纳小结(1)本节课学习了哪些主要内容(2)分式通分的关键是什么?(3)分式通分时,确定最简公分母的方法是什么?五、布置作业:教科书习题15.1第7题教后反思:3.3 分式的乘除(1)教学目标1.理解分式的乘除法法则,体会类比的思想.2.会根据分式的乘除法法则进行简单的运算,并理解其算理教学重、难点分式的乘除法法则的运用教学过程设计一、创设问题,激发兴趣问题1 一个水平放置的长方体容器,其容积为V,底面的长为a,宽为m时,水面的高度为多少?b,当容器内的水占容积的n(1)这个长方体容器的高怎么表示?(2)容器内水面的高与容器内的水所占容积间有何关系?容器内水面的高与容器高的比和容器内的水所占容积的比相等.问题2 大拖拉机m 天耕地a hm2,小拖拉机n天耕地b hm2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?(1)本题中出现的“工作效率”的含义是什么?(2)大拖拉机和小拖拉机的工作效率怎样表示?观察上述两个问题中所列出的式子中,其中涉及到分式的有哪些运算你能用学过的运算法则求出结果吗问题3 计算:在计算的过程中,你运用了分数的什么法则你能叙述这个法则吗如果将分数换成分式,那么你能类比分数的乘除法法则,说出分式的乘除法法则吗?怎样用字母来表示分式的乘除法法则呢?二、知识应用,巩固提高分式的乘除法法则如何用文字语言来描述?乘法法则:分式乘分式,用分子的积作为积的分子,分母的积为积的分母.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.例1 计算:三、应用提高、拓展创新教科书138页练习2四、归纳小结(1)本节课学习了哪些主要内容?(2)分式的乘除法运算与分数的乘除法运算有什么区别和联系?五、布置作业:教材第144页第1题;第145页第10、11题.教后反思:3.3分式的乘除(2)教学目标1.能运用分式的乘除法法则进行复杂计算.2.能运用分式的乘除法解决一些简单的实际问题.教学重、难点用分式的乘除法法则进行计算,并解决一些实际问题.教学过程设计一、创设问题,激发兴趣问题1 约分:分子与分母分别是多项式的分式如何约分?问题2 计算:分子与分母都是单项式的两个分式如何乘除?二、知识应用,巩固提高例1 计算:分子或分母是多项式的两个分式如何乘除呢?解题策略:对于分子与分母都是单项式的两个分式乘除,可直接利用分式的乘除法法则,再根据分式的基本性质进行约分,将最后的结果化成最简分式.而对于分子或分母中含有多项式的两个分式相乘,为了使算式简洁,也便于找出分子与分母中的公因式,需要先将多项式因式分解,把多项式化成整式的积的形式,然后利用分式的乘除法法则进行运算,利用分式的基本性质进行约分,并把最后的结果化成最简分式.例2 “丰收1号”小麦的试验田是边长为a m(a>1)的正方形去掉一个边长为1 m的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a-1)m的正方形,两块试验田的小麦都收获了500 kg.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?思考以下问题:①你能说出小麦的“单位产量”的含义吗?②如何表示这两块试验田的单位产量③怎样确定哪种小麦的单位产量高?④你能列式表示(2)的问题吗?归纳解题步骤:(1)先根据题意分别列出表示两个量的代数式;(2)再根据题意列出相应的算式;(3)最后通过计算解决问题.三、应用提高、拓展创新教科书138页练习3四、归纳小结运用分式的乘除法法则计算分子或分母含有多项式的分式主要步骤是什么?五、布置作业:教材第144页第2题.教后反思:3.3 分式的乘方(3)教学目标1.理解分式乘方的运算法则,能根据法则进行乘方运算,体会数式通性.2.能根据混合运算法则进行分式乘除、乘方混合运算.教学重、难点分式的乘方及分式乘除、乘方混合运算教学过程设计一、创设问题,激发兴趣例1 计算: 2235353259.-+-x xxx x ÷⋅练习1 计算:2222222222222551334216423282816--+----++++m n p q mnp q pq mnm n n m m n m m n m n a a a a a a a ⋅÷⋅÷÷⋅();()();()(). 思考 你能结合有理数乘方的概念和分式乘法的法则写出结果吗? 2310===a a a b b b ()? ()? ()?猜想:n 为正整数时=⎪⎭⎫ ⎝⎛n b a你能写出推导过程吗?试试看.你能用文字语言叙述得到的结论吗?分式的乘方法则:一般地,当n 是正整数时,这就是说,分式乘方要把分子、分母分别乘方.二、知识应用,巩固提高例2 计算:例3 计算:分式的乘除、乘方混合运算与分数的乘除、乘方混合运算有什么联系和区别吗?练习2 计算:三、应用提高、拓展创新教科书139页练习2四、归纳小结(1)本节课学习了哪些主要内容?(2)运用分式乘方法则计算的步骤是什么它与整式的乘方运算有什么区别和联系(3)分式的乘方与乘除混合运算的运算顺序是什么?五、布置作业:教科书习题15.2第3(3)(4)题.教后反思:3.5分式的加减教学目标1.理解分式的加减法法则,体会类比思想.2.会运用法则进行分式的加减运算,体会化归思想.教学重、难点分式的加减法法则教学过程设计一、创设问题,激发兴趣问题1 甲工程队完成一项工程需n 天,乙工程队要比甲队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?(1)甲工程队一天完成这项工程的几分之几?(2)乙工程队一天完成这项工程的几分之几?(3)甲乙两队共同工作一天完成这项工程的几分之几?问题2 2009年、2010年、2011年某地的森林面积(单位:km2)分别是S1,S2,S3,2011年与2010年相比,森林面积增长率提高了多少?(1)什么是增长率?(2)2010年、2011年的森林面积增长率分别是多少(3)2011年与2010年相比,森林面积增长率提高了多少?分式的加减法与分数的加减法类似,它们实质相同.观察下列分数加减运算的式子,你能将它们推广,得出分式的加减法法则吗分式的加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.二、知识应用,巩固提高例 计算: 1122323++-p q p q ().三、应用提高、拓展创新课本141页 练习1、练习2练习:你能应用本节课所学知识解决“问题1”和“问题2”吗?四、归纳小结(1)本节课学习了哪些主要内容?(2)我们是怎么引出分式加减法法则的?(3)在进行分式的加减运算时要注意哪些问题?五、布置作业:教科书习题15.2第4、5题.教后反思:3.5分式的混合运算教学目标1.理解分式混合运算的顺序.2.会正确进行分式的混合运算.3.体会类比方法在研究分式混合运算过程中的重要价值.教学重、难点分式的混合运算.教学过程设计一、创设问题,激发兴趣问题数的混合运算的顺序是什么你能将它们推广,得出分式的混合运算顺序吗分式的混合运算顺序:“从高到低、从左到右、括号从小到大”.例1 计算:这道题的运算顺序是怎样的?通过对例1的解答,同学们有何收获?对于不带括号的分式混合运算:(1)运算顺序:先乘方,再乘除,然后加减;(2)计算结果要化为最简分式.二、知识应用,巩固提高例2 计算:2252412232142244-++--+-----+m m m m x x x x x x x x ⎛⎫⋅ ⎪⎝⎭⎛⎫÷ ⎪⎝⎭() ;() .通过对例2的解答,同学们有何收获?对于带括号的分式混合运算:(1)将各分式的分子、分母分解因式后,再进行计算;(2)注意处理好每一步运算中遇到的符号;(3)计算结果要化为最简分式.三、应用提高、拓展创新练习1 计算:四、归纳小结(1)本节课学习了哪些主要内容?(2)分式混合运算的顺序是什么我们是怎么得到它的(3)在进行分式混合运算时要注意哪些问题?五、布置作业:教科书习题15.2第6题.教后反思:3.7 分式方程(1)教学目标1.了解分式方程的概念.2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思想和程序化思想.3.了解解分式方程根需要进行检验的原因.教学重、难点利用去分母的方法解分式方程教学过程设计一、创设问题,激发兴趣问题1 为了解决引言中的问题,我们得到了方程v v -=+30603090.仔细观察这个方程,未知数的位置有什么特点?追问1 方程13321;251051;32212++=+-=-+=x x x x x x x x 与上面的方程有什么共同特征?分母中含有未知数.分式方程的概念:分母中含有未知数的方程叫做分式方程.追问2 你能再写出几个分式方程吗?注意: 我们以前学习的方程都是整式方程,它们的未知数不在分母中. 问题2 你能试着解分式方程vv -=+30603090吗问题3 这些解法有什么共同特点?总结:这些解法的共同特点是先去分母,将分式方程转化为整式方程,再解整式方程.思考:(1)如何把分式方程转化为整式方程呢?(2)怎样去分母?(3)在方程两边乘以什么样的式子才能把每一个分母都约去呢?(4)这样做的依据是什么?总结:(1)分母中含有未知数的方程,通过去分母就化为整式方程了.(2)利用等式的性质2可以在方程两边都乘同一个式子——各分母的最简公分母.追问 你得到的解6=v 是分式方程vv -=+30603090的解吗二、知识应用,巩固提高问题4 解分式方程: 2110525=.--x x追问1 你得到的解5=x 是分式方程 2510512-=-x x 的解吗该如何验证呢5=x 是原分式方程变形后的整式方程的解,但不是原分式方程的解.追问2 上面两个分式方程的求解过程中,同样是去分母将分式方程化为整式方程,为什么整式方程90306030-=+v v ()()的解6=v 是分式方程v v -=+30603090的解,而整式方程510+=x 的解5=x 却不是分式方程2510512-=-x x 的解?原因:在去分母的过程中,对原分式方程进行了变形,而这种变形是否引起分式方程解的变化,主要取决于所乘的最简公分母是否为0.检验的方法主要有两种:(1)将整式方程的解代入原分式方程,看左右两边是否相等;(2)将整式方程的解代入最简公分母,看是否为0.显然,第2种方法比较简便!问题5你能概括出解分式方程的基本思 路和一般步骤吗解分式方程应该注意什么基本思路 将分式方程化为整式方程一般步骤:(1)去分母;(2)解整式方程;(3)检验.注意:由于去分母后解得的整式方程的解不一定是原分式方程的解,所以需要检验.三、应用提高、拓展创新例 解下列方程:四、归纳小结(1)本节课学习了哪些主要内容?(2)解分式方程的基本思路和一般步骤是什么解分式方程应该注意什么五、布置作业:教科书习题15.3第1(1)~(4)题.教后反思:3.7 分式方程(2)教学目标1.会解较复杂的分式方程和较简单的含有字母系数的分式方程.2.能够列分式方程解决简单的实际问题.3.通过学习分式方程的解法,体会转化的数学思想.教学重、难点分式方程的解法教学过程设计一、创设问题,激发兴趣例1 解方程31112-=.--+x x x x ()()解分式方程的步骤:(1)去分母,将分式方程转化为整式方程;(2)解这个整式方程;(3)检验.用框图的方式总结为:二、知识应用,巩固提高例2 解关于x 的方程11+=.-a b b x a ()例3 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?三、应用提高、拓展创新某车间有甲、乙两个小组,甲组的工作效率比乙组工作效率高25%,因此甲组加工2 000个零件所用的时间比乙组加工1 800个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件?四、归纳小结(1)本节课学习了哪些主要内容?(2)解分式方程的一般步骤有哪些关键是什么解方程的过程中要注意的问题有哪些(3)列分式方程解应用题的步骤是什么与列整式方程解应用题的过程有什么区别和联系五、布置作业:教科书习题15.3第1(2)(4)(6)(8)、4、5题.教后反思:3.7 分式方程(3)教学目标列分式方程解决实际问题.教学重、难点列分式方程解实际问题.教学过程设计一、创设问题,激发兴趣例1 某进货员发现一种应季衬衫,预计能畅销,他用8 000元购进一批衬衫,很快销售一空.再进货时,他发现这种衬衫的单价比上一次贵了4 元/件,他用 17 600元购进2 倍于第一次进货量的这种衬衫.问第一次购进多少件衬衫?分析:二、知识应用,巩固提高例2 某次列车平均提速v km/h.用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50 km,提速前列车的平均速度为多少?思考:(1)这个问题中的已知量有哪些未知量是什么(2)你想怎样解决这个问题关键是什么表达问题时,用字母不仅可以表示未知数(量),也可以表示已知数(量).上面例题中,出现了用一些字母表示已知数据的形式,这在分析问题寻找规律时经常出现.例2中列出的方程是以x 为未知数的分式方程,其中v,s 是已知常数,根据它们所表示的实际意义可知,它们是正数.三、应用提高、拓展创新练习1 商场用50 000元从外地采购回一批T恤衫,由于销路好,商场又紧急调拨18.6万元采购回比上一次多两倍的T恤衫,但第二次比第一次进价每件贵12元.求第一次购进多少件T恤衫.练习2 八年级学生去距学校s km的博物馆参观,一部分学生骑自行车先走,过了t min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是学生骑车速度的2倍,求学生骑车的速度.四、归纳小结(1)借助分式方程解决实际问题时,应把握哪些主要问题?(2)本节课的分式方程的应用方面应注意些什么?举例说明.五、布置作业:教科书习题15.3第6、7、8题.教后反思:。

分式教案 全章教案

分式教案 全章教案

分式教案全章教案教案标题:分式教案全章教案教案目标:1. 学生能够理解分式的概念和基本性质。

2. 学生能够进行分式的加减乘除运算。

3. 学生能够应用分式解决实际问题。

教学重点:1. 分式的定义和性质。

2. 分式的加减乘除运算。

3. 分式在实际问题中的应用。

教学难点:1. 分式的加减乘除运算。

2. 分式在实际问题中的应用。

教学准备:1. 教师准备:教学课件、分式示例题和练习题。

2. 学生准备:课本、练习本。

教学过程:一、导入(5分钟)1. 引入分式的概念:请学生回顾整数的概念,并提问:如果一个数可以表示为两个整数的比例,该怎么表示呢?2. 引入分式的定义:通过示例解释分式的定义,如:1/2、3/4等。

二、理解分式的基本性质(10分钟)1. 分组讨论:将学生分成小组,让他们讨论分式的基本性质,并总结出分式的分子、分母的含义。

2. 教师点评:请学生报告各小组的讨论结果,并进行点评和补充。

三、分式的加减运算(15分钟)1. 教师示范:通过示例演示分式的加减运算步骤,并解释每一步的原理。

2. 学生练习:让学生进行分式的加减运算练习,提供一些简单的练习题,逐步增加难度。

四、分式的乘除运算(15分钟)1. 教师示范:通过示例演示分式的乘除运算步骤,并解释每一步的原理。

2. 学生练习:让学生进行分式的乘除运算练习,提供一些简单的练习题,逐步增加难度。

五、分式在实际问题中的应用(15分钟)1. 教师引导:通过实际问题引导学生思考如何应用分式解决问题,如:将一个数分成几部分,每部分的比例是多少等。

2. 学生练习:让学生尝试解决一些实际问题,应用分式进行计算。

六、总结与拓展(10分钟)1. 教师总结:对本节课所学内容进行总结,并强调分式的重要性和应用范围。

2. 拓展练习:提供一些拓展练习题,让学生巩固所学知识。

七、课堂小结(5分钟)1. 学生回答问题:请学生回答一些关于分式的问题,检查他们对本节课内容的理解程度。

2. 教师点评:对学生的回答进行点评和总结。

初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案(通用12篇)

初中数学《分式》优秀教案〔通用12篇〕篇1:初中数学分式教案初中分式教案初中数学分式教学反思经历了三周多的学习,学生已根本掌握了分式的有关知识(分式的概念、分式的根本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。

但是,“分式运算”教学中,学生在课堂上感觉不差,做作业或测试时却错处百出,尤其在分式的混合运算更是出错多、空白多、究其根,均属于运算才能问题,因此在教学中应特别关注这一深层根,并根据学生的实际情况寻找相应对策。

下面是我在教学中的几点体会:一、教学中的发现1、本章可以让学生通过观察、类比、猜测、尝试等活动学习分式的运算法那么,开展他们的合情推理才能,所以教学时重点应放在对法那么的探究过程上。

一定要让学生充分活动起来。

在观察、类比、猜测、尝试当一系列思想活动中发现法那么、理解法那么、应用法那么,同时还要关注学生对算理的理解,以培养学生的代数表达才能、运算才能和有理的考虑问题才能。

可是我在知识的传授上并没有注重探究、类比法那么,而重在对分式四那么运算法那么的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。

今后要防止类似事情的发生。

2、问题(1) 分式的运算错的较多。

分式加减法主要是当分子是屡次式时,假如不把分子这个整体用括号括上,容易出现符号和结果的错误。

所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。

其次,分式概念运算应按照先乘方、再乘除,最后进展加减运算的顺序进展计算,有括号先做括号里面的。

(2)分式方程也是错误重灾区。

一是增根定义模糊,对此,我对增根的概念进展深化浅出的阐述,⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;⑵增根能使最简公分母等于0;二是解分式方程的步骤不标准,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的形式中跳出来;(3)列分式方程错误百出。

人教版初中数学八年级上册上册第十五章《分式》第一节《分式》教案

人教版初中数学八年级上册上册第十五章《分式》第一节《分式》教案
-分式的概念理解:学生容易混淆分式与整式的区别,需要通过实例和直观图形帮助学生理解。
-约分与通分的技巧:学生在约分和通分时,往往不能找到最简公分母,需要教授寻找公分母的技巧和方法。
-分式的混合运算:学生在面对分式的混合运算时,难以掌握运算顺序和法则,需要通过典型例题和练习逐步突破。
-分式在实际问题中的应用:学生可能不知道如何将实际问题转化为分式问题,需要通过案例分析,引导学生建立数学模型。
举例:难点在于分式的混合运算,教师应通过以下步骤帮助学生克服难点:
a.通过对比整式的运算顺序,引导学生理解分式混合运算的顺序。
b.通过具体例题,展示分式混合运算的步骤和技巧。
c.设计不同难度的练习题,让学生逐步适应并掌握分式混合运算。
d.在解题过程中,强调分式约分与通分的应用,使运算过程简化。
四、教学流程
五、教学反思
在本次教学活动中,我教授了人教版初中数学八年级上册第十五章《分式》的第一节《分式》。回顾整个教学过程,我认为有几个地方值得反思和改进。
首先,关于导入新课环节,我通过提出与分式相关的生活中的问题来激发学生的兴趣,这是一个较好的切入点。但在实际操作中,我发现部分学生可能并没有完全理解问题的实质,导致后续学习过程中对分式的理解不够深入。因此,在以后的教学中,我需要更加关注学生的反应,适时调整问题的难度,确保学生们能够更好地进入学习状态。
本节课的核心素养目标主要包括:
1.培养学生的数学抽象能力,通过引入分式的概念,让学生理解数学表达形式的简洁性与严谨性;
2.提高学生的逻辑推理能力,在学习分式的性质与运算法则中,使学生掌握逻辑推理方法,形成严密的数学思维;
3.培养学生的数学建模素养,让学生在实际问题中运用分式知识建立数学模型,提高解决实际问题的能力;

人教版八年级数学上册第十五章《分式》教案

人教版八年级数学上册第十五章《分式》教案

第十五章分式15.1 分式15.1.1 从分数到分式1.理解分式的意义,掌握使分式有意义时分母中字母的取值范围或字母之间的相互关系.2.在经历探索、思考、类比的过程中,体会分式的意义,感受分式是刻画现实问题中数量关系的一种模型.3.进一步增强从特殊到一般的认知过程,发展学生的数学思维能力.【教学重点】理解分式的意义,掌握使分式有意义时分母中字母的取值范围的判别方法.【教学难点】在分式有意义的条件下,分式值为0的字母的取值情况.一、情境导入,初步认识问题一艘轮船在静水中的最大航速为20千米/小时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?【教学说明】章前画面和上述问题可用多媒体展示,让学生感受生活,感受数学.对所提出的问题让学生相互交流,探索解决问题的过程、方法,教师巡视,适时参与学生的讨论,最后选取学生代表展示成果,教师及时提出新问题.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题1刚才大家通过探讨,获得到100602020v v+-,这样的式子,它们是整式吗?如果不是,区别在哪里?思考1(1)长方形的面积为10cm2,长为7cm,宽为;若长方形的面积为S,长为a,则宽应为;(2)把体积为200cm3的水倒入底面积为33cm2的圆柱的容器中,水面高度为cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度应为.思考2 式子S/a、V/S与10/7,200/33有什么区别?它们与10060 2020v v+-,有什么共同点?谈谈你的看法.【教学说明】教师应引导学生对上述三个问题进行积极思考,感受整式与分式、分式与分数之间的联系和区别,初步形成对分式的概念的理解.教师在学生交流过程中,巡视全场,引导学生关注所给式子的分子,分母的特征,此时可类比分数分子、分母进行描述.分式:一般地如果A、B表示两个整式,并且B中含有字母,那么式子AB 叫做分式.问题2(1)使分式11x-有意义,则x的取值有什么要求?(2)使分式A/B有意义,所需要的条件是什么?【教学说明】让学生自主探究,获得结论,然后相互交流,教师再予以总结.【归纳结论】使分式A/B有意义时,必有B≠0.三、典例精析,掌握新知例1指出下列各式中的整式与分式:【教学说明】教师总结判断分式的依据:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.然后让学生自主探索,获得结论,这里要注意:π不是字母,是常数,所以x/π是整式.例2填空:(1)当x时,分式23x有意义?(2)当b时,分式153b-有意义?(3)当x ,y 满足关系 时,分式x y x y +-有意义? (4)当x 时,分式231x x + 有意义? 解:(1)由题意有:3x ≠0,故x ≠0,所以当x ≠0时,分式23x 有意义;(2)由题意有:5-3b ≠0,故b ≠5/3,所以当b ≠5/3时,分式153b -有意义;(3)由题意有x-y ≠0,故x ≠y ,所以当x ≠y 时,分式x y x y+-有意义;(4)由题意有x 2+1≠0,因为x 2≥0,x 2+1≥1,故x 为任何数时,分式231x x +有意义. 【教学说明】让学生自主探索,获得结论,选取一、两名同学汇报自己的结论,师生共同评论.评析时,教师应注意引导学生对(3)、(4)小题进行反思,巩固对分式有意义的条件和认识.例3什么条件下,下列分式的值为0?(1)1x x - ;(2)23m n m n-+ ;(3)()236x x x x --- . 解:(1)由题意有:x-1=0,∴x=1.当x=1时,分母x ≠0,所以当x=1时,分式1x x-的值为0; (2)由题意有:2m-3n=0,∴m=32n ,∴m+n=52n ,又m+n ≠0,即52n ≠0,∴n ≠0,从而在m=32n ≠0时,分式23m n m n-+的值为0; (3)由题意有:x(x-3)=0,∴x=0或x=3,当x=0时,分母x 2-x-6=-6≠0,当x=3时,x 2-x-6=9-3-6=0,故使分式()236x x x x ---的值为0时,x 的值为x=0. 【教学说明】教学时,教师应讲清楚使分式=0时所必须的条件是:分子=0且分母≠0,这样让学生自己通过探讨三个问题的结论时,感知分式有意义是确定分式的值的前提条件,然后给一定时间让学生自己尝试解决所提出的问题,再由老师给予完整解答,让学生在比较、分析与反思中巩固所学知识.在完成上述例题后,教师可引导学生做教材P4练习,以巩固知识.四、师生互动,课堂小结1.这节课你有哪些收获?2.通过这节课的学习,你还有哪些疑问?与同伴交流.【教学说明】问题都可由学生自己总结,选取代表发表自己的看法,从而系统地对本节知识进行回顾与思考,针对学生的疑问,可当堂予以解释,帮助学生掌握所学的知识.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.这节课的内容较少,比较贴近实际生活,要求学生知道什么是分式,能区分整式与分式,对保证分式有意义、分子分母要同时满足什么条件能很准确地指出来.此外,分式的值为0时分子分母也要满足一定的条件.教学中可以多出具一些实例,让学生在实际问题中去感知.15.1.2分式的基本性质1.掌握分式的基本性质,能依据分式的性质进行约分和通分运算.2.通过归纳、类比等方法得出分式的基本性质,通过观察、实验、推理等活动,发现并总结出运用分式基本性质进行分式的约分和通分.3.进一步增强学生的创新思维能力.【教学重点】理解并掌握分式的基本性质,能用分式的性质进行分式的约分和通分.【教学难点】在分式通分时找几个分母的公分母是关键,在分式的约分时应注意将分子、分母中的多项式进行分解因式.一、情境导入,初步认识分数的基本性质:一个分数的分子、分母同乘以(或除以)一个不为0的数,分数的值不变.思考下列从左到右的变形成立吗?为什么?【教学说明】教师应引导学生用类比分数的基本性质来解决上述问题,加深对分式性质的初步认识.教学时,让学生相互交流,感受新知.二、思考探究,获取新知(一)分式的基本性质分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即··A A C A A CB BC B B C÷==÷,(A、B、C均为整式,且C≠0)试一试【教学说明】让学生自主探究,教师巡视,针对学生可能出现的问题及时给予指导,最后师生共同分析,完善答案.教学重点在于让学生明白通过分子(或分母)的变化特征,来获得分母(或分子)的变化思路,为后面的分式约分和通分作好铺垫.2.不改变分式的值,使下列分式的分子或分母都不含有“-”号:3.不改变分式的值,将下列分式中分子或分母的系数化为整数:【教学说明】2、3两道小题均由学生自主完成,相互交流.教师在学生处理第2题时应引导学生运用分数除法法则得到商的符号来完成分式中分子(或分母)的符号的处理办法,第3题应引导学生运用分式性质在分子、分母同乘以一个合适倍数来达到目的,边巡视,边指导,让学生在练习过程中加深对性质的理解和运用.(二)分式的约分分式的约分:把分式的分子、分母中的公因式约去的过程叫做分式的约分,如由2122x x x x =--,就是分式的约分. 最简分式:分子与分母中没有公因式的分式叫做最简分式.分式的约分,一般要约去分子和分母中所有公因式,使所得结果成为最简分式或整式.【教学说明】上述定义或结论,在教学时,教师可结合分数的约分和前面的1(1)小题进行说明,让学生通过感性认识获得理性思考,体验由特殊到一般的辨证思维方法.试一试4.约分:【教学说明】在学生自主探究,探索问题结论过程中,教师应关注学生以下几个方面:(1)找分式的分子、分母中的公因式是否彻底,是否考虑了分子、分母中各项的系数;(2)是否注意到分式的符号的变化;(3)约分是否彻底等,对所出现的问题一定要做好个别指导,最后师生共同讨论,给出正确答案,让学生对比自己的解答,进行必要的反思.(三)分式的通分思考:联想分数的约分,如何进行分式的通分呢?试一试5.将下列分式通分:【分析】(1)把分式化成分母相同的分式的过程叫做分式的通分;(2)通分的关键是确定几个分式的最简公分母,而确定最简公分母通常按以下三个步骤进行:①取各分母系数的最小公倍数作为公分母系数;②各个分母中所有不同的因式均作为公分母中的一个因式;③所有因式的指数以它的最高次幂作为公因式中该因式的指数.【教学说明】教学时,给几分钟时间先让学生尝试着解决问题,在学生出现思维盲区时,教师给予详细分析,边讲边演示,在思维的激烈碰撞过程中,逐渐形成对分式通分的认识.三、师生互动,课堂小结1.通过本节课的学习,你有哪些收获?2.通过这节课的学习,你觉得有哪些知识是难以把握的?你有何想法?【教学说明】通过对问题的思考,让学生回顾本节学过的知识点有哪些,怎样利用分式的性质来化简分式中分子(或分母)的符号,怎样将分子、分母中的系数化成整数,如何进行分式的约分和通分,在约分和通分时最关键的问题有哪些,如何解决等等,进一步深化对本节知识的理解.在这里,教师可引导学生做教材P8练习以及习题14.1中的题,以帮助学生进一步掌握.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.“分式的基本性质”在分式教学中占有重要的地位,它是约分、通分的依据.这部分知识比较容易理解,教师在设计这节课时,可利用“猜想和验证”的方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,最好给每位学生准备一份练习纸,这样能确保达到一定的练习量.15.2 分式的运算15.2.1 分式的乘除第1课时分式的乘除1.掌握分式的乘除法运算法则,能进行分式的乘除法运算.2.在经历探索、类比、归纳的过程中,理解并掌握分式的乘除法运算法则.3.在类比分数乘除法运算法则获得分式乘除法法则中,让学生体验由数到式的数学发展过程,激发学生学习兴趣,增强求知欲.【教学重点】理解并掌握分式乘除法运算法则,能用它来进行分式乘除法运算.【教学难点】运用分式乘除法运算法则解决一些实际应用问题,进一步增强数学应用能力.一、情境导入,初步认识观察下列算式:由上述算式,我们知道,分数的乘法法则是;分数的除法法则是.思考类比分数的乘除法法则,你能说出分式的乘除法法则吗?【教学说明】让学生直接由分数的乘除法运算法则感知分式的乘除法法则,可激发学生的学习兴趣,增强求知欲.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知类比分数的乘除法运算,可以发现分式的乘除法也有相同的运算法则.乘法法则:分式乘分式,把分子的积作为积的分子,分母的积作为积的分母,用式子可表示为:···a d a db c b c=.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子可表示为:···a d a c a cb c b d b d÷==.【教学说明】分式的乘除法则可由学生类比分数得到结论,让学生在合作交流中感受新知;教师不必直接给出结论.在教学时,教师可进一步地展示下面的一些问题,帮助学生加深理解.问题【教学说明】在教学时,上述三个问题教师可延时展示给学生,让学生逐一思考,获得结论.教师巡视,对有困难的学生适时给予指导,同时分别选派2~3名学生上黑板演示,师生共同评析.在问题1中,着重于除式是整式情形,这时应引导学生先将整式看作分母为1的式子来参与计算;问题中侧重于运算结果应予以约分化简,必须是最简分式时才算运算结束;问题3侧重于分式的分母、分子是多项式情形,此时应注重于分解因式,以便于约分化简,整个过程都应是学生自主探究,合作交流来完成的.三、典例精析,掌握新知【分析】本题是分式乘除法,分子、分母是多项式的应先把多项式分解因式再运用法则,而分式乘除法实质就是约分.【教学说明】本例仍由学生自主探究,抽学生回答,教师适时点拨,师生共同寻求解题方法,完成解题过程.在完成之后,教师可引导学生做P138练习第2、3题,在这个过程中,仍可让学生举手回答,教师予以点评.四、运用新知,深化理解1.一个水平放置的长方体容器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的m、n时,水面的高为多少?2.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?【教学说明】这两个题可由学生自主探究,获得结论,教师应关注学生将实际问题转化成分式模型的能力及是否能正确运用分式乘除法法则来完成解答.【答案】可参见教材P135问题1、问题2的解答.五、师生互动,课堂小结运用分式乘除法法则解决具体问题时有哪些需要注意的问题?谈谈你的看法,与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.分式的乘除不是特别难上的课,主要是要让学生掌握方法.拿乘法来说,其方法有两种:一种是先约分再乘;另一种是先乘再约分.一般应这样处理:如果分子分母全是单项式,就用先乘后约分的方法;如果分子分母含有可分解因式的多项式,就先约分后相乘.当然两种方法并不一定非得有固定的模式,你觉得哪种容易接受就选择哪种.并且在约分时应教给学生一个不容易错的方法,就是约分后把每个约好的式子写在原来的上(分子)下(分母)方,不约的照抄,最后就看写着结果再相乘,既不容易漏乘,也不容易多乘.分式除法可转变为分式乘法后再按上述方法进行.在教学方法上,教师应努力结合现实的问题情境,引导学生理解分式乘除的意义.由于练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合,创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式.第2课时分式的乘除混合运算与分式的乘方1.掌握分式的乘除法法则,能用它们进行分式的乘除混合运算.2.理解分式乘方的意义,能进行有关分式乘方的运算.3.通过对具体问题的探究思考,感受分式乘除混合运算、分式乘方运算方法,进一步增强类比的数学思想方法的理解.4.进一步增强学生的数学计算能力,发展严密的数学思维能力,增强数学学习兴趣.【教学重点】分式乘除、乘方混合运算能力.【教学难点】分式乘方法则的理解和运用.一、情境导入,初步认识问题分式乘除法运算法则是什么?如何进行分式乘除法混合运算呢?试一试参见教材P138例4.想一想小明同学在计算xy÷yx·xy时,其过程如下:原式=xy÷1=xy,你认为他的计算正确吗?说说你的理由,与同伴交流.【教学说明】教师延时展示上述三个问题,让学生自主探究,加深对分式乘除法法则的理解,体会分式乘除法混合运算方法.教师对学生的结论给予恰当评析,肯定学生的成绩,对出现的疑问给予鼓励,帮助他们形成正确认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P138“思考”.【归纳结论】参见教材P138最后一段.【教学说明】教师提出问题,由学生自主探究,发现规律,形成认知,从而感受分式乘方的意义.试一试计算:【教学说明】选派两名同学上黑板计算,其余同学在座位上自主探究.教师巡视,最后全班同学一道对两位同学的演示结果进行评析,教师应对学生的解答进行详细讲解,帮助学生完善认知.【归纳结论】分式的乘方,就是把分式的分子、分母各自乘方.三、典例精析,掌握新知例计算:(1)参见教材P139例5第(2)小题;(2)参见教材P139练习第2题第(2)小题.【分析】分式的乘除、乘方混合运算,应先算乘方,再算乘除,能约分的一定要约分.【教学说明】教学时,教师应对一些学生易出现错误的地方予以强调,如(-c2d)2=-c4d2或c2d2,(-3c)3=-9c3等错误,引起学生注意.四、运用新知,深化理解1.参见教材P139“练习”第1题.2.计算:(1)参见教材P139“练习”第2题第(1)小题;(2)参见教材P146第3题第(4)小题.【教学说明】学生独立完成这些小题,然后相互交流,有时间的话,教师予以评价,让学生查漏补缺,巩固新知.五、师生互动,课堂小结本节课所学习的主要知识是什么?有哪些需要特别注意的地方?谈谈你的看法,并与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.由于前面学生已对分式的乘除法有一定的了解,所以本课时的教学可采用类比的方法进行,一方面类比整式的乘除混合运算,另一方面类比前面分式的乘除.教学时,教师要起引导作用,引导学生自主发现和解决问题.15.2.2 分式的加减第1课时 分式的加减1.理解并掌握分式的加减法法则,能用它进行简单的分式加减.2.经历探究实际问题中数量关系的过程,感受分式的加减法也是实际需要,进而掌握分式的加减方法.3.进一步增强用类比的思想方法解决数学问题的能力,锻炼数学应用意识和用数学解决实际问题的能力,体验数学的应用价值.【教学重点】分式的加减法运算方法.【教学难点】异分母分式的加减法即化异分母分式为同分母分式的方法.一、情境导入,初步认识问题1参见教材P139“问题3”.问题2参见教材P139“问题4”.【教学说明】让学生对上述两个问题的思考,得出算式分别为11)3(n n ++ 和322121()s s s s s s --- ,教师巡视,对不能尽快得出算式的学生给予个别指导,让学生能自主分析问题,并探寻解决问题的方法.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P140“思考”.【归纳结论】同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,化为同分母分式,再加减.【教学说明】在师生共同探讨获得分式加减法法则后,教师应强调以下两个问题:①分式加减的最后结果能约分的一定要约分,化为最简分式;②异分母分式加减时,一定要先确定各分式的最简公分母,化为同分母分式后再进行加减法运算.三、典例精析,掌握新知例 参见教材P140例6.解:参见教材P140例6“解”部分.四、运用新知,深化理解参见教材P141“练习”.【教学说明】第1题只须与学生核对答案即可,而第2题建议选三名中等成绩同学上黑板演示,其它同学独立探究,然后师生共同评析三位同学的演算过程,在评讲过程中教师应有针对性地强调一些需注意的问题:如(1)中的最简公分母;(2)中化为同分母分式后分子应适时添加括号,(3)中应先将22a a b- 化为()()a a b a b +- ,再通分等.五、师生互动,课堂小结1.在进行异分母分式的加减法运算时,应关注哪些问题?2.通过这节课的学习,你还有哪些疑惑,与同伴交流.【教学说明】用问题形式对本节知识进行归纳总结,让学生对知识进行梳理,形成知识体系.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.这节课教师可采用探究与自主学习相结合的模式来完成.探究的目的是让学生经历类比分数加减运算的过程,通过将分式中的字母赋值,从而把分数的加减运算法则推及到分式的加减运算.整个过程中既有从特殊到一般的归纳,也有从一般到特殊的演绎.此外还可以通过把例题的再加工,使学生把错误暴露出来,引起他们的共鸣,而这些课堂内学生的差错会成为学生自己可贵的复习资料.接着可出些不同类型的题,让学生再次经历分式的加减运算过程,强化技能,以达到熟练的程度.第2课时分式的混合运算1.进一步掌握分式的加减法运算方法,能用它解决实际问题.2.能进行分式的乘除、加减、乘方混合运算.3.在具体问题情境的探索思考过程中,进一步增强学生的数学应用意识,锻炼分析问题、解决问题的能力.4.进一步培养学生严密的科学态度和良好的学习习惯.【教学重点】掌握分式乘除、加减、乘方混合运算.【教学难点】运用分式乘除、加减、乘方等解决实际问题.一、情境导入,初步认识问题1异分母分式的加减法的一般步骤有哪些?在运算过程中有哪些需要注意的问题?问题2在进行分式的乘除、加减,乘方混合运算时,你认为应该怎样做?谈谈你的想法.【教学说明】问题1的设置在于巩固上节课学过知识,并能用它解决本节问题,起承上启下作用;问题2则是让学生联想到分式乘除、分式加减法则是类比分数而得到的,因而可类比得到分式混合运算法则.在教学时,可让学生自主探究,相互交流,在探讨中形成认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】上述两个例题都应先让学生独立完成试试,然后教师再予以评讲,例1的(1)题侧重于展示分式的混合运算方法;先算乘方,再算乘除,最后算加减;而第(2)题进一步强调混合运算中的运算顺序:“先算乘方,再算乘除,最后算加减.有括号应先做括号内的运算,再算括号外的运算”.三、典例精析,掌握新知【教学说明】教学时,可让学生自主探索,获得结论,教师再行讲解.例1中计算(x2+xy+y2)(x-y)时,若已掌握公式(a2+ab+b2)(a-b)=a3-b3,可直接写出结果x3-y3,如果不知道此公式,可利用多项式乘多项式的法则计算.例2中含有一个开放性问题,这里教师应该强调:选择一个值代入时,一定要使原代数式有意义,即不能选x为0,1这两个值.四、运用新知,深化理解2.在一块a公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,需比10个人插秧提前3天完成.一台插秧机的工作效率是一个人工作效率的多少倍?【教学说明】学生独立探究,教师巡视时,对有困难同学给予指导,最后予以评讲,让学生在自查中反思,积累解题经验和方法.五、师生互动,课堂小结1.通过这节课的学习,你有哪些收获?2.你还有哪些疑问?与同伴交流.【教学说明】让学生对照上述两个问题自我反思,既系统回顾本节所学知识,又查找问题所在,在与同伴交流中加深认识.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.本课时要求学生理解并掌握分式的乘除、加减和乘方混合运算,为达到教学目标,本课时通过问题的提出,让学生类比前面不含乘方的混合运算.例题的讲解旨在引导学生把实际问题数学化.当然,无论是例题的分析还是练习题的落实,都以学生为中心,给予充分的时间让学生去演算并暴露问题,再指出问题所在,为后面的教学提供较好的对比分析材料.此外,教师还应引导学生发现并总结多。

最新苏科版初二数学八年级下册第十章《分式》全章教案设计

最新苏科版初二数学八年级下册第十章《分式》全章教案设计

第十章分式一、单元教学目标:知识目标1、了解分式的概念。

2、会利用分式的基本性质进行约分和通分。

3、会进行简单的分式加、减、乘、除运算。

4、会解可化为一元一次方程的分式方程序正确性方程中的分式不超过两个)。

5、能够根据具体问题中的数量关系,列出可化为一元一次方程的分式方程,并能根据具体问题的实际意义,检验结果是否合理。

能力目标:1、经历通过观察、归纳、类比、猜想,获得分式的基本性质、分式乘除运算法则、分式加减运算法则的过程,培养学生的推理能力与恒等变形能力.2、鼓励学生进行探索和交流,培养他们的创新意识和合作精神.3.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.。

4、能列可化为一元一次方程的分式方程解简单的应用题,能解决一些与分式、分式方程有关的实际问题,提高分析问题、解决问题的能力和应用意识情感目标:1. 进一步培养学生的自学能力、思维能力,渗透类比的思想方法.激发学生联系实际问题体验数学知识产生的过程以及热爱数学的情感.2、通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神,以及认真仔细的学习态度,为学生将来走上社会而做准备,使他们能在工作中保持严谨的态度,正确处理好人际关系,成为各方面的佼佼者.3、发展学生的个性,培养他们学习的养成教育,善于独立思考,敢于克服困难和创新精神二、单元教学重点、难点:1、重点是探索和理解有关的分式概念、分式的基本性质和分式的运算法则;解可化为一元一次方程的分式方程;2、难点是解可化为一元一次方程的分式方程及运用分式方程解简单的应用题。

三、单元教学课时:本章教学时间大约需10课时,具体分配如下第1节分式 1课时第2节分式的基本性质 3课时第3节分式的加减运算 1课时第4节分式的的乘除运算 2课时第5节分式方程 3课时课题:10.1 分式第1课时共1课时一、教学目标:知识目标:1、了解分式的概念,会判断一个代数式是否是分式。

2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。

人教版八年级数学第十五章《分式的除法运算》全章教案

人教版八年级数学第十五章《分式的除法运算》全章教案

人教版八年级数学第十五章《分式的除法运算》全章教案一、教学目标1. 掌握分式的除法运算的基本概念和方法;2. 能够正确使用分式的除法运算解决实际问题;3. 培养学生的逻辑思维和解决问题的能力。

二、教学重难点1. 教学重点:分式的除法运算的步骤和注意事项;2. 教学难点:将实际问题转化为分式的除法运算。

三、教学准备1. 教材:人教版八年级数学教材;2. 教具:黑板、粉笔、教学PPT。

四、教学过程1. 导入(5分钟)通过一个简单的例子引起学生对分式的除法运算的兴趣,并让学生回顾上一章节研究的内容。

2. 基础知识讲解(15分钟)- 讲解什么是分式的除法运算;- 分式的除法运算的步骤和注意事项。

3. 练与讨论(25分钟)布置一些练题,让学生进行个人或小组练,并进行讨论。

4. 错题讲解(10分钟)根据学生练的情况,选择一些典型的错题进行讲解,帮助学生理解和掌握分式的除法运算。

5. 拓展应用(15分钟)通过一些实际问题,让学生将问题转化为分式的除法运算,并进行求解。

6. 小结与反思(5分钟)对本节课的内容进行小结,让学生总结分式的除法运算的要点,并反思自己在研究过程中的收获和不足。

五、课后作业布置一些练题,巩固学生对分式的除法运算的理解和应用能力。

六、教学反思本节课通过导入、知识讲解、练习与讨论、错题讲解、拓展应用等环节,全面培养学生对分式的除法运算的理解和应用能力。

通过实际问题的拓展应用环节,能够更好地激发学生的学习兴趣和思维能力。

在教学过程中,学生的参与度较高,积极性较好,但还需加强对知识的理解和运用能力的培养。

在布置课后作业时,需要根据学生的实际情况进行分层设计,以帮助学生巩固所学知识。

八年级数学上册第15章《分式》全章教案(人教版)

八年级数学上册第15章《分式》全章教案(人教版)

15.1 分 式15.1.1 从分数到分式1.了解分式的概念,能判断一个代数式是否为分式,会求分式的值.(重点)2.理解当分母不为零时分式才有意义;在分式有意义的条件下,会求分式的分母中所含字母的取值范围;会确定分式的值为零的条件.(难点)一、情境导入多媒体展示,学生欣赏一组图片(长江三峡). 长江三峡自古以来就是四川通往中原的重要水路,也是秀美壮丽、享誉中外的世界旅游胜地.早在1500多年前的魏晋时期,地理学家郦道元就在他的著作《水经注》中留下一段生动的描述:“有时朝发白帝城,暮至江陵,期间千二里,虽乘龙御风,不以疾也.”多媒体出示以下问题:(1)如果客船早6时从白帝城启航,顺水而下,傍晚6时到达江陵,航程600千米,客船航行的平均速度约为多少千米/小时?(2)如果客船8小时航行了s 千米,该船航行的平均速度是多少?(3)如果客船在静水中的航行速度为v 千米/小时,江水流动的平均速度为20千米/小时.那么客船顺水而下,航行600千米需多少时间?如果客船逆水航行s 千米,需要多少时间?你能解答情境导入中的问题吗?与同学交流.二、合作探究探究点一:分式的概念【类型一】 判断代数式是否为分式在式子1a 、2xy π、3a 2b 3c 4、56+x 、x 7+y 8、9x +10y 中,分式的个数有( )A .2个B .3个C .4个D .5个解析:1a 、56+x 、9x +10y这3个式子的分母中含有字母,因此是分式.其他式子分母中均不含有字母,是整式,而不是分式.故选B.方法总结:分母中含有字母的式子就是分式,注意π不是字母,是常数. 【类型二】 探究分式的规律观察下面一列分式:x 3y ,-x 5y 2,x 7y 3,-x 9y4,…(其中x ≠0).(1)根据上述分式的规律写出第6个分式;(2)根据你发现的规律,试写出第n (n 为正整数)个分式,并简单说明理由.解析:(1)根据已知分式的分子与分母的次数与系数关系得出答案;(2)利用(1)中数据的变化规律得出答案.解:(1)观察各分式的规律可得:第6个分式为-x 13y 6;(2)由已知可得:第n (n 为正整数)个分式为(-1)n +1×x 2n +1yn ,理由:∵分母的底数为y ,次数是连续的正整数,分子底数是x ,次数是连续的奇数,且偶数个为负,∴第n (n 为正整数)个分式为(-1)n +1×x 2n +1yn .方法总结:此题主要考查了分式的定义以及数字变化规律,得出分子与分母的变化规律是解题关键.【类型三】 根据实际问题列分式每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( )A.nx +my x +y 元B.mx +nyx +y 元 C.m +n x +y 元 D.12(x m +y n)元 解析:由题意可得杂拌糖每千克的价格为mx +ny x +y元.故选B.方法总结:解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系,列出代数式.探究点二:分式有意义或无意义的条件【类型一】 分式有意义的条件分式x -1(x -1)(x -2)有意义,则x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1且x ≠2D .以上结果都不对解析:∵分式有意义,∴(x -1)(x -2)≠0,∴x -1≠0且x -2≠0,∴x ≠1且x ≠2.故选C.方法总结:分式有意义的条件是分母不等于零. 【类型二】 分式无意义的条件使分式x3x -1无意义的x 的值是( )A .x =0B .x ≠0C .x =13D .x ≠13解析:由分式有意义的条件得3x -1≠0,解得x ≠13.则分式无意义的条件是x =13,故选C.方法总结:分式无意义的条件是分母等于0. 探究点三:分式的值为零、为正或为负的条件若使分式x 2-1x +1的值为零,则x 的值为( )A .-1B .1或-1C .1D .以上都不对解析:由题意得x 2-1=0且x +1≠0,解得x =1,故选C.方法总结:分式的值为零的条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 三、板书设计从分数到分式1.分式的概念:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式.2.分式A B 有无意义的条件:当B ≠0时,分式有意义;当B =0时,分式无意义. 3.分式A B值为0的条件:当A =0,B ≠0时,分式的值为0.本节采取的教学方法是引导学生独立思考、小组合作,完成对分式概念及意义的自主探索;通过“课后练习应用拓展”这一环节发展了学生思维,巩固了课堂知识,增强了学生实践应用能力.提出问题让学生解决,问题由易到难,层层深入,既复习了旧知识又在类比过程中获得了解决新知识的途径.在这一环节提问应注意循序性,先易后难、由简到繁、层层递进,台阶式的提问使问题解决水到渠成.15.1.2 分式的基本性质1.通过类比分数的基本性质,说出分式的基本性质,并能用字母表示.(重点) 2.理解并掌握分式的基本性质和符号法则.(难点)3.理解分式的约分、通分的意义,明确分式约分、通分的理论依据.(重点)4.能正确、熟练地运用分式的基本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分”的记载,如《九章算术》中就曾记载“约分术”,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的基本性质.二、合作探究探究点一:分式的基本性质【类型一】 利用分式的基本性质对分式进行变形下列式子从左到右的变形一定正确的是( )A.a +3b +3=a b B.a b =acbcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的基本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的基本性质,故D 错误;故选C.方法总结:考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+x C.2x +1020+5x D.2x +12+x解析:利用分式的基本性质,把0.2x +12+0.5x 的分子、分母都乘以10得2x +1020+5x .故选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的基本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法则不改变分式的值,使下列分式的分子和分母都不含“-”号. (1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b.解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b 2a ;(2)原式=-5y 7x 2;(3)原式=-a +2b2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:最简分式、分式的约分和通分 【类型一】 判定分式是否是最简分式下列分式是最简分式的是( )A.2a 2+a ab B.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,则它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,则它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),则它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.故选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xyx 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去. 解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3(-a 2)5a 3bc 3·5c =-a25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x (x -2y )x (x -2y )2=1x -2y. 方法总结:约分的步骤:(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.【类型三】 分式的通分通分:(1)b 3a 2c 2,c -2ab ,a5cb 3; (2)1a 2-2a ,a a +2,1a 2-4. 解析:确定最简公分母再通分.解:(1)最简公分母为30a 2b 2c 2,b 3a 2c 2=10b 430a 2b 3c 2,c -2ab =-15ab 3c 330a 2b 3c 2,a 5cb 3=6a 3c30a 2b 3c2;(2)最简公分母为a (a +2)(a -2),1a 2-2a =a 2+2a a (a +2)(a -2),aa +2=a 3-2a 2a (a +2)(a -2),1a 2-4=aa (a +2)(a -2).方法总结:通分的一般步骤:(1)确定分母的最简公分母.(2)用最简公分母分别除以各分母求商.(3)用所得到的商分别乘以分式的分子、分母,化成同分母的分式.三、板书设计分式的基本性质1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个的符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.15.2 分式的运算15.2.1 分式的乘除 第1课时 分式的乘除1.经历探索分式的乘除法运算法则,通过类比分数的乘除法法则,提高联想能力和推理能力.(重点)2.熟练地进行分式的乘除运算,并能利用它解决实际问题.(难点)一、情境导入 观察下列运算: 23×45=2×43×5 57×29=5×27×9,23÷45=23×54=2×53×4 57÷29=57×92=5×97×2. 以上是以前学习的分数的乘法与除法,分数乘法与除法的运算法则分别是什么? 今天我们仿照分数的乘除来研究分式的乘除. 二、合作探究 探究点一:分式的乘法计算:(1)ab 22c 2·4cd -3a 2b 2; (2)x 2+3x x 2-9·3-x x +2.解析:找出公因式,然后进行约分,约分时能分解因式的先分解因式.解:(1)ab 22c 2·4cd -3a 2b 2=-ab 2·4cd 2c 2·3a 2b 2=-4ab 2cd 6a 2b 2c 2=-2d3ac; (2)x 2+3x x 2-9·3-x x +2=x (x +3)(x +3)(x -3)·3-x x +2=x x -3·-(x -3)x +2=-xx +2.方法总结:分子和分母都是单项式的分式的乘法,直接按“分子乘分子,分母乘分母”进行运算,其运算步骤为:(1)符号运算;(2)按分式的乘法法则运算;(3)各分式中的分子、分母都是多项式时,先因式分解,再约分.探究点二:分式的除法【类型一】 利用分式的除法法则进行计算计算:(1)-3xy ÷2y23x ;(2)(xy -x 2)÷x -yxy. 解析:先将除法变为乘法,再利用分式的乘法法则进行运算,做乘法运算时要注意先把分子、分母能因式分解的先分解,再约分.解:(1)-3xy ÷2y 23x =-3xy ·3x 2y 2=-9x22y ;(2)(xy -x 2)÷x -y xy =(xy -x 2)·xy x -y =-x (x -y )·xy x -y=-x 2y . 方法总结:确定商的符号,再把除式的分子、分母的位置颠倒与被除式相乘.【类型二】 分式的化简求值先化简,再求值: (1)3x +3y 2x 2y ·4xy 2x 2-y 2,其中x =12,y =13;(2)x 2-x x +1÷x x +1,其中x =3+1.解析:(1)利用分式的乘法法则进行计算化简.(2)将除法转化为乘法后约分化简,然后代入求值.解:(1)原式=3(x +y )2xy ·x ·2xy ·2y (x +y )(x -y )=6y x (x -y ),当x =12,y =13时,原式=24;(2)原式=x 2-x x +1·x +1x =x (x -1)x +1·x +1x=x -1,当x =3+1时,原式= 3.方法总结:根据分式乘除法法则将代数式进行计算化简,再代入求值.【类型三】 根据分式的除法,判断分式中字母的取值范围若式子x +1x +2÷x +3x +4有意义,则x 的取值范围是( ) A .x ≠-2,x ≠-4 B .x ≠-2C .x ≠-2,x ≠-3,x ≠-4D .x ≠-2,x ≠-3 解析:∵x +3x +4≠0,x +2≠0,∴x +3≠0且x +4≠0,解得x ≠-2,x ≠-3,x ≠-4,故选C.方法总结:在分式的除法中,求字母的取值范围时要使被除式的分母不为0,同时还要使除式的分子、分母不为0.【类型四】 分式乘除法的应用老王家种植两块正方形土地,边长分别为a 米和b 米(a ≠b ),老李家种植一块长方形土地,长为2a 米,宽为b 米.他们种的都是花生,并且总产量相同,试问老王家种植的花生单位面积产量是老李家种植的单位面积产量的多少倍?解析:不妨设花生的总产量是1,老王家种植的总面积为(a 2+b 2)平方米,老李家种植的总面积为2ab 平方米,分别求出单位面积产量,再相除即可.解:设花生的总产量是1,1a 2+b 2÷12ab =2aba 2+b 2(倍). 答:老王家种植的花生单位面积产量是老李家种植的单位面积产量的2aba 2+b 2倍. 方法总结:此题考查分式乘除运算的运用,注意理清题意,正确列式计算即可. 三、板书设计分式的乘除1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相除.本节是从分数的乘除法则的角度引导学生通过观察、探究、归纳总结出分式的乘除法则.这种温故而知新的做法不仅有利于学生接受新知识,而且能体现由数到式的发展过程.在学生得出分式的乘除法则时,要求他们分别用文字和式子两种形式进行表述,这样不仅加深了学生对法则的理解,而且锻炼了他们的数学表达能力.为了进一步加深学生对基本法则的理解和运用,又由浅到深设计了一些练习题,这样学生就会把所学的知识融会贯通.第2课时 分式的乘方1.理解并记住分式乘方的法则.(重点)2.能运用乘方法则熟练地进行分式乘方运算.(重点)3.能分清乘方、乘除的运算顺序,进行分式的乘除、乘方混合运算.(难点)一、情境导入复习乘方的意义:a m=a ×a ×a ×a ×…×a,\s \do 4(m 个)) (m 为正整数),指出底数a 可以代表一个数,一个整式或代数式,也可以是一个分式,当底数为分式,m 为正整数时,(b a)m表示分式的乘方.那么,分式的乘方怎么计算呢? 二、合作探究探究点一:分式的乘除混合运算计算:a -1a +2·a 2-4a 2-2a +1÷1a 2-1.解析:先将除法变为乘法,再根据分式的乘法运算法则进行运算. 解:原式=a -1a +2·(a +2)(a -2)(a -1)2·(a +1)(a -1)1=(a -2)(a +1)=a 2-a -2. 方法总结:分式乘除混合运算要注意以下几点:(1)利用分式除法法则把除法变成乘法;(2)进行约分,计算出结果.特别提醒:分式运算的最后结果是最简分式或整式.探究点二:分式的乘方【类型一】 分式的乘方运算下列运算结果不正确的是( )A .(8a 2bx 26ab 2x )2=(4ax 3b )2=16a 2x 29b2B .[-(x 32y )2]3=-(x 32y )6=-x 1864y 6C .[y -x (x -y )2]3=(1y -x )3=1(y -x )3D .(-x n y 2n )n =x 2ny3n解析:A、B、C计算都正确;D中(-x ny2n )n=(-1)nxn2y2n2,原题计算错误.故选D.方法总结:分式的乘方就是分子、分母分别乘方,最后化为最简分式.【类型二】分式的乘除、乘方混合运算计算:(1)(-x2y)2·(-y2x)3·(-1x)4;(2)(2-x)(4-x)x2-16÷(x-24-3x)2·x2+2x-8(x-3)(3x-4).解析:(1)先算乘方,然后约分化简,注意符号;(2)先算乘方,再将除法转换为乘法,把分子、分母分解因式,再进行约分化简.解:(1)原式=x4y2·(-y6x3)·1x4=-y4x3;(2)原式=(x-2)(x-4)(x+4)(x-4)·(3x-4)2(x-2)2·(x-2)(x+4)(x-3)(3x-4)=3x-4x-3.方法总结:进行分式的乘除、乘方混合运算时,要严格按照运算顺序进行运算.先算乘方,再算乘除.注意结果一定要化成一个整式或最简分式的形式.【类型三】分式乘方的应用通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d,已知球的体积公式为V=43πR3(其中R为球的半径),求:(1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积比是多少?解析:(1)根据体积公式求出即可;(2)根据(1)中的结果得出即可;(3)求出两体积的比即可.解:(1)西瓜瓤的体积是43π(R-d)3;整个西瓜的体积是43πR3;(2)西瓜瓤与整个西瓜的体积比是43π(R-d)343πR3=(R-d)3R3.方法总结:本题能够根据球的体积,得到两个物体的体积比即为它们的半径的立方比是解此题的关键.【类型四】分式的化简求值化简求值:(2xy2x+y)3÷(xy3x2-y2)2·[12(x-y)]2,其中x=-12,y=23.解析:按分式混合运算的顺序化简,再代入数值计算即可.解:原式=8x 3y 6(x +y )3·(x +y )2(x -y )2x 2y 6·14(x -y )2=2x x +y .将x =-12,y =23代入,得原式=-6.方法总结:先算乘方再算乘除,将原式化为最简形式,是解决此类问题的常用方法. 三、板书设计分式的乘方1.分式乘方的法则:分式的乘方就是把分子、分母分别乘方. 2.分式的混合运算顺序:先乘方,再乘除,最后加减.在分式乘方的教学中,通过回忆乘方的定义,让学生利用乘方的定义和分式的乘除法则进行一些具体的计算,进而归纳出分式的乘方法则,再通过一组练习加深对乘方法则的理解和应用.本节课知识点较多,对运算法则的推理过程占了相当多的时间,因此,对基本法则的理解和熟练程度还有待在后续的练习中予以加强.15.2.2 分式的加减 第1课时 分式的加减1.理解并掌握分式加减法法则.(重点)2.会利用分式加减法法则熟练地进行异分母分式加减法计算.(难点)一、情境导入 1.请同学们说出12x 2y3,13x 4y2,19xy2的最简公分母是什么?你能说出最简公分母的确定方法吗?2.你能举例说明分数的加减法法则吗?仿照分数加法与减法的法则,你会做以下题目吗?(1)1x +3x ;(2)2xy +4xy -5xy.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则吗? 今天我们就学习分式加减法. 二、合作探究探究点一:同分母分式的加减法计算:(1)a 2+1a +b -b 2+1a +b ;(2)2x -1+x -11-x.解析:按照同分母分式相加减的方法进行运算.解:(1)a 2+1a +b -b 2+1a +b =a 2+1-(b 2+1)a +b =a 2+1-b 2-1a +b =a 2-b 2a +b =(a +b )(a -b )a +b =a -b ;(2)2x -1+x -11-x =2x -1-x -1x -1=2-(x -1)x -1=3-x x -1. 方法总结:(1)当分子是多项式,把分子相减时,千万不要忘记加括号;(2)分式加减运算的结果,必须要化成最简分式或整式;(3)当两个分式的分母互为相反数时可变形为同分母的分式.探究点二:异分母分式的加减 【类型一】 异分母分式的加减运算计算:(1)x 2x -1-x -1;(2)x +2x 2-2x -x -1x 2-4x +4. 解析:(1)先将整式-x -1变形为分母为x -1的分式,再根据同分母分式加减法法则计算即可;(2)先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.解:(1)x 2x -1-x -1=x 2x -1-x 2-1x -1=1x -1;(2)x +2x 2-2x -x -1x 2-4x +4=(x +2)(x -2)x (x -2)2-x (x -1)x (x -2)2=x 2-4-x 2+x x (x -2)2=x -4x 3-4x 2+4x. 方法总结:在分式的加减运算中,如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.【类型二】 分式的化简求值先化简,再求值:3x -3-18x 2-9,其中x =2016. 解析:先通分并利用同分母分式的减法法则计算,后约分化简,最后代入求值. 解:原式=3x -3-18(x +3)(x -3)=3(x +3)-18(x +3)(x -3)=3(x -3)(x +3)(x -3)=3x +3,当x =2016时,原式=32019.方法总结:在解题的过程中要注意通分和化简. 【类型三】 分式的简便运算已知下面一列等式: 1×12=1-12;12×13=12-13; 13×14=13-14;14×15=14-15;… (1)请你从左边这些等式的结构特征写出它的一般性等式; (2)验证一下你写出的等式是否成立;(3)利用等式计算:1x (x +1)+1(x +1)(x +2)+1(x +2)(x +3)+1(x +3)(x +4).解析:(1)观察已知的四个等式,发现等式的左边是两个分数之积,这两个分数的分子都是1,后面一个分数的分母比前面一个分数的分母大1,并且第一个分数的分母与等式的序号相等,等式的右边是这两个分数之差,据此可写出一般性等式;(2)根据分式的运算法则即可验证;(3)根据(1)中的结论求解.解:(1)1n ·1n +1=1n -1n +1;(2)∵1n -1n +1=n +1n (n +1)-n n (n +1)=1n (n +1)=1n ·1n +1,∴1n ·1n +1=1n -1n +1;(3)原式=(1x -1x +1)+(1x +1-1x +2)+(1x +2-1x +3)+(1x +3-1x +4)=1x -1x +4=4x 2+4x. 方法总结:本题是寻找规律的题型,考查了学生分析问题、归纳问题及解决问题的能力.总结规律要从整体和部分两个方面入手,防止片面总结出错误结论.【类型四】关于分式的实际应用在下图的电路中,已测定CAD 支路的电阻是R 1,又知CBD 支路的电阻R 2比R 1大50欧姆,根据电学有关定律可知总电阻R 与R 1、R 2满足关系式1R =1R 1+1R 2,试用含有R 1的式子表示总电阻R .解析:由题意知R 2=R 1+50,代入1R =1R 1+1R 2,然后整理成用R 1表示R 的形式.解:由题意得R 2=R 1+50,代入1R=1R 1+1R 2得1R =1R 1+1R 1+50,则R =11R 1+1R 1+50=12R 1+50R 1(R 1+50)=R 1(R 1+50)2R 1+50.方法总结:此题属于物理知识与数学知识的综合,熟练掌握分式运算法则是解本题的关键.三、板书设计分式的加法与减法1.同分母分式的加减法:分母不变,把分子相加减,用式子表示为a c ±b c =a ±bc.2.异分母分式的加减法:先通分,变为同分母的分式,再加减,用式子表示为a b ±c d =adbd±bc bd =ad ±bcbd.从分数加减法引入,类比得出分式的加减法,最关键的是法则的探究,重点是法则的运用,易错点是分母互为相反数,要化成同分母分式,在这个过程中要注意变号.学生在教师的指导下,先独立进行自学,自己解决不了的问题在小组内讨论交流进行解决.第2课时 分式的混合运算1.掌握分式加减乘除法的法则,并会运用法则进行分式加减乘除法的计算.(重点) 2.能够运用分式加减乘除法则来解决混合运算的实际问题.(难点)一、情境导入 提出问题:1.说出有理数混合运算的顺序.2.类比有理数混合运算的顺序,同学们能说出分式的混合运算顺序吗? 今天我们共同探究分式的混合运算. 二、合作探究探究点:分式的混合运算 【类型一】 分式的化简计算: (1)(3a a -3-a a +3)·a 2-9a ;(2)(x +xx 2-1)÷(2+1x -1-1x +1). 解析:(1)原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果;(2)原式括号中两项通分并利用同分母分式的加减法则计算,同时利用除法法则变形,约分即可得到结果.解:(1)原式=3a 2+9a -a 2+3a (a +3)(a -3)·(a +3)(a -3)a=2a +12;(2)原式=x 3(x +1)(x -1)÷2x 2-2+x +1-x +1(x +1)(x -1)=x 3(x +1)(x -1)·(x +1)(x -1)2x 2=x2. 方法总结:分式的混合运算,要注意运算顺序,先乘方,再乘除,然后加减,有括号的先算括号里面的.【类型二】 分式的化简求值先化简代数式x 2-2x +1x 2-1÷(1-3x +1),再从-4<x <4的范围内选取一个合适的整数x 代入求值.解析:先计算括号里的减法运算,再把除法运算转化成乘法运算,进行约分化简,最后从x 的取值范围内选取一数值代入即可.解:原式=(x -1)2(x +1)(x -1)÷(x +1x +1-3x +1)=(x -1)2(x +1)(x -1)×x +1x -2=x -1x -2,令x=0(x ≠±1且x ≠2),得原式=12.方法总结:把分式化成最简分式是解题的关键,通分、因式分解和约分是基本环节,注意选数时,要求分母不能为0.【类型三】 利用公式变形对分式进行化简已知a +1a=5,求a 2a 4+a 2+1的值.解析:本题若先求出a 的值,再代入求值,显然现在解不出a 的值,如果将a 2a 4+a 2+1的分子、分母颠倒过来,即求a 4+a 2+1a 2=a 2+1+1a 2的值,再利用公式变形求值就简单多了.解:因为a +1a =5,所以(a +1a )2=25,即a 2+1a 2=23,所以a 4+a 2+1a 2=a 2+1+1a2=23+1=24.所以a 2a 4+a 2+1=124.方法总结:利用x 和1x互为倒数的关系,沟通已知条件与所求未知代数式的关系,可以使一些分式求值问题的思路豁然开朗,使解题过程简洁.【类型四】 分式混合运算的应用甲、乙两人同时在同一个超市分两次购买同一种水果,甲每次都买了20千克水果,乙每次都用20元去买水果.两次水果的价格分别为a 元/千克和b 元/千克(a 、b 为正整数且a ≠b ).(1)甲、乙两人所购水果的平均价格各是多少? (2)谁的购买方式更合算?请说明理由.解析:(1)用总钱数除以总质量即可表示出各自的平均价格;(2)利用作差法求出甲平均价格减去乙平均价格得到差大于0,可得出乙更合算.解:(1)甲的平均价格为20a +20b 20+20=a +b 2;乙的平均价格为20+2020a +20b=2aba +b;(2)甲的平均价格-乙的平均价格为a +b2-2ab a +b =(a +b )22(a +b )-4ab 2(a +b )=(a -b )22(a +b ),∵a ≠b ,∴(a -b )22(a +b )>0,∴甲的平均价格>乙的平均价格,则乙的购买方式更合算.方法总结:灵活运用作差法判断两个式子的大小,要掌握分式的加减混合运算. 三、板书设计 分式的混合运算分式混合运算的顺序:先乘方,再乘除,然后加减,遇到括号要先算括号内的.在学习这部分内容时,可以根据学生的具体情况,适当增加例题和习题,让学生熟练掌握分式的运算法则并提高运算能力.但与整式、分数的运算相比,分式的运算步骤多,符号变化复杂,所以在增加例题和习题时,要注意控制难度,特别是不要在分子、分母的因式分解上增加难度.关键是让学生通过基本的练习,弄清运算依据,做到步步有据,降低计算的错误率.15.2.3 整数指数幂1.理解负整数指数幂.(重点)2.掌握整数指数幂的运算性质.(难点)3.会用科学记数法表示小于1的正数.(重点)一、情境导入同底数幂的除法公式为a m ÷a n =a m -n,有一个附加条件:m >n ,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m =n 或m <n 时,情况怎样呢?二、合作探究探究点一:负整数指数幂的计算下列式子中正确的是( ) A .3-2=-6 B .3-2=0.03 C .3-2=-19 D .3-2=19解析:根据负整数指数幂的运算法则可知3-2=132=19.故选D.方法总结:负整数指数幂等于对应的正整数指数幂的倒数.探究点二:整数指数幂的运算 【类型一】 整数指数幂的化简计算:(1)(x 3y -2)2;(2)x 2y -2·(x -2y )3; (3)(3x 2y -2)2÷(x -2y )3;(4)(3×10-5)3÷(3×10-6)2.解析:先进行幂的乘方,再进行幂的乘除,最后将整数指数幂化成正整数指数幂.解:(1)原式=x 6y -4=x 6y4;(2)原式=x 2y -2·x -6y 3=x -4y =y x4;(3)原式=9x 4y -4÷x -6y 3=9x 4y -4·x 6y -3=9x 10y -7=9x10y7;(4)原式=(27×10-15)÷(9×10-12)=3×10-3=31000.方法总结:正整数指数幂的运算性质推广到整数范围后,计算的最后结果常化为正整数指数幂.【类型二】 比较数的大小若a =(-23)-2,b =(-1)-1,c =(-32)0,则a 、b 、c 的大小关系是( )A .a >b =cB .a >c >bC .c >a >bD .b >c >a解析:∵a =(-23)-2=(-32)2=94,b =(-1)-1=-1,c =(-32)0=1,∴a >c >b ,故选B.方法总结:关键是熟悉运算法则,利用计算结果比较大小.当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.【类型三】 0指数幂与负整指数幂中底数的取值范围若(x -3)-2(3x -6)有意义,则x 的取值范围是( )A .x >3B .x ≠3且x ≠2C .x ≠3或x ≠2D .x <2解析:根据题意,若(x -3)0有意义,则x -3≠0,即x ≠3.(3x -6)-2有意义,则3x -6≠0,即x ≠2,所以x ≠3且x ≠2.故选B.方法总结:任意非0数的0指数幂为1,底数不能为0. 【类型四】 含整数指数幂、0指数幂与绝对值的混合运算计算:-22+(-12)-2+(2016-π)0-|2-3|.解析:分别根据有理数的乘方、0指数幂、负整数指数幂及绝对值的性质计算出各数,。

湘教版八年级数学上册第一章《分式》教案

湘教版八年级数学上册第一章《分式》教案

第1章分式1.1 分式第1课时分式的概念1.了解分式的概念,明确分式和整式的区别.2.使学生能够求出分式有意义的条件.3.让学生经历用字母表示实际问题中数量关系的过程,体会分式是表示现实世界中的一类量的数学模型.4.培养学生观察、归纳、类比的思维,让学生学会自主探索,合作交流.【教学重点】理解分式有意义的条件,分式的值为零的条件.【教学难点】能熟练地求出分式有意义的条件,分式的值为零的条件.一、情景导入,初步认知下列式子中哪些是整式?【教学说明】因为分式概念的学习是学生通过观察,比较分式与整式的区别从而获得的,所以必须熟练掌握整式的概念.二、思考探究,获取新知1.思考:(1)某长方形画的面积为Sm2,长为8m,则它的宽为____m.(2)某长方形画的面积为Sm2,长为xm,则它的宽为____m.(3)如果两块面积为x公顷,y公顷的稻田,分别产稻谷akg,bkg,那么这两块稻田平均每公顷产稻谷_____kg.【教学说明】要给学生一定的思考时间,让学生积极投身于问题情景中,根据学生的情况,教师可以给予适当的提示和引导.2.讨论内容:前面出现的代数式如下,它们有什么共同特征?它们与整式有什么不同?【教学说明】让学生通过观察、归纳、总结出整式与分式的异同,从而得出分式的概念.【归纳结论】一般地,一个整式f除以一个非零整式g(g中含有字母)所得的商记作fg,那么代数式fg叫做分式.3.当x取什么值时,分式223xx--的值满足下列条件:(1)不存在;(2)等于0.解:(1)当分母2x-3=0时,即x=32时,分子的值为32-2≠0,因此x=32时,分式223xx--的值不存在.(2)当x -2=0,即x=2时,分式223xx--的值等于0.【教学说明】让学生通过观察,归纳、总结出整式与分式的异同,从而得到分式的概念.三、运用新知,深化理解1.下列各式中,哪些是整式?哪些是分式?解:(2)、(4)是整式,(1)、(3)是分式.2.若分式13x-有意义,则x的取值范围是()A.x≠3B.x≠-3C.x>3D.x>-3解:当分母x-3≠0,即x≠3时,分式有意义,故选A.3.x取什么值时,下列分式无意义?解:(1)因为当分母的值为零时,分式没有意义.由2x-3=0,得x =32, 所以当x=32时,分式无意义.(2)因为当分母的值为零时,分式没有意义.由5x+10=0,得x=-2,所以当x=-2 时,分式无意义.4.若分式||11xx-+的值为零,则x的值为 1 .【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解:要使||11xx-+的值为0,则|x|-1=0,即x=±1,且x+1≠0,即x≠-1.故x=1.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.1”中第1、2题.在学习分式的概念时,借助整式的概念,用类比的思想进行教学,学生掌握的较好,能够紧抓概念,很容易的区分整式与分式.而在分式的值等于0的教学中,一部分学生都只考虑分式的分子等于0,而没有考虑分式的分母.因此,在后面的教学中对这方面的教学有待加强.第2课时分式的基本性质和约分1.使学生理解并掌握分式的基本性质,并能运用这些性质进行分式约分.2.通过对分式的基本性质的归纳,培养学生观察、类比、推理的能力.3.让学生在讨论活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.【教学重点】掌握分式的基本性质.【教学难点】运用分式的基本性质来化简分式.一、情景导入,初步认知1.分数的基本性质是什么?2.31=62的依据是什么?【教学说明】通过分数的约分,复习分数的基本性质,通过类比来学习分式的基本性质.二、思考探究,获取新知1.填空,并说一说下列等式从左到右变形的依据是什么?2.思考:34与分式34aa相等吗?分式22a bab与分式ab相等吗?【归纳结论】分式的分子与分母同乘以或除以一个非零整式,所得分式与原分式相等.即:f f gg g h⋅=⋅(h≠0).【教学说明】通过对分数的基本性质的理解,可类比得出分式的基本性质,但学生只想到分式的分子分母同时乘以或除以一个数,不容易想到整式,另外这个整式不能为零,老师要引导学生想到这一点.3.想一想:下列等式成立吗?为什么?;f f f fg g g g--==-- 【教学说明】先让学生讨论,待学生回答后,教师引导学生得出结论:分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.4.根据分式的基本性质填空:【教学说明】有的学生在应用分式的基本性质时往往分式的分子与分母没有同时乘以或除以同一个公因式,有的学生不能正确找到分子、分母的公因式,导致约分的错误和不彻底,所以教师适当引导.【归纳结论】把一个分式的分子和分母的公因式约去,叫作分式的约分. 分子和分母没有公因式的分式叫作最简分式. 三、运用新知,深化理解【教学说明】在教学中让学生将约分的步骤分为这样几步,首先找出分子和分母公因式并提取,再将分式的分子和分母同时除以公因式,最后看看结果是否为最简分式或整式.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.1”中第5、6题.学生对分式的基本性质,能说能背.从表面上来看,掌握的比较好.但从练习中可以发现很多问题.如:不会找分式的分子、分母的公因式;分子、分母不同时乘或除;约分不彻底等.所以在这些方面要多练习.1.2分式的乘法和除法第1课时分式的乘除法1.理解分式的乘、除运算法则,会进行简单的分式的乘、除法运算.2.经历探索分式的乘、除法法则的过程,并结合具体情境说明其合理性.3.通过师生讨论、交流,培养学生合作探究的意识和能力.【教学重点】掌握分式的乘、除法运算法则.【教学难点】熟练地运用乘除法法则进行计算,提高运算能力.一、情景导入,初步认知计算,并说出分数的乘除法的运算法则:【教学说明】复习小学学过的分数的乘除法运算,为学习分式乘除法的法则做准备.二、思考探究,获取新知1.探究:分式的乘除法法则你能总结分式乘除法的运算法则吗?与同伴交流.【归纳结论】分式乘分式,把分子乘分子、分母乘分母分别作为积的分子、分母分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:【教学说明】让学生观察运算,通过小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的运算法则.【教学说明】学生独立完成,教师点评.3.计算:【教学说明】如果分子、分母含有多项式因式,应先分解因式,然后按法则计算.三、运用新知,深化理解3.先化简,再求值:222396a aba ab b--+,其中a=-8,b=12.解:当a=-8,b=12时,4.甲队在n天内挖水渠a米,乙队在m天内挖水渠b米,如果两队同时挖水渠,要挖x米,需要多少天才能完成?(用代数式表示)【教学说明】需要给学生强调的是分式运算的结果通常要化成最简分式或整式,对于这一点,很多学生在开始学习分式计算时往往没有注意到结果要化简.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第1、4、5 题.在练习中暴露出一些问题,例如我在传授过程中急于求成,法则的引入没有给学生过多的时间,如果时间足够,学生自己得出法则并不是一件难事.在解决习题时,对学生容易出现的错误没有重点强调,所以学生在后面的练习中仍然出现这样那样的错误.学生答题的规范性还差了些,在黑板上的板书不到位,在以后的教学中应加强学生答题的规范性练习.第2课时分式的乘方1.使学生牢记分式乘方的运算法则,并能根据此法则进行熟练无误的运算.2.学生能够熟练进行简单的分式乘除与乘方的混合运算.3.经历分式乘方法则的探究过程,采用自主探索与合作交流的方式,亲历“做数学”的过程,培养探究数学问题的能力.4.体验数学充满着探索与创造,感受数学的严谨性,对数学产生强烈的好奇心和求知欲.【教学重点】准确熟练地进行分式的乘方运算.【教学难点】准确熟练地进行简单的分式乘除与乘方的混合运算.一、情景导入,初步认知1.分式乘除法则是什么?2.什么叫最简分式?3.分数的乘方法则是什么?让学生举例.【教学说明】复习旧知,为本节新知打基础.二、思考探究,获取新知1.计算:由乘方的意义和分数乘法的法则,可得根据上面的规律,请总结分式乘方的运算法则.【归纳结论】分式的乘方就是把分子、分母各自乘方.即:【教学说明】通过类比分数的乘方运算方法,总结出分式的乘方运算法则.2.做一做:取一条长度为1个单位的线段AB,如图:第一步:把线段AB三等分,以中间一段为边作等边三角形,然后去掉这一段,就得到了由___条长度相等的线段组成的折线,每一段等于_____,总长度等于_____.第二步:把上述折线中的每一条重复第一步的做法,得到______.继续下去.情况怎么样呢?(1)把结果填入下表:(2)进行到第n步时得到的线段总长度是多少呢?【教学说明】引导学生寻找并总结规律.三、运用新知,深化理解1.教材P10例3、例4.6.计算:【教学说明】培养运用新知识解决问题的能力.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第2 题.在分式的乘方运算这一课的教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘方的运算方法,提示学生分式的乘方法则与分数的乘方法法则类似,要求他们用语言描述分式的乘方法则.学生反应较好,能基本上完整地讲出分式的乘方法则.本节课存在的不足:学生主动性还不够强,教师对学生自学能力估计不足,舍不得放手,抑制部分学生的思维发展.1.3整数指数幂1.3.1同底数幂的除法1.了解同底数幂的除法的运算性质,并能解决一些实际问题.2.经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义.3.发展推理能力和有条理的表达能力.【教学重点】同底数幂的除法法则以及利用该法则进行计算.【教学难点】同底数幂的除法法则的应用.一、情景导入,初步认知【教学说明】复习分式的约分,为本节课的学习作铺垫.二、思考探究,获取新知1.计算机硬盘的容量最小单位为字节(B),千字节记作(KB),兆字节(MB),吉字节(GB)它们的换算单位如下:1GB=210MB=1024MB;1MB=210KB;1KB=210B .一张普通的CD光盘的存储容量约为640MB,请问一个320GB的移动硬盘的存储容量相当于多少张光盘容量?因为320GB=320×210MB因此一个320GB的移动硬盘的存储容量相当于512张光盘容量.2、如果把数字改为字母:一般地,设a≠0,m,n是正整数,且m>n,则mnaa等于多少?这是什么运算呢?通过上面的计算,归纳同底数幂除法的法则.【归纳结论】同底数幂相除,底数不变,指数相减.即:·m n m nm n n na a aaa a--==【教学说明】让学生从有理数的运算出发,由特殊逐渐过渡到一般,得到同底数幂的运算法则,再运用幂的意义加以说明.在此过程中,发展学生类比、归纳、符号演算、推理能力和有条理的表达能力.三、运用新知,深化理解1.教材P15例1、例2.4.已知a x=2,a y=3,求a3x-2y的值.5.计算:6.计算机硬盘的容量单位KB,MB,GB的换算关系,近视地表示成:1KB≈1000B,1MB≈1000KB,1GB≈1000MB(1)硬盘总容量为40GB的计算机,大约能容纳多少字节?(2)1个汉字占2个字节,一本10万字的书占多少字节?(3)硬盘总容量为40GB的计算机,能容纳多少本10万字的书?一本10万字的书约高1cm,如果把(3)小题中的书一本一本往上放,能堆多高?解:略.【教学说明】让学生通过上述题的训练,以达到巩固提高的效果.五、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.3”中第1 题.在同底数幂的除法这节教学活动中,通过让学生从特殊到一般,从生活到课堂,从未知到已知,一步步的探索,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步的发展,同时,也加深了我对新教材的理解,从而更好地完善新的教学模式.1.3.2 零次幂和负整数指数幂1.通过探索掌握零次幂和负整数指数幂的意义.2.会熟练进行零次幂和负整数指数幂的运算.3.会用科学记数法表示绝对值较少的数.4.通过探索,让学生体会到从特殊到一般是研究数学的一个重要方法.5.通过探索,让学生体会到从特殊到一般是研究数学的一个重要方法.【教学重点】零次幂和负整数指数幂的公式推导和应用,科学记数法表示绝对值较小的数.【教学难点】零次幂和负整数指数幂的理解.一、情景导入,初步认知1.同底数的幂相除的法则是什么?用式子怎样表示?用语言怎样叙述?a m÷a n=m na (a≠0,m、n是正整数,且m>n)2.这个公式中,要求m>n,如果m=n,m<n,就会出现零次幂和负指数幂,如:有没有意义?这节课我们来学习这个问题.【教学说明】通过复习让学生更好的用旧知识迁移推导出新的知识:零指数幂、负整数指数幂的计算.二、思考探究,获取新知1.探究:mmaa等于多少?【分析】根据分式的基本性质.可以得到mmaa=11·mmaa=11=1.根据同底数幂的除法,可以得到a m÷a m=11·mm a a=0a (a ≠0)由此,你能得到什么结论?【归纳结论】任何不等于零的数的零次幂等于1.即:0a =1(a ≠0) 【教学说明】通过引导学生进行计算,合理推导出零指数幂等于1. 2.试试看:填空:3.探究:负整数指数幂的意义. (1)填空:(2)思考:2333与23÷33的意义相同吗?因此他们的结果应该有什么关系呢?【归纳结论】n a =1na (a ≠0) 【教学说明】通过计算让学生推导出负指数幂计算公式(法则).3.做一做:(1)用小数表示下列各数:110-,210-,310-,410-.你发现了什么?(10n -= )(2)用小数表示下列各数:1.08×210-,2.4×310-,3.6×410-思考:1.08×10-2,2.4×10-3,3.6×10-4这些数的表示形式有什么特点?(a ×10n (a 是只有一位整数,n 是整数))叫什么记数法?(科学记数法)当一个数的绝对值很小的时候,如:0.00036怎样用科学记数法表示呢?你能从上面问题中找到规律吗?【归纳结论】我们可以用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤|a|≤10,其公式为00.0001n ⋯个=10n -.三、运用新知,深化理解 1.教材P17例3 ,P18例4、例6. 2.-2.040×510表示的原数为( A ) A .-204000 B .-0.000204 C .-204.000 D .-20400 3.用科学记数法表示下列各数. (1)30920000 (2)0.00003092 (3)-309200 (4)-0.000003092【分析】用科学记数法表示数时,关键是确定a 和n 的值. 解:(1)30920000=3.092×710 (2)0.00003092=3.092×510- (3)-309200=-3.092×510 (4)-0.000003092=-3.092×610-6.已知9m ÷223m +=13n(),求n 的值8.把下列各式写成分式形式:2x -,32xy - 解:2x -=21x;32xy -=32x y . 9.(1)原子弹的原料——铀,每克含有2.56×2110个原子核,一个原子核裂变时能放出3.2×1110-J 的热量,那么每克铀全部裂变时能放出多少热量?(2)1块900mm 2的芯片上能集成10亿个元件,每一个这样的元件约占多少mm 2?约多少m 2?(用科学计数法表示)【分析】第(1)题直接列式计算;第(2)题要弄清m 2和mm 2之间的换算关系,即1m=1000mm=103mm ,1m 2=106mm 2,再根据题意计算.解:(1)由题意得2.56×2110×3.2×1110-=8.192×1010(J)答:每克铀全部裂变时能放出的热量8.192×1010J.答:每一个这样的元件约占9×10-7平方毫米;约9×1310-平方米. 【教学说明】通过练习,牢固掌握本节课所学知识,并能运用知识计算. 四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.3”中第2、3、4 题.1.进行有关0次幂和负整数幂的运算要注意底数一定不能为0,特别是当底数是代数式时,要使底数的整体不能为0;2.在正整数幂的基础上,我们又学习了零次幂和负整数幂的概念,使指数概念推广到整数的范围;3.对0指数幂、负整数指数幂的规定的合理性有充分理解,才能明了正整数指数幂的运算性质对整数指数幂都是适用的.1.3.3整数指数幂的运算法则1.会用整数指数幂的运算法则熟练进行计算.2.通过探索把正整数指数幂的运算法则推广到整数指数幂的运算法则.3.发展推理能力和计算能力. 【教学重点】用整数指数幂的运算法则进行计算. 【教学难点】整数指数幂的运算法则的理解.一、情景导入,初步认知 正整数指数幂有哪些运算法则? (1)a m ·a n =m n a +(m 、n 都是正整数) (2)()nm mn aa =(m 、n 都是正整数)(3))··(n n n a b a b =(n 是正整数) (4)a m a n =m n a -(m 、n 都是正整数,a ≠0且m>n )(5) (nn n a a b b=)(b ≠0,n 是正整数)这些公式中的m 、n 都要求是正整数,能否是所有的整数呢?这5个公式中有没有内在联系呢?这节课我们来探究这些问题.【教学说明】复习正整数指数幂的运算法则,为本节课的教学作准备. 二、思考探究,获取新知1.幂的指数从正整数推广到了整数.可以说明:当a ≠0、b ≠0时,正整数指数幂的上述运算法则对于整数指数幂也成立,即:(1)a m ·a n =m n a +(a ≠0,m 、n 都是正整数) (2)()nm mn aa =(a ≠0,m 、n 都是正整数)(3))(a≠0,n是整数)a b a b(n n n··2.思考:(1)同底数幂的除法法则可以转换成什么运算法则?(2)分式的乘方法则可以转换成什么运算法则?【归纳结论】幂的除法运算可以利用幂的乘法进行计算,分式的乘方运算可以利用积的乘方进行运算.【教学说明】鼓励学生相互交流讨论.三、运用新知,深化理解1.教材P20例7、例8.3.计算:5.计算下列各式,并把结果化为只含有正整数指数幂的形式:6.当x=14,y=8时,求式子2522?x yx y----的值.解:2522?x yx y----=-2x33y当x=14,y=8时,上式=-16.7.计算下列各式,并把结果化为只含有正整数指数幂的形式.【分析】正整数指数幂的相关运算对负整数指数幂和零指数幂同样适用.对于第(2)题,在运算过程中要把(x+y)、(x-y)看成一个整体进行运算.【教学说明】通过练习,巩固本节课所学内容.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.作以补充.布置作业:教材“习题1.3”中第6、7 题.课堂的有效性是当下教学的瞩目点,一堂高效的课,不仅仅是要让学生获得知识与技能,更多的是学习动机被唤醒、学习习惯的养成和思维方式的提升.本节课不足之处是学生容易把原有的5条性质混淆,导致指数幂范围扩大,就更混了,单独做做还可以过关,一旦混合运算,就基本上搞不清楚是哪一条了.总之,课堂还是要放手让给学生.1.4分式的加法和减法第1课时同分母分式的加减1.理解同分母的分式加减法的运算法则,能进行同分母的分式加减及分母互为相反式的分式加减法运算.2.类比同分母分数加减法的法则归纳出同分母分式的加减法法则.3.通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富数学情感与思想.【教学重点】同分母的分式加减法的运算.【教学难点】同分母的分式加减法的运算.一、情景导入,初步认知做一做:【教学说明】通过“做一做”的几道同分母分数加减的题,引导学生用类比的思想,猜一猜同分母分式的加减运算,并试图让学生认识其合理性.从而抛出同分母分式加减法的运算法则,点明本节课的主要内容.二、思考探究,获取新知1.你能根据分数的加减法运算法则,总结出当分母相同时,分式的加减法运算法则吗?【归纳结论】同分母的分式相加减,分母不变,把分子相加减.【教学说明】类比时注意引导学生正确猜想,使法则的提出顺理成章,也为后面的学习做好铺垫.三、运用新知,深化理解1.教材P23例1、P24例2.计算:4.计算:【教学说明】通过演练巩固,让学生对同分母分式的加减法有更好的认识与掌握.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.4”中第1题.本节课的关键是法则的探究,重点是法则的应用.易错点是分母互为相反数,要化为同分母.在这个过程中要注意变号,学生先独立自学,完成不了的再小组内讨论交流.充分发挥学生自主、合作的意识.第2课时 通分、最简公分母的概念1.会找最简公分母,能进行分式的通分.2.认真阅读课本,比照分数通分的方法,类比归纳分式通分的方法.3.通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富教学情感与思想.【教学重点】 分式的通分. 【教学难点】 找最简公分母.一、创设情境,导入新课 分式2214a b 与36xab c的最简公分母是_________,通分后的结果分别是_________.二、思考探究,获取新知 1.什么是分式的通分呢?【归纳结论】根据分式的基本性质,把几个异分母的分式化成同分母的分式的过程,叫作分式的通分.2.如何把分式12x 、13y通分呢? 【归纳结论】通分时,关键是确定公分母.一般取各分母的所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母.上面的两个分式的分母中,有哪些因式呢?所有因式的最高次幂的积是多少?最简公分母是什么?三、示例讲解,掌握新知1.见教材P26例3、例4.2.把下列各式通分.3.不改变分式的值,把下列分式中分子、分母的各项系数化为整数.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题1.4”中第1 、2 题.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,确保能达到一定的练习量.第3课时异分母分式的加减1.理解并掌握异分母分式加减法的法则.2.经历异分母分式的加减运算的探讨过程,训练学生的分式运算能力.3.培养学生在学习中转化未知问题为已知问题的能力和意识;进一步通过实例发展学生的符号感和用数学的意识.【教学重点】异分母分式加减法的计算.【教学难点】异分母分式加减法的计算.一、创设情境,导入新课1.同分母分式是怎样进行加减运算的?2.异分母分数又是如何进行加减?3.那么314a a+=?你是怎么做的?【教学说明】通过回忆同分母分式的加减法法则、异分母分数的加减法运算,来引出本节课的内容,同时对问题3运用类比的思想方法,使进入新知识的学习顺理成章.二、思考探究,获取新知1.类比异分母的分数相加减的法则,异分母的分式如何进行加减呢?【归纳结论】异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.2.思考:从甲地到乙地依次经过1千米的上坡路和2千米的下坡路.已知小明骑车在上坡路上的速度为vkm/h,在下坡路上的速度为3vkm/h,则他骑车从甲地到乙地需要多长时间?【分析】他骑车从甲地到乙地的时间分为2段,即,走上坡路所用时间、走下坡路所用时间.解:根据题意可得,。

分式全章教案

分式全章教案

分式全章教案教案标题:分式全章教案教案目标:1. 理解分式的概念和基本术语。

2. 掌握分式的加减乘除运算。

3. 能够将分式化简和转化为最简形式。

4. 能够应用分式解决实际问题。

教学重点:1. 分式的概念和基本术语。

2. 分式的加减乘除运算。

3. 分式的化简和最简形式。

4. 分式在实际问题中的应用。

教学难点:1. 分式的加减乘除运算。

2. 分式的化简和最简形式。

教学准备:1. 教师准备:a. 教学PPT或白板笔记。

b. 分式的练习题和解答。

c. 实际问题的案例和解决方法。

2. 学生准备:a. 笔记本和笔。

b. 教师提供的练习题。

教学过程:一、导入(5分钟)1. 引入分式的概念和基本术语,例如分子、分母、真分数、假分数等。

2. 提问学生对分式的理解和应用。

二、讲解分式的加减运算(15分钟)1. 介绍分式的加减运算规则和步骤。

2. 通过示例演示如何进行分式的加减运算。

3. 引导学生进行练习,解决一些简单的分式加减题目。

三、讲解分式的乘除运算(15分钟)1. 介绍分式的乘除运算规则和步骤。

2. 通过示例演示如何进行分式的乘除运算。

3. 引导学生进行练习,解决一些简单的分式乘除题目。

四、讲解分式的化简和最简形式(15分钟)1. 介绍分式的化简和最简形式的概念和方法。

2. 通过示例演示如何将分式化简和转化为最简形式。

3. 引导学生进行练习,解决一些分式化简和最简形式的题目。

五、应用实际问题(15分钟)1. 提供一些实际问题的案例,例如分数的比较、分数的混合运算等。

2. 引导学生分析问题,运用分式的知识解决实际问题。

3. 学生进行练习,解决一些实际问题。

六、总结与拓展(5分钟)1. 总结分式的概念、基本术语和运算规则。

2. 引导学生思考分式在数学中的应用和意义。

3. 提供一些拓展题目,让学生巩固和扩展所学知识。

教学反思:本节课通过引入分式的概念和基本术语,讲解了分式的加减乘除运算、化简和最简形式,以及分式在实际问题中的应用。

八年级数学上册《分式》教案、教学设计

八年级数学上册《分式》教案、教学设计
(四)课堂练习
为了巩固所学知识,我会安排一定量的课堂练习。这些练习题会从易到难,涵盖分式的定义、性质和运算等多个方面。我会要求学生在规定时间内独立完成,并鼓励他们在解题过程中尝试不同的方法。
在学生完成练习后,我会对部分题目进行讲解,指出解题中的常见错误和需要注意的地方。同时,我会表扬那些解题思路清晰、方法巧妙的学生,激励他们在今后的学习中继续努力。
-关注学生的个体差异,给予每个学生个性化的指导和鼓励,提高学生的自信心。
-定期进行教学反思,根据学生的学习情况调整教学策略,以提高教学效果。
4.教学拓展设想:
-引导学生探索分式与整式之间的关系,理解数学知识之间的内在联系。
-鼓励学生参加数学竞赛、研究性学习等活动,提升学生的数学素养和创新能力。
四、教学内容与过程五、作业布置为了巩固学生对分式知识的掌握,提高学生的实际应用能力,我设计了以下几项作业:
1.基础知识巩固题:完成课本中相关的练习题,重点在于分式的定义、性质和基本运算。通过这些题目,让学生对分式的概念有更深入的理解,熟练掌握分式的运算规则。
2.提高题:布置一些具有一定难度的分式运算题目,包括乘除、加减以及分式方程的求解。这些题目旨在提高学生的运算技巧,培养学生的逻辑思维能力。
(二)过程与方法
1.采用问题驱动的教学方法,引导学生主动探究分式的性质和运算规律,培养学生的自主学习能力。
2.设计丰富的例题和练习题,让学生在解答过程中,巩固所学知识,提高运算技巧。
3.通过小组合作学习,培养学生的团队协作能力和沟通能力,共同探究分式的解题方法。
4.利用数形结合的方法,让学生直观地理解分式的意义,提高学生的直观思维能力。
3.实际应用题:设计一些与生活实际相关的分式问题,让学生运用所学的分式知识解决。例如,计算购物打折后的价格、分配物品等。通过解决这些问题,让学生体会数学在生活中的应用,提高学生的应用意识。

第16章 分式全章教案

第16章 分式全章教案

16.1分式第1课时 从分数到分式教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.教学过程:(一)、复习引入:1、5÷3可以写成分数形式是 。

2、1729可以写成分数形式是 ,A ÷B 可以写成 。

(二)、新授内容:1.让学生填写P2[思考],学生自己依次填出:710,a s ,33200,sv .2.学生看P1的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时. 轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点?本章从实际问题引出分式方程v+20100=v-2060,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.1.本节进一步提出P4[思考]让学生自己依次填出:710,a s ,33200,sv .为下面的[观察]提供具体的式子,就以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是 (即A ÷B )的形式.分数的分子A 与分母B都是整数,而这些式子中的A 、B 都是整式,并且B 中都含有字母.B AP3[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.希望老师注意:分式比分数更具有一般性,例如分式BA 可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数 . P3例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.2. P3[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B ≠0时,分式B A 才有意义.3. P3例1填空是应用分式有意义的条件—分母不为零,解出字母x 的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.4. P9[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零.这两个条件得到的解集的公共部分才是这一类题目的解.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0?(1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1 (三)达标测评1.判断下列各式哪些是整式,哪些是分式? 9x+4, x7 , 209y +, 54-m , 238yy -,91-x2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0?(1) (2) (3) 作业:p8、1、2、3教学反思:1-m m32+-m m 112+-m m 4522--x x x x 235-+23+x xx 57+xx 3217-x x x --221第2课时 分式的基本性质教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 教学过程:(一)、复习引入:1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.(二)、新授内容: 例题讲解P5例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P6例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式. 1.P5的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--, yx 43---。

分式的教案(精选4篇)

分式的教案(精选4篇)

分式的教案(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!分式的教案(精选4篇)分式方程是方程中的一种,是指分母里含有未知数或含有未知数整式的有理方程。

初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案

初中数学《分式的基本性质》教案一、教学内容本节课我们将学习人教版初中数学教材八年级上册第十二章《分式》第一节“分式的基本性质”。

具体内容包括分式的概念、分式的基本性质以及分式的约分。

二、教学目标1. 理解并掌握分式的概念,能够正确书写分式。

2. 掌握分式的基本性质,能够运用这些性质进行分式的简化。

3. 学会分式的约分方法,能够熟练地进行分式的约分。

三、教学难点与重点教学难点:分式的基本性质以及运用这些性质进行分式的简化。

教学重点:分式的概念、分式的约分。

四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。

2. 学具:练习本、铅笔。

五、教学过程1. 实践情景引入:通过实际生活中的例子,如分数表示的巧克力分享问题,引出分式的概念。

2. 教学新课:(1)讲解分式的定义,让学生理解分式的意义。

(2)通过例题讲解分式的基本性质,如分子分母同乘(除)一个不等于0的整式,分式的值不变。

(3)进行随堂练习,让学生运用分式的基本性质进行分式的简化。

3. 知识巩固:讲解分式的约分方法,让学生通过练习掌握约分技巧。

六、板书设计1. 分式的定义2. 分式的基本性质3. 分式的简化方法4. 分式的约分方法七、作业设计1. 作业题目:(1)化简分式:$\frac{3x^2}{6x}$。

(2)已知分式$\frac{2x4}{3x6}$的值与分式$\frac{x2}{x3}$的值相等,求$x$的值。

2. 答案:(1)$\frac{x}{2}$(2)$x=1$八、课后反思及拓展延伸1. 反思:本节课学生对分式的概念和基本性质掌握情况良好,但对分式的约分方法掌握不够熟练,需要在课后加强练习。

2. 拓展延伸:研究分式的乘除运算,为下一节课的学习打下基础。

重点和难点解析需要重点关注的细节包括:1. 分式基本性质的理解与应用2. 分式约分方法的掌握3. 实践情景引入的有效性4. 作业设计的针对性与难度一、分式基本性质的理解与应用1. 分式的分子和分母同乘(除)一个不等于0的整式,分式的值不变。

北师大版八下《分式》word教案4篇

北师大版八下《分式》word教案4篇

北师大版八下《分式》word教案4篇第三章分式1.分式(一)[教学目标]1.认知目标:了解分式的概念,理解分式有意义与无意义及其判断。

2.技能目标:会判断何时分式有意义,何时分式的值为零;会用分式表示实际问题的数量关系,会求分式的值。

[教学重点]分式的有关概念。

[教学难点]理解分数在任何情况下都没有意义;如何确定分数何时有意义。

【教具】【教学过程】第一环节自制课件、投影仪等知识准备前面我们学习了整式,请同学们举几个例子,(学生举例)(或教师准备,下列式子中那些是整式?a,-3x2y3,5x-1,x2+xy+y2,,x?y,,m2x?3y)34.我们之前学过积分形式,并且知道一些数量关系可以用积分形式来表示。

问题:所有的数量关系都能用整数表示吗?第二环节情景引入问题情景(1):面对当前严重的土地荒漠化问题,某县决定分期分批进行治沙造林。

项目一期计划在一定时间内固沙造林2400公顷。

每月实际固沙造林面积比原计划增加30公顷。

因此,原计划任务提前四个月完成。

最初计划每月固沙造林多少公顷?这一问题中有哪些等量关系?如果设原计划每月固沙造林x公顷,那么原计划完成一期工程需要个月,实际完成一期工程用了个月。

根据题意,可得方程.问题场景(2):正n形多边形的每个内角为度。

问题场景(3):新华书店有一批库存图书,其中一本原价为每册a元,现降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,新华书店这种图书的库存量是多少?活动目的:让学生进一步体验在实际问题中探索数量关系的过程;通过问题场景,让学生初步感受分式是解决问题的一种模型;体会分式的意义,发展符号感。

第三个环节是独立探索活动内容:在以小组的形式讨论分数之后,得到分数的概念,并认识到分数的意义。

讨论内容:对前面出现的代数式如下,它们有什么共同特征?它们与整式有什么不同?活动目的:24002400(n?2)?180b,,,xx?3na?x通过观察、归纳、总结出整式与分式的异同,从而得出分式的概念。

人教版八年级上册第15章《分式》全章教案(21页,含反思)

人教版八年级上册第15章《分式》全章教案(21页,含反思)

第十五章分式15.1分式15. 1.1从分数到分式1.以描绘实质问题中的数目关系为背景抽象出分式的观点,成立数学模型,并理解分式的观点.2.能够经过分式的定义理解和掌握分式存心义的条件.要点理解分式存心义的条件及分式的值为零的条件.难点能娴熟地求出分式存心义的条件及分式的值为零的条件.一、复习引入1. 什么是整式?什么是单项式?什么是多项式?2. 判断以下各式中 ,哪些是整式?哪些不是整式?① 8m + n ;② 1+ x + y 2;③ a 2 b +ab 2a +b 2;⑥3;⑦3x 2- 43 ;④ ;⑤ a 2+ b 2 .32x 2+ 2x +12x二、研究新知1. 分式的定义(1) 学生看教材的问题:一艘轮船在静水中的最大航速为30 千米 /时,它沿江以最大航速顺流航行 90 千米所用时间 ,与以最大航速逆流航行 60 千米所用的时间相等 ,江水的流速为多少?剖析:设江水的流速为 v 千米 / 时.轮船顺流航行 90 千米所用的时间为90小时 ,逆流航行 60 千米所用时间为60小时,30+ v 30- v所以 90 = 60.30+ v 30- v(2) 学生达成教材第 127 页“思虑”中的题.察看:以上的式子 9060S V30+ v ,30-v , a , s ,有什么共同点?它们与分数有什么相同点和不同点?能够发现 ,这些式子都像分数相同都是AB (即 A ÷B) 的形式.分数的分子 A 与分母 B 都是整数 ,而这些式子中的 A , B 都是整式 ,并且 B 中都含有字母.A归纳:一般地 ,假如 A ,B 表示两个整式 ,并且 B 中含有字母 ,那么式子 B 叫做分式. 稳固练习:教材第 129 页练习第 2 题.2. 自学教材第 128 页思虑:要使分式存心义 ,分式中的分母应知足什么条件?分式的分母表示除数 ,因为除数不可以为 0,所以分式的分母不可以为 0,即当 B ≠ 0 时,分 式 A才存心义.B学生自学例 1.例 1以下分式中的字母知足什么条件时分式存心义?2 ;(2) x; (3) 1 ; (4)x +y (1) 3xx - 1 5- 3bx - y.解: (1)要使分式 3x 2存心义 ,则分母 3x ≠ 0,即 x ≠ 0;(2) 要使分式x存心义 ,则分母x - 11(3) 要使分式存心义 ,则分母 5- 3bx + y(4) 要使分式 x - y 存心义 ,则分母x - 1≠ 0,即 x ≠ 1;55- 3b ≠ 0,即 b ≠ ;x - y ≠ 0,即 x ≠ y.思虑:假如题目为:当x 为何值时 ,分式无心义.你知道怎么解题吗?稳固练习:教材第 129 页练习第 3 题. 3. 增补例题:当 m 为何值时 ,分式的值为 0?m ;(2) m - 2; (3) m 2- 1(1) m - 1 m + 3 m + 1 .思虑:当分式为 0 时,分式的分子、分母各知足什么条件?剖析:分式的值为 0 时,一定同时知足两个条件: (1) 分母不可以为零;(2)分子为零.答案: (1)m = 0; (2)m = 2; (3)m = 1. 三、归纳总结 1. 分式的观点.2. 分式的分母不为 0 时,分式存心义;分式的分母为 0 时,分式无心义.3. 分式的值为零的条件: (1)分母不可以为零; (2) 分子为零.四、部署作业教材第 133 页习题 15.1 第 2, 3 题.在引入分式这个观点从前先复习分数的观点,经过类比来自主研究分式的观点 ,分式有意义的条件 ,分式值为零的条件 ,从而更好更快地掌握这些知识点,同时也培育学生利用类比转变的数学思想方法解决问题的能力.15. 1.2 分式的基天性质 (2 课时 )第 1 课时分式的基天性质1.认识分式的基天性质,灵巧运用分式的基天性质进行分式的变形.2.会用分式的基天性质求分式变形中的符号法例.要点理解并掌握分式的基天性质.难点灵巧运用分式的基天性质进行分式变形.一、类比引新 1. 计算:(1) 5 2 4 8× 15 ; (2) ÷ .6 5 15 思虑:在运算过程中运用了什么性质?教师出示问题.学生独立计算后回答:运用了分数的基天性质. 2. 你能说出分数的基天性质吗?分数的分子与分母都乘 (或除以 )同一个不为零的数 ,分数的值不变.3. 试试用字母表示分数的基天性质:小组议论沟通如何用字母表示分数的基天性质,而后写出分数的基天性质的字母表达式.a = a ·c a = a ÷cb b ·c , b b ÷c .( 此中 a , b ,c 是实数 ,且 c ≠ 0) 二、研究新知1. 分式与分数也有近似的性质 ,你能说出分式的基天性质吗?分式的基天性质:分式的分子与分母乘 (或除以 )同一个不为零的整式 ,分式的值不变. 你能用式子表示这个性质吗? AA ·C A A ÷CB = B ·C , B = B ÷C .(此中 A , B ,C 是整式 ,且 C ≠ 0)如 x = 1, b =ab2,你还可以举几个例子吗?2x 2 a a回首分数的基天性质 ,让学生类比写出分式的基天性质 ,这是从详细到抽象的过程.学生试试着用式子表示分式的性质 ,增强对学生的抽象表达能力的培育.2. 想想以下等式成立吗?为何?- a a ; - a a a= = =- . - b b b - b b教师出示问题.学生小组议论、沟通、总结.例 1 不改变分式的值 ,使以下分式的分子与分母都不含“-”号:- 2a- 3x- x 2(1) - 3a ; (2) 2y ; (3)- y.例 2不改变分式的值 ,使以下分式的分子与分母的最高次项的系数都化为正数:x + 1 2- x - x - 1(1) - 2x - 1; (2)- x 2+ 3;(3) x + 1 .指引学生在达成习题的基础长进行归纳 ,使学生掌握分式的变号法例.例 3填空:x 3( ) 3x 2+ 3xy=x + y;= y,( )(1) xy6x 2(),2a -2 ( ) .(b ≠ 0)(2)1=2b = 2aba b a a bx 3解: (1)因为 xy 的分母 xy 除以 x 才能化为 y ,为保证分式的值不变 ,依据分式的基天性 质,分子也需除以 x ,即x 3= x 3 ÷x =x 2. xy xy ÷ x y相同地 ,因为 3x 2+ 3xy的分子 3x 2+3xy 除以 3x 才能化为 x + y ,所以分母也需除以 3x ,6x 2即3x 2+ 3xy(3x 2+ 3xy ) ÷( 3x ) x + y6x 2=6x 2 ÷( =2x.3x )所以 ,括号中应分别填入 x 2和 2x.(2) 因为 ab1的分母 ab 乘 a 才能化为 a 2b ,为保证分式的值不变 ,依据分式的基天性质 ,分子也需乘 a ,即1 = 1·a = a2 . ab ab ·a a b2a - b相同地 ,因为a2 的分母 a 2乘 b 才能化为 a 2b ,所以分子也需乘 b ,即2a - b ( 2a -b ) ·b 2ab -b 22 == 2.a a 2 ·b a b所以 ,括号中应分别填 a 和 2ab - b 2.在解决例题 1, 2 的第 (2)小题时 ,教师能够指引学生察看等式两边的分母发生的变化,再思虑分式的分子如何变化;在解决例2 的第 (1)小题时 ,教师指引学生察看等式两边的分子发生的变化 ,再思虑分式的分母随之应当如何变化.三、讲堂小结1. 分式的基天性质是什么? 2. 分式的变号法例是什么?3. 如何利用分式的基天性质进行分式的变形? 学生在教师的指引下整理知识、理顺思想. 四、部署作业教材第 133 页习题 15.1 第 4, 5 题.经过算数中分数的基天性质,用类比的方法给出分式的基天性质,学生接受起来其实不感觉困难,但要要点重申分子分母同乘 (或除 )的整式不可以为零,让学生养成谨慎的态度和习惯.第 2 课时分式的约分、通分1.类比分数的约分、通分,理解分式约分、通分的意义,理解最简公分母的观点.2.类比分数的约分、通分,掌握分式约分、通分的方法与步骤.要点运用分式的基天性质正确地进行分式的约分与通分.难点通分时最简分分母确实定;运用通分法例将分式进行变形.一、类比引新1.在计算56×152时,我们采纳了“约分”的方法,分数的约分约去的是什么?分式a+ b相等吗?为何?aba2+ab利用分式的基天性质,分式a2b约去分子与分母的公因式a,其实不改变分式的值a+ b获得. a2+ ab a2b,,能够教师点拨:分式a2+ ab能够化为a+ b__分式的约分 __.a2b ab ,我们把这样的分式变形叫做4 64 62. 如何计算 5+ 7?如何把 5,7通分?近似的 ,你能把分式 a, c变为同分母的分式吗?b d利用分式的基天性质 ,把几个异分母的分式分别化成与本来的分式相等的同分母的分式,我们把这样的分式变形叫做__分式的通分 __.二、研究新知- 25a 2bc 3;(2) x 2- 9; 1. 约分: (1) 15ab 2c x 2+ 6x +9 6x 2- 12xy + 6y 2 (3) 3x -3y .剖析:为约分 ,要先找出分子和分母的公因式.2322解: (1) - 25a bc =- 5abc ·5ac =-5ac ;15ab 2c5abc · 3b 3bx 2- 9 ( x + 3)( x - 3) x - 3(2)x2+= (x + 3) 2 =;6x +9x + 36x 2- 12xy + 6y 2 6( x - y )2(3)3x -3y==2(x - y).3(x - y )若分子和分母都是多项式 ,则常常需要把分子、分母分解因式(即化成乘积的形式 ) ,然后才能进行约分. 约分后 ,分子与分母没有公因式 ,我们把这样的分式称为 __最简分式 __.( 不 能再化简的分式 )2. 练习:约分:2ax 2y ; - 2a ( a +b ) ( a - x ) 2 2- 4 ; m 2- 3m 2-13b ( a +b ) ; ; x ; 99.3axy 2 ( x -a ) 3 xy + 2y9- m 298学生先独立达成 ,再小组沟通 ,集体校正.3. 议论:分式1 , 114的最简公分母是什么?3 22 3, 6xy2x y z 4x y提出最简公分母观点.一般取各分母的所有因式的最高次幂的积作公分母 ,它叫做最简公分母.学生议论、小组沟通、总结得出求最简公分母的步骤:(1) 系数取各分式的分母中系数最小公倍数; (2) 各分式的分母中所有字母或因式都要取到; (3) 相同字母 (或因式 )的幂取指数最大的;(4) 所得的系数的最小公倍数与各字母 (或因式 )的最高次幂的积 (此中系数都取正数 ) 即为最简公分母.4. 通分: (1) 32 与a -2 b; (2) 2x 与 3x .2a b ab c x - 5 x + 5 剖析:为通分 ,要先确立各分式的公分母.解: (1)最简公分母是 2a 2b 2c.33·bc 3bc2a 2b = 2a 2b · bc =2a 2b 2 c , a - b ( a -b ) ·2a 2a 2 -2abab 2c =ab 2c · 2a = 2a 2b 2c .(2) 最简公分母是 (x - 5)(x + 5) .2x=2x( x+ 5)=2x2+ 10xx- 5 ( x- 5)( x+ 5)x2- 25,3x =3x( x- 5)= 3x2- 15x x+ 5 ( x+ 5)( x- 5)x2- 25. 5.练习:通分: (1) 12与 5 ; (2) 21与 2 1 ; (3) 12与2x.3x 12xy x + x x - x (2- x)x - 4教师指引:通分的要点是先确立最简公分母;假如分式的分母是多项式则应先将分母分解因式,再按上述的方法确立分式的最简公分母.学生板演并互批实时纠错.6.思虑:分数和分式在约分和通分的做法上有什么共同点?这些做法的依据是什么?教师让学生议论、沟通,师生共同作以小结.三、讲堂小结1.什么是分式的约分?如何进行分式的约分?什么是最简分式?2.什么是分式的通分?如何进行分式的通分?什么是最简公分母?3.本节课你还有哪些迷惑?四、部署作业教材第 133 页习题 15.1 第 6, 7 题.本节课是在学习了分式的基天性质后学的,要点是运用分式的基天性质正确的约分和通分,约分时要注意必定要约成最简分式,娴熟运用因式分解;通分时要将分式变形后再确立最简公分母.15. 2分式的运算15. 2.1分式的乘除(2课时)第 1 课时分式的乘除法1.理解并掌握分式的乘除法例.2.运用法例进行运算,能解决一些与分式相关的实质问题.要点掌握分式的乘除运算.难点分子、分母为多项式的分式乘除法运算.一、复习导入1. 分数的乘除法的法例是什么?2. 计算: 3 × 15 ; 3 155 12 ÷ .5 2由分数的运算法例知3 15 = 3× 15 315 3 × 2 = 3× 2× 12 5× 12 ; ÷ = 15 .5 5 2 5 5× 153. 什么是倒数? 我们在小学学习了分数的乘除法 ,关于分式如何进行计算呢?这就是我们这节要学习的内容.二、研究新知问题 1:一个水平搁置的长方体容器 ,其容积为 V ,底面的长为 a ,宽为 b 时,当容器的水占容积的 m时,水面的高度是多少?n问题 2:大拖沓机 m 天耕地 a hm 2,小拖沓机 n 天耕地 b hm 2,大拖沓机的工作效率是小拖沓机的工作效率的多少倍?问题 1 求容积的高 V m,问题 2 求大拖沓机的工作效率是小拖沓机的工作效率的 a b ·÷ 倍.ab nm n依据上边的计算 ,请同学们总结一下对分式的乘除法的法例是什么?分式的乘法法例:分式乘分式 ,用分子的积作为积的分子 ,分母的积作为积的分母. 分式的除法法例:分式除以分式 ,把除式的分子、分母颠倒地点后,与被除式相乘.a ca ·c a c a d a ·d·=; ÷ = ·=.b d b ·d b d bc b ·c 三、举例剖析例 1 计算:4x y ab 3 - 5a 2b 2(1) 3y ·2x 3; (2)2c 2÷4cd.剖析:这道例题就是直策应用分式的乘除法法例进行运算.应当注意的是运算结果应约分到最简 ,还应注意在计算时跟整式运算相同 ,先判断运算符号 ,再计算结果.解: (1)4xy = 4xy = 2 ;3y ·36x 3y 3x 22x(2) ab 3- 5a 2b 2 ab 34cd 4ab 3cd 2bd2c 2÷ = 2· 2 2=- 2 2 2=- .4cd 2c - 5a b 10a b c 5ac 例 2 计算:a 2- 4a +4 a - 1(1) a 2- 2a +1·a 2- 4;1 1(2) 49-m 2÷ m 2- 7m . 剖析:这两题是分子与分母是多项式的状况 ,第一要因式分解 ,而后运用法例.( a -2) 2 a - 1 a - 2解: (1)原式 ( a -1) 2· ( a + 2)( a - 2)= ( a -1)( a + 2) ;(2) 原式 1 1÷( 7- m )( 7+ m ) m ( m - 7)= 1 m ( m - 7) =- m7+m ) · 1 .( 7- m )( m + 7例 3 “丰产 1 号”小麦试验田边长为 a 米 (a > 1)的正方形去掉一个边长为 1 米的正方形蓄水池后余下的部分 ,“丰产 2 号”小麦的试验田是边长为 (a - 1)米的正方形 ,两块试验田的小麦都收获了 500 千克.(1) 哪一种小麦的单位面积产量高?(2) 高的单位面积产量是低的单位面积产量的多少倍?剖析:此题的实质是分式的乘除法的运用.解: (1)略.500500 500 a 2- 1 a + 1 (2) ( a -1) 2÷ a 2- 1=( a - 1) 2· 500 =a - 1.“丰产 2 号”小麦的单位面积产量是“丰产1 号”小麦的单位面积产量的a + 1倍.a - 1四、随堂练习1. 计算: (1) c 2 · a 2b 2 (2)- n 2 · 4m 2 y 2; 2m 5n 3;(3) ÷(- );ab c 7x x 2ya 2- 4 a 2- 1 (4) - 8xy ÷ ; (5)- 2 ·2 4a + 4 ;5x a -2a + 1 a +y 2- 6y + 9(6)÷(3- y).y + 2答案: (1)abc ; (2)- 2m; (3)- y; (4)- 20x 2;(5) ( a + 1)( a - 2) ;(6) 3- y 5n 14-( a - 1)( a + 2) y + 2 . 2. 教材第 137 页练习 1, 2,3 题.五、讲堂小结(1) 分式的乘除法法例; (2) 运用法例时注意符号的变化;(3) 因式分解在分式乘除法中的应用;(4) 步骤要完好 ,结果要最简.最后结果中的分子、分母既可保持乘积的形式,也能够写成一个多项式 ,如 ( a - 1) 2 a 2- 2a + 1或 a .a六、部署作业教材第 146 页习题 15.2 第 1, 2 题.本节课从两个拥有实质背景的问题出发,使学生在解决问题的过程中认识到分式的乘除法是由实质需要产生的,从而激发他们学习的兴趣,接着,从分数的乘除法例的角度指引学生经过察看、研究、归纳总结出分式的乘法法例.有益于学生接受新知识,并且能表现由数到式的发展过程.第 2课时分式的乘方及乘方与乘除的混淆运算1.进一步娴熟分式的乘除法法例,会进行分式的乘、除法的混淆运算.2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算.要点分式的乘方运算,分式的乘除法、乘方混淆运算.难点分式的乘除法、乘方混淆运算,以及分式乘法、除法、乘方运算中符号确实定.一、复习引入1.分式的乘除法法例.分式的乘法法例:分式乘分式,用分子的积作为积的分子,用分母的积作为积的分母.分式的除法法例:分式除以分式,把除式的分子、分母颠倒地点后,与被除式相乘.2.乘方的意义:a n= a·a·a· ·a(n 为正整数 ).二、研究新知例 1(教材例 4) 计算2x 3 x÷·.5x- 3 25x 2- 9 5x + 3解:2x 3·x÷+ 3 5x-3 25x 2- 9 5x25x 2- 9x (先把除法一致成乘法运算 )= 2x ·3 · 5x - 3 5x+3 2x 2 =3 .( 约分到最简公式 ) 分式乘除运算的一般步骤:(1) 先把除法一致成乘法运算;(2) 分子、分母中能分解因式的多项式分解因式; (3) 确立分式的符号 ,而后约分;(4) 结果应是最简分式.1. 由整式的乘方引出分式的乘方,并由特别到一般地指引学生进行归纳.2(1)( a )2=a a= a2;bb ·b b↑↑由乘方的意义 由分式的乘法法例(2) 同理:a 3 a a aa 3( )= ··= 3;b b b b ba n a a aa · a · · an 个a n( ) = ·· ·n个== n .b b b bb · b · · bn 个 b2. 分式乘方法例:n分式: (a b )n = ab n .(n 为正整数 )文字表达:分式乘方是把分子、分母分别乘方. 3. 当前为止 ,正整数指数幂的运算法例都有什么?(1)a n · a n = a m +n ; (2)a m ÷ a n = a m -n ;(3)(a m ) n =a mn ;(4)(ab) n = a n b n ;a a n(5)( b )n= b n . 三、举例剖析 例2计算:- 2a 2b(1)( 3c )2;2a b3÷2a· (c2(3)( - x 2 y 2 )3÷ y )4;y )2· (- x (-x a 2- b 2 a - b(4) 22÷ () 2.a + ba + b22 4 2(- 2a b )=4a b 2 ;解: (1)原式= ( 3c ) 29ca 6b 3 d 3c 2a 3b 3 (2) 原式= -c 3d 9· 2a ·4a 2=- 8cd 6;46 4(3) 原式=x · (- y x =- x 5; y 2x 3)·4y(4) 原式= ( a + b )( a - b ) ( a + b ) 2 ( a + b ) 32 2· ( a - b ) 2=22 .a +b ( a - b )( a + b )学生板演、 纠错并实时总结做题方法及应注意的地方: ①关于乘、 除和乘方的混淆运算 ,应注意运算次序 ,但在做乘方运算的同时 ,可将除变乘;②做乘方运算要先确立符号.例3 计算:b3n -1c2a2n -1(1) a 2n+1·b 3n-2;x 2-2xy + y 2x - y(2)(xy - x 2) ÷ · x 2 ;xy (3)( a 2- b 2 a -b )2.ab )2÷ (a解: (1)原式= b 3n -2· b · c 2 a 2n - 1bc 2 a2n -1· a 2·b 3n -2=a 2;x ( x - y ) xy2· x - y(2) 原式=-1 ·x 2 =- y ;( x - y )( a + b )2( a - b ) 2 a 2 a 2+ 2ab +b 2 (3) 原式= a 2b 2· (a -b ) 2=b 2. 本例题是本节课运算题目的拓展,关于 (1)指数为字母 ,可是方法不变; (2)(3) 是较复杂的 乘除乘方混淆运算 ,要进一步让学生熟习运算次序,注意做题步骤.四、稳固练习教材第 139 页练习第 1, 2 题. 五、讲堂小结 1. 分式的乘方法例. 2. 运算中的注意事项. 六、部署作业教材第 146 页习题 15.2 第 3 题.分式的乘方运算这一课的教课先让学生回想从前学过的分数的乘方的运算方法用类比的方法让学生得出分式的乘方法例.在解说例题和练习时充分调换学生的踊跃性大家都参加进来 ,提升学习效率.,而后采,使15. 2.2分式的加减(2 课时)第 1 课时分式的加减理解并掌握分式的加减法例,并会运用它们进行分式的加减运算.要点运用分式的加减运算法例进行运算.难点异分母分式的加减运算.一、复习发问 1. 什么叫通分? 2. 通分的要点是什么? 3. 什么叫最简公分母?4. 通分的作用是什么? (引出新课 ) 二、研究新知1. 出示教材第 139 页问题 3 和问题 4. 教材第 140 页“思虑”.1 分式的加减法与分数的加减法近似,它们的实质相同. 察看以下分数加减运算的式子:5+2=31- 2=- 11+1= 3+2=5 1- 1= 3- 2=1,得出分式的加减法5 5,5 55, 2 3666, 2 3 6 6 6.你能将它们推行 法例吗?教师提出问题 ,让学生列出算式 ,获得分式的加减法法例. 学生议论:组内沟通 ,教师点拨. 2. 同分母的分式加减法.a b a ±b公式: ±=c .c c文字表达:同分母的分式相加减 ,分母不变 ,把分子相加减.3. 异分母的分式加减法.分式: a c ad bc ad ±bc± = ± = bd .b d bd bd文字表达:异分母的分式相加减 ,先通分 ,变为同分母的分式 ,而后再加减.三、典型例题 例 1(教材例 6) 计算:5x +3y- 2x2; (2)1 + 1(1) 2- y 2 2.xx - y2p + 3q 2p - 3q解: (1)5x + 3y - 2xx 2- y2 x 2- y 25x + 3y - 2x 3x + 3y 3 = 2 2 = 2 - y 2 = ;x - y x x -y(2) 1 + 12p +3q2p - 3q=2p - 3q +2p + 3q ( 2p + 3q )( 2p - 3q ) ( 2p + 3q )( 2p - 3q )= 2p - 3q + 2p + 3q=4p( 2p + 3q )( 2p - 3q ) 4p 2- 9q 2.小结:(1) 注意分数线有括号的作用 ,分子相加减时 ,要注意添括号.(2) 把分子相加减后 ,假如所得结果不是最简分式 ,要约分.例2 计算:m + 2n + n - 2m . n - m m - n n - m剖析: (1)分母能否相同? (2)如何把分母化为相同的?(3)注意符号问题.解:原式= m + 2n - n - 2mn - m n -m n - m= m + 2n - n - 2mn -m=n - mn - m= 1. 四、讲堂练习1. 教材第 141 页练习 1, 2 题.5232.计算: (1)-+ ;12 2(2) m 2- 9+3- m ;(3)a + 2- 4;2- aa 2-b 2 ab - b 2(4) ab -ab -ab 2.五、讲堂小结1. 同分母分式相加减 ,分母不变 ,只要将分子作加减运算 ,但注意每个分子是个整体 ,要合时添上括号.2.关于整式和分式之间的加减运算 ,则把整式当作一个整体 ,即当作是分母为 1 的分式 ,以便通分.3.异分母分式的加减运算 ,第一察看每个公式能否为最简分式 ,能约分的先约分 ,使分式简化 ,而后再通分 ,这样可使运算简化.4. 作为最后结果 ,假如是分式则应当是最简分式. 六、部署作业教材第 146 页习题 15.2 第 4, 5 题.从直观的分数加减运算开始,先介绍同分母分式的加减运算的详细方法,经过类比的思想方法,由数的运算引出式的运算规律,表现了数学知识间详细与抽象、从特别到一般的内在联系.尔后,利用相同的类比方法,安排学习异分母的分式加减运算,这样由简到繁、由易到难,切合学生认知的发展规律,有助于知识的层层落实与掌握.第 2 课时分式的混淆运算1.明确分式混淆运算的次序,娴熟地进行分式的混淆运算.2.能灵巧运用运算律简易运算.要点娴熟地进行分式的混淆运算.难点娴熟地进行分式的混淆运算.一、复习引入回想:我们已经学习了分式的哪些运算?1.分式的乘除运算主假如经过( )进行的,分式的加减运算主假如经过( ) 进行的.2.分数的混淆运算法例是再算 (),最后算 ( ( ) ,近似的,分式的混淆运算法例是先算 ) ,有括号的先算 ( )里面的.( ),二、研究新知1.典型例题例1计算:( x+2 + 4 ) ÷x .x-2 x2- 4x+ 4 x- 2 剖析:应先算括号里的.例 2计算:4y 24x 2yx + 2y + x - 2y - x 2- 4y2. 剖析: (1)此题应采纳逐渐通分的方法挨次进行; (2)x + 2y 能够看作 x + 2y.1 例 31 -2x 计算:1x + yx + y ·( 2x -x -y).剖析:此题可用分派律简易计算.例 4 [ 1 2-1 2] ÷( 1 - 1 ).( a + b ) ( a - b ) a +b a - b 剖析:可先把被除式利用平方差公式分解因式后再约分.例 5(教材例 7)2a 21a b计算 ()·- ÷ .b a - b b 4解: 2a1- ab( )2· b ÷b a -b 4= 4a 2 1 - a 4 b 2 · ·a -b b b4a 24a4a 2 4a ( a -b ) = b 2( a - b ) - b 2= b 2( a - b )- b 2( a - b )4a 2- 4a 2+ 4ab 4ab= b 2( a - b ) =b 2( a - b ) = 4a ab - b 2.点拨:式与数有相同的混淆运算次序:先乘方 ,再乘除 ,而后加减. 例 6(教材例 8)计算: (1)(m + 2+ 52m - 4) · ;2- m 3- mx + 2 - x - 1x -4 (2)( x 2- 2x x 2- 4x + 4) ÷ x .解: (1)(m + 2+ 5 2m - 4) ·2- m 3- m = ( m + 2)( 2- m )+ 5 2m - 42-m ·3- m= 9- m 2 2( m - 2) 2- m · 3- m= ( 3- m )( 3+ m ) - 2( 2- m ) 2- m · 3- m=- 2(m + 3);(2)( x + 2- x - 1x -4x 2 x 2) ÷ x - 2x - 4x + 4= [ x + 2 -x - 1 x ( x - 2) 2] ·x ( x - 2)x - 4=( x + 2)( x - 2)-( x -1) x ·x x ( x - 2) 2x - 4 = x 2- 4- x 2+ x( x - 2) 2( x - 4)1= ( x - 2) 2. 分式的加、减、乘、除混淆运算要注意以下几点:(1) 一般按分式的运算次序法例进行计算,但合适地使用运算律会使运算简易.(2) 要随时注意分子、分母可进行因式分解的式子,以备约分或通分时用 ,可防止运算烦 琐.(3) 注意括号的“添”或“去”、“变大”与“变小”.(4) 结果要化为最简分式.增强练习 ,指引学生实时纠正在例题中出现的错误 ,进一步提升运算能力.三、稳固练习x 21. (1)x - 1- x - 1;(2)(1 - 2)2÷x - 1;x +1 x + 12ab2bc(3)( a -b )( a - c ) + ( a - b )( c - a );(4)( 1 + 1 ) ÷2 xy2 .x - y x + y x - y 2. 教材第 142 页第 1, 2 题. 四、讲堂小结1.分式的混淆运算法例是先算 ( ),再算 () ,最后算 (),有括号先算 ()里的.2. 一些题应用运算律、公式能简易运算. 五、部署作业1. 教材第 146 页习题 15.2 第 6 题.1 - 1 x 2- 2x + 1,此中 x = 2-1.2. 先化简再求值 x + 1 x 2- 1· x + 1分式的混淆运算是分式这一章的要点和难点,波及到因式分解和通分这两个较难的知识点,可依据学生的详细状况,合适增添例题、习题,让学生娴熟掌握分式的运算法例并提升运算能力.15. 2.3整数指数幂1.知道负整数指数幂a-n=1n.(a≠ 0, n 是正整数 ) a2.掌握整数指数幂的运算性质.3.会用科学记数法表示绝对值小于 1 的数.要点掌握整数指数幂的运算性质 ,会有科学记数法表示绝对值小于1 的数.难点负整数指数幂的性质的理解和应用.一、复习引入1. 回想正整数指数幂的运算性质:(1) 同底数的幂的乘法: a m · a n = a m +n (m , n 是正整数 ) ;(2) 幂的乘方: (a m )n = a mn (m , n 是正整数 ); (3) 积的乘方: (ab)n = a n b n (n 是正整数 );(4) 同底数的幂的除法: a m ÷ a n =a m -n (a ≠ 0, m , n 是正整数 , m >n) ;a n a n(5) 分式的乘方: ( ) =n (n 是正整数 ).bb2. 回想 0 指数幂的规定 ,即当 a ≠ 0 时, a 0= 1. 二、研究新知3 312,再假定正整数指数幂的运算性质am÷ a n( 一)1.计算当 a ≠ 0 时, a 3÷ a 5= a5=a =aa 3· a 2 a-- -2.于是= a m n (a ≠ 0, m , n 是正整数 , m > n)中的 m > n 这个条件去掉 ,那么 a 3÷ a 5= a 3 5= a - 2 1获得 a =2(a ≠ 0).a总结:负整数指数幂的运算性质:一般的 ,我们规定:当 n 是正整数时 ,a -n= 1n (a ≠ 0).a 2. 练习稳固: 填空:(1) - 22= ________, (2)( - 2)2= ________, (3)( - 2)0= ________,(4)20= ________,-3-3 =________. (5)2 = ________, (5)( - 2) 3.例 1 (教材例 9) 计算:-2 5 b 3- 2; (1)a÷ a ; (2)( 2)a(3)(a -1 b 2 )3; (4)a - 2b 2· (a 2b - 2)-3.解: (1)a -2÷ a 5= a -2- 5=a -7= a 17;b 3-6a 4 -b -(2)( 2) 2= - 4= a 4b 6 = 6; a ab 6(3)(a -1 b2 )3= a -3b6=ba 3;- - - - - -b 8 (4)a 2b 2· (a 2b 2) 3= a 2b 2· a 6 b 6= a 8b 8= 8.a[剖析 ] 本例题是应用推行后的整数指数幂的运算性质进行计算 ,与用正整数指数幂的 运算性质进行计算相同 ,但计算结果有负指数幂时 ,要写成分式形式.4. 练习:计算: (1)(x 3y - 2)2; (2)x 2y - 2· (x -2y)3;(3)(3x 2y -2 2 - 23) ÷ (x y) . 5.例 2 判断以下等式能否正确?(1)a m÷ a n= a m·a -n; (2)(ab)n = a n b -n .[ 剖析 ] 类比负数的引入使减法转变为加法 ,获得负指数幂的引入能够使除法转变为幂的乘法这个结论 ,从而使分式的运算与整式的运算一致同来 ,而后再判断等式能否正确.( 二)1.用科学记数法表示值较小的数因为 0.1= 1 = 10 - 110 ; 0.01=________= ________;0. 001= ________=________所以 0.000 025= 2.5× 0.000 01= 2.5×10-5.我们能够利用 10 的负整数次幂 ,用科学记数法表示一些绝对值较小的数,马上它们表示成 a ×10-n 的形式 ,此中 n 是正整数 ,1≤ |a|< 10.2. 例 3(教材例 10) 纳米是特别小的长度单位 , 1 纳米= 10-9米,把 1 纳米的物体放到 乒乓球上 ,就好像把乒乓球放到地球上 .1 立方毫米的空间能够放多少个1 立方纳米的物体?(物体之间的空隙忽视不计 )[ 剖析 ]这是一个介绍纳米的应用题,是应用科学记数法表示小于 1 的数.3.用科学记数法表示以下各数:0. 00 04,- 0.034,0.000 000 45, 0.003 009.4.计算:-8 3 -3 2 -3 3.(1)(3 × 10 )× (4× 10 ); (2)(2 ×10 ) ÷(10 )三、讲堂小结1.引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的性质仍旧成立.2.科学记数法不单能够表示一个值大于10 的数,也能够表示一些绝对值较小的数,在应用中,要注意 a 一定知足1≤ |a|< 10,此中 n 是正整数.四、部署作业教材第 147 页习题 15.2 第 7, 8, 9 题.本节课教课的主要内容是整数指数幂学设计上,教师要点发掘学生的潜伏能力,将从前所学的相关知识进行了扩大.在本节的教,让学生在讲堂上经过察看、考证、研究等活动,加深对新知识的理解.15.3分式方程(2课时)第 1 课时分式方程的解法1.理解分式方程的意义.2.理解解分式方程的基本思路和解法.3.理解解分式方程时可能无解的原由,并掌握解分式方程的验根方法.要点解分式方程的基本思路和解法.难点理解解分式方程时可能无解的原由.一、复习引入问题: 一艘轮船在静水中的最大航速为 30 km/h ,它以最大航速沿江顺流航行 90 km 所用时间 ,与以最大航速逆流航行 60 km 所用的时间相等 ,江水的流速为多少?90=60[ 剖析 ] 设江水的流速为 x 千米 /时,依据题意 ,得 30+ v 30- v .①方程①有何特色?[ 归纳 ] 方程①中含有分式 ,并且分母中含有未知数 ,像这样的方程叫做分式方程. 发问:你还可以举出一个分式方程的例子吗? 辨析:判断以下各式哪个是分式方程.x + 2= 2y - z ; (3)1; (4)y=0; (5)1+ 2x = 5.(1)x + y = 5; (2) 5 3 x x + 5 x依据定义可得: (1)(2) 是整式方程 , (3) 是分式 , (4)(5) 是分式方程.二、研究新知1. 思虑:如何解分式方程呢?为认识决本问题 ,请同学们先思虑并回答以下问题:(1) 回首一下解一元一次方程时是怎么去分母的,从中可否获得一点启迪?(2) 有没有方法能够去掉分式方程的分母把它转变为整式方程呢? [ 可先松手让学生自主研究 ,合作学习并进行总结]方程①能够解答以下:方程两边同乘以 (30+ v)(30 -v),约去分母 ,得 90(30- v)= 60(30 + v). 解这个整式方程 ,得 v = 6. 所以江水的流度为 6 千米 /时.[ 归纳 ]上述解分式方程的过程 ,实质上是将方程的两边乘以同一个整式 ,约去分母 ,把分式方程转变为整式方程来解.所乘的整式往常取方程中出现的各分式的最简公分母.2. 例 1 解方程:1 = 210.②x - 5 x - 25解:方程两边同乘 (x 2- 25),约去分母 ,得 x + 5= 10.解这个整式方程 ,得 x = 5.事实上 ,当 x = 5 时,原分式方程左侧和右侧的分母 (x - 5)与 (x 2- 25)都是 0,方程中出现的两个分式都没存心义 ,所以 ,x = 5 不是分式方程的根 ,应当舍去 ,所以原分式方程无解.解分式方程的步骤:在将分式方程变形为整式方程时,方程两边同乘一个含未知数的整式,并约去了分母,有时可能产生不合适原分式方程的解 (或根 ) ,这类根往常称为增根.所以,在解分式方程时一定进行查验.3.那么,可能产生“增根”的原由在哪里呢?解分式方程去分母时,方程两边要乘同一个含未知数的式子(最简公分母 ).方程①两边乘 (30+ v)(30 - v),获得整式方程,它的解 v=6.当 v= 6 时, (30+ v)(30 - v)≠ 0,这就是说,去分母时,①两边乘了同一个不为 0 的式子,所以所得整式方程的解与①的解相同.方程②两边乘(x- 5)(x + 5),获得整式方程,它的解 x= 5.当 x= 5 时,(x -5)(x + 5)= 0,这就是说,去分母时,②两边乘了同一个等于0 的式子,这时所得整式方程的解使②出现分母为 0 的现象,所以这样的解不是②的解.4.验根的方法:解分式方程进行查验的要点是看所求得的整式方程的根能否使原分式方程中的分式的分母为零.有时为了简易起见,也可将它代入所乘的整式 (即最简公分母 ),看它的值能否为零.假如为零,即为增根.如例 1 中的 x= 5,代入 x2- 25=0,可知 x= 5 是原分式方程的增根.三、举例剖析例 2(教材例 1) 解方程 2 =3.x- 3 x解:方程两边乘x(x -3) ,得 2x = 3x- 9.解得 x= 9.查验:当x= 9 时, x(x - 3)≠ 0.所以,原分式方程的解为x=9.例 3(教材例 2) 解方程x - 1= 3.x- 1 (x- 1)( x+ 2)解:方程两边乘 (x- 1)(x +2),得x(x + 2)- (x- 1)(x + 2)= 3.解得 x= 1.查验:当x= 1 时, (x-1)(x + 2)= 0,所以 x= 1 不是原分式方程的解.所以,原分式方程无解.四、讲堂小结1.分式方程:分母中含有未知数的方程.2.解分式方程的一般步骤以下:。

人教版八年级数学第十五章《分式化简》全章教案

人教版八年级数学第十五章《分式化简》全章教案

人教版八年级数学第十五章《分式化简》全章教案教学目标- 了解分式的概念和性质- 学会化简分式- 掌握将带分数化为假分数的方法- 学会对分式进行运算教学内容第一节分式的基本概念1. 分式的定义和组成部分2. 分式的分类和性质3. 分式的化简方法和步骤第二节分式的化简1. 化简基本分式2. 化简复杂分式3. 化简含有括号的分式第三节带分数的化简1. 带分数的定义和特点2. 将带分数化为假分数的方法和步骤第四节分数的运算1. 分数的加减法2. 分数的乘法3. 分数的除法教学步骤第一节分式的基本概念1. 引入分式的概念,让学生了解分式在数学中的作用和意义。

2. 解释分数的组成部分,例如分子、分母的含义。

3. 介绍分式的分类和性质,让学生了解不同类型的分式有哪些特点。

第二节分式的化简1. 给学生提供一些基本分式的例子,让他们学会化简这些分式。

2. 引导学生思考如何化简复杂的分式,给予他们一些策略和方法。

3. 解释如何化简含有括号的分式,让学生明白括号的运算规则对于化简的影响。

第三节带分数的化简1. 介绍带分数的定义和特点,让学生理解带分数是一种特殊的分数形式。

2. 教授将带分数化为假分数的方法,指导学生进行相关的练。

第四节分数的运算1. 引导学生进行分数的加减法练,让他们掌握不同分数之间的运算规则。

2. 介绍分数的乘法和除法,解释相应的运算规则。

3. 给学生一些练题,让他们运用所学知识进行分数运算。

教学资源- 课本《数学八年级》第十五章节内容- 手写板或投影仪- 课件和练册教学评价- 在课堂上指导学生进行相关的练,即时纠正他们的错误。

- 布置课后作业,检查学生对于分式化简的掌握情况。

- 进行小组或个人演示,评估学生对于分数运算的理解和应用能力。

课堂延伸- 鼓励学生在生活中寻找和分式相关的实际应用,如实际分配问题、比例和利润计算等。

- 激发学生对于数学的兴趣,鼓励他们进行相关的探索和研究。

以上是《人教版八年级数学第十五章《分式化简》全章教案》的内容。

八年级数学下册《分式》教案、教学设计

八年级数学下册《分式》教案、教学设计
八年级数学下册《分式》教案、教学设计
一、教学目标
(一)知识与技能
1.了解分式的定义,理解分式表示的几何意义。
2.学会分式的化简,掌握分式的基本性质,如约分、通分等。
3.能够进行分式的加减乘除运算,掌握运算规律,提高运算速度和准确性。
4.能够将实际问题转化为分式问题,运用分式解决实际问题。
(二)过程与方法
4.教师将根据作业完成情况进行评价,关注学生的知识掌握、能力提升和情感态度等方面。
2.自主探究,合作交流:
(1)引导学生自主探究分式的定义,通过实际例子让学生体会分式的几何意义。
(2)组织学生进行小组讨论,发现分式的基本性质和运算规律,提高学生的合作能力。
3.精讲精练,突破难点:
(1)针对分式的化简和运算规律,教师进行详细讲解,通过典型例题让学生掌握解题方法。
(2)设计不同难度的练习题,让学生在练习中巩固知识,逐步突破难点。
在教学过程中,教师应关注学生的参与度,调动学生的积极性,鼓励学生主动探究、合作交流。同时,注重分层教学,针对不同学生的需求设计教学内容,使每个学生都能在课堂上得到有效的提升。通过本节课的学习,使学生掌握分式知识,提高数学素养,为后续学习打下坚实基础。
五、作业布置
为了巩固学生对分式的理解和应用,以及检验学生对课堂所学知识的掌握程度,特布置以下作业:
3.在解决实际问题时,难以将问题转化为分式问题,缺乏运用分式解决实际问题的能力。
针对以上情况,教师应关注学生的认知发展水平,适时给予引导和启发,帮助学生搭建起分式知识的框架。在教学过程中,注重培养学生的抽象思维能力和问题解决能力,使学生在掌握分式知识的同时,提高数学素养。
三、教学重难点和教学设想
(一)教学重难点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学学科八年级第22章从分数到分式主备人:审核人:
数学学科八年级第22章分式的基本性质(1)主备人:审核人:
数学学科八年级第22章分式的基本性质(2)主备人:审核人:
数学学科八年级第22章分式的乘除法主备人:审核人:备课时间授课时间
学习目标1、通过实践总结分式的乘除法,并能较熟练地进行式的乘除法运算。

2、理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算
3、引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力
重点分式的乘除法、乘方运算
难点分式的乘除法、混合运算,分式乘法,除法、乘方运算中符号的确定。

预习导引复习与情境导入
1、(1)什么叫做分式的约分?约分的根据是什么?
(2):下列各式是否正确?为什么?
2、(1)回忆:
计算:
312
41
563
⨯÷
(2)尝试探究:计算:
(1)
x
b
ay
by
x
a
2
2
2
2
⋅;(2)
2
2
2
2
2
2
x
b
yz
a
z
b
xy
a
÷.
尝试探究用式子表示,用文字表达。

培养学生的合情推
理能力。

学生:疑惑的问题
透思探究教学法:利用学生已有的
知识、经验对所学内容进行自主探
究、发现,在对新知识的再创造和
再发现的活动中培养学生的探索
创新精神与创新能力.
问题导学
实践与探索1
例2计算:
4
9
3
2
2
2
-
-

+
-
x
x
x
x
分析:①本题是几个分式在进行什么运算?
②每个分式的分子和分母都是什么代数式?
③在分式的分子、分母中的多项式是否可以分解因式,
怎样分解?
④怎样应用分式乘法法则得到积的分式?
解原式=
)2
)(
2
(
)3
)(
3
(
3
2
-
+
-
+

+
-
x
x
x
x
x
x

2
3
+
-
x
x
.
教师:课堂教学的方法、手段
学生:理解与感受
实现三维目标
典题训练
练习:
计算:
22
2
12
(1)
441
x x x
x
x x x
-+
÷+⨯
++-
2
()
x y
xy x
xy
-

(三)实践与探索2
探索分式的乘方的法则
1.思考
我们都学过了有理数的乘方,那么分式的乘方该是怎样
运算的呢?
先做下面的乘法:
(1)
m
n
m
n
m
n

⋅=
)
(
)
(
=(
m
n
)3;
(2)

k
m
n
m
n
m
n


⋅=
)
(
)
(
=(
m
n
)k.
2、仔细观察这两题的结果,你能发现什么规律?与同
伴交流一下,然后完成下面的填空:
m
n
)(k) =___________
(k是正整数)
老师
应格外强调符号问题自主探究,后合作交流学习探索分式
的乘方的法则
实现三维目标
教师:引导点拨
学生:理解提升
实现三维目标
作业课后习题
教学
师生
反小
思结
数学学科八年级第22章分式的加减法主备人:审核人:
数学学科八年级第22章分式的混合运算(补充)主备人:审核人:
数学学科八年级第22章整数指数幂主备人:审核人:
数学学科八年级第22章分式方程主备人:审核人:
典题训练
(1);(2);
(3);(4);(5)
根据定义可得:(1)、(2)是整式方程,(3)是分式,(4)(5)
是分式方程.学生观察分析后,发表意见,达成共识。

学生举出分式方程的例子,根据分式方程的概念进行判定,
加深对分式方程概念的理解。

(三)实践与探索2:分式方程的解法
1、思考:怎样解分式方程呢?
为了解决本问题,请同学们先思考并回答以下问题:
1)、回顾一下一元一次方程时是怎么去分母的,从中能
否得到一点启发?
2)有没有办法可以去掉分式方程的分母把它转化为整式
方程呢?
方程(1)可以解答如下:
方程两边同乘以(x+3)(x-3),约去分母,得80(x-3)
=60(x+3).
解这个整式方程,得x=21.
所以轮船在静水中的速度为21千米/时
教师:引导点拨
学生:理解提升
实现三维目标
作业课后习题
教学
师生
反小
思结
数学学科八年级第22章可化为一元一次方程的分式方程主备人:审核人:
数学学科八年级第22章可化为一元一次方程的分式方程主备人:审核人:备课时间授课时间
学习目标1.使学生能较熟练的列可化为一元一次方程的分式方程解应用题。

2.提高分析问题和解决问题的能力。

重点分析应用题中的数量关系,提高思维能力难点分析应用题中的数量关系,提高思维能力。

预习导引
复习并问题导入
复习练习
某农场挖一条960m长的渠道,开工后每天比原计划多
挖20m,结果提前4天完成了任务。

若设原计划每天挖xm,
则根据题意可列出方程()
A.
960960
20
4
x x
-
+
= B.
960
20
960
4
x x
+
-=
C.
960960
20
4
x x
-
-
= D.
960
20
960
4
x x
-
-=
列分式方程解应用题的一般步骤:列方程解应用题注意分析
题目中的数量,分清哪些是未知数,哪些是已知数,再找出
这些数量间的关系,尽量找出多的数量关系,一般地,其中
一个用来设立未知数,另一个用来立方程。

学生:疑惑的问题
透思探究教学法:利用学生已有的
知识、经验对所学内容进行自主探
究、发现,在对新知识的再创造和
再发现的活动中培养学生的探索
创新精神与创新能力.
问题导学
创新例题讲解与练习巩固
例1 购一年期债券,到期后本利只获2700元,如果债
券年利率12.5%,&127;那么利息是多少元?
解:(1)设利息为x元,则本金为(2700-x)元,依题意列分
式方程为:
解此方程得 x=300
经检验x=300为原方程的根
答:利息为300元。

合作交流解法,学以致用。

[练习]一组学生乘汽车去春游,预计共需车费120元,
教师:课堂教学的方法、手段
学生:理解与感受
实现三维目标
数学学科八年级第22章零指数幂与负整指数幂主备人:审核人:
数学学科八年级第22章科学记数法主备人:审核人:。

相关文档
最新文档