导数与函数的单调性极值最值 教学设计
函数的单调性与导数(教学设计)
函数的单调性与导数(教学设计)教学设计:函数的单调性与导数本节课的主要内容是函数的单调性与导数。
在研究本节课之前,学生已经研究了导数、函数及函数单调性等概念,对导数的几何意义与函数单调性有了一定的感性和理性的认识。
函数的单调性是高中数学中极为重要的一个知识点。
在以前的研究中,学生已经研究了如何利用函数单调性的定义和函数的图像来研究函数的单调性。
而在研究了导数之后,学生可以利用导数来研究函数的单调性,这是导数在研究处理函数性质问题中的一个重要应用。
学好本课时的知识对接下来要研究利用导数研究函数的极值奠定知识基础,因此,研究本节内容具有承上启下的作用。
在本节课之前,学生已经研究了导数的概念、导数的几何意义和导数的四则运算,研究了用导数求曲线的切线方程。
因此,本节课应着重让学生通过探究来研究利用导数判定函数的单调性。
本节课的教学目标包括以下几点:1.知识与能力:1) 理解函数单调性与导数的关系:函数f(x)在区间(a,b)内可导,若f'(x)>0,则f(x)在区间(a,b)内单调递增;若f'(x)<0,则f(x)在区间(a,b)内单调递减。
2) 探究函数的单调性与导数的关系,利用导数与函数单调性的关系求函数的单调区间、画函数的简单图像。
2.过程与方法:通过利用导数研究单调性问题的研究过程,引导学生养成自主研究的研究惯,体会知识的类比迁移,体会从特殊到一般的、数形结合的研究方法。
3.情感态度与价值观:1) 通过导数方法研究单调性问题,体会到不同数学知识间的内在联系,认识到数学是一个有机整体。
2) 通过导数研究单调性,使学生知道用导数判断函数的单调性比用单调性的定义更容易,知道导数作为研究函数的工具的实用价值。
本节课的教学重点是利用导数判断函数的单调性,并求函数的单调区间。
教学难点在于如何将导数与函数的单调性联系起来。
本节课的教学方法为启发引导式,课时安排为1课时。
教学准备包括多媒体平台和课件。
《选修11:导数的应用:单调性与极值、最值》教案
适用学科高中数学适用年级适用区域 苏教版区域课时时长(分钟)知识点 1.函数的单调性与极值;2.函数中含参数的单调性与极值。
高二 2 课时教学目标 1. 能利用导数研究函数的单调性,会用导数法求函数的单调区间.2.了解函数在某点取得极值的必要条件和充分条件. 3. 会用导数求函数的极大值和极小值教学重点 利用导数研究函数的单调性;函数极值的概念与求法 教学难点 用导数求函数单调区间的步骤;函数极值的求法【知识导图】教学过程一、导入【教学建议】 导入是一节课必备的一个环节,是为了激发学生的学习兴趣,帮助学生尽快进入学习状态。
导入的方法很多,仅举两种方法: ① 情境导入,比如讲一个和本讲内容有关的生活现象; ② 温故知新,在知识体系中,从学生已有知识入手,揭示本节知识与旧知识的关系,帮学生建立知识网络。
函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减 的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们 可以对数量的变化规律有一个基本的了解.函数的单调性与函数的导数一样都是反映函数变 化情况的,那么函数的单调性与函数的导数是否有着某种内在的联系呢?二、知识讲解考点 1 导函数判断函数的单调性 用导数求函数 f (x) 单调性的步骤: (1)明确函数 f (x) 的定义域,并求函数 f (x) 的导函数 f (x) ; (2)若导函数 f (x) 0( f (x) 0) 时,并求对应的解集; (3)列表,确定函数 f (x) 的单调性; (4)下结论,写出函数 f (x) 的单调递增区间和单调递减区间。
注意:导函数看正负,原函数看增减。
考点 2 极值用导数求函数 f (x) 极值的步骤:(1)明确函数 f (x) 的定义域,并求函数 f (x) 的导函数 f (x) ; (2)求方程 f / (x) 0 的根; (3)检验 f (x) 在方程 f (x) 0 的根的左右的符号,如果在根的左侧附近为正,右侧附近 为负,那么函数 f (x) 在这个根处取得极大值,这个根叫做函数的极大值点;如果在根的右 侧附近为正,左侧附近为负,那么函数 f (x) 在这个根处取得极小值,这个根叫做函数的极小值点。
导数的单调性、极值、最值辅导教案
斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.思维升华(1)导函数的零点并不一定就是原函数的极值点.所以在求出导函数的零点后一定要注意分析这个零点是不是原函数的极值点.(2)若函数y=f(x)在区间(a,b)内有极值,那么y=f(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值.设f(x)=e x1+ax2,其中a为正实数.(1)当a=43时,求f(x)的极值点;(2)若f(x)为R上的单调函数,求a的取值范围.题型三利用导数求函数的最值例3已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值.思维升华(1)求解函数的最值时,要先求函数y=f(x)在(a,b)内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.(2)可以利用列表法研究函数在一个区间上的变化情况.已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.四、易错题型利用导数求函数的最值问题典例:已知函数f(x)=ln x-ax (a∈R).(1)求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在[1,2]上的最小值.答题模板用导数法求给定区间上的函数的最值问题一般可用以下几步答题第一步:(求导数)求函数f(x)的导数f′(x);第二步:(求极值)求f(x)在给定区间上的单调性和极值;第三步:(求端点值)求f(x)在给定区间上的端点值;第四步:(求最值)将f(x)的各极值与f(x)的端点值进行比较,确定f(x)的最大值与最小值;第五步:(反思)反思回顾,查看关键点,易错点和解题规范.五、课堂小测A组专项基础训练1.函数y=(3-x2)e x的单调递增区间是()A.(-∞,0) B.(0,+∞)C.(-∞,-3)和(1,+∞) D.(-3,1)2.若函数y=f(x)的导函数y=f′(x)的图象如图所示,则y=f(x)的图象可能为()3.设a∈R,若函数y=e x+ax有大于零的极值点,则()A.a<-1 B.a>-1。
函数的极值与导数(教案)
函数的极值与导数(教案)第一章:极值的概念教学目标:1. 理解极值的概念;2. 能够找出函数的极值点;3. 能够判断函数的极值类型。
教学内容:1. 引入极值的概念;2. 讲解极值的判断方法;3. 举例讲解如何找出函数的极值点;4. 讲解极大值和极小值的概念;5. 举例讲解如何判断函数的极大值和极小值。
教学活动:1. 引入极值的概念,引导学生思考什么是极值;2. 通过示例讲解如何找出函数的极值点,引导学生动手尝试;3. 讲解极大值和极小值的概念,引导学生理解极大值和极小值的区别;4. 通过示例讲解如何判断函数的极大值和极小值,引导学生进行判断。
作业布置:1. 练习找出给定函数的极值点;2. 练习判断给定函数的极大值和极小值。
第二章:导数的基本概念教学目标:1. 理解导数的概念;2. 能够计算常见函数的导数;3. 能够利用导数判断函数的单调性。
教学内容:1. 引入导数的概念;2. 讲解导数的计算方法;3. 举例讲解如何利用导数判断函数的单调性;4. 讲解导数的应用。
教学活动:1. 引入导数的概念,引导学生思考什么是导数;2. 通过示例讲解如何计算常见函数的导数,引导学生动手尝试;3. 讲解导数的应用,引导学生理解导数在实际问题中的应用;4. 通过示例讲解如何利用导数判断函数的单调性,引导学生进行判断。
作业布置:1. 练习计算给定函数的导数;2. 练习利用导数判断给定函数的单调性。
第三章:函数的单调性教学目标:1. 理解函数单调性的概念;2. 能够利用导数判断函数的单调性;3. 能够找出函数的单调区间。
教学内容:1. 引入函数单调性的概念;2. 讲解如何利用导数判断函数的单调性;3. 举例讲解如何找出函数的单调区间;4. 讲解函数单调性的应用。
教学活动:1. 引入函数单调性的概念,引导学生思考什么是函数单调性;2. 通过示例讲解如何利用导数判断函数的单调性,引导学生动手尝试;3. 讲解如何找出函数的单调区间,引导学生理解单调区间的概念;4. 通过示例讲解如何找出给定函数的单调区间,引导学生进行判断。
导数单调区间、极值、最值问题教案
、教学过程设计一、复习、检查上次课重点知识二、梳理本节课重要知识1、函数的单调性(1)导数的符号与函数的单调性:一般地,设函数()y f x=在某个区间内可导,则若'()0()f x f x>则为增函数;若'()0()f x f x<则为减函数;若在某个区间内恒有'()0f x=,则在这一区间上为常函数。
(2)利用导数求函数单调性的步骤(Ⅰ)确定函数()f x的定义域;(Ⅱ)求导数'()f x;(Ⅲ)令'()0f x<,解出相应的x的范围当0)('>xf时,()f x在相应区间上为增函数;当'()0f x<时在相应区间上为减函数。
(3)强调与认知(Ⅰ)利用导数讨论函数的单调区间,首先要确定函数的定义域D,并且解决问题的过程中始终立足于定义域D 。
若由不等式0)('>x f 确定的x 的取值集合为A ,由'()0f x <确定的x 的取值范围为B ,则应用;(Ⅱ)在某一区间内0)('>x f (或'()0f x <)是函数()f x 在这一区间上为增(或减)函数的充分(不必要)条件。
因此方程'()0f x =的根不一定是增、减区间的分界点,并且在对函数划分单调区间时,除去确定'()0f x =的根之外,还要注意在定义域内的不连续点和不可导点,它们也可能是增、减区间的分界点。
举例:(1)3()f x x =是R 上的可导函数,也是R 上的单调函数,但是当x=0时,'()0f x = 。
(2)()f x x =在点x=0处连续,点x=0处不可导,但()f x 在(-∞,0)内递减,在(0,+∞)内递增。
2、函数的极值(1)函数的极值的定义设函数()f x 在点0x 附近有定义,如果对0x 附近的所有点,都有0()()f x f x <,则说0()f x 是函数()f x 的一个极大值,记作;如果对0x 附近的所有点,都有0()()f x f x >,则说0()f x 是函数()f x 的一个极小值,记作。
函数的极值与导数的教案
函数的极值与导数一、教学目标1. 理解导数的定义和几何意义2. 学会求函数的导数3. 理解函数的极值概念4. 学会利用导数研究函数的极值二、教学内容1. 导数的定义和几何意义2. 常见函数的导数3. 函数的极值概念4. 利用导数研究函数的单调性5. 利用导数求函数的极值三、教学重点与难点1. 重点:导数的定义和几何意义,常见函数的导数,函数的极值概念,利用导数求函数的极值2. 难点:导数的运算法则,利用导数研究函数的单调性,求函数的极值四、教学方法1. 采用讲授法讲解导数的定义、几何意义、常见函数的导数及函数的极值概念2. 利用例题解析法讲解利用导数研究函数的单调性和求函数的极值3. 组织学生进行小组讨论和互动,巩固所学知识五、教学过程1. 导入:复习导数的定义和几何意义,引导学生思考如何求函数的导数2. 新课:讲解常见函数的导数,引导学生掌握求导数的方法3. 案例分析:利用导数研究函数的单调性,求函数的极值,引导学生理解和应用所学知识4. 练习与讨论:布置练习题,组织学生进行小组讨论,解答练习题5. 总结与拓展:总结本节课的主要内容,布置课后作业,引导学生思考如何利用导数研究更复杂的函数极值问题六、课后作业1. 复习导数的定义和几何意义,常见函数的导数2. 练习求函数的导数3. 利用导数研究函数的单调性,求函数的极值七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态2. 练习与讨论:评估学生在练习题和小组讨论中的表现,检验学生对知识的掌握程度3. 课后作业:检查课后作业的完成情况,评估学生对课堂所学知识的巩固程度六、教学策略的调整1. 根据学生的课堂反馈,适时调整教学节奏和难度,确保学生能够跟上教学进度。
2. 对于学生掌握不够扎实的知识点,可以通过举例、讲解、练习等多种方式加强巩固。
3. 鼓励学生提出问题,充分调动学生的主动学习积极性,提高课堂互动性。
七、教学案例分析1. 通过分析具体案例,让学生理解导数在实际问题中的应用,例如在物理学中的速度、加速度的计算。
《函数的极值与导数》教案完美版
《函数的极值与导数》教案完美版第一章:极值的概念与性质1.1 极值的定义引入极值的概念,解释函数在某一点的局部性质。
通过图形和实例直观展示极值的存在。
1.2 极值的判定条件介绍函数的导数与极值的关系,讲解导数为零的必要性和充分性。
分析导数为正和导数为负时函数的单调性,得出极值的判定条件。
1.3 极值的判定定理介绍罗尔定理、拉格朗日中值定理和柯西中值定理在极值判定中的应用。
证明极值的判定定理,并通过实例进行验证。
第二章:导数与函数的单调性2.1 导数的定义与计算引入导数的概念,解释导数表示函数在某一点的瞬时变化率。
讲解导数的计算规则,包括常数函数、幂函数、指数函数和三角函数的导数。
2.2 导数与函数的单调性分析导数正负与函数单调性的关系,得出单调递增和单调递减的定义。
通过实例和图形展示导数与函数单调性的联系。
2.3 单调性的应用讲解利用单调性解决函数极值问题的方法。
分析函数的单调区间和极值点,得出函数的单调性对极值的影响。
第三章:函数的极值点与导数3.1 极值点的定义与判定引入极值点的概念,解释极值点是函数导数为零或不存在的点。
讲解极值点的判定方法,包括导数为零和导数不存在的条件。
3.2 极值点的求解方法介绍求解极值点的方法,包括解析法和数值法。
讲解如何利用导数和图形求解函数的极值点。
3.3 极值点的应用分析极值点在实际问题中的应用,如最优化问题。
举例说明如何利用极值点解决实际问题。
第四章:函数的拐点与导数4.1 拐点的定义与判定引入拐点的概念,解释拐点是函数导数由正变负或由负变正的点。
讲解拐点的判定方法,包括导数的正负变化和二阶导数的符号。
4.2 拐点的求解方法介绍求解拐点的方法,包括解析法和数值法。
讲解如何利用导数和图形求解函数的拐点。
4.3 拐点的应用分析拐点在实际问题中的应用,如曲线拟合和物体的运动。
举例说明如何利用拐点解决实际问题。
第五章:函数的极值与图像5.1 极值与函数图像的关系分析极值点在函数图像中的位置和特征。
数学教案导数复习函数的极值与最值,导数的综合运用
数学教案-导数复习函数的极值与最值,导数的综合运用教案章节:一、函数的极值概念与判定1. 学习目标:理解函数极值的概念,掌握函数极值的判定方法。
2. 教学内容:介绍函数极值的定义,分析函数极值的判定条件,举例说明函数极值的判定方法。
3. 教学过程:(1) 引入函数极值的概念,解释函数在某一点取得最大值或最小值的意义。
(2) 讲解函数极值的判定条件,如导数为零或不存在,以及函数在该点附近的单调性变化。
(3) 举例说明函数极值的判定方法,如通过导数的正负变化来判断函数的增减性。
二、函数的最值问题1. 学习目标:理解函数最值的概念,掌握函数最值的求解方法。
2. 教学内容:介绍函数最值的概念,分析函数最值的求解方法,举例说明函数最值的求解过程。
3. 教学过程:(1) 引入函数最值的概念,解释函数在整个定义域内取得最大值或最小值的意义。
(2) 讲解函数最值的求解方法,如通过导数的研究来确定函数的极值点,进而求得最值。
(3) 举例说明函数最值的求解过程,如给定一个函数,求其在定义域内的最大值和最小值。
三、导数的综合运用1. 学习目标:掌握导数的综合运用方法,能够运用导数解决实际问题。
2. 教学内容:介绍导数的综合运用方法,分析导数在实际问题中的应用,举例说明导数的综合运用过程。
3. 教学过程:(1) 讲解导数的综合运用方法,如通过导数研究函数的单调性、极值、最值等。
(2) 分析导数在实际问题中的应用,如优化问题、速度与加速度的关系等。
(3) 举例说明导数的综合运用过程,如给定一个实际问题,运用导数来解决问题。
四、实例分析与练习1. 学习目标:通过实例分析与练习,巩固函数极值与最值的求解方法,提高导数的综合运用能力。
2. 教学内容:分析实例问题,运用函数极值与最值的求解方法,进行导数的综合运用练习。
3. 教学过程:(1) 分析实例问题,引导学生运用函数极值与最值的求解方法来解决问题。
(2) 进行导数的综合运用练习,让学生通过实际问题来运用导数,巩固所学知识。
函数的单调性极值最值与导数导学案
学习好资料 欢迎下载高二数学复习学案二 导数与函数的单调性 一目标定位 1、了解函数的单调性与导数的关系;2、能利用导数研究函数的单调性;3、会求函数的单调区间。
二、知识总结:1、函数的单调性与其导数正负的关系: 在某个区间(),a b 内,如果 ,那么函数()y f x =在这个区间内单调递增;在某个区间(),a b 内,如果 ,那么函数()y f x =在这个区间内单调递减;若恒有 ,则函数()y f x =在这个区间内是常用数函数。
2、利用导数判断函数值的增减快慢:如果一个函数在某一范围内导数的绝对值 ,那么函数在这个范围内变化的快,这时函数的图象比较“陡峭”(向上或向下);反之,若函数在这范围内导数的绝对值 ,那么函数在这个范围内变化的慢,这时函数的图象比较“平缓”。
三、考题类型: 例1、(1)判断函数()31y ax a R =-∈在(),-∞+∞上的单调性。
(2)讨论函数()x xf x a a -=+(0a >且1a ≠)的单调性。
例2、求下列函数的单调区间:(1)()232ln f x x x =-;(2)()()21ln ,0f x x a x a x =-+->;(3)()22f x x x =-。
课后练习 1、若()()320f x ax bx cx d a =+++>为增函数,则() A 240b ac -> B 、0,0b c >> C 、0,0b c => D 、230b ac -<2、函数()3229121f x x x x =-++的单调递减区间是( ) A 、()1,2 B 、()2,+∞ C 、(),1-∞ D 、()()1,1,2,-+∞3、函数()32f x x ax =+-在区间()1,+∞内是增函数,则a ∈( )A 、[)3,+∞B 、[)3,-+∞C 、()3,-+∞D 、(),3-∞-4、函数cos sin y x x x =-在下面哪个区间上是增函数( ) A 、3,22ππ⎛⎫ ⎪⎝⎭ B 、(),2ππ C 、3,322ππ⎛⎫ ⎪⎝⎭ D 、()2,3ππ5、已知对任意实数x 有()()f x f x -=-,()()g x g x -=,且0x >时,()()0,0f x g x ''>>,则0x <时( )A 、()()0,0f x g x ''>>B 、()()0,0f x g x ''><C 、()()0,0f x g x ''<>D 、()()0,0f x g x ''<<6、设()(),f x g x 在[],a b 上可导,且()()f x g x ''>,则当a x b <<时,有( ) A 、()()f x g x > B 、()()f x g x < C 、()()()()f x g a g x f a +>+ D 、()()()()f x g b g x f b +>+7、函数()321363f x x x x =-+++的单调减区间是 ;单调增区间是 。
导数与函数的单调性、极值、最值----教学设计说明
三、学习者特征分析我所教两个班级(高三新接手):一个重点班一个普通班,重点班基础较好,普通班起点较低。
对学生的了解方式:两个多月的观察和接触了解以及高二期末成绩和高三第一次月考成绩,另外,还做了数学学习兴趣和困惑书面调查。
教学策略的选择设计立足学生实际选题,关注高考的动向,既重视基础,又注重对学生数学能力与综合素质的提高。
五、教学重点1、利用导数研究函数的单调性、极值、最值可列表观察函数的变化情况,直观而且条理,减少失分.2、求极值、最值时,要求步骤规、表格齐全;含参数时,要讨论参数的大小.教学难点 1 .注意定义域优先的原则,求函数的单调区间和极值点必须在函数的定义域进行.2.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.3.解题时要注意区分求单调性和已知单调性的问题,处理好f'(x)二0时的情况;区分极值六、教学过程因此当a w 0时,f(x)的单调增区间为R, (3) f(x)为增函当a>0时,f(x)的单调增区间是[In a, + ). 数充要条件是(2) •/f' (x)= e x—a w 0 在(-2,3)上恒成立. 对任意的二a>e x在x€ (—2,3)上恒成立. x€ (a, b)都有又—2<x<3,二e 2<e X<e3,只需a》e3.f' (x) > 0 且在当a= e3时,f' (x) = e x—e3在x€ (—2,3)上,(a , b)的任一f (x)<0,即f(x)在(一2,3)上为减函数,••• a> e3.非空子区间上故存在实数a>e3,使f(x)在(—2,3)上为减函数.f' (x)丰 0.应注意此时式子中的等号不能省略,否则漏解. 直击高考1卷12 .设在单调递增,,则是的(B ) 学生小组合A.充分不必要条件 E.必要不充分条件作学习,展示C.充分必要条件D.既不充分也不必要条件成果,其他组点评学生自主完让学生明确题型二利用导数求函数的极值(1)导函数的成解答过程,教师启迪⑴通过f' (2)的值确定a;(2)解f' (x)= 0,然后要讨论零点并不一定然后利用投两个零点的大小确定函数的极值.就是函数的极影展示纠正1值点.所以在例2 设a>0,函数f(x)= ^x2—(a + 1)x + a(1 + In x). 错误,规书写(1)求曲线y= f(x)在(2, f(2))处与直线y=—x+ 1垂直的切线方程;求出导函数的(2)求函数f(x)的极值.零点后一定要xe设f(x)= , 2,其中a为正实数.1 + ax注意分析这个(1)当a =扌时,求f (x )的极值点;⑵若f(x)为R 上的单调函数,求 a 的取值围.21 + ax —2 ax 解 对f(x)求导得f ' (x) = e x •.①1 + ax2 2(1)当 a = 3时,若 f ' (x)= 0,贝U 4x 2— 8x + 3= 0, 3 1解得X 1= 2, X 2= 2•结合①,可知⑵若f(x)为R 上的单调函数,则f ' (x)在R 上不变号,结合①与条件a>0 ,知 ax 2 — 2ax + 1 > 0 在 R 上恒成立,即△= 4a 2— 4a = 4a(a — 1)< 0, 由此并结合a>0,知0<a w 1.所以a 的取值围为{a|0<a w 1}.直击高考2(2009津20)(本小题满分 12分)已知函数 f(x) (x 2 ax 2a 2 3a)e x (x R),其中 a R (1)当a 0时,求曲线y f(x)在点(1,f (1))处的切线的斜率.一"■2(2)当a —时,求函数f (x)的单调区间与极值。
高考数学 导数与函数的单调性、极值与最值 教案 含解析题
第二节 导数在研究函数中的应用第1课时 系统知识牢基础——导数与函数的单调性、极值与最值知识点一 利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与f ′(x )的关系 (1)若f ′(x )>0,则f (x )在这个区间上单调递增. (2)若f ′(x )<0,则f (x )在这个区间上单调递减. (3)若f ′(x )=0,则f (x )在这个区间上是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)根据结果确定f (x )的单调性及单调区间.[提醒] (1)讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(2)有相同单调性的单调区间不止一个时,用“,”隔开或用“和”连接,不能用“∪”连接. (3)若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.[重温经典]1.(多选·教材改编题)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下列判断正确的是( ) A .在区间(-2,1)上f (x )是增函数 B .在区间(2,3)上f (x )是减函数 C .在区间(4,5)上f (x )是增函数 D .当x =2时,f (x )取到极大值 答案:BCD2.(教材改编题)函数y =x 4-2x 2+5的单调递减区间为( ) A .(-∞,-1)和(0,1) B .[-1,0]和[1,+∞) C .[-1,1] D .(-∞,-1]和[1,+∞)答案:A3.(易错题)若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是( ) A.⎝⎛⎭⎫13,+∞ B .⎝⎛⎦⎤-∞,13C.⎣⎡⎭⎫13,+∞ D .⎝⎛⎭⎫-∞,13 解析:选C y ′=3x 2+2x +m ,由条件知y ′≥0在R 上恒成立,∴Δ=4-12m ≤0,∴m ≥13.4.若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x 在区间(1,+∞)上恒成立.因为x >1,所以0<1x <1,所以k ≥1.故选D.5.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围是________.解析:∵y ′=-4x 2+a ,且y 有三个单调区间,∴方程y ′=-4x 2+a =0有两个不等的实根,∴Δ=02-4×(-4)×a >0,∴a >0. 答案:(0,+∞)6.设函数f (x )在(a ,b )上的导函数为f ′(x ),f ′(x )在(a ,b )上的导函数为f ″(x ),若在(a ,b )上,f ″(x )<0恒成立,则称函数f (x )在(a ,b )上为“凸函数”.已知f (x )=x 44-t 3x 3+32x 2在(1,4)上为“凸函数”,则实数t 的取值范围是________.解析:由f (x )=x 44-t 3x 3+32x 2可得f ′(x )=x 3-tx 2+3x ,f ″(x )=3x 2-2tx +3,∵f (x )在(1,4)上为“凸函数”,∴x ∈(1,4)时,3x 2-2tx +3<0恒成立,∴t >32⎝⎛⎭⎫x +1x 恒成立. 令g (x )=32⎝⎛⎭⎫x +1x ,∵g (x )在(1,4)上单调递增, ∴t ≥g (4)=518.∴实数t 的取值范围是⎣⎡⎭⎫518,+∞. 答案:⎣⎡⎭⎫518,+∞知识点二 利用导数研究函数的极值 1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值. 2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.[提醒] (1)极值点不是点,若函数f (x )在x 1处取得极大值,则x 1为极大值点,极大值为f (x 1);在x 2处取得极小值,则x 2为极小值点,极小值为f (x 2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.(3)f ′(x 0)=0是x 0为f (x )的极值点的必要而非充分条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点.[重温经典]1.(多选)(2021·福州模拟)下列函数中,存在极值点的是( ) A .y =x -1xB .y =2|x |C .y =-2x 3-xD .y =x ln x解析:选BD 由题意函数y =x -1x ,则y ′=1+1x2>0,所以函数y =x -1x 在(-∞,0),(0,+∞)内单调递增,没有极值点;函数y =2|x |=⎩⎪⎨⎪⎧2x ,x ≥0,2-x ,x <0,根据指数函数的图象与性质可得,当x <0时,函数y =2|x |单调递减,当x >0时,函数y =2|x |单调递增,所以函数y =2|x |在x =0处取得极小值;函数y =-2x 3-x ,则y ′=-6x 2-1<0,所以函数y =-2x 3-x 在R 上单调递减,没有极值点;函数y =x ln x ,则y ′=ln x +1,当x ∈⎝⎛⎭⎫0,1e 时,y ′<0,函数单调递减,当x ∈⎝⎛⎭⎫1e ,+∞时,y ′>0,函数单调递增,当x =1e 时,函数取得极小值,故选B 、D.2.(教材改编题)如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( ) A .1 B .2 C .3D .4解析:选A 由图象及极值点的定义知,f (x )只有一个极小值点.3.(教材改编题)若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 的值为( ) A .2 B .3 C .4D .5解析:选D f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2a ×(-3)+3=0,解得a =5.4.(多选)材料:函数是描述客观世界变化规律的重要数学模型,在现行的高等数学与数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的,如函数f(x)=x x(x>0),我们可以作变形:f(x)=x x=eln x x=e x ln x=e t(t=x ln x),所以f(x)可看作是由函数f(t)=e t和g(x)=x ln x复合而成的,即f(x)=x x(x>0)为初等函数.根据以上材料,对于初等函数h(x)=x 1x(x>0)的说法正确的是()A.无极小值B.有极小值1C.无极大值D.有极大值e 1 e解析:选AD根据材料知:h(x)=x 1x=e1ln xx=e1ln xx,所以h′(x)=e 1ln xx·⎝⎛⎭⎫1x ln x′=e1ln xx·⎝⎛⎭⎫-1x2ln x+1x2=1x2e1ln xx(1-ln x),令h′(x)=0得x=e,当0<x<e时,h′(x)>0,此时函数h(x)单调递增;当x>e时,h′(x)<0,此时函数h(x)单调递减.所以h(x)有极大值且为h(e)=e 1e,无极小值.5.若x=-2是函数f(x)=(x2+ax-1)e x的极值点,则f′(-2)=________,f(x)的极小值为________.解析:由函数f(x)=(x2+ax-1)e x可得f′(x)=(2x+a)e x+(x2+ax-1)e x,因为x=-2是函数f(x)的极值点,所以f′(-2)=(-4+a)e-2+(4-2a-1)e-2=0,即-4+a+3-2a=0,解得a=-1.所以f′(x)=(x2+x-2)e x.令f′(x)=0可得x=-2或x=1.当x<-2或x>1时,f′(x)>0,此时函数f(x)为增函数,当-2<x<1时,f′(x)<0,此时函数f(x)为减函数,所以当x=1时函数f(x)取得极小值,极小值为f(1)=(12-1-1)×e1=-e.答案:0-e6.设x1,x2是函数f(x)=x3-2ax2+a2x的两个极值点,若x1<2<x2,则实数a的取值范围是________.解析:由题意得f′(x)=3x2-4ax+a2的两个零点x1,x2满足x1<2<x2,所以f′(2)=12-8a+a2<0,解得2<a<6.答案:(2,6)知识点三 函数的最值1.在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.2.若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.[提醒] 求函数最值时,易误认为极值点就是最值点,不通过比较就下结论,这种做法是错误的.[重温经典]1.(教材改编题)函数f (x )=ln x -x 在区间(0,e]上的最大值为( ) A .1-e B .-1 C .-eD .0解析:选B 因为f ′(x )=1x -1=1-x x ,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,e]时,f ′(x )<0,所以f (x )的单调递增区间是(0,1),单调递减区间是(1,e],所以当x =1时,f (x )取得最大值f (1)=ln 1-1=-1.2.(教材改编题)函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值D .既无最大值,也无最小值解析:选D f ′(x )=4x 3-4=4(x -1)(x 2+x +1).令f ′(x )=0,得x =1.又x ∈(-1,1)且1∉(-1,1),∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D. 3.(教材改编题)函数y =x +2cos x 在区间⎣⎡⎦⎤0,π2上的最大值是________. 答案:3+π64.(易错题)已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________. 答案:(-4,-2)5.函数f (x )=x e -x ,x ∈[0,4]的最小值为________. 解析:f ′(x )=e -x -x e -x =e -x (1-x ). 令f ′(x )=0,得x =1(e -x >0), 又f (1)=1e >0,f (0)=0,f (4)=4e 4>0,所以f (x )的最小值为0. 答案:06.已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________.解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1).∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12时,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.答案:-332。
函数的极值与导数(教案
函数的极值与导数第一章:函数极值概念的引入1.1 教学目标让学生了解极值的概念,理解极大值和极小值的区别。
学会通过图像来观察函数的极值。
掌握利用导数求函数极值的方法。
1.2 教学内容函数极值的定义利用图像观察函数极值利用导数求函数极值1.3 教学步骤1. 引入极值的概念,让学生通过具体的例子来理解极大值和极小值。
2. 通过图像来观察函数的极值,引导学生学会从图像中找出极大值和极小值。
3. 讲解利用导数求函数极值的方法,让学生通过例题来掌握这个方法。
1.4 作业布置f(x) = x^3 3x^2 + 3x 1g(x) = x^2 4x + 4第二章:函数的单调性2.1 教学目标让学生理解函数单调性的概念,学会判断函数的单调性。
掌握利用导数来判断函数的单调性。
2.2 教学内容函数单调性的定义利用导数判断函数单调性2.3 教学步骤1. 引入函数单调性的概念,让学生通过具体的例子来理解函数单调性。
2. 讲解利用导数来判断函数单调性的方法,让学生通过例题来掌握这个方法。
2.4 作业布置h(x) = x^3 3xk(x) = x^2 4x + 3第三章:函数的极值定理3.1 教学目标让学生了解函数的极值定理,学会应用极值定理来解决问题。
3.2 教学内容函数的极值定理3.3 教学步骤1. 讲解函数的极值定理,让学生理解极值定理的意义。
2. 通过例题让学生学会应用极值定理来解决问题。
3.4 作业布置求函数f(x) = x^3 3x^2 + 3x 1 的极大值和极小值。
第四章:函数的拐点4.1 教学目标让学生了解拐点的概念,学会通过导数来找函数的拐点。
4.2 教学内容拐点的定义利用导数找拐点4.3 教学步骤1. 引入拐点的概念,让学生通过具体的例子来理解拐点。
2. 讲解利用导数来找拐点的方法,让学生通过例题来掌握这个方法。
4.4 作业布置m(x) = x^3 3xn(x) = x^2 4x + 4第五章:函数的单调性与极值的应用5.1 教学目标让学生学会运用函数的单调性和极值来解决实际问题。
函数单调性与极值教案
函数单调性与极值(三课时)第一课时教学目的:进一步熟悉函数单调性的定义,熟悉用定义证明函数单调性;直观地理解导数的符号与单调性的关系,能用求导的方法判断函数单调性以及求函数单调区间教学重点:导数与函数单调性的关系教学难点:导数与函数单调性的关系教学过程:一、复习:1.多项式的导数求法,函数在某一点处的导数与这一点处的切线斜率的关系巩固练习:(1)若曲线y=x 3在点P处的切线的斜率等于3,则点P的坐标为( )(A) (2,8) (B) (-2,-8) (C) (-1,-1)或(1,1) (D) (-1/2,-1/8)(2)若曲线y=x 5/5上一点M处的切线与直线y=3-x 垂直,则此切线方程为( )(A) 5x+5y-4=0 (B) 5x-5y-4=0 (C) 5x-5y+4=0 (D)以上皆非(3)曲线y=x 3/3-x 2+5在点A处的切线的倾角为3π/4,则A的坐标为 .2.调递增与单调递减的意义3.如何用定义法证明函数的单调性例1 已知函数y=2x 3-6x 2+7,求证:这个函数在区间(0,2)上是单调递增的.引入:在上述运算过程中我们发现运算量比较大,而且还涉及到符号判断,有一定的难度。
但是函数单调性体现出了函数值y 随自变量x 的变化而变化的情况,而导数也正是研究自变量的增加量与函数值的增加量之间的关系,于是我们设想一下能否利用导数来研究单调性呢?若函数在区间(a,b)内单调递增,则当x 增大时,y 变小,因此当自变量x 的增量△x 大于0时,函数值y 的增量△y 也大于零,于是为正,当△x 无限趋x y ∆∆近于零时,的根限值为正,因此对应的导数值为正,反之亦然.xy ∆∆同理,若函数在区间(a,b)内单调递减,则在(a,b)内的每一点处的导数值为负,反之亦然.说明:引入时可用几何画板演示说明:一般地,设函数y=f(x)在某个区间内有导数,如果在这个区间内>0,那么'y y=f(x)为这个区间内的增函数;如果在这个区间内<0,那么y=f(x)为这个区间'y内的减函数.回顾:证明函数在某区间上的单调性的常用方法:(1)单调性定义法(2)导数判断法二、例题例2 确定函数y=2x 3-6x 2+7的单调区间,并分别说明在各单调区间内的单调性回顾:用导数法确定函数的单调性时,一般的步骤是:(1)求出函数的导函数)('x f (2)求解不等式>0,求得其解集,再根据解集写出单调递增区间)('x f (3)求解不等式<0,求得其解集,再根据解集写出单调递减区间)('x f 值得注意的是不等式的解集与单调区间不是同一个概念,若解是由几部份的“并”组成的,则单调区间不应有“并集”运算出现。
高中数学教案函数的单调性与极值
高中数学教案——函数的单调性与极值教案概述:本教案旨在帮助学生理解并掌握函数单调性的概念,以及如何利用导数研究函数的单调性和极值。
通过具体的例题和练习,使学生能够熟练运用单调性和极值的性质解决实际问题。
教学目标:1. 了解函数单调性的概念,理解单调增和单调减的定义。
2. 学习利用导数判断函数的单调性。
3. 学习函数的极值概念,理解极大值和极小值的区别。
4. 学会利用导数研究函数的极值问题。
5. 能够运用单调性和极值的性质解决实际问题。
教学重点:1. 函数单调性的定义及其判断方法。
2. 导数与函数单调性的关系。
3. 函数极值的定义及其求法。
4. 利用单调性和极值解决实际问题。
教学难点:1. 导数在判断函数单调性中的应用。
2. 函数极值的求解和应用。
教学准备:1. 教学PPT。
2. 相关例题和练习题。
教学过程:一、导入(5分钟)1. 引入函数单调性的概念,让学生回顾初中阶段学习的单调增和单调减的概念。
2. 提问:同学们认为函数的单调性有哪些实际应用呢?二、新课讲解(15分钟)1. 讲解函数单调性的定义,通过具体例子让学生理解单调增和单调减的概念。
2. 引入导数的概念,讲解导数与函数单调性的关系。
3. 举例说明如何利用导数判断函数的单调性。
三、课堂练习(10分钟)1. 让学生独立完成教材中的相关练习题,巩固对函数单调性的理解。
2. 引导学生思考练习题背后的原理和方法。
四、讲解函数极值(15分钟)1. 引入函数极值的概念,让学生理解极大值和极小值的区别。
2. 讲解如何利用导数研究函数的极值问题。
3. 通过具体例子演示如何求解函数的极值。
五、课堂练习(10分钟)1. 让学生独立完成教材中的相关练习题,巩固对函数极值的理解。
2. 引导学生思考练习题背后的原理和方法。
教学反思:通过本节课的教学,学生应掌握函数单调性的概念和判断方法,以及如何利用导数研究函数的单调性和极值。
在教学过程中,要注意引导学生思考,激发学生的学习兴趣,提高学生的动手能力。
《§4.2 导数与函数的单调性、极值、最值》教学设计
《§4.2 导数与函数的单调性、极值、最值》教学设计〖考纲要求〗①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次);②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);③会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次); 〖知识梳理〗1、函数的单调性与导数 函数()f x 在区间(,)a b 内的导数为()f x ',若满足:(1)()>0f x ',则()f x 在区间(,)a b 内 ; (2)()<0f x ',则()f x 在区间(,)a b 内 ; (3)()=0f x ',则()f x 在区间(,)a b 内 . 2、函数的极值与导数 若0x 满足()=0f x ',且在0x 的两侧的导数 ,则0x 是()f x 的 , 0()f x 是()f x 的 .(1) 如果()f x '在0x 两侧附近满足“左正右负”,则0x 是f (x )的极 值点;(2) 如果()f x '在0x 两侧附近满足“左负右正”,则0x 是f (x )的极 值点.注意:①极值点处,导数为 ,导数为0的点 是极值点.②一个函数的极大值 大于极小值. 3、函数的最值与导数函数()f x 在区间[,]a b 内的最值在区间的端点处或区间内的 点处取得.〖例题精讲〗例1、已知函数21()(2)3f x x x =+.(1)求()f x 的单调区间;(2) 求()f x 的极值.例2、已知函数32()=+3+9+.f x x x x a (1)求f (x )的单调区间; (2)若f (x )在区间[-2,2]上的最大值为20,求函数f (x )在该区间上的最小值.〖巩固训练〗1、函数x e x x f )3()(-=增区间是 ,减区间是 .2、函数)0(ln )(>=x x x x f 的单调递减区间是 .3、已知函数32()3f x x ax x =-+,且x =3是()f x 的极值点,则实数a = .4、函数2()=ln 2x f x x -的单调递增区间为 递减区间为 .5、设'()f x 是函数()f x 的导数,'()y f x =的图像如图所示,则()y f x =的图像最有可能的是( ).6、函数3()33f x x bx b =-+在(0,1)内有极小值,则( ).A .01b <<B .1b <C .0b >D .12b <7、求函数31443y x x =-+的单调区间与极值.Axy 1 2 xyB12xyC0 12 xyD0 128、已知函数2()2ln f x x x a =-+(a 为实常数).(1)求)(x f 的单调区间;(2)求()f x 在区间1[,2]2上的最大值与最小值.。
高中数学教案函数的极值和导数
高中数学教案——函数的极值和导数教案内容:一、教学目标1. 理解导数的概念,掌握导数的计算方法。
2. 掌握函数的单调性,能够判断函数的单调区间。
3. 理解函数的极值概念,能够求出函数的极值。
二、教学重点与难点1. 重点:导数的计算方法,函数的单调性,函数的极值。
2. 难点:导数的应用,函数的极值的求法。
三、教学方法采用讲解法、例题解析法、学生自主探究法。
四、教学准备1. 教学课件。
2. 相关例题及练习题。
五、教学过程1. 导入:回顾初中阶段学习的函数图像,引导学生思考函数的增减性。
2. 讲解导数的概念:定义域内的函数在某一点的导数,即为该点的切线斜率。
引导学生理解导数的几何意义。
3. 导数的计算:讲解基本函数的导数公式,引导学生掌握导数的计算方法。
4. 函数的单调性:通过例题,讲解函数单调性的判断方法,引导学生掌握如何判断函数的单调区间。
5. 函数的极值:讲解函数极值的概念,通过例题,引导学生掌握求函数极值的方法。
6. 课堂练习:布置相关练习题,让学生巩固所学知识。
7. 总结:对本节课的内容进行总结,强调重点知识点。
8. 课后作业:布置适量作业,巩固所学知识。
注意:在教学过程中,要注重引导学生主动思考,培养学生的动手能力及解决问题的能力。
要及时解答学生的疑问,确保学生能够掌握所学知识。
六、教学内容与要求1. 理解曲线的切线与函数导数的关系。
2. 掌握基本函数的导数求解方法。
3. 能够运用导数判断函数的单调性。
七、教学过程1. 复习导入:通过回顾上节课的内容,引导学生复习导数的基本概念和计算方法。
2. 讲解导数的几何意义:通过图形演示,解释导数表示曲线在某点的切线斜率。
3. 导数的计算:详细讲解和练习基本函数的导数求解,包括幂函数、指数函数、对数函数等。
4. 函数单调性的判断:利用导数的概念,解释如何判断函数的单调性。
5. 例题解析:通过具体例题,演示如何运用导数判断函数的单调区间和求极值。
八、教学策略1. 采用互动式教学,鼓励学生提问和参与讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学策略的选择设计立足学生实际选题,关注高考的动向,既重视基础,又注重对学生数学能力与综合素质的提高。
五、教学重点
1、利用导数研究函数的单调性、极值、最值可列表观察函数的变化情况,直观而且条理,
减少失分.
2、求极值、最值时,要求步骤规范、表格齐全;含参数时,要讨论参数的大小.
教学难点1.注意定义域优先的原则,求函数的单调区间和极值点必须在函数的定义域内进行.
2.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.
3.解题时要注意区分求单调性和已知单调性的问题,处理好f′(x)=0时的情况;区分极值
六、教学过程
教师活动学生活动设计意图
题型一利用导数研究函数的单调性
教师启迪函数的单调性和函数中的参数有关,要注意对参数的讨论.
例1已知函数f(x)=e x-ax-1.
(1)求f(x)的单调增区间;
(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值
范围,若不存在,请说明理由.
解f′(x)=e x-a,
(1)若a≤0,则f′(x)=e x-a≥0,
即f(x)在R上单调递增,
若a>0,e x-a≥0,∴e x≥a,x≥ln a. 学生自主完
成解答过程,
然后利用投
影展示,纠正
错误,规范书
写。
让学生进一步
明确(1)利用
导数的符号来
判断函数的单
调性;
(2)已知函数
的单调性求函
数范围可以转
化为不等式恒
成立问题;
因此当a ≤0时,f (x )的单调增区间为R , 当a >0时,f (x )的单调增区间是[ln a ,+∞). (2)∵f ′(x )=e x -a ≤0在(-2,3)上恒成立. ∴a ≥e x 在x ∈(-2,3)上恒成立. 又∵-2<x <3,∴e -2<e x <e 3,只需a ≥e 3. 当a =e 3时,f ′(x )=e x -e 3在x ∈(-2,3)上, f ′(x )<0,即f (x )在(-2,3)上为减函数,∴a ≥e 3. 故存在实数a ≥e 3,使f (x )在(-2,3)上为减函数.
直击高考1 江西卷12.设在
内单调递
增,
,则
是的( B )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
学生小组合作学习,展示成果,其他组
点评
(3)f (x )为增函数充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.
题型二 利用导数求函数的极值
教师启迪 (1)通过f ′(2)的值确定a ;(2)解f ′(x )=0,然后要讨论两个零点的大小确定函数的极值.
例2 设a >0,函数f (x )=1
2
x 2-(a +1)x +a (1+ln x ).
(1)求曲线y =f (x )在(2,f (2))处与直线y =-x +1垂直的切线方程; (2)求函数f (x )的极值.
设f (x )=e x
1+ax 2
,其中a 为正实数.
学生自主完成解答过程,然后利用投影展示纠正错误,规范书写
让学生明确 (1)导函数的零点并不一定就是函数的极值点.所以在求出导函数的零点后一定要注意分析这个
(1)当a =4
3
时,求f (x )的极值点;
(2)若f (x )为R 上的单调函数,求a 的取值范围. 解 对f (x )求导得f ′(x )=e x
·1+ax 2-2ax
(1+ax 2)2
.①
(1)当a =4
3时,若f ′(x )=0,则4x 2-8x +3=0,
解得x 1=32,x 2=1
2.结合①,可知
x ⎝
⎛⎭⎫-∞,12
1
2 ⎝⎛⎭
⎫12,32 32 ⎝⎛⎭
⎫32,+∞ f ′(x ) + 0 - 0 + f (x )
↗
极大值
↘
极小值
↗
所以x 1=32是极小值点,x 2=1
2
是极大值点.
(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件
a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,
由此并结合a >0,知0<a ≤1. 所以a 的取值范围为{a |0<a ≤1}.
直击高考2
(2009津20)(本小题满分12分)
已知函数22()(23)(),x
f x x ax a a e x R =+-+∈其中a R ∈
(1) 当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜
率;
(2) 当2
3
a ≠时,求函数()f x 的单调区间与极值。
学生小组合作学习,展示成果,其他组点评
零点是不是函数的极值点. (2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.
题型三 利用导数求函数的最值
教师启迪 (1)题目条件的转化:f (1)=g (1)且f ′(1)=g ′(1);
(2)可以列表观察h (x )在(-∞,2]上的变化情况,然后确定k 的取值学生自主完成解答过程,
然后利用投使学生明确 (1)求解函数
的最值时,要
范围.
例3 已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .
(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,
求a ,b 的值;
(2)当a =3,b =-9时,若函数f (x )+g (x )在区间[k,2]上的最大值为
28,求k 的取值范围.
解 (1)f ′(x )=2ax ,g ′(x )=3x 2
+b .
因为曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线, 所以f (1)=g (1)且f ′(1)=g ′(1),即a +1=1+b 且2a =3+b , 解得a =3,b =3.
(2)记h (x )=f (x )+g (x ),当a =3,b =-9时, h (x )=x 3+3x 2-9x +1,所以h ′(x )=3x 2+6x -9. 令h ′(x )=0,得x 1=-3,x 2=1.
h ′(x ),h (x )在(-∞,2]上的变化情况如下表所示: x (-∞,-3)
-3 (-3,1) 1 (1,2) 2 h ′(x ) + 0 - 0 + + h (x )
↗
28
↘
-4
↗
3
由表可知当k ≤-3时,函数h (x )在区间[k,2]上的最大值为28; 当-3<k <2时,函数h (x )在区间[k,2]上的最大值小于28. 因此k 的取值范围是(-∞,-3].
冲一冲:(12分)已知函数f (x )=(x -k )e x .
(1)求f (x )的单调区间;
(2)求f (x )在区间[0,1]上的最小值.
思维启迪 (1)解方程f ′(x )=0列表求单调区间;(2)根据(1)中表格,讨论k -1和区间[0,1]的关系求最值. 规范解答
影展示,纠正错误,规范书写。
学生小组合作学习,展示
成果,其他组点评,然后利
用投影展示,纠正错误,规
范书写。
先求函数y =f (x )在[a ,b ]内
所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得.
(2)可以利用列表法研究函数在一个区间上的变化情况.
使学生明确
(1)本题考查
求函数的单调区间,求函数
在给定区间[0,1]上的最值,属常规题。