八年级数学:角平分线的性质及判定练习(含答案)
八年级上册数学角平分线的性质与判定证明题训练 含答案
八年级上册数学角平分线的性质与判定证明题训练1.如图,在△ABC中,AD是角平分线,BD=CD,DE⊥AB,DF⊥AC,垂足分别为E,F.求证:EB=FC.2.如图,在△ABC中,∠BAC的平分线AD与BC边的垂直平分线DE交于点D,DG⊥AB,DH⊥AC,G,H为垂足.(1) 求证BG=CH.(2) 线段AB,AC与BG之间有何数量关系?证明你的结论.3.如图,已知BM,CN是△ABC的两条角平分线,相交于点P.求证点P也在∠BAC的平分线上.4.如图,点E,F分别在△ABC的边BA,BC的延长线上.BP,CP分别平分∠ABC,∠ACF,连接PA.(1) 若∠BAC=70∘,则∠BPC的度数为.(2) 求证PA是∠EAC的平分线.5.如图,在△ABC中,P是BC上一点,PR⊥AB,PS⊥AC,垂足分别为R,S,PR=PS,Q 是AC上一点,且∠CAP=∠APQ.(1) 求证:QP∥AR.(2) AR,AS相等吗?请说明理由.6.如图,四边形ABCD中,AB=AD,BC=DC,AE⊥BC,AF⊥CD,垂足为E,F.求证:AE=AF.7.如图,BE⊥AC于点E,CF⊥AB于点F,BE,CF相交于点D.若BD=CD,求证:AD平分∠BAC.8.如图,在四边形ABCD中,BD平分∠ABC,DF⊥BC于点F,DA=DC.求证:∠A+∠C=180∘.9.如图,在△ABC中,∠C=90∘,AD平分∠CAB,DE⊥AB于点E,点F在AC上,BE=FC.求证:BD=DF.10.如图,在△ABC中,∠ABC的平分线与△ACB的外角平分线交于点P,PD⊥AC于点D,PH⊥BA于点H.(1) 若PH=8cm,求点P到直线BC的距离;(2) 求证:点P在∠HAC的平分线上.11.如图,∠B=∠C=90∘,EB=EC,DE平分∠ADC,求证:AE是∠DAB的平分线.12.已知:如图,在Rt△ABC中,∠ACB=90∘,AD平分∠BAC,点D在BC上,DE⊥AB,垂足为点E,EF∥BC.求证:EC平分∠FED.13.如图,AD是△ABC的高,E为AC上一点,BE交AD于点F,且BD=AD,FD=CD.(1) 试说明BF与AC的位置关系和数量关系;(2) 连接DE,求∠DEC的大小.14.如图所示,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,连接EF,EF与AD交于点G.求证:AD垂直平分EF.15.已知:如图所示,OP平分∠EOF,PA⊥OE,PB⊥OF,垂足分别是点A,B,且BD=AC.求证:PC=PD.16.已知:如图,∠1=∠2,∠3=∠4.求证:点P在∠MAN的平分线上.17.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.18.如图,AD为△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E,F.(1) 若AB=AC=5,△ABC面积为12,求DE的长;(2) 连接EF,并交AD于点G,试判断线段AD与EF的位置关系,并证明你的结论.19.如图,△ABC与△AED中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE,垂足为F,DF交CB延长线于点G,连接AG.(1) 求证:GA平分∠DGB;(2) 若S四边形DGBA=6,AF=3,求FG的长.答案1. 【答案】∵AD平分∠BAC,∴∠1=∠2,∵∠1=∠2,DE⊥AB,DF⊥AC,∴DE=DF(角平分线上的点到角两边的距离相等),在Rt△DEB和Rt△DFC中,{DE=DF, BD=CD,∴Rt△DEB≌Rt△DFC(HL),∴EB=FC.2. 【答案】(1) 提示:连接BD,CD,证明△BDG≌△CDH(HL).(2) AB−AC=2BG.提示:证明AG=AH,结合第一问可得.3. 【答案】如图,过点P作PD⊥BC,PE⊥AC,PF⊥AB,垂足分别为D,E,F,连接AP.∵BM,CN是△ABC的两条角平分线,∴PD=PF,PD=PE,∴PE=PF,∴AP是∠BAC的平分线,即点P也在∠BAC的平分线上.4. 【答案】(1) 35∘(2) 过点P作PD,PG,PH,分别垂直于CF,CA,AE,垂足分别为D,G,H.∵BP,CP分别平分∠ABC,∠ACF,∴PH=PG.∴PA是∠EAC的平分线.5. 【答案】(1) ∵PR⊥AB,PS⊥AC,PR=PS,∴AP平分∠BAC,∴∠BAP=∠CAP,又∵∠CAP=∠APQ,∴∠BAP=∠APQ,∴QP∥AR.(2) 相等.理由:∵PR⊥AB,PS⊥AC,∴∠ARP=∠ASP=90∘,在Rt△APR和Rt△APS中,{AP=AP, PR=PS,∴Rt△APR≌Rt△APS,∴AR=AS.6. 【答案】连接AC.在△ABC与△ADC中,{AB=AD, BC=CD, AC=AC,∴△ABC≌△ADC(SSS),∴∠ACB=∠ACD.∴AE=AF.7. 【答案】∵BE⊥AC,CF⊥AB,∴∠DFB=∠DEC=90∘,∵∠BDF=∠CDE,BD=CD,∴△BDF≌△CDE(AAS),∴DE=DF,∴AD平分∠BAC.8. 【答案】过点D作DE⊥BA交BA的延长线于点E,∵DF⊥BC,DE⊥BA,BD平分∠ABC,∴DE=DF,在Rt△EAD和Rt△FCD中,{AD=CD, DE=DF,∴Rt△EAD≌Rt△FCD(HL),∴∠C=∠EAD,∵∠EAD+∠BAD=180∘,∴∠BAD+∠C=180∘.9. 【答案】∵AD平分∠BAC,DE⊥AB,∠C=90∘,∴DC=DE,在△DCF和△DEB中,{DC=DE,∠C=∠BED, CF=EB,∴△DCF≌△DEB(SAS),∴BD=DF.10. 【答案】(1) 作PQ⊥BE于Q,∵BP平分∠ABC,PH⊥BA,∴PH=PQ=8cm,即点P到直线BC的距离为8cm.(2) ∵PC平分∠ACE,PQ⊥BE,PD⊥AC,∴PD=PQ,由(1)知PH=PQ,∴PD=PH,∴点P在∠HAC的平分线上.11. 【答案】过点E作EF⊥AD于F,∵DE平分∠ADC,∠C=90∘,EF⊥AD,∴EC=EF,又∵EB=EC,∴EF=BE,又∵∠B=90∘,∴AE是∠DAB的平分线.12. 【答案】由角平分线性质,得DC=DE,推出∠DCE=∠DEC;又EF∥BC,得∠FEC=∠DCE,所以∠FEC=∠DEC,即EC平分∠FED.13. 【答案】(1) BF⊥AC且BF=AC.理由如下:∴∠ADB=∠ADC=90∘.又AD=BD,CD=FD,∴△ADC≌△BDF(SAS).∴AC=BF,∠CAD=∠FBD.又∠CAD+∠ACD=90∘,∴∠FBD+∠ACD=90∘,即∠EBC+∠ECB=90∘.∴∠BEC=90∘.∴BE⊥AC,即BF⊥AC.(2) 如图1,连接DE,过点D作DM⊥BE,DN⊥AC,垂足分别为M,N.∴∠DMF=∠DNC=90∘.由(1)得△ADC≌△BDF,∴∠DFM=∠C.又DF=DC,∴△DMF≌△DNC(AAS).∴DM=DN.∵DE是∠BEC的平分线.由(1)得∠BEC=90∘,∴∠DEC=12∠BEC=45∘.14. 【答案】证法1:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠EAG=∠FAG.在Rt△AED和Rt△AFD中,{AD=AD, DE=DF,∴Rt△AED≌Rt△AFD(HL).在△AEG和△AFG中,{AE=AF,∠EAG=∠FAG, AG=AG,∴△AEG≌△AFG(SAS).∴EG=FG,∠AGE=∠AGF=90∘.∴AD垂直平分EF.15. 【答案】因为OP平分∠EOF,PA⊥OE,PB⊥OF,所以PB=PA,在Rt△PBD与Rt△PAC中,{BD=AC,∠DBP=∠CAP=90∘, BP=AP,所以Rt△PBD≌Rt△PAC,所以PD=PC.16. 【答案】提示:过P作PS⊥AM于S,PQ⊥AN于Q,PT⊥BC于T,证PS=PQ.17. 【答案】∵AO平分∠BAC,CD⊥AB,BE⊥AC,∴OD=OE.在△BOD和△COE中,∠BDO=∠CEO=90∘,OD=OE,∠DOB=∠EOC,∴△BOD≌△COE,∴OB=OC.18. 【答案】(1) ∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC面积为12,∴12×AB⋅DE+12×AC⋅DF=12,而AB=AC=5,∴DE=DF=125.(2) AD⊥EF.理由如下:在直角△ADE与直角△ADF中,{AD=AD,DE=DF,∴△ADE≌△ADF(HL),∴AE=AF,∠EAD=∠FAD,∴AD⊥EF.19. 【答案】(1) 如图,过点A作AH⊥BC于点H,∵△ABC与△AED中,∠E=∠C,DE=BC,EA=CA,∴△ABC≌△ADE(SAS),∴S△ABC=S△AED,又∵AF⊥DE,即12×DE×AF=12×BC×AH,∴AF=AH,又∵AF⊥DE,AH⊥BC,∴GA平分∠DGB.(2) ∵△ABC≌△ADE,∴AD=AB,又∵AF⊥DE,AH⊥BC,AF=AH,∴Rt△ADF≌Rt△ABH(HL),∴S四边形DGBA=S四边形AFGH=6,∵Rt△AFG≌Rt△AHG,∴Rt△AFG的面积=3,∵AF=3,×FG×3=3,∴12解得FG=2.。
人教版八年级数学上册12.3角平分线的性质课时训练(含答案)
人教版八年级数学上册12.3角平分线的性质课时训练(含答案)人教版八年级数学上册12.3 角平分线的性质课时训练一、选择题1. 如图,PD⊥AB,PE⊥AC,垂足分别为D,E,且PD=PE,则△APD与△APE 全等的理由是()A.SAS B.AAA C.SSS D.HL2. 如图,P是∠AOB的平分线OC上一点,PD⊥OA,垂足为D.若PD=2,则点P到边OB的距离是()A.4 B. 3 C.2 D.13. 如图,P为OC上一点,PM⊥OA,PN⊥OB,垂足分别为M,N,PM=PN,∠BOC=30°,则∠AOB的度数为()A.30°B.45°C.60°D.50°4. 下面是黑板上给出的尺规作图题,需要回答横线上符号代表的内容.已知∠AOB.求作:∠AOB的平分线.作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交__○__于点N;②分别以点__⊕__为圆心,大于__△__的长为半径画弧,两弧在__?__的内部交于点C;③画射线OC,OC即为所求.则下列回答正确的是()A.○表示OA B.⊕表示M,CC.△表示MN D.?表示∠AOB5. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()A.3B.-3C.2D.-26. 如图,利用尺规作∠AOB的平分线OC,其作法如下:(1)以点O为圆心,适当长为半径画弧,与OA,OB分别交于点D,E;(2)分别以点D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部交于点C;(3)画射线OC,则射线OC就是∠AOB的平分线.这样作图的原理是三角形全等的一种判定方法,这种判定方法是()A.SSSB.SASC.ASAD.AAS7. 如图,AB∥CD,以点A为圆心,小于AC的长为半径画弧,与AB,AC分别交于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠CAB的内部交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC 的大小是()A.20°B.25°C.30°D.40°8. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若CD=4,AB=16,则△ABD的面积是()A.14 B.32 C.42 D.569. 如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC =9,CD=4,则四边形ABCD的面积是()A.24 B.30C.36 D.4210. 如图,AD是△ABC的角平分线,DE⊥AB,AB=6 cm,DE=4 cm,S△ABC=30 cm2,则AC的长为()A.10 cmB.9 cmC.4.5 cmD.3 cm二、填空题11. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.12. 如图,在△ABC中,两条外角平分线交于点P,PM⊥AC交AC的延长线于点M.若PM=6 cm,则点P到AB的距离为.13. 将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC 即为∠AOB的平分线,理由是______________________.14. 如图,∠B=∠D=90°,根据角平分线的性质填空:(1)若∠1=∠2,则________=________.(2)若∠3=∠4,则________=________.15. 如图,在△ABC中,E为AC的中点,AD平分∠BAC交BC于点D,AB︰AC=2︰3,AD与BE相交于点O.若△OAE的面积比△BOD的面积大1,则△ABC的面积是.三、解答题16. 育新中学校园内有一块直角三角形(Rt△ABC)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了一串红,在△ACD区域内种植了鸡冠花,并量得两直角边AB=20 m,AC=10 m,分别求一串红与鸡冠花两种花草的种植面积.17. 如图,已知∠1=∠2,BA18. 如图,在∠AOB的两边OA,OB上分别取点D,M和点E,N,使OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB的平分线上.19. 如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=10,BO=4,求OD的长.20. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD 与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.人教版八年级数学上册12.3 角平分线的性质课时训练-答案一、选择题1. 【答案】D2. 【答案】C[解析] 如图,过点P作PE⊥OB于点E.∵P是∠AOB的平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2.3. 【答案】C[解析] ∵点P在OC上,PM⊥OA,PN⊥OB,PM =PN,∴OC是∠AOB的平分线.∵∠BOC=30°,∴∠AOB=60°.4. 【答案】D5. 【答案】A[解析] 如图,过点D作DE⊥AB于点E.∵点D的坐标是(0,-3),∴OD=3.∵AD是△OAB的角平分线,∴ED=OD=3,即点D到AB的距离是3.6. 【答案】A7. 【答案】A[解析] 由题意可得AH平分∠CAB.∵AB∥CD,∴∠C+∠CAB=180°,∠HAB=∠AHC.∵∠ACD=140°,∴∠CAB=40°.∵AH平分∠CAB,∴∠HAB=20°.∴∠AHC=20°.8. 【答案】B[解析] 如图,过点D作DH⊥AB于点H. 由作法得AP平分∠BAC.∵DC⊥AC,DH⊥AB,∴DH=DC=4.∴S△ABD=12×16×4=32.9. 【答案】B[解析] 过点D作DH⊥AB交BA的延长线于点H. ∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4.∴四边形ABCD的面积=S△ABD+S△BCD=12AB·DH+12BC·CD=12×6×4+12×9×4=30.10. 【答案】B[解析] 如图,过点D作DF⊥AC于点F.∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=4.∵AB=6,∴S △ABC =S △ABD +S △ACD =×6×4+AC ×4=30, 解得AC=9(cm).故选B .二、填空题11. 【答案】3 【解析】如解图,过点P 作PD ⊥OA 于点D ,∵OP 为∠AOB 的平分线,PC ⊥OB 于点C ,∴PD =PC ,∵PC =3,∴PD =3,即点P 到点OA 的距离为3.12. 【答案】6 cm[解析] 如图,过点P 作PN ⊥BC 于点N ,PQ ⊥AB 交AB 的延长线于点Q.∵BP ,CP 是两条外角的平分线,PM ⊥AC ,∴PN=PM ,PQ=PN.∴PQ=PM.∵PM=6 cm,∴PQ=6 cm,即点P 到AB 的距离为6 cm .13. 【答案】角的内部到角的两边距离相等的点在角的平分线上14. 【答案】(1)BCCD (2)AB AD15. 【答案】10[解析] 如图,过点D 作DM ⊥AC 于点M ,DN ⊥AB 于点N.∵AD 平分∠BAC,DM ⊥AC ,DN ⊥AB , ∴DM=DN.∵S △ABD ︰S △ADC =BD ︰DC ,且S △ABD =·AB ·DN ,S △ADC =·AC ·DM ,∴BD ∶DC=AB ∶AC=2∶3. 设△ABC 的面积为S ,则S △ADC =S.∵E 为AC 的中点, ∴S △BEC =S.∵△OAE 的面积比△BOD 的面积大1, ∴△ADC 的面积比△BEC 的面积大1. ∴S-S=1.∴S=10.故答案为10.三、解答题16. 【答案】解:如图,过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F.∵AD 是∠BAC 的平分线,∴DE =DF. ∵AB =20 m ,AC =10 m ,∴S △ABC =12×20×10=12×20·DE +12×10·DF ,解得DE =203(m).∴△ACD 的面积=12×10×203=1003(m 2),△ABD 的面积=12×20×203=2003(m 2).故一串红的种植面积为2003 m 2,鸡冠花的种植面积为1003 m 2.17. 【答案】证明:如图,过点P 作PE ⊥BA 交BA 的延长线于点E.又∵∠1=∠2,PF ⊥BC ,∴PE=PF ,∠PEA=∠PFC=90°. 在Rt △PEA 与Rt △PFC 中,∴Rt △PEA ≌Rt △PFC (HL). ∴∠P AE=∠PCB. ∵∠P AE+∠BAP=180°, ∴∠PCB+∠BAP=180°.18. 【答案】证明:如图,过点C 作CG ⊥OA 于点G ,CF ⊥OB 于点F .在△MOE 和△NOD 中,∴△MOE ≌△NOD (SAS). ∴S △MOE =S △NOD .∴S △MOE -S 四边形ODCE =S △NOD -S 四边形ODCE ,即S △MDC =S △NEC .由三角形面积公式得DM ·CG=EN ·CF .∵OM=ON ,OD=OE ,∴DM=EN.∴CG=CF . 又∵CG ⊥OA ,CF ⊥OB ,∴点C 在∠AOB 的平分线上.19. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON ,∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL).∴CD=CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON. (2)在Rt △ODC 与Rt △OEC 中,CD =CE ,OC =OC ,∴Rt △ODC ≌Rt △OEC. ∴OD =OE. 设BE =x.∵BO =4,∴OE =OD =4+x. ∵AD =BE =x ,∴AO =OD +AD =4+2x =10. ∴x =3.∴OD =4+3=7.20. 【答案】证明:如图,连接BF.∵F 是△ABC 的角平分线AD ,CE 的交点,∴BF 平分∠ABC. ∵FM ⊥AB ,FN ⊥BC ,∴FM =FN ,∠DNF =∠EMF =90°.∵在Rt △ABC 中,∠ACB =90°,∠ABC =60°,∴∠BAC =30°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =15°. ∴∠CDA =75°.∵CE 平分∠ACB ,∠ACB =90°,∴∠ACE =45°. ∴∠MEF =75°=∠NDF. 在△DNF 和△EMF 中,∠DNF =∠EMF ,∠NDF =∠MEF ,FN =FM ,∴△DNF ≌△EMF(AAS).∴FE =FD.。
八年级数学角的平分线的性质、判定(人教版)(基础)(含答案)
角的平分线的性质、判定(人教版)(基础)一、单选题(共10道,每道10分)1.如图所示,利用尺规作∠AOB的平分线,作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C;③画射线OC,射线OC即为所求.在用尺规作角平分线时,用到的三角形全等的判定方法是( )A.SSSB.ASAC.AASD.SAS答案:A解题思路:由作法得OM=ON,CM=CN,在△OMC和△ONC中∴△OMC≌△ONC(SSS)∴∠MOC=∠NOC(全等三角形对应角相等)即OC是∠AOB的平分线故选A.试题难度:三颗星知识点:略2.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是( )A.PC=PDB.∠CPO=∠DOPC.∠CPO=∠DPOD.OC=OD答案:B解题思路:∵OP为∠AOB的平分线,PC⊥OA,PD⊥OB∴PC=PD在Rt△OPC和Rt△OPD中,∴Rt△OPC≌Rt△OPD(HL)∴∠CPO=∠DPO,OC=OD故选B.试题难度:三颗星知识点:略3.如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是( )A.2B.4C.6D.8答案:B解题思路:如图,过点P作PE⊥BC于E,∵AB∥CD,AD过点P,且与AB垂直∴AD⊥CD∵BP平分∠ABC,PA⊥AB,PE⊥BC∴PA=PE∵CP平分∠BCD,PD⊥CD,PE⊥BC∴PE=PD∴PA=PE=PD即PE=AD==4故选B.试题难度:三颗星知识点:略4.三条公路将A,B,C三个村庄连成一个如图所示的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是( )A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点答案:C解题思路:由角平分线的性质“角的内部到角的两边的距离相等的点在角的平分线上”,故要使集贸市场到三条公路的距离相等,集贸市场应建在∠A,∠B,∠C的角平分线的交点处.故选C.试题难度:三颗星知识点:略5.如图,已知PA⊥OM于A,PB⊥ON于B,且PA=PB.若∠MON=50°,∠OPC=30°,则∠PCA 为( )A.20°B.45°C.55°D.80°答案:C解题思路:∵PA⊥OM于A,PB⊥ON于B,且PA=PB∴点P在∠MON的角平分线上即OP平分∠MON∴∠POC=∠MON=50°=25°∵∠PCA是△POC的一个外角∴∠PCA=∠POC+∠OPC=25°+30°=55°故选C.试题难度:三颗星知识点:略6.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )A.15B.30C.45D.60答案:B解题思路:如图,过点D作DE⊥AB于E,由题意可知AP是∠BAC的平分线∵∠C=90°,DE⊥AB∴DE=CD=4∴故选B.试题难度:三颗星知识点:略7.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E.若S△ABC=7,DE=2,AB=4,则AC 的长是( )A.3B.4C.5D.6答案:A解题思路:如图,过点D作DF⊥AC于F,∵AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F∴DE=DF∴∴AC=3故选A.试题难度:三颗星知识点:略8.如图,已知△ABC的周长是21,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是( )A.25B.84C.42D.21答案:C解题思路:如图,连接OA,过点O作OE⊥AB于E,作OF⊥AC于F∵BO平分∠ABC,OD⊥BC,OE⊥AB,∴OE=OD,∵CO平分∠ACB,OD⊥BC,OF⊥AC,∴OF=OD,故选C.试题难度:三颗星知识点:略9.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )A.11B.5.5C.7D.3.5答案:B解题思路:如图,过点D作DH⊥AC,垂足为H,∵AD平分∠BAC,DF⊥AB,DH⊥AC,∴DH=DF在Rt△DEF和Rt△DGH中,∴Rt△DEF≌Rt△DGH(HL)∴,在Rt△ADF和Rt△ADH中,∴Rt△ADF≌Rt△ADH(HL)∴,设,则,∴,∴,解得:.故选B试题难度:三颗星知识点:略10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法中正确的个数有( )①AD是∠BAC的平分线;②∠ADC=60°;③S△DAC:S△ABC=1:3.A.0个B.1个C.2个D.3个答案:D解题思路:由尺规作图可知AD是∠BAC的平分线,故①正确∵在△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°,∵AD是∠BAC的平分线,∴∠CAD=∠BAD=∠BAC=30°,∵在△ACD中,∠C=90°,∠CAD=30°,∴∠ADC=60°,故②正确如图,过点D作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB∴DC=DE在Rt△ACD和Rt△AED中,∴Rt△ACD≌Rt△AED(HL)∴,在△ADE和△BDE中,∴△ADE≌△BDE(AAS),∴,∴,∴S△DAC:S△ABC=1:3,故③正确故选D试题难度:三颗星知识点:略。
角平分线的性质和判定(人教版)(含答案)
答案:C
解题思路:
解:如图,
连接AP,
在Rt△APR和Rt△APS中,
,
∴Rt△APR≌Rt△APS(HL)
∴∠1=∠2,AR=AS,
∵AQ=PQ
∴∠2=∠3
∴∠1=∠3
∴PQ∥AR
故①,②正确,③不确定,综上,选C
试题难度:三颗星知识点:全等三角形的性质与判定
10.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P.若∠BPC=40°,则∠CAP等于( )
A.40° B.45°
C.50° D.60°
答案:C
解题思路:
1.思路点拨
①见到两条角平分线相交,考虑角平分线的性质,过点P分别向角的两边作垂线,垂线段相等.
②借助常见结构:找到∠BPC和∠BAC的关系,求出∠BAC的度数.
③借助三角形的内角和定理和平角解决问题.
2.解题过程
解:如图,
过点P分别向BC,AC,BA边所在直线作垂线,垂足分别为点E,F,G,
3.如图,已知点O是△ABC内一点,且点O到△ABC三边的距离相等.若∠A=40°,则∠BOC等于( )
A.110° B.120°
C.130° D.140°
答案:A
解题思路:
①由点O到△ABC三边的距离相等,可知点O是△ABC三个角的角平分线;
②设 ,
分别在△ABC和△BOC中利用三角形内角和定理,
答案:C
解题思路:
(1)根据角平分线的性质:角平分线上的点到角两边的距离相等,可以得到DE=DC,
∴①正确;
(2)角平分线可以看成一个角的对称轴,对称轴两侧的图形全等,即△ADC≌△ADE,
8年级数学人教版上册同步练习角的平分线的性质(含答案解析)
8年级数学人教版上册同步练习角的平分线的性质(含答案解析)专题一利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,在Rt△ABC中,∠C=90°,21∠∠,AD是∠BAC的角平分线,DE⊥ABBAC B∶∶于点E,AC=3 cm,求BE的长.专题二角平分线的性质在实际生活中的应用4.如图,三条公路把A﹨B﹨C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A.在AC﹨BC两边高线的交点处B.在AC﹨BC两边中线的交点处C.在∠A﹨∠B两内角平分线的交点处D.在AC﹨BC两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在__________,理由是__________.6.已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留作图痕迹)状元笔记【知识要点】1.角的平分线的性质角的平分线上的点到角的两边的距离相等.2.角的平分线的判定角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.参考答案:1.证明:∵DF AB DG AC DF DG ⊥⊥=,,,∴AD 是BAC ∠的平分线,∴BAD CAD =∠∠.在ABD △和ACD △中,⎪⎩⎪⎨⎧=∠=∠=(公共边)(已求)已知)AD AD DAC DAB AC AB (∴SAS)ABD ACD (△≌△.∴ADB ADC =∠∠.又∵180BDA CDA +=︒∠∠,∴90BDA =︒∠,∴AD BC ⊥.2.证明:∵AO 平分∠BAC ,OD ⊥AB ,OE ⊥AC ,∴OD =OE ,在Rt △BDO 和Rt △CEO 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,COE DOB OEOD CEO BDO ∴(ASA)BDO CEO △≌△.∴OB =OC .3.解:∵∠C =90°,∴∠BAC +∠B =90°,又DE ⊥AB ,∴∠C =∠AED =90°,又21BAC B =∶∶∠∠,∴∠A =60°,∠B =30°, 又∵AD 平分∠BAC ,DC ⊥AC ,DE ⊥AB ,∴DC =DE ,∴3AE AC ==cm .在Rt △DAE 和Rt △DBE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠.DE DE BEDAED B DAE∴△DAE ≌△DBE (AAS ),∴3BE AE == cm . 4.C 解析:根据角平分线的性质,集贸市场应建在∠A ﹨∠B 两内角平分线的交点处.故选C .5.∠A 的角平分线上,且距A1cm 处 角平分线上的点到角两边的距离相等6.解:作两个角的平分线,交点P 就是所求作的点.。
人教版八年级数学上册《角的平分线的性质》练习题附答案
13.3 角的平分线的性质一、选择题1.如图 1 所示 ,∠ 1=∠ 2,PD ⊥ OA ,PE ⊥ OB ,垂足分别为 D ,E ,则下列结论中错误的是 ( ).A . PD=PEB .OD=OE C.∠ DPO=∠ EPO D . PD=ODBEACPDEFOD ABDCA E B( 1) (2) (3)2.如图 2 所示,在△ ABC 中, AB=AC , AD 是△ ABC 的角平分线, DE ⊥AB , DF ⊥ AC ,垂足分别是 E ,F ,则下列四个结论:① AD 上任意一点到C ,B 的距离相等;② AD 上任意一点到 AB ,AC 的距离相等;③ BD=CD , AD ⊥ BC ;④∠ BDE=∠ CDF ,其中正确的个数是( ). A .1个 B.2个 C .3个 D. 4 个3.如图 3 所示,在 Rt △ ABC 中,∠ C=90°, AC=BC=1, AB=2 ,AD 在∠ BAC?的平分线上,DE ⊥ AB 于点 E ,则△ DBE 的周长为( ).A .2B .1+2C . 2D.无法计算AAAEDC EFPOEBOFB BDC(4)(5)(6)4.如图 4 所示,已知∠ AOB ,求作射线 OC ,使 OC 平分∠ AOB , ?作法的合理顺序是().( 1)作射线 OC ;( 2)在 OA 和 OB 上,分别截取 OD , OE ,使 OD=OE ; ( 3)分别以 D , E 为圆心,大于1DE 的长为半径作弧,在∠ AOB 内,两弧交于点 C .2A .( 1)( 2)( 3)B .( 2)( 1)( 3)C .( 2)( 3)( 1)D .( 3)( 2)( 1) 二、填空题1.( 1)若 OC 为∠ AOB 的平分线,点 P 在 OC 上, PE ⊥OA , PF ⊥ OB ,垂足分别为 E ,F ,则PE=________,根据是 ________________ .( 2)如图 5 所示,若在∠ AOB 内有一点 P ,PE ⊥ OA ,PF ⊥ OB ,垂足分别为 E ,F ,且 PE=PF ,则点 P 在 _______,根据是 ____________ .2.△ ABC 中,∠ C=90°, AD平分∠ BAC,已知 BC=8cm,BD=5cm,则点 D?到 AB?的距离为 _______.3.如图 6 所示, DE⊥AB 于 E,DF⊥ AC 于点 F,若 DE=DF,只需O 添加一个条件, ?这个条件是 __________ .4.如图所示,∠ AOB=40°, OM平分∠ AOB, MA⊥ OA于 A,MB?⊥OB?于 B, ?则∠ MAB的度数为 ________.三、解答题1.如图所示,AD是∠ BAC的平分线, DE⊥ AB 于 E, DF⊥ AC于 F,且 BD=CD,那么相等吗?为什么?AN M BBE与 CFEBDA F C2.如图所示,∠ B=∠ C=90°, M是 BC中点, DM平分∠ ADC,判断 AM?是否平分∠ DAB,说明理由.M DCA B3.如图所示,已知 PB⊥ AB,PC⊥ AC,且 PB=PC,D是 AP 上一点,由以上条件可以得到∠BDP= ∠ CDP吗?为什么?ADCBP探究应用拓展性训练1.(与现实生活联系的应用题)如图所示,在一次军事演习中,?红方侦察员发现蓝方指挥部设在 A 区,到公路、铁路的交叉处 B 点 700m.如果你是红方指挥员,?请你如图所示的作图地图上标出蓝方指挥部的位置.BA区比例尺 1:200002.(探究题)已知:在△ABC中, AB=AC.(1)按照下列要求画出图形:①作∠BAC的平分线交 BC于点 D;②过 D作 DE⊥ AB,垂足为点 E;③过点 D作 DF⊥ AC,垂足为点 F .(2)根据上面所画的图形,可以得到哪些相等的线段(AB=AC除外)?说明理由.3.如图所示,在△ ABC中, P, Q?分别是 BC, AC上的点,作 PR⊥ AB, PS⊥ AC,垂足分别是R,S.若 AQ=PQ, PR=PS, ?下面三个结论① AS=AR,② QP∥ AR,③△ BRP≌△ CSP中,正确的是().A .①和③B.②和③C.①和② C .①,②和③BRPA Q S C、、答案 :一、1. D 解析:∵∠ 1=∠ 2, PD ⊥ OA 于 E , PE ⊥ OB 于 E ,∴ PD=PE .又∵ OP=OP ,∴△ OPE ≌△ OPD .∴ OD=OE ,∠ DPO=∠ EPO .故 A ,B , C 都正确.2. D 解析:如答图,设点 P 为 AD 上任意一点,连结PB ,PC .∵ AD 平分∠ BAC ,∴∠ BAD=∠ CAD .又∵ AB=AC , AP=AP ,∴△ ABP ≌△ ACP ,∴ PB=PC . A故①正确.由角的平分线的性质知②正确.∵ AB=AC ,∠ BAD=∠ CAD ,AD=AD ,P∴△ ABD ≌△ ACD .E F∴ BD=CD ,∠ ADB=∠ ADC .BDC又∵∠ ADB+∠ ADC=180°, ∴∠ ADB=∠ ADC=90°, ∴ AD ⊥BC ,故③正确.由△ ABD ≌△ ACD 知,∠ B=∠ C .又∵ DE ⊥ AB 于点 E , DF ⊥AC 于点 F ,∴∠ BED=∠ CFD=90°,∴∠ BDE=∠ CDF .故④正确.4. C 解析:∵ AD 平分∠ CAB , AC ⊥ BC 于点 C ,DE ⊥ AB 于 E ,∴ CD=DE .又∵ AD=AD ,∴ Rt △ACD ≌ Rt △ AED ,∴ AC=AE . 又∵ AC=BC ,∴ AE=BC ,∴△ DBE 的周长为 DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB= 2 .提示:设法将 DE+BD+EB 转成线段 AB .5. C二、 1.( 1) PF 角平分线上的点到角的两边的距离相同( 2)∠ AOB 的平分线上 到角的两边距离相等的点在角的平分线上2.解析:如图所示, AD 平分∠ CAB , DC ⊥ AC 于点 C , DM ⊥AB 于点 M .∴ CD=DM ,∴ DM=CD=BC-BD=8-5=3.答案: 3C提示:利用角的平分线的性质.D3. AD 平分∠ BAC .4.解析:∵ OM 平分∠ AOB ,∴∠ AOM=∠ BOM=AOB=20°.AMB2又∵ MA ⊥ OA 于 A , MB ⊥ OB 于 B ,∴MA=MB.∴Rt △OAM≌ Rt△ OBM,∴∠ AMO=∠ BMO=70°,∴△ AMN≌△ BMN,∴∠ ANM=∠ BNM=90°,∴∠ MAB=90° -70 ° =20°.答案: 20°三、 1.解析: BE=CF.∵AD平分∠ BAC, DE⊥ AB于点 E, DF⊥ AC于点 F,∴DE=DF.又∵ BD=DC,∴ Rt△ BDE≌Rt △ CDF,∴ BE=CF.提示:由角的平分线的性质可知DE=DF,从而为证△ BDE≌△ CDF提供了条件.2.解析: AM平分∠ DAB.理由:如答图13-9 所示,作 MN⊥ AD于点 N,∵ DM平分∠ CDA,MC ⊥ DC于点 C,MN⊥ AD于点 N,∴MC=MN.又∵ M是 BC的中点,∴ CM=MB,∴MN=BM,∴ AM平分∠ DAB.3.解析:可以.∵ PB⊥AB于点 B, PC⊥ AC于点 C,且 PB=PC,D CNM A B∴AP平分∠ BAC,∴∠ BAP=∠CAP.在 Rt△ ABP和 Rt△ ACP中,PB=PC , AP=AP,∴Rt △ABP≌ Rt△ ACP,∴ AB=AC.在△ ABD与△ ACD中,AB=AC ,∠ BAP=∠CAP, AD=AD,∴△ ABD≌△ ACD,∴∠ ADB=∠ ADC,∴∠ BDP=∠ CDP.探究应用拓展性训练1.如答图所示.解析:由题意可知,蓝方指挥部P 应在∠MBN的平分线上.又∵比例尺为1: 20000,∴ P 离 B 为 3. 5cm.提示:到角的两边距离相等的点在角的平分线上.2.( 1)解析:按题意画图,如答图13-11 .(2)可以得到 ED=FD, AE=AF, BE=CF,BD=CD.理由如下:∵ AB=AC,∠ 1=∠ 2, AD=AD,∴△ ABD≌△ ACD,∴ BD=DC.∵∠ 1=∠2, DE⊥AB 于点 E, DF⊥ AC于点 F,∴DE=DF.A1 2E F BD C又∵ AD=AD,∴Rt △AED≌ Rt△ AFD,∴ AE=AF,∴AB-AE=AC-AF,即 BE=CF.提示:正确地画出图形是解决问题的关键,另三角形全等来寻找相等的线段.3. C解析:如答图所示,连结AP.∵PR⊥AB于点 R, PS⊥ AC于点 S, PR=PS,∴ AP平分∠ BAC,∴∠ 1=∠2.又∵ AQ=QP,∴∠ 2=∠ 3,∴∠ 1=∠ 3,∴ PQ∥ AR.在 Rt △APR和 Rt△ APS中,外本题主要应用角的平分线的性质及BRP312PR=PS , AP=AP,A Q S C ∴Rt △APR≌ Rt△ APS,∴ AR=AS.而△ BRP与△ CSP不具备三角形全等的条件,故①②正确.提示:本题的突破口是判断出点P 在∠ BAC的平分线上.。
角平分线的性质定理和判定定理(含答案)
⾓平分线的性质定理和判定定理(含答案)⼏何专题2:⾓平分线的性质定理和判定定理⼀、知识点(抄⼀遍):1. ⾓平分线:把⼀个⾓平均分为两个相同的⾓的射线叫该⾓的平分线.2. ⾓平分线的性质定理:⾓平分线上的点,到这个⾓的两边的距离相等. 3. ⾓平分线的判定定理:⾓的内部到⾓的两边距离相等的点在⾓的平分线上. ⼆、专题检测题1. 证明⾓平分线的性质定理.(注意:证明⽂字性命题的三个步骤:①根据题意,画出图形;②写出已知和求证;③写出证明过程.) 2. 证明⾓平分线的判定定理. 3. 定理的⼏何语⾔表⽰(1)⾓平分线的性质定理:∵,∴ . (2)⾓平分线的判定定理:∵,∴ .4. 已知:如图所⽰,BN 、CP 分别是∠ABC 、∠ACB 的⾓平分线,BN 、CP 相交于O点,连接AO ,并延长交BC 于M 求证:AM 是∠BAC 的⾓平分线.5. 如图,已知BE ⊥AC ,CF ⊥AB ,点E ,F 为垂⾜,D 是BE 与CF 的交点,AD 平分∠BAC. 求证:BD=CD.B6. 如图,在Rt △ABC 中,∠C=90°,AC=BC. AD 是∠CAB 的平分线. 求证:AB=AC+CD.7. 如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB.8. 如图,已知P 是∠AOB 平分线上的⼀点.PC ⊥OA ,PD ⊥OB ,垂⾜分别是点C ,D ,CD 与OP 交于点M. 求证:(1)∠PCD=∠PDC ;(2)OP 是CD 的垂直平分线;(3)OC=OD.O⼏何专题2:⾓平分线的性质定理和判定定理答案1. 证明⾓平分线的性质定理.已知:如图,OC 平分∠AOB ,点P 在OC 上,PD ⊥OA 于点D ,PE ⊥OB 于点E求证: PD=PE证明:∵OC 平分∠ AOB∴∠1= ∠2∵PD ⊥ OA,PE ⊥ OB ∴∠PDO= ∠PEO 在△PDO 和△PEO 中∠PDO= ∠PEO ∠1= ∠2 OP=OP∴△PDO ≌△PEO(AAS) ∴PD=PE2.证明⾓平分线的判定定理.已知:如图,PD ⊥OA ,PE ⊥OB ,点D 、E 为垂⾜,PD =PE .求证:点P 在∠AOB 的平分线上证明: 经过点P 作射线OC ∵ PD ⊥OA ,PE ⊥OB∴∠PDO =∠PEO =90°在Rt △PDO 和Rt △PEO 中PO =PO PD=PE ∴ Rt △PDO ≌Rt △PEO (HL )∴∠ POD =∠POE ∴点P 在∠AOB 的平分线上.3. 定理的⼏何语⾔表⽰(1)⾓平分线的性质定理:∵ OP 平分∠AOB ,DP ⊥OA ,PE ⊥OB ,∴ DP=EP. (2)⾓平分线的判定定理:∵ PD⊥OA,PE⊥OB,PD =PE .∴ OP 平分∠AOB .OO4.已知:如图所⽰,BN、CP分别是∠ABC、∠ACB的⾓平分线,BN、CP相交于O 点,连接AO,并延长交BC于M求证:AM是∠BAC的⾓平分线.证明:作OE⊥AC,OG⊥AB,OF⊥BC,垂⾜分别为E、G、F.∵BN平分∠ABC,OG⊥AB,OF⊥BC,∴OG=OF.同理可证:OE=OF.∴OG=OE⼜∵OE⊥AC,OG⊥AB,∴AM是∠BAC的⾓平分线.5.如图,已知BE⊥AC,CF⊥AB,点E,F为垂⾜,D是BE与CF的交点,AD平分∠BAC.求证:BD=CD.证明:∵AD平分∠BAC,BE⊥AC,CF⊥AB,∴DF=DE.∵BE⊥AC,CF⊥AB,∴∠DFB=∠DEC=90°. 在△DFB和△DEC中,∠EDC=∠FDBDF=DE∠DFB=∠DEC∴△DFB≌△DEC(ASA)∴BD=CD.6.如图,在Rt△ABC中,∠C=90°,AC=BC. AD是∠CAB的平分线.求证:AB=AC+CD.证明:过点D作DE⊥AB,垂⾜为点E.∵AD平分∠CAB,∴∠CAD=∠BAD.∵DE⊥AB∴∠DEA=90°=∠C.在△CAD和△EAD中,∠CAD=∠BAD,∠DEA=∠C,AD=AD.∴△CAD≌△EAD(AAS).∴AC=AE,CD=DE.∵AC=BC,∴∠B=∠BAC=45°,∵∠DEB=90°,∴∠EDB=45°=∠B.∴DE=BE,∴CD=BE,∴AB=AE+BE=AC+CD.B7. 如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB.证明:过点M 作ME ⊥AD ,垂⾜为E ,∵DM 平分∠ADC ,∴∠1=∠2,∵MC ⊥CD ,ME ⊥AD ,∴ME=MC (⾓平分线上的点到⾓两边的距离相等),⼜∵MC=MB ,∴ME=MB ,∵MB ⊥AB ,ME ⊥AD ,∴AM 平分∠DAB (到⾓的两边距离相等的点在这个⾓的平分线上).8. 如图,已知P 是∠AOB 平分线上的⼀点.PC ⊥OA ,PD ⊥OB ,垂⾜分别是点C ,D ,CD 与OP 交于点M. 求证:(1)∠PCD=∠PDC ;(2)OP 是CD 的垂直平分线;(3)OC=OD.证明:(1)∵OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,∴PC=PD ∴∠PCD=∠PDC. (2)∵OP 平分∠AOB ,∴∠COP=∠DOP. ∵PC ⊥OA ,PD ⊥OB ,∴∠PCO=∠PDO=90°,∴∠CPO=∠DPO. ∵PC=PD ,∴△CDP 是等腰三⾓形,∴PM 是等腰三⾓形底边上的中线和⾼线. 即OP 是CD 的垂直平分线. (3)由(2)知,∠CPO=∠DPO. ∴OP 平分∠CPD ,⼜∵CP ⊥OA ,DP 垂直OB ,∴OC=OD (⾓平分线的性质定理).O。
2022-2023学年八年级上数学:角平分线的性质(附答案解析)
2022-2023学年八年级上数学:角平分线的性质一.选择题(共5小题)1.如图,在△ABC中,∠C=90°,AP是角平分线,AB=5,CP=2,则△APB的面积为()A.5B.10C.20D.122.如图,在△ABC中,∠BAC=90°,高AD与角平分线BE相交于点F,∠DAC的平分线AG分别交BC、BE于点G、O,连接FG,下列结论:①∠ABD=∠DAC;②∠AFE =∠AEF;③AG⊥EF;④FG∥AC,其中所有正确结论的序号是()A.①②B.①③C.①②③D.①②③④3.如图,在△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,BC=8cm,BD:CD =3:4,则点D到AC的距离为()cm.A.3B.4C.D.4.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则AC 的长是()A.2B.3C.4D.55.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=18,S△ABD=27,则CD的长为()A.4B.8C.3D.6二.填空题(共5小题)6.如图,地块△ABC中,边AB=40m,AC=30m,其中绿化带AD是该三角形地块的角平分线.若地块△ABD的面积为320m2,则地块△ACD的面积为m2.7.在平面直角坐标系中,点A(x,y)的坐标满足方程3x﹣y=4,当点A在第四象限,且到两条坐标轴的距离相等时,点A的坐标为.8.数学课上,老师要求同学们用一副三角板作一个钝角,并且作出它的角平分线.雯雯设计的作法如下:(1)先按照图1的方式摆放一副三角板,画出∠AOB;(2)在∠AOB处,再按照图2的方式摆放一副三角板,作出射线OC;(3)去掉三角板后得到的图形(如图3)为所求作.老师说雯雯的作法符合要求,是正确的.请你回答:(1)雯雯作的∠AOB的度数是;(2)射线OC是∠AOB的角平分线的依据是.9.如图,在△ABC中,∠C=90°,BD是△ABC的角平分线,已知AC=3,BC=4,AB =5,则CD的长为.10.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若BC=8,DE=3,则BD的长为.三.解答题(共5小题)11.如图①,在△ABC中,∠ABC和∠ACB的平分线交于点O,∠A=α.(1)如图①,若∠A=50°,求∠BOC的度数.(2)如图②,连接OA,求证:OA平分∠BAC.(3)如图③,若射线BO与∠ACB的外角平分线交于点P,求证OC⊥PC.12.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)求证:CD=BE;(2)已知CD=2,求AC的长;(3)求证:AB=AC+CD.13.已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB 上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.14.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E.△ABC的面积为70,AB=16,BC=12.求DE的长.15.已知在△ABC中,∠CAB的平分线AD与BC的垂直平分线DE交于点D,DM⊥AB于M,DN⊥AC交AC的延长线于N,你认为BM与CN之间有什么关系?试证明你的发现.2022-2023学年八年级上数学:角平分线的性质参考答案与试题解析一.选择题(共5小题)1.如图,在△ABC中,∠C=90°,AP是角平分线,AB=5,CP=2,则△APB的面积为()A.5B.10C.20D.12【分析】过P作PE⊥AB于E,根据角平分线的性质得到PE=PC,即可求出点P到边AB的距离;然后利用三角形的面积公式求解即可.【解答】解:如图,过P作PE⊥AB于E,∵∠C=90°,∴PC⊥AC.∵AP是角平分线,CP=2,∴PE=PC=2.∵AB=5,∴S△APB=AB•PE==5.故选:A.【点评】本题主要考查了角平分线的性质,熟记角平分线上的点角两边的距离相等是解决问题的关键.2.如图,在△ABC中,∠BAC=90°,高AD与角平分线BE相交于点F,∠DAC的平分线AG分别交BC、BE于点G、O,连接FG,下列结论:①∠ABD=∠DAC;②∠AFE=∠AEF;③AG⊥EF;④FG∥AC,其中所有正确结论的序号是()A.①②B.①③C.①②③D.①②③④【分析】利用等角的余角相等得到∠ABD=∠DAC,则可对①进行判断;同理可得∠BAD =∠C,根据三角形外角的性质得到∠AFE=∠ABF+∠BAF,∠AEF=∠C+∠EAC,则∠AFE=∠AEF,于是可对②进行判断;由AG平分∠DAC得到∠F AO=∠EAO,根据三角形内角和定理得到∠AFO+∠F AO=90°,即AO⊥EF,则可对③进行判断;证明F点为△ABG三条高的交点,则GF⊥AB,然后利用CA⊥BA得到FG∥AC,于是可对④进行判断.【解答】解:∵AD为高,∴∠ADB=90°,∵∠BAD+∠ABD=90°,∠BAD+∠DAC=90°,∴∠ABD=∠DAC,所以①正确;∵∠ABD+∠C=90°,∴∠BAD=∠C,∵∠AFE=∠ABF+∠BAF,∠AEF=∠C+∠EAC,∴∠AFE=∠AEF,所以②正确;∵AG平分∠DAC,∵∠F AO=∠EAO,∵∠AFE+∠AFE+∠F AE=180°,∴∠AFO+∠F AO=90°,∴AO⊥EF,所以③正确;∵BO⊥AG,AD⊥BG,∴F点为△ABG三条高的交点,∴GF⊥AB,而CA⊥BA,∴FG∥AC,所以④正确.故选:D.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了平行线的性质和等腰三角形的判定与性质.3.如图,在△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,BC=8cm,BD:CD =3:4,则点D到AC的距离为()cm.A.3B.4C.D.【分析】由条件可先求得BD的长,再根据角平分线的性质可知D到AC的距离等于BD,可得到答案.【解答】解:∵BC=8cm,BD:CD=3:4,∴BD=(cm),∵AD平分∠BAC,∠B=90°,∴D到AC的距离等于BD,∴D点到线段AC的距离为cm,故选:D.【点评】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.4.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则AC 的长是()A.2B.3C.4D.5【分析】根据角平分线性质求出DF,根据三角形面积公式求出△ABD的面积,求出△ADC面积,即可求出答案.【解答】解:过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∵S△ADB=AB×DE=×5×2=5,∵△ABC的面积为9,∴△ADC的面积为9﹣5=4,∴AC×DF=4,∴AC×2=4,∴AC=4,故选:C.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.5.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=18,S△ABD=27,则CD的长为()A.4B.8C.3D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积公式列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×18•DE=27,解得:DE=3,∴CD=3.故选:C.【点评】该题主要考查了角平分线的性质、三角形的面积公式及其应用问题,解题的关键是作辅助线.二.填空题(共5小题)6.如图,地块△ABC中,边AB=40m,AC=30m,其中绿化带AD是该三角形地块的角平分线.若地块△ABD的面积为320m2,则地块△ACD的面积为240m2.【分析】过D分别作DE⊥AB于E,DF⊥AC于F,由平分线的性质证得DE=DF,由三角形的面积公式求出DF,再由三角形的面积公式即可求出△ACD的面积.【解答】解:过D分别作DE⊥AB于E,DF⊥AC于F,∵AD是∠BAC的平分线,∴DE=DF,∵AB=40m,△ABD的面积为320m2,∵DE=DF==16(m),∴△ACD的面积=AC•DF=×30×16=240(m2),故答案为:240.【点评】本题主要考查了角平分线的性质,三角形的面积公式,根据角平分线的性质证得DE=DF是解决问题的关键.7.在平面直角坐标系中,点A(x,y)的坐标满足方程3x﹣y=4,当点A在第四象限,且到两条坐标轴的距离相等时,点A的坐标为(1,﹣1).【分析】根据“当点A在第四象限,且到两条坐标轴的距离相等”可得x=﹣y,即﹣3y ﹣y=4,解得y的值,将其代入3x﹣y=4即可.【解答】解:∵点A(x,y)的坐标满足方程3x﹣y=4,点A在第四象限,且到两条坐标轴的距离相等,∴x=﹣y,∴﹣3y﹣y=4,解得:y=﹣1,代入3x﹣y=4中,得x=1,∴A(1,﹣1).故答案为:(1,﹣1).【点评】本题考查了一次函数图象与二元一次方程,熟练掌握一次函数图象与二元一次方程的有关知识是解题的关键.8.数学课上,老师要求同学们用一副三角板作一个钝角,并且作出它的角平分线.雯雯设计的作法如下:(1)先按照图1的方式摆放一副三角板,画出∠AOB;(2)在∠AOB处,再按照图2的方式摆放一副三角板,作出射线OC;(3)去掉三角板后得到的图形(如图3)为所求作.老师说雯雯的作法符合要求,是正确的.请你回答:(1)雯雯作的∠AOB的度数是150°;(2)射线OC是∠AOB的角平分线的依据是∠BOC=∠AOB.【分析】(1)利用三角板中的特殊角可计算出∠AOB的度数;(2)利用三角板中的特殊角可计算出∠BOC的度数,从而可得∠BOC=∠AOB,所以射线OC是∠AOB的平分线.【解答】解:(1)∠AOB=60°+90°=150°;故答案为:150°;(2)∠BOC=30°+45°=75°,所以∠BOC=∠AOB.故答案为:∠BOC=∠AOB.【点评】本题考查了基本作图,角平分线的定义和性质,正确理解题意是解题的关键.9.如图,在△ABC中,∠C=90°,BD是△ABC的角平分线,已知AC=3,BC=4,AB =5,则CD的长为.【分析】作DE⊥AB于E,根据角平分线的性质得到DE=DC,根据三角形的面积公式计算,得到答案.【解答】解:过点D作DE⊥AB于E,∵BD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=DC,∵S△ACB=S△ABD+S△BCD,∴×3×4=×4×CD+×5×DE,解得:CD=,故答案为:.【点评】本题考查的是角平分线的性质、三角形的面积计算,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若BC=8,DE=3,则BD的长为5.【分析】根据角平分线的性质得出DC=DE=3,再代入BD=BC﹣DC求出即可.【解答】解:∵∠C=90°,AD平分∠BAC,DE⊥AB,DE=3,∴DC=DE=3,∵BC=8,∴BD=BC﹣DC=8﹣3=5,故答案为:5.【点评】本题考查了角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.三.解答题(共5小题)11.如图①,在△ABC中,∠ABC和∠ACB的平分线交于点O,∠A=α.(1)如图①,若∠A=50°,求∠BOC的度数.(2)如图②,连接OA,求证:OA平分∠BAC.(3)如图③,若射线BO与∠ACB的外角平分线交于点P,求证OC⊥PC.【分析】(1)利用三角形的内角和先求出∠ABC与∠ACB的和,再根据角平分的定义求出∠OBC与∠OCB的和即可解答;(2)根据角平分线的性质定理,想到过点O作OD⊥BC,OE⊥AB,OF⊥AC,垂足分别为D,E,F,证出OE=OF即可解答;(3)根据角平分的定义求出∠OCP=90°即可解答.【解答】(1)解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵∠ABC和∠ACB的平分线交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°;(2)证明:过点O作OD⊥BC,OE⊥AB,OF⊥AC,垂足分别为D,E,F,∵∠ABC和∠ACB的平分线交于点O,OD⊥BC,OE⊥AB,OF⊥AC,∴OD=OE,OD=OF,∴OE=OF,∴OA平分∠BAC;(3)证明:∵OC平分∠ACB,CP平分∠ACD,∴∠ACO=∠ACB,∠ACP=∠ACD,∴∠OCP=∠ACO+∠ACP=∠ACB+∠ACD=∠BCD=×180°=90°,∴OC⊥CP.【点评】本题考查了角平分线的性质,熟练掌握角平分线的定义和角平分线的性质定理是解题的关键.12.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)求证:CD=BE;(2)已知CD=2,求AC的长;(3)求证:AB=AC+CD.【分析】(1)先根据题意判断出△ABC是等腰直角三角形,故∠B=45°,再由DE⊥AB 可知△BDE是等腰直角三角形,故DE=BE,再根据角平分线的性质即可得出结论;(2)由(1)知,△BDE是等腰直角三角形,DE=BE=CD,再根据勾股定理求出BD 的长,进而可得出结论;(3)先根据HL定理得出Rt△ACD≌Rt△AED,故AE=AC,再由CD=BE可得出结论.【解答】(1)证明:∵在△ABC中,AC=BC,∠C=90°,∴△ABC是等腰直角三角形,∴∠B=45°,∵DE⊥AB,∴△BDE是等腰直角三角形,∴DE=BE.∵AD是△ABC的角平分线,∴CD=DE,∴CD=BE;(2)解:∵由(1)知,△BDE是等腰直角三角形,DE=BE=CD,∴DE=BE=CD=2,∴BD===2,∴AC=BC=CD+BD=2+2;(3)证明:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE.在Rt△ACD与Rt△AED中,∵,∴Rt△ACD≌Rt△AED,∴AE=AC.∵由(1)知CD=BE,∴AB=AE+BE=AC+CD.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.13.已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB 上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.【分析】利用“HL”证明Rt△PFD和Rt△PGE全等,根据全等三角形对应边相等可得PD=PE,再根据到角的两边距离相等的点在角的平分线上证明即可.【解答】证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并求出全等三角形是解题的关键.14.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E.△ABC的面积为70,AB=16,BC=12.求DE的长.【分析】过点D作DF⊥BC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再利用△ABC的面积列出方程求解即可.【解答】解:如图,过点D作DF⊥BC于F,∵BD是△ABC的角平分线,DE⊥AB,∴DE=DF,S△ABC=×16•DE+×12•DF=70,所以,14DE=70,解得DE=5.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.15.已知在△ABC中,∠CAB的平分线AD与BC的垂直平分线DE交于点D,DM⊥AB于M,DN⊥AC交AC的延长线于N,你认为BM与CN之间有什么关系?试证明你的发现.【分析】连接BD,CD,由角平分线的性质可得DM=DN,线段垂直平分线的性质可得BD=CD,所以Rt△BMD≌Rt△CND(HL),则BM=CN.【解答】解:BM=CN.理由:连接BD,CD,∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN,∵DE垂直平分BC,∴BD=CD,在Rt△BMD与Rt△CND中∵∴Rt△BDM≌Rt△CDN(HL),∴BM=CN.【点评】此题主要考查角平分线的性质和线段垂直平分线的性质以及全等三角形的判定和性质,难度中等,作辅助线很关键.。
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (64)
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质考试复习题(含答案)如图,OC平分∠AOB,点D,E分别在OA,OB上,点P在OC上且有PD=PE.求证:∠PDO =∠PEB.【答案】证明见解析;【解析】试题分析:过点P作AO、BO的垂线,利用直角三角形全等的判定可证出结论.试题解析:过P做PM垂直OA于M PN垂直OB于N因为OC平分∠AOB所以PM="PN" (角平分线上的点到2边的距离相等)因为PD=PE所以∠PDM全等于∠PEN(HL)所以∠PDO=∠PEB考点:1.角平分线的性质;2.直角三角形全等的判定与性质.32.已知:如图,CD∠AB于D,BE∠AC于E,∠1=∠2.求证:OB=OC.【答案】证明见解析【解析】试题分析:又CD∠AB,BE∠AC,∠1=∠2,可得OE=OD,∠BDO=∠CEO=90°,再由∠BOD=∠COE,可得∠BOD∠∠COE,从而OB=OC.试题解析:∠CD∠AB,BE∠AC,∠1=∠2,∠OE=OD,∠BDO=∠CEO=90°,又∠∠BOD=∠COE,∠∠BOD∠∠COE,∠OB=OC.考点:1.角平分线的性质;2.三角形全等的判定与性质.33.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为;(2)若△ABC的面积为70,求DE的长.【答案】4:3;5.【解析】AB求出BC两个三角形的面积之比等于底的比求出△ABD与△CBD的面积之比;根据(1)求出的△ABD与△CBD的面积之比,得到△ABD的面积,根据三角形的面积公式求出DE.试题解析:(1)、∵BD是△ABC的角平分线,ABBC =43,∴△ABD与△CBD的面积之比为4:3;(2)、∵△ABC的面积为70,△ABD与△CBD的面积之比为4:3,∴△ABD的面积为40,又AB=16,则DE=5.考点:角平分线的性质34.根据图中尺规作图的痕迹,先判断得出结论:.然后证明你的结论(不要求写出已知、求证).【答案】OM平分∠BOA.【解析】试题分析:根据角作图的画法得出三角形全等,从而说明角平分线.试题解析:OM是∠AOB的角平分线连接CM、DM∠OC=OD,CM=DM,OM=OM,∠∠OCM∠∠OCD,∠∠BOM=∠AOM,∠OM是∠AOB的角平分线.考点:(1)、尺规作图;(2)、三角形全等35.(8分)已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.【答案】(1)见解析(2)DM⊥AM,(3)CD+AB=AD【解析】试题分析:(1)首先要作辅助线,ME⊥AD则利用角的平分线上的点到角的两边的距离相等可知ME=MC,再利用中点的条件可知ME=MB,再利用到角两边距离相等的点在角的平分线上的逆定理证明AM平分∠DAB.(2)根据平行线性质得出∠CDA+∠BAD=180°,求出∠1+∠3=90°,根据三角形内角和定理求出即可.(3)证Rt△DCM≌Rt△DEM,推出CD=DE,同理得出AE=AB,即可得出答案.试题解析:(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠1+∠3=90°,∴∠DMA=180°﹣(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中DM DM EM CM=⎧⎨=⎩ ∴Rt △DCM ≌Rt △DEM (HL ),∴CD=DE ,同理AE=AB ,∵AE+DE=AD ,∴CD+AB=AD .考点:角平分线的性质;全等三角形的判定与性质36.如图,在∠ABC 中,∠ACB=90°,AC=BC=AD(1)作∠A 的平分线交CD 于E ;(2)过B 作CD 的垂线,垂足为F ;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.【答案】(1)作图见试题解析;(2)作图见试题解析;(3)∠ACE ∠∠ADE ,∠ACE ∠∠CFB .【解析】试题分析:(1)利用角平分线的作法得出∠A的平分线;(2)利用钝角三角形高线的作法得出BF;(3)利用等腰三角形的性质及全等三角形的判定得出答案.试题解析:(1)如图所示:AE即为所求;(2)如图所示:BF即为所求;(3)如图所示:∠ACE∠∠ADE,∠ACE∠∠CFB,∠AC=AD,AE平分∠CAD,∠AE∠CD,EC=DE,在∠ACE和∠ADE中,∠AE=AE,∠AEC=∠AED,EC=ED,∠∠ACE∠∠ADE(SAS).考点:1.作图—复杂作图;2.全等三角形的判定.37.(8分)如图,在∠ABC中,∠B=90°,AB=BC=4,点E在BC上,将∠ABC沿AE折叠,使点B落在AC边上的点F处.(1)求BE的长;(2)判断∠CEF是什么特殊三角形.【答案】BE=4√2-4【解析】试题分析:(1)先由勾股定理求出AC的长,由折叠可得∠CEF为直角三角形,BE="EF," 设BE=,根据勾股定理可得;(2)由(1)可得EF=FC=,所以直角三角形CEF是等腰直角三角形.试题解析:在∠ABC中,∠B=90°,AB=BC=4,∠AC=42分将∠ABC沿AE折叠,使点B落在AC边上的点F处.所以BE=EF,∠∠CEF为直角三角形EC2=EF2+FC2 4分设BE=,(4-)2=2+(4-4)24分∠6分EF=FC=7分∠∠CEF是等腰直角三角形8分考点:1.勾股定理;2. 图形折叠的性质;3.等腰直角三角形的判定.38.如图,AD⊥BC于点D,EG⊥BC于点G,⊥E=⊥3.请问:AD平分⊥BAC吗?若平分,请说明理由.【答案】平分,理由见解析.【解析】【分析】先利用平面内垂直于同一条直线的两条直线互相平行,得到AD∥EG,再利用平行线的性质和已知条件求出∥1=∥2即可.【详解】解:平分.证明:∥AD∥BC于D,EG∥BC于G,(已知)∥∥ADC=∥EGC=90°,(垂直的定义)∥AD∥EG,(同位角相等,两直线平行)∥∥2=∥3,(两直线平行,内错角相等)∥E=∥1,(两直线平行,同位角相等)又∥∥E=∥3(已知)∥∥1=∥2(等量代换)∥AD平分∥BAC(角平分线的定义).【点睛】本题考查平行线的判定与性质;角平分线的定义.39.画图说明题,试用几何方法说明你所得结果的正确性.(1)作∠AOB=90°;(2)在∠AOB的内部任意画一条射线OP;(3)画∠AOP的平分线OM以及∠BOP的平分线ON;(4)用量角器量得∠MON= 度.【答案】45,理由见解析【解析】【分析】首先根据题意画出图形,再根据角平分线的性质可得∠POM=1∠POB,2∠PON=12∠POA,然后可得∠POM+∠PON=12(∠POB+∠POA),进而可得答案.【详解】如图所示:∥OM是∥AOP的平分线,ON是∥BOP的平分线,∥∥POM=12∥POA,∥PON=12∥POB,∥∥POB+∥POA=∥AOB=90°,∥∥POM+∥PON=12(∥POB+∥POA)=12∥AOB=12×90°=45°.【点睛】考查了基本作图,以及角平分线的作法,关键是掌握角平分线的画法.40.(本题满分10分)如图,把∠EFP按图所示的方式放置在菱形ABCD 中,使得顶点E、F、P分别在线段AB、AD、AC上.已知EP=FP=,EF=,∠BAD=60°,且AB.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若∠EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.【答案】(1)∠EPF=120°;(2)AE+AF=;(3)AP的最大值为8,AP 的最小值为4.【解析】试题分析:(1)过点P作PG∠EF,垂足为G,在RtFPG中,利用锐角三角函数求得∠FPG=60°,即可得∠EPF的度数.(2)作PM∠AB,PN∠ND,垂足分别为M、N,可证RtPME∠RtPNF,可得FN=EM;在RtPMA中,利用锐角三角函数求得AM的长,同样的方法求得AN的长,根据AE+AF=(AM-EM)+(AN+NF)=AM+AN即可求得AE+AF的值.(3)当PE∠AB,PF∠AD时,AP的值最大为8,当点A与点E(或点F)重合时,PA的值最小为4.试题解析:解:(1)过点P作PG∠EF,垂足为G,∠PE=PF,PG∠EF,∠FG=EG=,∠FPG=∠EPG=∠EPF.在RtFPG中,,∠∠FPG=60°∠∠EPF=2∠FPG=120°.作PM∠AB,PN∠ND,垂足分别为M、N,在菱形ABCD中,∠AD=AB,,DC=BC,AC=AC,∠∠ABC∠∠ADC,∠∠DAC=∠BAC∠点P到AB、CD两边的距离相等,即PM=PN.在RtPME和RtPNF中,∠PM=PN,PE=PF,∠RtPME∠RtPNF∠FN=EM在RtPMA中,∠PMA=90°,∠PAM=∠DAB=30°,∠AM=同理,AN=∠AE+AF=(AM-EM)+(AN+NF)=AM+AN=.(3)AP的最大值为8,AP的最小值为4.考点:菱形的性质;角平分线的性质;全等三角形的判定及性质.。
八年级数学上册《第十二章 角的平分线的性质》同步练习题含答案(人教版)
八年级数学上册《第十二章 角的平分线的性质》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.△ABC 是一个任意三角形,用直尺和圆规作出∠A 、∠B 的平分线,如果两条平分线交于点O ,那么下列选项中不正确的是( )A .点O 一定在△ABC 的内部B .∠C 的平分线一定经过点OC .点O 到△ABC 的三边距离一定相等D .点O 到△ABC 三顶点的距离一定相等2.如图,在△ABC 中,∠C =90°,使点P 到AB 、BC 的距离相等,则符合要求的作图痕迹( )A .B .C .D .3.如图,已知直线AB CD ,EG 平分BEF ∠,140∠=︒则2∠的度数是( )A .70︒B .50︒C .40︒D .140︒4.如图,在 ABC 中 90B ∠=︒ , AD 为 BAC ∠ 的角平分线.若 4BD = ,则点 D 到 AC 的距离为( )A .3B .4C .5D .65.如图:△ABC 中,AC=BC ,∠C=90°,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AC=6cm ,则DE+BD 等于( )A .5cmB .4cmC .6cmD .7cm6.如图,已知在ABC 中,AB=9,BC=12,AC=15,ABC 的三条角平分线交于点O ,则ABO BOC CAO SS S ::等于( )A .111::B .123::C .345::D .234::7.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE =DG ,△ADG 和△AED 的面积分别为50和25,则△EDF 的面积为( )A .35B .25C .15D .12.58.如图,△AOB 的外角∠CAB ,∠DBA 的平分线AP ,BP 相交于点P ,PE ⊥OC 于E ,PF ⊥OD 于F ,下列结论:(1)PE=PF ;(2)点P 在∠COD 的平分线上;(3) ∠APB=90°-∠O ,其中正确的有( )A .0个B .1个C .2个D .3个二、填空题:9.如图,已知∠CAE 是△ABC 的外角,AD ∥BC ,且AD 是∠EAC 的平分线,若∠B=71°,则∠BAC= .10.如图,∠AOB=80°,QC ⊥OA 于点C ,QD ⊥OB 于点D ,若QC=QD ,则∠AOQ= .11.如图,四边形ABCD 中 90BCD ∠=︒ ,∠ABD=∠DBC , AB=5 , DC=6 ,则 ABD 的面积为 .12.已知OC 平分∠AOB ,点P 为OC 上一点,PD ⊥OA 于D ,且PD=3cm ,过点P 作PE ∥OA 交OB 于E ,∠AOB=30°,求PE 的长度 cm .13.如图,在△ABC 中,∠ABC=48°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠ABE= °.三、解答题:14.如图,在ABC 中,BD 平分ABC ∠,DE BC 交AB 于点E ,50C ∠=︒和95BDC ∠=︒求BED ∠的度数.15.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长.16.如图,BD=CD ,BF ⊥AC 于F ,CE ⊥AB 于E.求证:点D 在∠BAC 的角平分线上.17.如图,已知DE ⊥AE ,垂足为E ,DF ⊥AC ,垂足为F ,BD=CD ,BE=CF .(1)求证:AD 平分∠BAC ;(2)丁丁同学观察图形后得出结论:AB+AC=2AE ,请你帮他写出证明过程.18.如图,在四边形ABDC 中90D B ∠=∠=︒,O 为BD 上的一点,且AO 平分BAC CO ∠,平分ACD ∠.求证:(1)OA OC ⊥.(2)AB CD AC +=参考答案:1.D 2.C 3.A 4.B 5.C 6.C 7.D 8.C9.38°10.40°11.1512.613.2414.解:∵50C ∠=︒ 95BDC ∠=︒∴180955035DBC ∠=︒-︒-︒=︒ BD 平分ABC ∠35ABD CBD ∴∠=∠=︒又∵DE BC∴180180235110BED ABC ∠=︒-∠=︒-⨯︒=︒ .15.解:∵在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ∴DE=DF∵△ABC 面积是28cm 2,AB=20cm ,AC=8cm∴S △ABC = 12 AB •DE+ 12 AC •DF=28即 12 ×20×DE+ 12 ×8×DF=28解得DE=2cm .16.解:∵BF ⊥AC ,CE ⊥AB∴∠BED=∠CFD=90°在△BED 和△CFD 中{∠BED =∠CFD∠BDE =∠CDF BD =CD∴△BED ≌△CFD (AAS )∴DE=DF又∵DE ⊥AB ,DF ⊥AC∴点D 在∠BAC 的平分线上.17.(1)证明: DE AB ⊥ DF AC ⊥90E DFC ∴∠=∠=︒在 Rt BED ∆ 和 Rt CFD ∆ 中BD CD BE CF =⎧⎨=⎩Rt BED Rt CFD(HL)∴∆≅∆DE DF ∴=DE AB ⊥ DF AC ⊥EAD CAD ∴∠=∠AD ∴ 平分 BAC ∠ ;(2)证明: 90E AFD ∠=∠=︒在 Rt AED ∆ 和 Rt AFD ∆ 中AD AD DE DF =⎧⎨=⎩Rt AED Rt AFD(HL)∴∆≅∆AE AF ∴=BE CF =2AB AC AE BE AF CF AE CF AE CF AE ∴+=-++=-++= .18.(1)证明:∵90D B ∠=∠=︒∴180B D ∠+∠=︒∴AB CD∴180BAC DCA ∠+∠=︒∵AO 平分BAC ∠,CO 平分ACD ∠ ∴12OAC OAB BAC ∠=∠=∠ 12ACO DCO ACD ∠=∠=∠ ∴119022OAC ACO BAC ACD ∠+∠=∠+∠=︒ ∴1809090AOC ∠=︒-︒=︒∴OA OC ⊥;(2)证明:过点O 作OE AC ⊥于点E ,如图所示:∵90D B ∠=∠=︒∴OB AB ⊥ OD CD ⊥∵AO 平分BAC ∠,CO 平分ACD ∠∴OB OE = OD OE =∵OA OA = OC OC =∴()Rt Rt HL OAB OAE ≌ ()Rt Rt HL OCE OCD ≌ ∴AB AE =,CD CE =∴AB CD AE CE AC +=+=。
_角平分线的性质和判定(包含答案)
角平分线的性质和判定(1)以的顶点为圆心,任意长为半径画弧,分别交、于点、;(2)分别以点、为圆心,大于长为半径画弧,相交于点;(3)连接点和并延长,则射线就是的角平分线若DP=EP,则点P在∠AOB的角平分线上一.考点:角平分线的尺规作图,角平分线的性质和判定二.重难点:角平分线的性质和判定三.易错点:1.角平分线的性质和判定混淆不清导致解题出错.题模一:尺规作图例1.1.1如图,已知M、N分别是AOB∠的边OA上任意两点.(1)尺规作图:作AOB∠的平分线OC;(2)在AOB∠的平分线OC上求作一点P,使PM PN+的值最小.(保留作图痕迹,不写画法)例1.1.2作图题:(简要写出作法,保留作图痕迹)如图,已知点M,N和∠AOB,求作一点P,使P到点M,N的距离相等,且到∠AOB的两边的距离相等.题模二:性质例1.2.1如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.2例1.2.2如图,在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR⊥AB于R,AB=7,BC=8,AC=9,则BP+CQ-AR=________.例 1.2.3 如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC ∆的面积.题模三:判定例1.3.1 如图,在四边形ABCD 中,AB ⊥CB 于点B ,DC ⊥BC 于点C ,DE 平分∠ADC ,且点E 为BC 的中点,连接AE .(1)求证:AE 平分∠BAD ; (2)求∠AED 的度数.例 1.3.2 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.随练1.1 尺规作图(保留作图痕迹,写出结论,不写作法)如图,两条公路EA 和FB 相交于点O ,在AOB ∠的内部有工厂C 和D ,现要修建一个货站P ,使货站P 到两条公路EA 、FB 的距离相等,且到两工厂C 、D 的距离相等,用尺规作出货站P 的位置.FABCDEOOEDCBA随练1.2如图,△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于12EF长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为()A.65°B.60°C.55°D.45°随练1.3如图,已知ABC∆的周长是20,OB和OC分别平分ABC∠和ACB∠,OD BC⊥于点D,且3OD=,则ABC∆的面积是()A.20B.25C.30D.35随练 1.4如图,AB CD∥,BP和CP分别平分ABC∠和DCB∠,AD过点P,且与AB垂直.若8AD=,则点P到BC的距离是()A.8B.6C.4D.2随练1.5三角形中到三边的距离相等的点是()A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点随练1.6如图所示,在△ABC中,BP、CP分别是∠ABC的外角的平分线,求证:点P在∠A的平分线上.拓展1如图,已知△ABC中,点D在边AC上,且BC=CD(1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法);(2)在(1)中,设CP与AB相交于点E,连接DE,求证:BE=DE.拓展2如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处拓展3在ABC∆中,AB AC=,70ABC∠=︒(1)用直尺和圆规作ABC∠的平分线BD交AC于点D(保留作图痕迹,不要求写作法)(2)在(1)的条件下,BDC∠=________.PCBA拓展4 到三角形三条边的距离都相等的点是这个三角形的( ) A.三条中线的交点 B.三条高的交点 C.三条边的垂直平分线的交点 D.三条角平分线的交点拓展5 如图,已知在ABC ∆中,CD 是AB 边上的高线,BE 平分ABC ∠,交CD 于点E ,6BC =,2DE =,则BCE ∆的面积等于________.拓展6 如图,ABC ∆的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将ABC ∆分为三个三角形,则::ABO BCO CAO S S S ∆∆∆等于( )A.1:1:1B.1:2:3C.2:3:4D.3:4:5拓展7 如图,已知:BD 是ABC ∠的平分线,DE BC ⊥于E ,236ABC S cm ∆=;,12AB cm =,18BC cm =,则DE 的长为________cm .拓展8 如图,ABC △中,AD 平分BAC ∠,DG BC ⊥且平分BC ,DE AB ⊥于E ,DF AC ⊥交AF 的延长线于F .(1)说明BE CF =的理由;(2)如果AB a =,AC b =,求AE BE 、的长.拓展9 如图,△ABC 和△AED 为等腰三角形,AB =AC ,AD =AE ,且∠BAC =∠DAE ,连接BE 、CD 交于点O ,连接AO . 求证:(1)△BAE ≌△CAD ; (2)OA 平分∠BOD .GFE DC BA答案解析角平分线题模一:尺规作图例1.1.1【答案】(1)(2)【解析】(1)如图1所示,OC即为所求作的AOB∠的平分线.(2)如图2,作点M关于OC的对称点M',连接M N'交OC于点P,则点P即为所求.例1.1.2【答案】【解析】(1)以点O为圆心,以任意长为半径作弧,交OA、OB于点C、点D,(2)再分别以点C、点D为圆心,大于12CD长为半径作弧,两弧交于一点E,(3)连接OE,则OE为∠AOB的角平分线,(4)连接MN,分别以M、N为圆心,大于12MN长为半径作弧,两弧交于点F、点H,(5)连接FH,则FH为线段MN的垂直平分线,(6)直线FH与OE交于点P,点P即为所求.题模二:性质例1.2.1【答案】C【解析】过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.例1.2.2【答案】4【解析】连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR =OQ ,OR =OP ,∴由勾股定理得:AR 2=OA 2-OR 2,AQ 2=AO 2-OQ 2, ∴AR =AQ ,同理BR =BP ,CQ =CP , 即O 在∠ACB 角平分线上,设BP =BR =x ,CP =CQ =y ,AQ =AR =z , 则987y z x y x z +=⎧⎪+=⎨⎪+=⎩ x =3,y =5,z =4,∴BP =3,CQ =5,AR =4, BP +CQ -AR =3+5-4=4.例1.2.3【答案】31.5【解析】∵O 点为ABC △中角平分线的交点, ∴O 点到三边距离相等.∴ABC OAB OBC OAC S S S S =++△△△△1()331.52AB BC AC =⨯++⨯=题模三:判定 例1.3.1【答案】(1)见解析 (2)90°【解析】(1)过点E 作EF ⊥AD 于点F ,图略.∵DE 平分∠ADC ,EC ⊥CD ,EF ⊥AD ,∴EC =EF ,又EC =EB ,∴EF =EB ,又EF ⊥AD ,EB ⊥AB ,∴点E 在∠BAD 的平分线上,∴AE 平分∠BAD . (2)∠AED =90°. 例1.3.2【答案】见解析.【解析】因为ABD ∆、ACE ∆是等边三角形,所以AB AD =,AE AC =,CAE ∠=60BAD ∠=︒, 则BAE DAC ∠=∠,所以BAE DAC ∆∆≌,则有ABE ADC ∠=∠,AEB ACD ∠=∠,BE DC =.在DC 上截取DF BO =,连结AF ,容易证得ADF ABO ∆∆≌,ACF AEO ∆∆≌.进而由AF AO=得AFO AOF∠=∠;由AOE AFO∠=∠可得AOF∠=AOE∠,即OA平分DOE∠.随练1.1【答案】【解析】如图所示:作CD的垂直平分线,AOB∠的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和1P都是所求的点.随练1.2【答案】A【解析】解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;又∵分别以点E、F为圆心,大于12EF的长为半径画弧,两弧相交于点G;∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG 是∠CAB 的平分线,∵∠CAB =50°,∴∠CAD =25°;在△ADC 中,∠C =90°,∠CAD =25°,∴∠ADC =65°(直角三角形中的两个锐角互余).随练1.3【答案】C【解析】如图,连接OA ,过O 作OE AB ⊥于E ,OF AC ⊥于F ,OB 、OC 分别平分ABC ∠和ACB ∠,3OE OF OD ∴===,ABC ∆的周长是20,OD BC ⊥于D ,且3OD =,1111()32222ABC S AB OE BC OD AC OF AB BC AC ∆∴=⨯⨯+⨯⨯+⨯⨯=⨯++⨯ 1203302=⨯⨯=.随练1.4【答案】C【解析】过点P 作PE BC ⊥于E ,AB CD ∥,PA AB ⊥,PD CD ∴⊥, BP 和CP 分别平分ABC ∠和DCB ∠,PA PE ∴=,PD PE =,PE PA PD ∴==,8PA PD AD +==,4PA PD ∴==,4PE ∴=.随练1.5【答案】D【解析】利用角的平分线上的点到角的两边的距离相等可知: 三角形中到三边的距离相等的点是三条角平分线的交点.随练1.6【答案】见解析【解析】过点P 作PE ⊥AB 于点E ,PG ⊥AC 于点G ,PF ⊥BC 于点F .因为P 在∠EBC 的平分线上,PE ⊥AB ,PH ⊥BC ,所以PE PF =.同理可证PF PG =.所以PG PE =,又PE ⊥AB ,PG ⊥AC ,所以P 在∠A 的平分线上.拓展1【答案】(1)见解析(2)见解析【解析】(1)如图1,射线CP 为所求作的图形.(2)∵CP 是∠ACB 的平分线∴∠DCE=∠BCE .在△CDE 和△CBE 中,CD=CB DCE=BCE CE=CE ⎧⎪∠∠⎨⎪⎩,∴△DCE ≌△BCE (SAS ),P∴BE=DE.拓展2【答案】A【解析】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三角形外角平分线的交点,共三处.拓展3【答案】(1)(2)75︒【解析】(1)如图所示,BD 即为所求;(2)在ABC ∆中,AB AC =,70ABC ∠=︒,180218014040A ABC ∴∠=︒-∠=︒-︒=︒, BD 是ABC ∠的平分线,11703522ABD ABC ∴∠=∠=⨯︒=︒, BDC ∠是ABD ∆的外角,403575BDC A ABD ∴∠=∠+∠=︒+︒=︒.拓展4【答案】D【解析】∵角的平分线上的点到角的两边的距离相等,∴角形三边距离相等的点应是这个三角形三个内角平分线的交点.拓展5【答案】6【解析】作EF BC ⊥于F , BE 平分ABC ∠,EF BC ⊥,ED AB ⊥,2EF DE ∴==,BCE ∴∆的面积162BC EF =⨯⨯=.拓展6【答案】C【解析】过点O 作OD AC ⊥于D ,OE AB ⊥于E ,OF BC ⊥于F ,点O 是内心,OE OF OD ∴==, 111::::::2:3:4222ABO BCO CAO S S S AB OE BC OF AC OD AB BC AC ∆∆∆∴===.拓展7【答案】2.4【解析】如图,过点D 作DF AB ⊥于F ,BD 是ABC ∠的平分线,DE BC ⊥, DE DF ∴=,ABC ABD BCD S S S ∆∆∆=+,1122AB DF BC DE =+, 11121822DE DE =⨯+⨯, 15DE =,236ABC cm ∆=,1536DE ∴=,解得 2.4DE cm =.拓展8【答案】(1)见解析;(2)2a b BE -=,2a b AE += 【解析】(1)连接DB 、DC ,∵DG ⊥BC 且平分BC ,∴DB DC =.∵AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE DF =.90AED BED ACD DCF ∠=∠=∠=∠=︒在Rt △DBE 和Rt △DCF 中DB DC DE DF =⎧⎨=⎩Rt △DBE ≌Rt △DCF (HL ),∴BE CF =.(2)在Rt △ADE 和Rt △ADF 中∴Rt △ADE ≌Rt △ADF (HL ).AD AD DE DF =⎧⎨=⎩∴AE AF =.∵AC CF AF +=,∴AE AC CF =+.∵AE AB BE =-,∴AC CF AB BE +=-∵AB a =,AC b =,∴b BE a BE +=-, ∴2a b BE -=, ∴22a b a b AE AB BE a -+=-=-=.拓展9【答案】(1)见解析(2)见解析【解析】(1)过点A 分别作AF ⊥BE 于F ,AG ⊥CD 于G .如图所示:G F EDCB A∵∠BAC=∠DAE,∴∠BAE=∠CAD,在△BAE和△CAD中,AB ACBAE CAD AE AD=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△CAD(SAS),(2)连接AO并延长交CE为点H,∵△BAE≌△CAD,∴BE=CD,∴AF=AG,∵AF⊥BE于F,AG⊥CD于G,∴OA平分∠BOD,∴∠AOD=∠AOB,∵∠COH=∠AOD,∠EOH=∠AOB,∴∠COH=∠EOH.∴OA平分∠BOD.。
八年级数学上册 角平分线的性质与判定课后练习二(含详解)苏科版
角平分线的性质与判定重难点易错点解析题一:题面:如图,PB、PC分别是△ABC的外角平分线,它们相交于点P,求证:点P在∠A的平分线上.金题精讲题一:题二:题面:如图,已知AD是△ABC的角∠BAC的角平分线,DF垂直AB于F,DE垂直AC于E,求证:AE=AF,AD平分∠EDF.题三:题面:如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE.求证:∠B+∠ADC=180°.思维拓展题面:如图,已知△ABC中,∠BAC:∠ABC:∠ACB=4:2:1,AD是∠BAC的平分线.求证:AD=AC AB.课后练习详解重难点易错点解析题一:答案:点P在∠A的平分线上.详解:作PM⊥AC于M,PN⊥BC于N,PE⊥AB于E,∵PB、PC分别是△ABC的外角平分线,∴PM=PN,PN=PE,∴PM=PE,∵PM⊥AC,PE⊥AB,∴点P在∠A的平分线上.金题精讲题一:答案:16cm.详解:∵OC、OB分别是∠ACB、∠ABC的角平分线,∴∠5=∠6,∠1=∠2,∵OD∥AB,OE∥AC,∴∠4=∠6,∠1=∠3.∴∠4=∠5,∠2=∠3,OD=BD,OE=CE.∵BC=16cm,∴△ODE的周长=OD+DE+OE=BD+DE+CE=BC=16cm.题二:答案:AE=AF.AD平分∠EDF.详解:∵DF⊥AB,DE⊥AC,∴∠AFD=∠AED=90°,∵AD是∠BAC的角平分线,∴∠EAD=∠FAD,∵∠EAD+∠AED+∠ADE=180°,∠DAF+∠AFD+∠ADF=180°,∴∠ADE=∠ADF,即AD平分∠EDF,∴AE=AF.题三:答案:∠B+∠ADC=180°.详解:延长AD,过C作CF垂直AD的延长线于点F,∵AC平分∠BAD,∴∠FAC=∠EAC,∵CE⊥AB,CF⊥AD,∴∠DFC=∠CEB=90°,∴△AFC≌△AEC,∴AF=AE,CF=CE,∵2AE=AB+AD,又∵AD=AF DF,AB=AE+BE,AF=AE,∴2AE=AE+BE+AE DF,∴BE=DF,∵∠DFC=∠CEB=90°,CF=CE,∴△CDF≌△CEB,∴∠ABC=∠CDF,∵∠ADC+∠CDF=180°,∴∠B+∠ADC=180°.思维拓展答案:AD=AC AB.详解:在AC上截取AE=AB,连DE,如图,设∠C=x,∵∠BAC:∠ABC:∠ACB=4:2:1,∴∠BAC=4x,∠B=2x,∵AD是∠BAC的平分线,∴∠3=∠4=2x,∵在△ABD和△AED中,AB=A E,∠3=∠4,AD=AD,∴△ABD≌△AED(SAS),∴∠B=∠1=2x,∴∠1=∠4,∴DA=DE,∵∠1=∠2+∠C,∠C=x,∴∠2=2x x=x,即∠2=∠C,∴ED=EC,∴DA=EC,∴AC=AE+EC=AB+AD,即AD=AC AB.。
人教八上:专题三--角平分线的性质与判定(含解析)
专题三角平分线的性质与判定一、单选题1.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=15,且BD:CD=3:2,则点D到AB的距离为()2345.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,AB+BC+CA=18,过O作OD⊥BC于点D,且OD=3,则△ABC的面积是.6.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE7得8910.如图,△ABC中,∠ABC,∠ACB的角平分线交于点O,过O点作MN∥BC分别交AB,AC于M,N 两点,AB=6,ΔAMN的周长是15.则AC的长为.三、解答题11.如图1,△ABC的两条外角平分线AO,BO相交于点O,∠ACB=50°.(1)直接写出∠AOB的大小;(2)如图2,连接OC交AB于K.①求∠BCK的大小;②如图3,作AF⊥OC于F,若∠BAC=105°,求证:AB=2CF.12.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA,若∠ABC=60°,FD=10,求DC的长.13.如图,四边形ABCD中,∠B=90°,AB∥CD,M是BC边上的一点,且AM平分∠BAD,DM平分∠ADC,求证:(1)BM=MC;(2)AM⊥MD.14.定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”.(1)如图1,△ABC中,AB=AC,∠A=36°,求证:△ABC是倍角三角形;(2)如图2,△ABC的外角平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍角三角形,并进行证明.15.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA,设∠ABC=α.(1)α=50°时,求∠DFC的度数;(2)证明:BE∥DF.16.在△ABC中,AO、BO分别平分∠BAC、∠ABC.(1)如图1,若∠C=32°,则∠AOB=________;(2)如图2,连结OC,求证:OC平分∠ACB;(3)如图3,若∠ABC=2∠ACB,AB=4,AC=7,求OB的长.17.如图,在△ABC中,D在BC边的延长线上,∠ACD的平分线CE交BA的延长线于点E,已知∠B=30°,∠E=40°,求证:AE=CE.18.如图,在四边形ABCD中,AB∥CD,∠C=90°,点E为BC的中点,DE平分∠CDA.(1)求证:AD=AB+CD;(2)若S△CDE=3,S△ABE=4,则四边形ABCD的面积为______.(直接写出结果)19.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,MN经过点O与AB,AC分别相交于点M,N,且MN∥BC.(2)已知AB=7,AC=6,求△AMN的周长.参考答案题号12答案B B1.B【分析】本题考查的是角平分线的性质,作DE⊥AB于E,根据角平分线的性质得到CD=DE,根据题意求出CD的长即可.∵∴∵∴2∴3【详解】试题分析:本题需要分两种情况进行讨论:如图1所示:根据∠B=40°,∠C=70°可得:∠BAC=70°,根据高线以及角平分线的性质可得:∠DAC=20°,∠EAC=35°,则∠DAE=35°-20°=15°;如图2所示:根据∠B=40°,∠ACD=70°可得:∠BAC=30°,根据高线以及角平分线的性质可得:∠DAC=20°,∠EAC=15°,则∠DAE=15°+20°=35°.点睛:对于这种在三角形中求角度问题的时候,如果题目中没有给出图形,我们首先一定要根据题意画出图形,然后根据图形求出角的度数.特别要注意分类讨论的思想,在画图时一定要注意锐角三角形和钝角三角形两种情况.在画垂线的时候要注意高线在三角形内部和三角形外部两种情况.4.3:2【分析】过点D作DE⊥AB于点E,由角平分线的性质得到DE=CD,再根据三角形面积公式解答即可.【详解】解:过点D作DE⊥AB于点E,∵AD是Rt△ABC的角平分线,CD⊥AC,DE⊥AB∴DE=CDS△ABD S△ACD =12AB⋅DE12AC⋅CD=ABAC=128=32故答案为:3:2.【点睛】本题考查角平分线的性质、三角形面积公式等知识,是基础考点,掌握相关知识是解题关键.5.27【分析】作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质求出OE=OD=3和OF=OD=3,根据三角形面积公式计算即可.【详解】解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB是∠ABC的平分线,OD⊥BC,OE⊥AB,∴OE=OD=3,同理OF=OD=3,∵AB+BC+CA=18.∴△ABC的面积=12×AB×3+12×AC×3+12×BC×3=27.故答案为:27.【点睛】本题主要考查角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.4【分析】根据角平分线的性质以及平行线的性质即可得出PM =PE =2,PE =PN =2,即可得出答案.【详解】解:过点P 作MN ⊥AD ,∵AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,PE ⊥AB 于点E ,∴AP ⊥BP ,PN ⊥BC ,∴PM =PE =2,PE =PN =2,∴MN =2+2=4.故答案为:4.7.2【分析】连接PC 、PB 、PA ,作PD ⊥AB 于D ,PE ⊥AC 于E ,PF ⊥BC 于F ,根据三角形的面积公式计算即可.【详解】连接PC 、PB 、PA ,作PD ⊥AB 于D ,PE ⊥AC 于E ,PF ⊥BC 于F ,由题意得,PE=PD=PF , S △APC +S △APB +S △BPC =S △ACB ,∴12AC·PE+12AB·PD+12BC·PF=12AC·BC ,即12×12·PD+12×13•PD+12×5•PD=12×5×12,解得,PD=2,故答案为:2.【点睛】本题考查的是三角形的面积计算,掌握三角形的面积公式是解题的关键.8.60【分析】根据五边形的内角和求出∠BCD和∠CDE的和,再根据角平分线及三角形内角和求出∠CPD.【详解】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,(∠BCD+∠CDE)=120°,∴∠PDC+∠PCD=12∴∠CPD=180°﹣120°=60°.故答案是:60.【点睛】本题解题的关键是知道多边形内角和定理以及角平分线的性质.9.5【分析】本题考查角平分线的性质定理,过点P作PE⊥OB,垂足为E,过点P作PF⊥MN,垂足为F,过点P作PG⊥OA,垂足为G,连接OP,利用角平分线的性质可得PF=PG=PE,然后根据三角形的面积求出PF=PE=PG=2,再利用△OMP的面积+△ONP的面积−△PMN的面积=4,进行计算即可解答.根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【详解】解:过点P作PE⊥OB,垂足为E,过点P作PF⊥MN,垂足为F,过点P作PG⊥OA,垂足为G,连接OP,∵MP平分∠AMN,NP平分∠MNB,∴PF=PG=PE,∵MN=1,△PMN的面积是1,∴ 12MN ⋅PF =1,∴PF =2,∴PG =PE =2,∵△OMN 的面积是4,∴△OMP 的面积+△ONP 的面积−△PMN 的面积=4,∴ 12OM ⋅PG +12ON ⋅PE−1=4,∴OM +ON =5.故答案为:5.10.9【分析】本题考查了等腰三角形的判定与性质,平行线的性质,根据角平分线的定义和平行线的性质可得△MOB 和△NOC 是等腰三角形,从而可得MO =MB ,NO =NC ,然后利用等量代换可得ΔAMN 的周长=AB +AC ,从而进行计算即可解答.【详解】解:∵BO 平分∠ABC ,CO 平分∠ACB ,∴∠ABO =∠OBC ,∠ACO =∠OCB ,∵MN ∥BC ,∴∠MON =∠OBC ,∠NOC =∠OCB ,∴∠ABO =∠MON ,∠ACO =∠NOC ,∴MO =MB ,NO =NC ,∵△AMN 的周长是15,∴AM +MN +AN =15,∴AM +MO +ON +AN =15∴AM +MB +NC +AN =15,∴AB +AC =15,∵AB =6,∴AC =15−6=9,故答案为:9.11.(1)65°;(2)①25°;②证明见解析.【分析】(1)根据三角形内角和定理求得∠CBA +∠CAB =130°,则∠EBA +∠BAD =230°,再由角平分线的定义求出∠OBA +∠OAB =115°,根据四边形内角和求出∠AOB 即可;(2)①过点O作OM⊥AD于点M,ON⊥BE于点N,OP⊥AB于点P,根据角平分线的性质求解即可;②先求出KB=KC,过点A作AH∥BC交CO于点H,再求出KA=KH,则AB=CH,分别求出AH=AC,HF=CF,即可得出结论.【详解】(1)解:∵AO平分∠BAD,∴∠DAO=∠OAB,∵BO平分∠EOA,∴∠EBO=∠OBA,∵∠ACB=50°,∴∠CBA+∠CAB=130°,∴∠EBA+∠BAD=360°−130°=230°,∴∠OBA+∠OAB=115°,∴∠AOB=360°−50°−115°−130°=65°;(2)解:如图2,①过点O作OM⊥AD于点M,ON⊥BE于点N,OP⊥AB于点P,∵AO、BO分别平分∠DAB、∠EBA,∴OM=OP,OP=ON,∴OM=ON,∴CO平分∠ACB,∵∠ACB=50°,∴∠BCK=∠ACK=25°;②证明:∵∠BAC=105°,∠ACB=50°,∴∠ABC=25°,∵∠KCB=25°,∴∠KBC=∠KCE,∴KB=KC,如图3,过点A作AH∥BC交CO于点H,∴∠AHK=∠KCB,∠HAK=∠KBC,∴∠AHK=∠HAK,∴KA=KH,∴AB=CH,∵∠AHK=∠ACH,∴AH=AC,∵AF⊥CO,∴HF=CF,∴CH=2CF,∴AB=CH=2CF.12∴∵∴∴∵∴∴故DC=5.【点睛】此题主要考查了角平分线的定义,四边形内角和定理,含30°角的直角三角形的性质等知识,解题关键是熟练掌握各性质与定理.13.(1)见详解(2)见详解【分析】(1)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.(2)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;【详解】(1)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM;(2)证明:∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;【点睛】本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.14.(1)见解析(2)△ADC和△ABC是倍角三角形,见解析【分析】(1)利用等边对等角及三角形的内角和求出∠B=∠C=72°,得到2∠A=∠C即可;(2)根据SAS证明△ABD≌△AED,得到∠ADE=∠ADB,BD=DE,证明CE=DE,得出∠C=∠BDE=2∠ADC,可得出∠ABC=2∠C.则结论得证.【详解】(1)证明:∵AB=AC,∴∠B=∠C,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=∠C=72°,∴2∠A=∠C,即△ABC是倍角三角形;(2)解:△ADC和△ABC是倍角三角形,证明如下:∵AD平分∠BAE,∴∠BAD=∠EAD,∵AB=AE,AD=AD,∴∴又∴∴∴∴∵15(2)∠EBC=∠DFC即可得出结论.【详解】(1)解:在四边形ABCD中,∠A=∠C=90°,∠ABC=α,α=50°,∴∠ADC=360°−∠A−∠C−∠ABC=130°,∵DF平分∠CDA,∠ADC=65°,∴∠FDC=12∴∠DFC =90°−65°=25°;(2)证明:在四边形ABCD 中,∠A =∠C =90°,∠ABC =α,∴∠ADC =360°−∠A−∠C−∠ABC =180°−α,∵DF 平分∠CDA ,∴∠FDC =12∠ADC =12(180°−α),∴∠DFC =90°−12(180°−α)=12α,∵BE 平分∠ABC ,∴∠EBC =12α,∴∠EBC =∠DFC ,∴BE ∥DF .16.(1)106°;(2)见解析;(3)3;【分析】(1)本题考查与角平分线有关的三角形内角和关系,根据∠C =32°得到∠CAB +∠CBA ,再结合角平分线求出∠CAO +∠CBO ,即可得到答案;(2)本题考查角平分线判定与性质,过O 作OD ⊥AC ,OE ⊥AB ,OF ⊥BC ,根据角平分线性质得到OD =OF =OE ,结合角平分线的判定即可证明;(3)本题主要考查三角形全等的性质与判定,解题的关键是根据截长补短作出辅助线,在AC 上截取一点D ,使AD =AB ,连OD ,证明△ABO≌△ADO ,即可得到答案;【详解】(1)解:∵∠C =32°,∴∠CAB +∠CBA =180°−32°=148°,∵AO 、BO 分别平分∠BAC 、∠ABC ,∴∠CAO +∠CBO =148°2=74°,∴∠AOB =180°−74°=106°;(2)证明:过O 作OD ⊥AC ,OE ⊥AB ,OF ⊥BC ,∵AO 、BO 分别平分∠BAC 、∠ABC ,∴OD =OF ,OD =OE ,∴OC 平分∠ACB ;(3)解:在AC 上截取一点D ,使AD =AB ,连OD ,设∠ACO =∠BCO =α,∵∠ABC =2∠ACB ,∴∠ABC =4α,∵BO 平分∠ABC ,∴∠ABO =∠CBO =2α,∵AO 平分∠BAC ,∴∠BAO =∠DAO ,在△ABO 与△ADO 中,AO =AO ∠BAO =∠DAO AB =AD,∴△ABO≌△ADO(SAS),∴∠ABO =∠ADO =2α,OB =OD,AB =AD =4,又∵∠ACO =α,∴∠ACO =∠DCO =α,∴OD =OC =AC−AD =7−4=3,∴OB =3.17.证明见解析【分析】本题主要考查了角平分线的定义,三角形外角的性质以及等腰三角形的判定和三角形内角和定理的应用,根据外角的性质求出∠ECD=702,由角平分线的定义得∠ACE=∠ECD=70°,根据三角形内角和定理求出∠CAE=70°,可得∠ACE=∠CAE,从而可得结论.【详解】证明:∠B=30°,∠E=40°,∴∠ECD=∠B+∠E=70°,∵CE平分∠ACD,∴∠ACE=∠ECD=70°,在△ABE中,∠ACE+∠E+∠CAE=180°,∴∠CAE=180°−∠ACE−∠E=180°−70°−40°=70°,∴∠ACE=∠CAE,∴AE=CE.18.(1)见解析(2)14【分析】本题考查角平分线的性质,全等三角形的判定与性质.(1)过点E作EF⊥AD于F,根据角平分线的性质得出CE=EF,再证明△ABE≌△AFE,△CED≌△FED,根据全等三角形的性质得出AB=AF,DC=DF,进而得出结论;(2)由△ABE≌△AFE,△CED≌△FED,推出S△CED=S△FED,S△ABE=S△AFE,据此求解即可.【详解】(1)证明:如图,过点E作EF⊥AD于F,∵∠C=90°,AB∥CD,∴∠B=90°,∵DE平分∠CDA,∴CE=EF,∴Rt△CED≌Rt△FED(HL),∴DC=DF,∵E是BC的中点,∴BE=CE,∴BE=EF,∵AE=AE,∴Rt△ABE≌Rt△AFE(HL),∴AD=AF+FD=AB+CD;(2)解:∵△CED≌△FED,△ABE≌△AFE,∴S△CED=S△FED,S△ABE=S△AFE,∵S∴19(2)((∴∴∴(∴∵∴∴∠BOM=∠ABO,∴BM=OM,同理可得:CN=ON,∴MN=OM+ON=BM+CN,∵AB=7,AC=6,∴△AMN的周长是AM+MN+AN=AM+BM+CN+AN=AB+AC=13.。
八年级数学上册《第二章 角平分线的性质》同步练习题及答案(青岛版)
八年级数学上册《第二章角平分线的性质》同步练习题及答案(青岛版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是( )A.PC=PDB.∠CPD=∠DOPC.∠CPO=∠DPOD.OC=OD2.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=( )A.30°B.35°C.45°D.60°3.下列命题中真命题是( )A.三角形按边可分为不等边三角形,等腰三角形和等边三角形B.等腰三角形任一个内角都有可能是钝角或直角C.三角形的一个外角大于任何一个内角D.三角形三条内角平分线相交于一点,这点到三角形三边的距离相等4.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB =S△PCD,则满足此条件的点P( )A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)5.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10B.7C.5D.46.如图,两条笔直的公路l1、l2相交于点O,公路的旁边建三个加工厂A、B、D,已知AB=AD=5.2km,CB=CD=5km,村庄C到公路l1的距离为4km,则C村到公路l2的距离是( )A.3kmB.4kmC.5kmD.5.2km7.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于0.5DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的( )A.一条中线B.一条高C.一条角平分线D.不确定8.如图,已知△ABC,∠ABC,∠ACB的角平分线交于点O,连接AO并延长交BC于D,OH⊥BC 于H,若∠BAC=60°,OH=3cm,OA长为( )cm.A.6B.5C.4D.3二、填空题9.如图所示,AO为∠A的平分线,OE⊥AC于E,且OE=2,则点O到AB的距离等于 .10.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.11.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 .12.如图,△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB于点E,AB=8cm,BC=6cm,=14cm2,则DE的长是 cm.S△ABC13.通过学习我们已经知道三角形的三条内角平分线是交于一点的.如图,P是△ABC的内角平分线的交点,已知P点到AB边的距离为1,△ABC的周长为10,则△ABC的面积为.14.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.三、作图题15.如图,三条公路两两相交于点A,B,C,现在要在公路边建一所加油站,要求加油站的位置到三条公路的距离都相等,则符合要求的位置有几个?请你找出所有加油站的位置(要求:尺规作图,保留作图痕迹,写出结论).四、解答题16.如图,在△ABC中,点O是∠ABC、∠ACB平分线的交点,AB+BC+AC=20,过O作OD⊥BC 于D点,且OD=3,求△ABC的面积.17.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF(1)求证:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的长.18.如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.(1)若∠ABE=60°,求∠CDA的度数.(2)若AE=2,BE=1,CD=4.求四边形AECD的面积.19.如图,在△ABC中,M为BC的中点,DM⊥BC,DM与∠BAC的角平分线交于点D,DE⊥AB,DF⊥AC,E、F为垂足,求证:BE=CF.20.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.答案1.B2.B.3.D.4.D.5.C6.B7.C.8.A.9.答案为:2.10.答案为:4.11.答案为:5.12.答案为:2.13.答案为:5.14.答案为:①②④.15.解:如图所示,P1,P2,P3,P4即为加油站的位置,共有4个符合要求的位置.16.解:如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点∴OE=OD,OF=OD,即OE=OF=OD=3∴S△ABC =S△ABO+S△BCO+S△ACO=12AB•OE+12BC•OD+12AC•OF=12×2×(AB+BC+AC)=12×3×20=30.17.证明:(1)∵DE⊥AB,DF⊥AC∴∠E=∠DFC=90°∴在Rt△BED和Rt△CFD中BD=CD,BE=CF.∴Rt△BED≌Rt△CFD(HL)∴DE=DF∵DE⊥AB,DF⊥AC∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD∴AE=AF,CF=BE=4∵AC=20∴AE=AF=20﹣4=16∴AB=AE﹣BE=16﹣4=12.18.解:(1)∵AC平分∠BCD,AE⊥BC AF⊥CD∴AE=AF在Rt△ABE和Rt△ADF中,AE=AF,AB=AD.∴Rt△ABE≌Rt△ADF∴∠ADF=∠ABE=60°∴∠CDA=180°﹣∠ADF=120°;(2)由(1)知:Rt△ABE≌Rt△ADF∴FD=BE=1,AF=AE=2,CE=CF=CD+FD=5∴BC=CE+BE=6∴四边形AECD的面积=△ABC的面积+△ACD的面积=10.19.证明:连接DB.∵点D在BC的垂直平分线上∴DB=DC;∵D在∠BAC的平分线上,DE⊥AB,DF⊥AC∴DE=DF;∵∠DFC=∠DEB=90°在Rt△DCF和Rt△DBE中DB=DC,DE=DF.∴Rt△DCF≌Rt△DBE(HL)∴CF=BE(全等三角形的对应边相等).20.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F∵BD平分∠ABC∴DE=DF,∠DEC=∠F=90°在RtCDE和Rt△ADF中∴Rt△CDE≌Rt△ADF(HL)∴∠FAD=∠C∴∠BAD+∠C=∠BAD+∠FAD=180°.。
初二数学试题 角的平分线的性质练习题及答案
同步习题及讲解一、选择题.1.如图6,AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是().A.BD+ED=BC B.DE平分∠ADB C.AD平分∠EDC D.ED+AC>AD2.如图7:△ABC中,∠C=90°,E是AB中点,D在∠B的平分线上,DE⊥AB,则(). A.BC>AE B.BC=AE C.BC<AE D.以上全不对A.三角形的一个外角等于两个内角和 B.三角形的一个外角大于任何一个内角C.有两边和一角对应相等的两个三角形全等 D.有两边对应相等的两个直角三角形全等二、证明题.4.如图,AD是∠BAC的角的平分线,DB⊥AB,DC⊥AC,B、C是垂足,那么EB与EC•的关系是怎样的呢?请证明你的结论.5.如图,在△ABC中,外角∠CBD和∠BCE的平分线交于F,那么点F是否在∠DAE的平分线上?请证明你的结论.三、探索题:6.△ABC中,∠C=90°,AC=BC,AD是角的平分线,探索:在AB上是否存在点E,DE•不与AB垂直,而△BDE之周长等于AB的长.若点E存在,请你出证明;若点E不存在,请说明理由.四、聚焦中考:答案:一、1.B 2.B 3.D二、4.提示:∵∠BAD=∠CAD,AD=AD,∠DBA=∠DCA,∴△ABD≌△ACD,∴∠ADB=∠ADC,BD=DC,又∵DE=DE,∴△BDE≌△CDE,∴BE=EC5.过F作FM⊥AD于M,作FN⊥AE于N,作FP⊥BC于P,∵BF是∠DBC平分线,•∴FM=FP,同理FN=FP,∴FM=FN,∴F在∠DAE平分线上.三、6.不存在,作DH⊥AB于H,设点F在AB上,且AF=BD,点E是HB上任一点,有FE=FH+HE,又可证得DH=DC,△BDE的周长等于AB的长,由三角形三边关系得FE=•EH+•DH>DE,所以“周长”BD+DE+EB<EB+AF+DH+HE=AB,同样可证:AH•上任一点也不满足题目要求.。
最新人教版八年级初二数学上册《角的平分线的性质》同步练习含答案解析
《12.3 角的平分线的性质》一、填空题1.如图,∠B=∠D=90゜,根据角平分线性质填空:(1)若∠1=∠2,则______=______.(2)若∠3=∠4,则______=______.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD=______.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于______.4.如图,AD是△ABC的角平分线,若AB=2AC.则S△ABD :S△ACD=______.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.258.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.=90,AB=18,BC=12,求DE的长.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.《12.3 角的平分线的性质》参考答案与试题解析一、填空题1.如图,∠B=∠D=90゜,根据角平分线性质填空:(1)若∠1=∠2,则BC = DC .(2)若∠3=∠4,则AB = AD .【考点】角平分线的性质.【分析】(1)根据角平分线性质推出即可;(2)根据角平分线性质推出即可.【解答】解:(1)∵∠B=∠D=90°,∴AB⊥BC,AD⊥DC,∵∠1=∠2,∴BC=CD,故答案为:BC,DC.(2)∵AB⊥BC,AD⊥DC,∵∠3=∠4,∴AB=AD,故答案为:AB,AD.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边距离相等.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD= 45 .【考点】角平分线的性质.【分析】首先根据△ABD的面积计算出DE的长,再根据角平分线上的点到角两边的距离相等可得DE=DF,然后计算出DF的长,再利用三角形的面积公式计算出△BCD的面积即可.【解答】解:∵S△ABD=36,∴•AB•ED=36,×12×ED=36,解得:DE=6,∵BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,∴DE=DF,∴DF=6,∵BC=15,∴S△BCD=•CB•DF=×15×6=45,故答案为:45.【点评】此题主要考查了角平分线的性质,关键是掌握角平分线上的点到角两边的距离相等.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于2:3:4 .【考点】角平分线的性质;三角形的面积.【专题】常规题型.【分析】由角平分线的性质可得,点O 到三角形三边的距离相等,即三个三角形的AB 、BC 、CA 的高相等,利用面积公式即可求解.【解答】解:过点O 作OD ⊥AC 于D ,OE ⊥AB 于E ,OF ⊥BC 于F ,∵O 是三角形三条角平分线的交点,∴OD=OE=OF ,∵AB=20,BC=30,AC=40,∴S △ABO :S △BCO :S △CAO =2:3:4.故答案为:2:3:4.【点评】此题主要考查角平分线的性质和三角形面积的求法,难度不大,作辅助线很关键.4.如图,AD 是△ABC 的角平分线,若AB=2AC .则S △ABD :S △ACD = 2 .【考点】角平分线的性质.【分析】过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,根据角平分线性质得出DM=DN ,根据三角形面积公式求出即可.【解答】解:过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,∵AD 是△ABC 的角平分线,∴DM=DN ,∴S △ABD :S △ACD =(AB ×DN ):(AC ×DM )=AB :AC=2AC :AC=2,故答案为:2.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个【考点】角平分线的性质.【分析】直接根据角平分线的性质进行解答即可.【解答】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选B.【点评】本题考查的是角平分线的性质,即角平分线上的点到角两边的距离相等.6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得出CD长,代入BC=BD+DC求出即可.【解答】解:∵∠ACB=90°,∴AC⊥BC,∵DE⊥AB,AD平分∠BAC,∴DE=DC=1.5cm,∵BD=3cm,∴BC=BD+DC=3cm+1.5cm=4.5cm,故选D.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.25【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DC=DE,然后求出BD的长,再根据BC=BD+DE代入数据进行计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵点D到AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC交BC于D,∴DC=DE=6,∵BD:DC=3:2,∴BD=×3=9,∴BC=BD+DE=9+6=15.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.8.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定【考点】角平分线的性质.【分析】根据三角形的角平分线相交于一点,连接AO,则AO平分∠BAC,然后根据角平分线上的点到角的两边的距离相等解答.【解答】解:如图,连接AO,∵∠B、∠C的角平分线交于点0,∴AO平分∠BAC,∵OD⊥AB,OE⊥AC,∴OD=OE.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,根据三角形的角平分线相交于一点作辅助线并判断出AO平分∠BAC是解题的关键.三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线上的点到角的两边的距离相等证明即可;(2)利用“边角边”证明△BDE和△FDC全等,再根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC;(2)在△BDE和△FDC中,,∴△BDE≌△FDC(SAS),∴BD=DF.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,是基础题,熟记性质是解题的关键.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】根据“SSS”可得到△ABC≌△ADC,则∠BCA=∠DCA,再利用角平分线的性质即可得到结论.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∵PE⊥BC于E,PF⊥CD于F,∴PE=PF.【点评】本题考查了全等三角形的判定与性质:三边都对应相等的两三角形全等;全等三角形的对应边相等,对应角相等.角平分线的性质:角的平分线上的点到角的两边的距离相等.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的性质以及已知条件证得△ABD≌△CBD(SAS),然后由全等三角形的对应角相等推知∠ADB=∠CDB;再由垂直的性质和全等三角形的判定定理AAS判定△PMD≌△PND,最后根据全等三角形的对应边相等推知PM=PN.【解答】证明:在△ABD和△CBD中,AB=BC(已知),∠ABD=∠CBD(角平分线的性质),BD=BD(公共边),∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB(全等三角形的对应角相等);∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°;又∵PD=PD(公共边),∴△PMD≌△PND(AAS),∴PM=PN(全等三角形的对应边相等).【点评】本题考查了角平分线的性质、全等三角形的判定与性质.由已知证明△ABD≌△CBD是解决的关键.=90,AB=18,BC=12,求DE的长.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC【考点】角平分线的性质.【分析】过点D作DF⊥BC于F,根据角平分线上的点到角的两边的距离相等可得DE=DF,然后根据三角形的面积列出方程求解即可.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∴S=AB•DE+BC•DF=90,△ABC即×18•DE+×12•DE=90,解得DE=6.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.【考点】角平分线的性质;全等三角形的判定与性质.【分析】(1)根据角平分线性质得出OR=OQ=OP,根据勾股定理起床AR=AQ,CQ=CP,BR=BP,得出方程组,求出即可;(2)过O作OM⊥AC于肘,ON⊥AB于N,求出OM=ON,证出△FON≌△EOM即可.【解答】解:连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR=OQ,OR=OP,∴由勾股定理得:AR2=OA2﹣OR2,AQ2=AO2﹣OQ2,∴AR=AQ,同理BR=BP,CQ=CP,即O在∠ACB角平分线上,设BP=BR=x,CP=CQ=y,AQ=AR=z,则x=3,y=5,z=4,∴BP=3,CQ=5,AR=4.(2)过O作OM⊥AC于M,ON⊥AB于N,∵O在∠A的平分线,∴OM=ON,∠ANO=∠AMO=90°,∵∠A=60°,∴∠NOM=120°,∵O在∠ACB、∠ABC的角平分线上,∴∠EBC+∠FCB=(∠ABC+∠ACB)=×(180°﹣∠A)=60°,∴∠FON=∠EOM,在△FON和△EOM中∴△FON≌△EOM,∴OE=OF.【点评】本题考查了角平分线性质和全等三角形的性质和判定的应用,注意:角平分线上的点到角两边的距离相等.。
人教版八年级数学上册角的平分线的性质同步练习题(含答案)
人教版八年级数学上册角的平分线的性质同步练习题(含答案)12.3 角的平分线的性质第1课时角的平分线的性质要点感知1 角的平分线的性质:角的平分线上的点到角的两边的距离_____.预习练习1-1 如图,OP平分∠AOB,PC⊥OA,垂足为C,PD⊥OB,垂足为D,则PC与PD的大小关系是( )A.PC>PDB.PC=PDC.PC<PDD.不能确定要点感知2 命题证明的一般步骤为:(1)明确命题中的已知和求证;(2)根据题意画出图形,并用数学符号表示已知和求证;(3)写出证明过程.预习练习2-1 命题“全等三角形对应角的角平分线长度相等”的已知是____,求证是____.知识点1 角平分线的作法1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是( )A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等2.已知△ABC,用尺规作图作出∠ABC的角平分线,保留作图痕迹,但不写作法.知识点2 角平分线的性质3.如图,BD是∠ABC的平分线,P是BD上的一点,PE⊥BA于点E,PE=4 cm,则点P到边BC的距离为cm.4.如图所示,E 是∠AOB 的平分线上一点,EC ⊥OA,ED ⊥OB,垂足分别为C ,D.求证:OC=OD.5.如图,BD 平分∠ABC ,DE 垂直于AB 于E 点,△ABC 的面积等于90,AB=18,BC=12,求DE 的长.知识点3 命题证明6.命题“全等三角形对应边上的高线相等”的已知是____,结论是____.7.证明:全等三角形对应边上的中线相等.8.如图,AD ∥B C,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P,作PE ⊥AB 于点E.若PE =2,则两平行线AD 与BC 间的距离为____.9.如图,在△ABC ,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A 为圆心,小于AC 的长为半径画弧,分别交AB ,AC 于点E 、F ;②分别以点E,F 为圆心,大于21EF 的长为半径画弧,两弧相交于点G ;③作射线AG 交BC 边于点D ,则∠CDA 的度数为____. 10.已知,如图所示,△ABC 的角平分线AD 将BC 边分成2∶1两部分,若AC=3 cm ,则AB=____.11.已知:如图所示,点O 在∠BAC 的平分线上,BO ⊥AC,CO ⊥AB,垂足分别为D ,E,求证:OB =OC.12.如图,△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交BC 于D,DE ⊥AB,垂足为E,且AB=10 cm,求△DEB 的周长.13.求证:有两个角及其中一个角的角平分线对应相等的两个三角形全等.挑战自我14.如图,∠AOB=90°,OM 平分∠AOB ,直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.参考答案课前预习要点感知1 相等 预习练习1-1 B预习练习2-1 全等三角形对应角的角平分线 对应角的角平分线长度相等 当堂训练 1.A 2.图略. 3.4 4.证明:∵E 是∠AOB 的平分线上一点,CE ⊥OA,ED ⊥OB ,∴EC=ED.在Rt △OCE 和Rt △ODE 中,OE=OE,EC=ED,∴Rt △OCE ≌Rt △ODE(HL).∴OC=OD.5.∵BD 平分∠ABC ,DE 垂直于AB 于E 点,∴点D 到BC 的距离等于DE 的长度.∵AB=18,BC=12,∴S △ABC =S △ABD +S △BCD =21×18·DE+21×12·DE=21DE(18+12)=15·DE.∵△ABC 的面积等于90,∴15·DE=90.∴DE=66.全等三角形对应边的高线 对应边的高线相等7.已知:△ABC ≌△A ′B ′C ′,AD ,A ′D ′分别是BC ,B ′C ′边上的中线.求证:AD=A ′D ′.证明:∵△ABC ≌△A ′B ′C ′,∴AB=A ′B ′,∠B=∠B ′,BC=B ′C ′.又∵AD ,A ′D ′分别是BC ,B ′C ′边上的中线,∴BD=21BC,B ′D ′=21B ′C ′.∴BD=B ′D ′.∴△ABD ≌△A ′B ′D ′(SAS).∴AD=A ′D ′.课后作业 8.4 9.65° 10.6 cm 11.证明:∵点O 在∠BAC 的平分线上,BO ⊥AC,CO ⊥AB,∴OE =OD,∠BEO =∠CDO =90°.在△BEO 与△CDO 中,∠BEO =∠CDO,OE =OD,∠EOB =∠DOC,∴△BEO ≌△CDO(ASA).∴OB =OC.12.∵AD 平分∠BAC 交BC 于D,DE ⊥AB,∠C=90°,∴CD=DE.∴Rt △ACD ≌Rt △AED.∴AE=AC.∴△DEB 的周长=DE+DB+EB=CD+DB+BE=BC+BE=AC+BE=AE+BE=AB=10 cm. 13.已知:如图,在△ABC 和△A ′B ′C ′中,∠B=∠B ′,∠BAC=∠B ′A ′C ′,AD,A ′D ′分别是∠BAC,∠B ′A ′C ′的平分线,且AD=A ′D ′.求证:△ABC ≌△A ′B ′C ′.证明:∵∠BAC=∠B ′A ′C ′,AD ,A ′D ′分别是∠BAC ,∠B ′A ′C ′的角平分线,∴∠BAD=∠B ′A ′D ′.∵∠B=∠B ′,AD=A ′D ′,∴△ABD ≌△A ′B ′D ′(AAS).∴AB=A ′B ′.在△ABC 和△A ′B ′C ′中,∠B=∠B ′,AB=A ′B ′,∠BAC=∠B ′A ′C ′,∴△ABC ≌△A ′B ′C ′(ASA).14.PC=PD.理由如下:过点P 分别作PE ⊥OA ,PF ⊥OB ,垂足分别为点E ,F.又∵OM 平分∠AOB ,∴PE=PF.又∵∠AOB=90°,∠PEO=∠PFO=90°,∴∠EPF=90°.∴∠EPC+∠CPF=90°.又∵∠CPD=90°,∴∠CPF+∠FPD=90°.∴∠EP C=∠FPD.在△PCE 与△PDF 中,∠PEC=∠PFD ,PE=PF ,∠EPC=∠FPD ,∴△PCE ≌△PDF(ASA).∴PC=PD.第2课时 角的平分线的判定要点感知1 角的内部到角的两边的距离相等的点在角的______上.预习练习1-1 已知点P 为∠AOB 内部的一点,PD ⊥OB 于点D,PC ⊥OA 于点C,且PC=PD,则OP 平分_____.要点感知2 三角形的三条内角平分线相交于一点,并且这一点到_____.预习练习2-1 如图,在△ABC 中,BD ,CE 分别平分∠ABC ,∠ACB,并且BD ,CE 相交于点O,过O 点作OP ⊥BC 于点P,OM ⊥AB 于点M,ON ⊥AC 于点N,则OP ,OM ,ON 的大小关系是_____.知识点1 角平分线的判定1.已知:如图,OC是∠AOB内部的一条射线,P是射线OC上任意点,PD⊥OA,PE⊥OB.下列条件中:①∠AOC=∠BOC,②PD=PE,③OD=OE,④∠DPO=∠EPO,能判定OC是∠AOB的角平分线的有( )A.1个B.2个C.3个D.4个2.已知:如图所示,BE=CF,DF⊥AC于点F,DE⊥AB于点E,BF和CE相交于点D.求证:AD平分∠BAC.知识点2 角平分线的性质与判定的综合运用3.如图,△ABC中,∠ABC,∠ACB的角平分线相交于O,下面结论中正确的是( )A.∠1>∠2B.∠1=∠2C.∠1<∠2D.不能确定4.如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD.求证:AD是∠BAC的外角平分线.知识点3 角平分线的性质与判定的实际应用5.如图,铁路OA和铁路OB交于O处,河道AB与铁路分别交于A处和B处,试在河岸上建一座水厂M,要求M到铁路OA,OB的距离相等,则该水厂M应建在图中什么位置?请在图中标出M点的位置.6.某市有一块由三条公路围成的三角形绿地,现准备在其中建一小亭子,供人们休息,而且要使小亭中心到三条公路的距离相等,试确定小亭的中心位置.7.如图所示,AD⊥OB,BC⊥OA,垂足分别为D,C,AD与BC相交于点P,若PA=PB,则∠1与∠2的大小关系是( )A.∠1=∠2B.∠1>∠2C.∠1<∠2D.无法确定8.如图所示,P为△ABC外部一点,D,E分别在AB,AC的延长线上,若点P到BC,BD,CE 的距离都相等,则关于点P的说法最佳的是( )A.在∠DBC的平分线上B.在∠BCE的平分线上C.在∠BAC的平分线上D.在∠DBC,∠BCE,∠BAC的平分线上9.三条公路两两相交于A,B,C三点,现计划修建一个商品超市,要求这个超市到三条公路距离相等,则可供选择的地方有_____处.10.已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD相交于点O.求证:(1)当∠1=∠2时,OB=OC;(2)当OB=OC时,∠1=∠2.11.如图,D,E,F分别是△ABC三边上的点,CE=BF,△DCE和△DBF的面积相等,求证:AD平分∠BAC.12.如图所示,△ABC中,∠B=∠C,D是BC边上一动点,过D作DE⊥AB,DF⊥AC,E,F分别为垂足,则当D 移动到什么位置时,AD 恰好平分∠BAC,请说明理由.挑战自我13.已知:如图所示,在△ABC 中,BD=DC,∠1=∠2,求证:AD 平分∠BAC.参考答案课前预习要点感知1 平分线 预习练习1-1 ∠AOB要点感知2 三边的距离相等 预习练习2-1 OP=OM=ON 当堂训练 1.D 2.证明:∵DF ⊥AC 于点F ,DE ⊥AB 于点E ,∴∠DEB=∠DFC=90°,在△BDE 和△CDF 中,∠BDE=∠CDF, ∠DEB=∠DFC,BE=CF,∴△BDE ≌△CDF(AAS).∴DE=DF.又∵DF ⊥AC 于点F ,DE ⊥AB 于点E ,∴AD 平分∠BAC. 3.B 4.证明:过点D 分别作DE ⊥AB,DG ⊥AC,DF ⊥BC,垂足分别为E,G,F.又∵BD 平分∠ABC,CD 平分∠ACF,∴DE=DF,DG=DF.∴DE=DG.∴AD 平分∠EAC,即AD 是∠BAC 的外角平分线.5.图略.提示:作∠AOB 的角平分线,与AB 的交点即为点M 的位置.6.在三角形内部分别作出两条角平分线,其交点O 就是小亭的中心位置,图略. 课后作业7.A8.D9.410.(1)证明:∵∠1=∠2,OD ⊥AB ,OE ⊥AC ,∴OE =OD ,∠ODB =∠OEC =90°.在△BOD 和△COE 中,∠BOD=∠COE ,OD=OE ,∠ODB=∠OEC,∴△BOD ≌△COE(ASA).∴OB =OC. (2)证明:在△BOD 和△COE 中,∠ODB=∠OEC ,∠BOD=∠COE , OB=OC ,∴△BOD ≌△COE(AAS).∴OD =OE.又∵OD ⊥AB ,OE ⊥AC ,∴AO 平分∠BAC ,即∠1=∠2.11.证明:过点D 作DH ⊥AB 于H ,DG ⊥AC 于G.∵S △DCE =21CE ·DG,S △DB F=21BF ·DH,S△DCE=S △DBF ,∴21CE ·DG=21BF ·DH.又∵CE=BF,∴DG=DH.∴点D 在∠BAC 的平分线上,即AD 平分∠BAC.12.移动到BC 的中点时,AD 恰好平分∠BAC.理由如下:∵D 是BC 的中点,∴BD =CD.∵DE ⊥AB,DF ⊥AC,∴∠DEB =∠DFC =90°.又∵∠B =∠C,∴△DEB ≌△D FC(AAS).∴DE =DF.又∵DE ⊥AB,DF ⊥AC,∴AD 平分∠BAC.13.证明:过D 作DE ⊥AB 于E ,DF ⊥AC 于F.在△BED 和△CFD 中,∠BED=∠CF D=90°,∠1=∠2,BD=CD,∴△BED ≌△CFD(AAS).∴DE=DF.又DE ⊥AB ,DF ⊥AC ,∴AD 平分∠BAC.。
角平分线性质与判定-含答案
第1课时 角的平分线的性质一、选择题1. 用尺规作已知角的平分线的理论依据是( ) A .SASB .AASC .SSSD .ASA2. 如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( )A .PD =PEB .OD =OEC .∠DPO=∠EPOD .PD =OD3. 如图,Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若CD =3cm ,则点D 到AB 的距离DE 是( )A .5cmB .4cmC .3cmD .2cm4. 如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( )A .4㎝B .6㎝C .10㎝D .不能确定21DAPOEBDC EB第2题图 第3题图 第4题图5.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( )A .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP6.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥A B 于点E ,DF ⊥AC 交AC 于点F .S △ABC=7,DE=2,AB=4,则AC 长是( )A .4B .3C .6D .5第5题图 第6题图 第7题图7.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为( )A .11B .5.5C .7D .3.58.已知:如图,△ABC 中,∠C =90o,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且AB =10cm ,BC =8cm ,CA =6cm ,则点O 到三边AB 、AC 和BC 的距离分别等于( )A .2cm 、2cm 、2cmB .3cm 、3cm 、3cmC .4cm 、4cm 、4cmD .2cm 、3cm 、5cmFE O DCAB二、填空题9.如图,P 是∠AOB 的角平分线上的一点,PC ⊥OA 于点C ,PD ⊥OB 于点D ,写出图中一对相等的线段(只需写出一对即可) . 10.如图,在△ABC 中,∠A =90°,BD 平分∠ABC ,AD =2 cm ,则点D 到BC 的距离__cm . 11 .如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上一个动点,若PA=3,则PQ 的最小值为 .第9题图 第10题图 第11题图12.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是 .第12题图 第13题图 第15题图13.如图,在Rt △ABC 中,∠C=90°,若BC=10,AD 平分∠BAC 交BC 于点D ,且BD:CD=3:2,则点D 到线段AB 的距离为 .14.已知△ABC 中,AD 是角平分线,AB=5,AC=3,且S △ADC =6,则S △ABD = .15.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为点E,F,连接EF,则EF 与AD的关系是.16.通过学习我们已经知道三角形的三条内角平分线是交于一点的.如图,P是△ABC的内角平分线的交点,已知P点到AB边的距离为1,△ABC的周长为10,则△ABC的面积为.17.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.第16题图第17题图第18题图18.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S △ABO:S△BCO:S△CAO = .三、解答题19.已知:AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,BD=CD.求证:∠B=∠C.20.如图,画∠AOB=90°,并画∠AOB的平分线OC,将三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F,试猜想PE、PF的大小关系,并说明理由.21.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E, F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.22.如图,已知△ABC中,AB=AC,BE平分∠ABC交AC于E,若∠A=90°,那么BC、B A、AE 三者之间有何关系?并加以证明.23.如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于点EEF⊥AB于F,EG⊥A G交AC的延长线于G.求证:BF=CG.第1课时角的平分线的性质定理参考答案一、选择题1.C2.D3.C4.B5.D6.B7.B8.A二、填空题9. PC=PD(答案不唯一)10. 2 11. 3 12. 15 13. 4 14. 10 15. AD垂直平分EF 16. 5 17. 4 18. 4:5:6三、解答题19.证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△DEB与Rt△DFC中,BD=CD,DE=DF,∴Rt△DEB≌Rt△DFC(HL),∴∠B=∠C.CAB=180°∠∵22 . 解:BC、BA、AE三者之间的关系:BC=BA+AE,理由如下:过E作ED⊥BC交BC于点D,∵BE平分∠ABC,BA⊥CA,∴AE=DE,∠EDC=∠A=∠BDE=90°,∵在Rt△BAE和Rt△BDE中,∴Rt△BAE≌Rt△BDE(HL),∴BA=BD,∵AB=AC,∠A=90°∴∠C=45°,∴∠CED=45°=∠C,∴DE=CD,∵AE=DE,∴AE=CD=DE,∴BC=BD+DC=BA+AE.,第2课时 角的平分线的判定一、选择题1.到三角形三条边的距离都相等的点是这个三角形的( )A .三条中线的交点B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线的交点2.如图,AD ⊥OB ,BC ⊥OA ,垂足分别为D 、C ,AD 与BC 相交于点P ,若PA=PB ,则∠1与∠2的大小是( )A .∠1=∠2B .∠1>∠2C .∠1<∠2D .无法确定第2题图 第3题图 第4题图3. 如图,在Rt △ABC 的斜边BC 上截取CD=CA ,过点D 作DE ⊥BC ,交AB 于E ,则下列结论一定正确的是( )A .AE=BEB .DB=DEC .AE=BD D .∠BCE=∠ACE4. 如图,△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等; ∠A=40°,则∠BOC=( )A .110°B .120°C .130°D .140°5.如图,,△ABC 的两个外角平分线交于点P ,则下列结论正确的是( ) ①PA=PC ②BP 平分∠ABC ③P 到AB ,BC 的距离相等 ④BP 平分∠APC .A .①②B .①④C .②③D .③④5题图 第6题图 第7题图6.如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .1处B .2处C .3处D .4处7.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,M 为AD 上任意一点,则下列结论错误的是( )MFEDCBAA.DE=DF B.ME=M F C.AE=AF D.BD=DC.8. 如图,△ABC,AB=AC,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E、F,有下列四个结论:①DA平分∠EDF;②AE=AF;③AD上的点到B、C两点的距离相等;④到AE,AF距离相等的点到DE、DF的距离也相等.其中正确的结论有()A.1个B.2个C.3个D.4个第8题图第10题图第11题图二、填空题9. 在角的内部到角的两边距离相等的点的轨迹是这个角的.10.如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ=°.11.如图,AB∥CD,点P到AB、BC、CD距离都相等,则∠P= °.12.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB,∠MON=50°,∠OPC=30°,则∠PCA= °.第12题图第13题图13.如图,△ABC的∠ABC的外角平分线BD与∠ACB的外角平分线CE相交于点P,若点P到AC的距离为4,则点P到AB的距离为 .14.如图,△ABC中,∠C=90°,∠A=36°,DE⊥AB于D,且EC=ED,∠EBC= °15.如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为第14题图第15题图第16题图16.如图,点M在∠ABC内,ME⊥AB于E点,MF⊥BC于F点,且ME=MF,∠ABC=70°,则∠BME= °.三、解答题17. 如图,AB AC ,表示两条相交的公路,现要在BAC 的内部建一个物流中心.设计时要求该物流中心到两条公路的距离相等,且到公路交叉处A 点的距离为1 000米. (1)若要以1:50000的比例尺画设计图,求物流中心到公路交叉处A 点的图上距离; (2)在图中画出物流中心的位置P .18. 如图,P 是∠BAC 内的一点,PE ⊥AB ,PF ⊥AC ,垂足分别为点E ,F ,AE=AF .求证: (1)PE=PF ;(2)点P 在∠BAC 的角平分线上.19. PB ,PC 分别是△ABC 的外角平分线且相交于P .求证:P 在∠A 的平分线上(如图).20.已知:如图,90B C ∠=∠=,M 是BC 的中点,DM 平分ADC ∠.(1)若连接AM ,则AM 是否平分BAD ∠?请你证明你的结论.(2)线段DM 与AM 有怎样的位置关系?请说明理由.21.(1)班同学上数学活动课,利用角尺平分一个角(如图所示).设计了如下方案: (Ⅰ)∠AOB 是一个任意角,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线. (Ⅱ)∠AOB 是一个任意角,在边OA 、OB 上分别取OM=ON ,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由;(2)在方案(Ⅰ)PM=PN 的情况下,继续移动角尺,同时使PM ⊥OA ,PN ⊥OB .此方案是否可行?请说明理由.第2课时角的平分线的判定参考答案一、选择题1.D2.A3.D4.A5.C6.D7.D8.D二、填空题9.平分线 10. 35 11. 90 12. 55 13. 4 14. 27 15. 3 16. 55三、解答题17.解:(1)1 000米=100 000厘米,100 000÷50 000=2(厘米);(2)18. 证明:(1)如图,连接AP并延长,∵PE⊥AB,PF⊥AC∴∠AEP=∠AFP=90°又AE=AF,AP=AP,∵在Rt△AFP和Rt△AEP中∴Rt△AEP≌Rt△AFP(HL),∴PE=PF.(2)∵Rt△AEP≌Rt△AFP,∴∠EAP=∠FAP,∴AP 是∠BAC 的角平分线,故点P 在∠BAC 的角平分线上.19.证明:过P 点作PE ,PH ,PG 分别垂直AB ,BC ,AC .∵PB,PC 分别是△ABC 的外角平分线,∴PE=PH,PH=PG ,∴PE=PG.∴P 点在∠A 的平分线上.20.(1)AM 平分DAB ∠.证明:过点M 作ME AD ⊥,垂足为E .12∠=∠∵,MC CD ⊥,ME AD ⊥,ME MC =∴(角平分线上的点到角两边的距离相等). 又MC MB =∵,ME MB =∴.MB AB ∵⊥,ME AD ⊥,∴AM 平分DAB ∠(到角的两边距离相等的点在这个角的平分线上).(2)AM DM⊥,理由如下:90B C∠=∠=∵,CD AB∴∥(垂直于同一条直线的两条直线平行).180CDA DAB∠+∠=∴(两直线平行,同旁内角互补)又112CDA ∠=∠∵,132DAB∠=∠(角平分线定义)2123180∠+∠=∴,1390∠+∠=∴,90AMD∠=∴.即AM DM⊥.21.解:(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件,∵只有OP=OP,PM=PN不能判断△OPM≌△OPN;∴就不能判定OP就是∠AOB的平分线;方案(Ⅱ)可行.证明:在△OPM和△OPN中,,∴△OPM≌△OPN(SSS),∴∠AOP=∠BOP(全等三角形对应角相等);∴OP就是∠AOB的平分线.(2)当∠AOB是直角时,此方案可行;∵四边形内角和为360°,∠OMP=∠ONP=90°,∠MPN=90°,∴∠AOB=90°,∵PM=PN,∴OP为∠AOB的平分线.(到角两边距离相等的点在这个角的角平分线上),当∠AOB不为直角时,此方案不可行;因为∠AOB必为90°,如果不是90°,则不能找到同时使PM⊥OA,PN⊥OB的点P的位置.。
2023-2024学年八年级数学上册《第十二章 角的平分线的性质》同步练习含答案(人教版)
2023-2024学年八年级数学上册《第十二章角的平分线的性质》同步练习含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.到三角形的三条边的距离相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点2.在中,平分,交于点,于,且,则的周长为()A.B.C.D.不能确定3.如图,是的平分线,DE||AC,若,则的度数为()A.B.C.D.4.如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BD的长为()A.6 B.5 C.4 D.35.如图,点P是内部的一点,点P到三边的距离则的度数为()A.65°B.80°C.100°D.70°6.如图,在中,是边上的高,平分,交于点,AB=8,DE=3,则的面积等于()A.15 B.12 C.10 D.147.如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P到AC的距离为3,则点P到AB的距离为()A.1 B.2 C.3 D.48.如图,△ABC中,∠ABC、∠EAC的角平分线BP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF,则下列结论中正确的个数()①CP平分∠ACF;②∠ABC+2∠APC=180°;③∠ACB=2∠APB;④S△PAC=S△MAP+S△NCP.A.1个B.2个C.3个D.4个二、填空题:(本题共5小题,每小题3分,共15分.)9.在△ABC中,已知AD是角平分线,∠B=50°,∠C=70°,∠BAD= °10.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为11.如图,AB CD,AD平分∠BAE,∠D=25°,则∠AEC的度数为.12.如图,在中,AD是的一条角平分线.若,则点D到AB的距离为.13.如图,在中,BD平分,E是AB上一点,且,连接DE,过E作,垂足为F,延长EF交BC于点G.现给出以下结论:①;②;③;④ .其中正确的是.(写出所有正确结论的序号)三、解答题:(本题共5题,共45分)14.如图,已知BE平分∠ABC,点D在射线BA上,且∠ABE=∠BED,若∠ABE=25°时,求∠ADE的度数.15.如图所示,已知点P是△ABC三条角平分线的交点,PD⊥AB,若PD=5,△ABC的周长为20,求△ABC的面积.16.已知如图,∠BAC=∠BPC,AP平分∠CAN,PN⊥AB于点N,PM⊥AC于M,求的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T
Q P
N
M
O
E
D
C
B A
八年级数学:角平分线的性质及判定练习(含答案)
一、选择题
1.三角形中,到三边距离相等的点是( )
(A )三条高线交点. (B )三条中线交点. (C )三条角平分线交点. (D )三边垂直平分线交点.
2.如图,MP ⊥NP ,MQ 为△NMP 的角平分线,MT =MP ,连结TQ ,则下列结论不正确的是( ) (A )TQ =PQ . (B )∠MQT =∠MQP .(C )∠QTN =90o . (D )∠NQT =∠MQT .
(第2题) (第3题) (第4题)
3.如图,AB =AC ,AE =AD ,则①△ABD ≌△ACE ;②△BOE ≌△COD ;③O 在∠BAC 的平分线上,
以上结论( )
(A )都正确. (B )都不正确. (C )只有一个正确. (D )只有一个不正确. 4.已知:如图,△ABC 中,AB =AC ,BD 为∠ABC 的平分线,∠BDC =60o ,则∠A 的度数是( ) (A )10o . (B )20o . (C )30o . (D )40o . 5.如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是( ) (A )直角三角形. (B )等腰三角形. (C )等边三角形. (D )等腰直角三角形. 6.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,M 为AD 上任意一点,则下列结论错误的是( ) (A )DE =DF . (B )ME =MF . (C )AE =AF . (D )BD =DC .
7.已知:如图,BE 、CF 是△ABC 的角平分线,BE 、CF 相交于
D ,∠A =50o ,则∠BDC 的度数是( ) (第6题) (A )70o . (B )120o . (C )115o . (D )130o .
8.已知:如图,△ABC 中,∠C =90o ,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,
OF ⊥AB ,点D 、E 、F 分别是垂足,且AB =10cm ,BC =8cm ,CA =6cm ,则点O 到三边AB 、AC
D
C
B
A
M
F E
C
B A
F
E
O
D C A
B
B 1
C
B A 1
A
A
B C
D E
F
G 北
P
Q
C
B A
F
E D
C
B
A
和BC 的距离分别等于( )
(A )2cm 、2cm 、2cm . (B )3cm 、3cm 、3cm . (C )4cm 、4cm 、4cm . (D )2cm 、3cm 、5cm .
(第7题) (第
8题) 二、填空题 9.到一个角的两边距离相等的点在 .
10.一个三角形三边长为3,a ,7,若它的周长是4的倍数,则a = . 11.直角三角形中,两锐角的角平分线所成的锐角等于 .
12.如图,△APQ 为等边三角形,且∠B =∠BAP =∠QAC =∠C ,则∠BAC = .
(第12题) (第13题) (第14题)
13.如图,△ABC ≌△A 1B 1C 1,且∠A ∶∠ABC ∶∠ACB =1∶3∶5,则∠BCA 与∠B 1A 1C 的比等
于 .
14.如图,已知BD ⊥AE 于B ,DC ⊥AF 于C ,且DB =DC ,∠BAC =40o ,∠ADG =130o ,则∠DGF
= .
15.如图,在△ABC 中,∠C =90o ,AM 是∠CAB 的平分线,CM =20cm ,那么M 到AB 的距离
为 .
M C
B
A
F
E
D
B
A
M
D C
B
A
O
P
Q
C
B
A
(第15题) (第16题)
16.如图,要在河流的南边,公路的左侧M 处建一个工厂,位置选在到河流和公路的距离相等,
并且到河流与公路交叉A 点处的距离为1cm (指图上距离),则图中工厂的位置应在 ,理由是 . 三、解答题
17.如图,∠AOB 是直角,OP 平分∠AOB ,OQ 平分∠AOC ,∠POQ =70o ,求∠AOC 的度数.
18.如图,∠B =∠C =90o ,M 是BC 上一点,且∠AMD =90o ,DM 平分∠ADC ,求证:AM 平分∠
DAB .
19.如图,BD =CD ,BF ⊥AC ,CE ⊥AB .求证:D 在∠BAC 的角平分线上.
O
N
M
P
C
B
A A
B
C
D
E
P
F
E
C
B A
F
E D
C
B
A
20.如图,P 是△ABC 的外角∠EAC 的平分线AF 上的任意一点,求证:△ABC 的周长小于△PBC
的周长.
21.如图,在△ABC 中,∠B =∠C ,点D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E ,F 为垂足,求证:
D 在∠BAC 的角平分线上.
22.已知:如图,Rt △ABC 中,∠C =90o ,AC =BC ,AD 为∠BAC 的平分线,AE =BC ,DE ⊥AB 垂
足为E ,求证△DBE 的周长等于AB .
23.如图,已知PA ⊥ON 于A ,PB ⊥OM 于B ,且PA =PB .∠MON =50o ,∠OPC =30o ,求∠PCA 的
大小.
N
M
E
D
C B
A
A
B
C
D
F
N
P
M
24.如图,AE 平分∠BAC ,BD =DC ,DE ⊥BC ,EM ⊥AB ,EN ⊥AC .求证:BM =CN .
25.已知:如图,PA 、PC 分别是△ABC 外角∠MAC 与∠NCA 的平分线,它们交于P ,PD ⊥BM 于
M ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线.
参考答案
一、选择题
1.C 2.D 3.A 4.B 5.B 6.D 7.C 8.A 二、填空题
9.这个角的角平分线上 10.6 11.45o 12.120o 13.5:1 14.150o 15.20cm 16.∠BAC 的平分线上且距A 点1cm 处,角的平分线上的点到角两边的距离相等 三、解答题
17.50o . 18.∵∠B =∠C =90o ,∴∠ADC +∠DAB =180o ,又∵∠AMD =90o ,∴∠ADM +∠DAM
=90o,∠CDM+∠MAB=90o,∵∠CDM=∠ADM,∴∠DAM=∠MAB. 19.△BDE≌△CDF,DE=DF,即D在∠BAC的角平分线上. 20.在AE上截取AD=AC. 21.△BDE≌△CDF. 22.Rt △ADC≌Rt△ADE,周长=BE+ED+DB=BE+CD+DB=BE+BC=BE+AE=AB. 23.55o. 24.连结BE、CE,证△BME≌△CNE. 25.作PE⊥AC于。