初二数学-勾股定理复习练习题
初二勾股定理练习题电子版
初二勾股定理练习题电子版1. 已知直角三角形的两条直角边长分别为3cm和4cm,请问斜边长多少?解答:根据勾股定理,斜边的平方等于两直角边的平方和。
设斜边长为c,根据公式可得:c² = 3² + 4²c² = 9 + 16c² = 25所以,斜边长c为5cm。
2. 在直角三角形ABC中,已知斜边长为10cm,一条直角边长为6cm,请问另一条直角边长多少?解答:同样根据勾股定理,设另一条直角边长为a,可得:a² + 6² = 10²a² + 36 = 100a² = 100 - 36a² = 64所以,另一条直角边长a为8cm。
3. 已知直角三角形的两条直角边分别为5cm和12cm,请问斜边长多少?解答:根据勾股定理,设斜边长为c,可得:c² = 5² + 12²c² = 25 + 144c² = 169所以,斜边长c为13cm。
4. 在直角三角形XYZ中,已知斜边长为15cm,一条直角边长为9cm,请问另一条直角边长多少?解答:根据勾股定理,设另一条直角边长为b,可得:b² + 9² = 15²b² + 81 = 225b² = 225 - 81b² = 144所以,另一条直角边长b为12cm。
5. 若直角三角形的两条直角边分别为xcm和ycm,斜边长为zcm,根据勾股定理,我们可以得到一个关系式,即x² + y² = z²。
请用这个关系式回答以下问题:(1) 如果x=5cm,y=12cm,求z的值。
解答:根据关系式x² + y² = z²,代入x、y的值可得:5² + 12² = z²25 + 144 = z²169 = z²所以,z的值为13cm。
初二数学:勾股定理专题知识点与同步练习(含答案)
勾股定理1.勾股定理勾股定理:直角三角形的两条直角边a、b的__________等于斜边c的平方,即:a2+b2=c2.【注意】(1)应用勾股定理时,要分清直角边和斜边,尤其在记忆a2+b2=c2时,斜边只能是c.若b为斜边,则关系式是__________;若a为斜边,则关系式是b2+c2=a2.(2)如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.2.勾股定理的应用勾股定理是直角三角形的一个重要性质,它把直角三角形有一个直角的“形”的特点转化为三边“数”的关系.利用勾股定理,可以解决与直角三角形有关的计算和证明问题,还可以解决生活、生产中的一些实际问题.其主要应用如下:(1)已知直角三角形的任意两边求第三边;(2)已知直角三角形的任意一边确定另两边的关系;(3)证明包含平方(算术平方根)关系的几何问题;(4)构造方程(或方程组)计算有关线段的长度,解决生产、生活中的实际问题.一、勾股定理已知直角三角形的两边长,求第三边长,关键是先明确所求边是斜边还是直角边,再决定用勾股定理的原式还是变式.【例1】已知直角三角形的两条直角边的长分别为3和4,则第三边长为A.5 B C或5 D二、勾股定理的证明勾股定理的证明是通过拼图法或割补法完成的,探索时利用面积关系,将“形”的问题转化为“数”的问题.【例2】中国古代数学家们对勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC 中,∠ACB =90°,若AC b =,BC a =.请你利用这个图形解决下列问题:(1)试说明222a b c +=;(2)如果大正方形的面积是10,小正方形的面积是2,求()2a b +的值.三、勾股定理点的应用利用勾股定理解应用题的关键是寻找直角三角形,若不存在直角三角形,可通过添加辅助线构造出直角三角形.【例3】如图,有一只小鸟在一棵高13 m 的大树树梢上捉虫子,它的伙伴在离该树12 m ,高8 m 的一棵小树树梢上发出友好的叫声,它立刻以2 m /s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?习题1.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别是a ,b ,c .若a =5,b =12,则c 的长为 A .119 B .13 C .18D .1692.如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是 A .2kB .k +1C .k 2-1D .k 2+13.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为A .4米B .8米C .9米D .7米4.如图,一棵大树被台风刮断,若树在离地面3 m 处折断,树顶端落在离树底部4 m 处,则树折断之前高A .5 mB .7 mC .8 mD .10 m5.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为A .8B .9C .10D .116.若直角三角形的三边长分别为a b -、a 、a b +,且a 、b 都是正整数,则三角形其中一边的长可能为 A .22B .32C .62D .827.如图,某农舍的大门是一个木制的长方形栅栏,它的高为2 m ,宽为1.5 m ,现需要在相对的顶点间用一块木板加固,则木板的长为__________.8.若△ABC 中,∠C =90°.(1)若a =5,b =12,则c =__________; (2)若a =6,c =10,则b =__________;(3)若a ∶b =3∶4,c =10,则a =__________,b =__________.9.一个直角三角形的三边为三个连续偶数,则它的三边长分别为__________.10.如图,在东西走向的铁路上有A ,B 两站,在A ,B 的正北方向分别有C ,D 两个蔬菜基地,其中C 到A 站的距离为24千米,D 到B 站的距离为12千米.在铁路AB 上有一个蔬菜加工厂E ,蔬菜基地C ,D 到E 的距离相等,且AC =BE ,则E 站距A 站__________千米.11.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .(1)若a ∶b =3∶4,c =75 cm ,求a 、b ; (2)若a ∶c =15∶17,b =24,求△ABC 的面积; (3)若c -a =4,b =16,求a 、c ;(4)若∠A =30°,c =24,求c 边上的高h c ; (5)若a 、b 、c 为连续整数,求a +b +c .12.已知:△ABC 中,AD 为BC 中线,求证:22222()AB AC BD AD +=+.13.折叠长方形ABCD 的一边AD ,使点D 落在BC 边的F 点处,若AB =8 cm ,BC =10 cm ,求EC 的长.14.如图,一个圆桶,底面直径为16 cm ,高为18 cm ,则一只小虫从下底部点A 爬到上底B 处,则小虫所爬的最短路径长是(π取3)A .50 cmB .40 cmC .30 cmD .20 cm15.若直角三角形的三边长分别为a b -、a 、a b +,且a 、b 都是正整数,则三角形其中一边的长可能为A .22B .32C .62D .8216.如图,AC 是电线杆的一根拉线,测得BC =6米,∠ACB =60°,则AB 的长为A .12米B .3米C .6米D .317.如图,90ACB ∠=︒,AC BC =,BE CE ⊥,AD CE ⊥,垂足分别为E ,D ,13AC =,5BE =,则DE =__________.18.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7 m,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3 m,木板顶端向下滑动了0.9 m,则小猫在木板上爬动了__________m.19.古诗赞美荷花“竹色溪下绿,荷花镜里香”,平静的湖面上,一朵荷花亭亭玉立,露出水面10 cm,忽见它随风斜倚,花朵恰好浸入水面,仔细观察,发现荷花偏离原地40 cm(如图).请部:水深多少?20.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。
初二数学勾股定理试题
初二数学勾股定理试题1.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距( )A.25海里B.30海里C.35海里D.40海里【答案】D【解析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离.∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×2=32,12×2=24海里,根据勾股定理得:(海里),故选D.【考点】本题考查的是勾股定理的应用点评:解答本题的关键是读懂题意,根据方位角知道两船所走的方向正好构成了直角.2.一个直角三角形的两条直角边分别为5、12,则斜边上的高为 ( )A.B.C.D.【答案】A【解析】先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=,故选C.【考点】本题考查勾股定理及直角三角形面积公式点评:解答本题的关键是熟练掌握直角三角形的两种面积公式。
3.直角三角形有一条直角边为6,另两条边长是连续偶数,则其斜边中线长为( )A.5B. 10C. 8D. 16【答案】A【解析】设另一直角边为x,则斜边为(x+2),根据勾股定理即可列方程求出x的值,从而得到斜边的长,即可得到结果.∵两条边长是连续偶数,可设另一直角边为x,则斜边为(x+2),根据勾股定理得:(x+2)2-x2=62,解得x=8,∴x+2=10,∴其斜边中线长为5故选A.【考点】本题考查的是勾股定理点评:本题需注意连续偶数相差2,同时熟记直角三角形斜边中线等于斜边的一半。
八年级勾股定理练习题
勾股定理练习题:练习一:(基础)1.等腰三角形的腰长为13,底边长为10,则顶角的平分线为__12_.2.一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是__240_.3.已知a ,b ,c 为△三边,且满足(a 2-b 2)(a 22-c 2)=0,则它的形状为( D )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形4.如图,一圆柱高8,底面半径2,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程( 取3)是( B ).(A )20 (B )10 (C )14 (D )无法确定5. 在△中,斜边2,则2+2+28.6.△一直角边的长为11,另两边为自然数,则△的周长为( C )A 、121B 、120C 、132D 、不能确定7.如图,正方形网格中的△,若小方格边长为1,则△是 (A )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对8.如果△的两直角边长分别为n 2-1,2n (n >1),则它的斜边长是( D )A 、2nB 、1C 、n 2-1D 、n 2+1ABC9.在△中,,90︒=∠C 若,7=+b a △的面积等于6,则边长 5 10.如图△中,BC BM AC AN BC AC ACB ====︒=∠,,5,12,90则 611.一个直角三角形的三边长的平方和为200,则斜边长为 1012.若△是直角三角形,两直角边都是6,在三角形斜边上有一点P ,到两直角边的距离相等,则这个距离等于 313.如图,一个牧童在小河的南4的A 处牧马,而他正位于他的小屋B 的西8北7处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?1714、有一个直角三角形纸片,两直角边68,现将直角边沿∠的角平分线折叠,使它落在斜边上,且与重合,你能求出的长吗?3AB 小河北牧童 小屋AEC DB15.校园里有一块三角形空地,现准备在这块空地上种植草皮以美化环境,已经测量出它的三边长分别是13、14、15米,若这种草皮每平方米售价120元,则购买这种草皮至少需要支出多少?因为高相等,底边15上的一条直角边长为X 1322=142-(15)26.6高为 132-6.62=11.2211.2 15*11.2*0.5=84 84*120=1008016、如图,在△中,∠ 90,6,把△进行折叠,使点A 与点D 重合,1:2,折痕为,点E 在上,点F 在上,求的长。
八年级下册数学《勾股定理》练习题精选
八年级下册数学《勾股定理》练习题精选一.选择题(共15小题)1.下列条件中,不能判定△ABC(a,b、c为△ABC的三边)是直角三角形的是()A.∠A+∠B=∠C B.a:b:c=5:12:13C.a2=(b+c)(b﹣c)D.∠A:∠B:∠C=3:4:52.下列各组数中,是勾股数的是()A.3,4,7B.7,24,25C.,,D.3,﹣4,53.如图,在△ABC中,AB=AC=10,BC=12,AD是△ABC的中线,则AD长为()A.2B.6C.8D.24.下列条件中,不能判断△ABC是直角三角形的是()A.AB:BC:AC=3:4:5B.AB:BC:AC=1:2:C.∠A﹣∠B=∠C D.∠A:∠B:∠C=3:4:55.若5,a,12是一组勾股数,则a的值为()A.B.13C.或13D.146.“绿水青山,就是金山银山”,党的十八大以来,生态文明建设,可持续发展理念深入人心,我们泰安的城市绿化率持续增加.△ABC是某小区一块三角形空地,已知∠A=150°,AB=30m,AC=20m,如果在这块空地上种草皮,每平方米草皮费用按120元计算,则这块空地种植草皮需要资金()元.A.36000B.24000C.18000D.120007.如图,图(1)是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图(2)所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是()A.76B.57C.38D.198.下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.1,2,3B.5,10,12C.,,D.13,12,5 9.下列各组数中,能构成直角三角形的是()A.,,B.4,5,6C.6,8,10D.9,16,25 10.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25B.7C.5或D.7或2511.如图,在3×3的正方形网格中,每个小正方形的边长为1,A,B,C均为格点(网格线的交点),以点A为圆心,AB的长为半径作弧,交格线于D,则CD的长为()A.3﹣B.﹣2C.3﹣2D.2﹣212.如图,∠AOB=90°,OA=36cm,OB=12cm,一个小球从点A出发沿着AO方向滚向点O,另一小球立即从点B出发,沿BC匀速前进拦截小球,恰好在点C处截住了小球.若两个小球滚动的速度相等,则另一个小球滚动的路程BC是()cm.A.13B.20C.24D.1613.已知:a、b、c满足a2﹣2b=5,b2﹣4c=﹣4,c2﹣6a﹣2b=﹣18,则以a、b、c为边长的三角形是个().A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形14.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC 于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.∠CED=∠FDB B.DC=3C.AE=5D.AC=1015.将一个等腰三角形ABC纸板沿垂线段AD,DE进行剪切,得到三角形①②③,再按如图2方式拼放,其中EC与BD共线.若BD=6,则AB的长为()A.B.C.D.7二.填空题(共9小题)16.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB,垂足为E.若AB =10cm,AC=6cm,则BE的长为cm.17.如图,有一块四边形花圃ABCD,AB=3m,AD=4m,BC=13m,DC=12m,∠A=90°,若在这块花圃上种植花草,已知每种植1m2需50元,则共需元.18.已知三角形的两边分别为6和8,当第三边为时,此三角形是直角三角形.19.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.20.在平面直角坐标系中,点A(2,0)与B(﹣2,3)之间的距离为.21.如图,在△ABC中,AB=7cm,AC=25cm,BC=24cm,动点P从点A出发沿AB方向以1cm/s的速度运动至点,动点Q从点B出发沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发,连接PQ.当动点P、Q运动2s时,PQ=.22.已知x,y分别为直角三角形的两边长,并且满足(x﹣2)2+=0,则第三边长度为.23.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.若AB=14cm,且AH:AE=3:4,则AH=cm.24.我县某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量,∠ADC=90°,CD=3米,AD=4米,AB=13米,BC=12米.求出空地ABCD的面积为平方米.三.解答题(共9小题)25.如图,在四边形ABCD中,AB=BC,AD2+CD2=2AB2,CD⊥AD.则∠ABC=90°,请说明理由.26.如图,在Rt△AOB和Rt△COD中,AB=CD=25,OB=7,AC=4.求BD的长.27.如图,在△ABC中,AB=13,AC=15,BC边上的高AD=12,求BC的长.28.如图,Rt△ABC中,∠B=90°,AB=8,BC=6,AC的垂直平分线DE分别交AB,AC于D,E两点,求CD的长.29.《中华人民共和国道路交通安全法实施条例》规定:同方向只有一条机动车道的道路,小汽车在城市公路上行驶的速度不得超过70km/h.如图,一辆小汽车在一条城市公路上沿直道行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪之间的距离为50m.这辆小汽车超速了吗?30.如图,四边形ABCD是果农王大爷家的果园平面图,王大爷准备沿AC将果园分为△ABC 和△ACD两个区域,分别种植两种不同的果树.经测量,∠ACD=90°,AD=100米,CD=60米,AB=BC=85米,求△ABC区域的面积.31.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB,垂足为点E.若AB=15cm,AC=9cm,求BE的长度.32.如图,在△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点B出发,以每秒4cm的速度沿折线B→A→C→B运动,设运动时间为t秒(t>0).(1)若点P在AC上,求出此时线段PC的长(用含t的代数式表示);(2)在运动过程中,当t为何值时,△BCP是以PB为底边的等腰三角形.33.如图:学校A和铁路CM的夹角∠ACM=30°,学校A与车站C的距离AC=320m,火车经过时,周围200m内会受到火车噪声的干扰.(1)经过计算说明学校为什么会受到经过火车噪声的影响;(2)若火车的速度为30m/s,求一列火车经过时学校受到影响的时间.(火车车长忽略不计)。
初二数学勾股定理试题答案及解析
初二数学勾股定理试题答案及解析1. (2010湖北恩施)如图,在长方形ABCD中,AD=4,DC=3,将△ADC按逆时针方向绕点A 旋转到△AEF(点A、B、E在同一直线上),连接CF,则CF=________.【答案】【解析】△AEF是由△ADC旋转得来的,可得△AEF≌△ADC,所以∠EAF=∠DAC,AF=AC.则△CAF是直角三角形,所以,又,所以.2.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为( )A.米B.米C.米D.3米【答案】C【解析】树干垂直于地面,于是可构造一个直角三角形,运用勾股定理可以计算出(米),所以树高为米.3.(2013山东济南)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m.则旗杆的高度(滑轮上方的部分忽略不计)为( )A.12mB.13mC.16m【答案】D【解析】如图所示,作BC⊥AE于点C,则BC=DE=8,设AE=x,则AB=x,AC=x-2,在Rt△ABC中,AC2+BC2=AB2,即(x-2)2+82=x2,解得x=17.所以旗杆的高度为17m.4.如图所示是一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长为________.【答案】7米【解析】(米).利用平移,得至少需要地毯的长为AC+BC=4+3=7(米).5. (2014四川甘孜州)如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为( )A.1B.2C.3【答案】D【解析】由题意得△ABD≌△CBD,所以∠ADB=∠CDB,而∠ADB+∠CDB=180°,所以∠BDC=90°,即BD⊥AC.在Rt△BCD中,由勾股定理得BD2=BC2-CD2=52-32=16,所以.6. (2014江苏淮安)如图,在边长为1个单位长度的小正形组成的网格中,点A、B都是格点,则线段AB的长度为( )A.5B.6C.7D.25【答案】A【解析】构造直角三角形,如图所示,.故选A.7. (2014安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )A.B.C.4D.5【答案】C【解析】设BN=x,由折叠的性质可得DN=AN=9-x,∵D是BC的中点,∴BD=3.在Rt△BND中,x2+32=(9-x)2,解得x=4.故线段BN的长为4.故选C.8. (2012吉林)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=________.【答案】2【解析】∵AC=3,BC=4,∠ACB=90°,∴.∵以点A为圆心,AC长为半径画弧,交AB于点D,∴AD=AC=3,∴BD=AB-AD=5-3=2.9. [问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.著名数学家华罗庚曾提出把“数形关系(勾股定理)”带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.[定理表述]请你根据图(1)中的直角三角形叙述勾股定理(用文字及符号语言叙述).[尝试证明]以图(1)中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图(2)),请你利用图(2)验证勾股定理.[知识拓展]利用图(2)中的直角梯形,我们可以证明.其证明步骤如下:∵BC=a+b,AD=________,又∵在直角梯形ABCD中,有BC________AD(填大小关系),即________,∴.【答案】见解析【解析】[定理表述]如果直角三角形的两条直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2. [尝试证明]∵Rt △ABE ≌Rt △ECD ,∴∠AEB =∠EDC . 又∵∠EDC +∠DEC =90°,∴∠AEB +∠DEC =90°, ∴∠AED =90°.∵S 梯形ABCD =S Rt △ABE +S Rt △DEC +S Rt △AED , ∴,整理,得a 2+b 2=c 2. [知识拓展];<;10. 小明想知道学校旗杆的高度,他把绳子一端挂在旗杆顶端,发现绳子垂到地面时还余1m ;当他把绳子下端拉开5m 后,绳子下端刚好接触地面,如图,你能帮他求出旗杆的高度吗?【答案】由于旗杆垂直于地面,所以∠C =90°.在Rt △ABC 中,由勾股定理,得AC 2+BC 2=AB 2,而AB =AC +1,所以可设旗杆AC =xm ,则有x 2+52=(x +1)2,解得x =12. 所以旗杆的高度为12m .【解析】由于旗杆与地面是垂直的,所以△ABC 是直角三角形,根据勾股定理,已知两边可求第三边,但此题中仅知道一边的边长和另外两边之间的关系,可通过列方程得旗杆的高度.11. 如图,在四边形ABCD 中,AB =2,CD =1,∠A =60°,∠B =∠D =90°,求四边形ABCD的面积.【答案】见解析【解析】延长AD,BC相交于点E,如图.∵∠A=60°,∠B=90°.∴∠E=30°.在Rt△CDE中,∠CDE=90°,CD=1,∴CE=2,∴.故.在Rt△ABE中,∠ABE=90°,∠E=30°,∴AE=2AB=2×2=4.∴.∴.∴.12.如图所示,在长方形ABCD中,AB=8,BC=4,将长方形沿AC折叠,使点D落在点D′处,求重叠部分△AFC的面积.【答案】10【解析】在长方形ABCD中,∵AB∥CD,∴∠BAC=∠DCA.又由折叠的性质可得∠DCA=∠FCA.∴∠BAC=∠FCA.∴AF=CF.设AF=x,则BF=AB-AF=8-x.在Rt△BCF中,BC=4,BF=8-x,CF=x,∴42+(8-x)2=x2.解得x=5.∴.13.(2013鞍山)△ABC中,∠C=90°,AB=8,AC=6,则BC的长为________.【答案】【解析】利用勾股定理即可求得BC的长.∵∠C=90°,∴AB为斜边,∴.14.(2013山东滨州)在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为________.【答案】【解析】根据勾股定理可得.15.(2013山东德州)(1)如图中图(1),已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD.请你完成图形,并证明:BE=CD.(尺规作图,不写作法,保留作图痕迹)(2)如图(2),已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD.BE与CD有什么数量关系?简单说明理由.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图(3),要测量池塘两岸相对的两点B,E间的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.【答案】解:(1)如图(1).证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°.∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∴△CAD≌△EAB,∴BE=CD.(2)BE=CD.理由如下:∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∴△CAD≌△EAB,∴BE=CD.(3)由(1)(2)的解题经验可知,过A作等腰直角三角形ABD,使∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴米.连接CD,则由(2)可得BE=CD.∵∠ABC=45°,∴∠DBC=90°.在Rt△DBC中,BC=100米,米,∴(米),∴BE的长为米.【解析】(1)根据题目要求进行尺规作图,并证明所给结论;(2)用三角形全等分析BE与CD的相等关系;(3)构建几何模型(添加辅助线、运用勾股定理)解决实际问题.16.(2013湖南张家界)如图,OP=1,过P作PP1⊥OP且PP1=1,得;再过P1作P1P2⊥OP1且P1P2=1,得;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2012=________.【答案】【解析】首先根据勾股定理求出OP4,再由OP1,OP2,OP3,OP4的长度找到规律,进而求出OP22012的长.由勾股定理得,∵,,,,依此类推可得,∴.17.(2013湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.【答案】解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE.∵CD=3.∴DE=3.(2)在Rt△ABC中,由勾股定理得,∴△ADB的面积为.【解析】(1)根据角平分线性质得出CD=DE.(2)利用勾股定理求出AB的长,然后计算△ADB的面积.18.在Rt△ABC中,∠C=90°,AB=10,AC=6,则BC的长为( )A.2B.4C.8D.9【答案】C【解析】由勾股定理,得BC2=AB2-AC2=102-62=64,所以,故选C.19.如图,以数轴的单位长为边长作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是( )A.B.1.4C.D.【答案】D【解析】由勾股定理求得正方形的对角线长为,由作图得,所以点A表示的数是.20.已知某直角三角形的两直角边的长分别为和,则这个直角三角形的周长为( )A.B.C.26D.无法确定【答案】B【解析】由勾股定理得该直角三角形的斜边长为,所以这个直角三角形的周长为.。
八年级数学下册《勾股定理》练习题与答案(人教版)
八年级数学下册《勾股定理》练习题与答案(人教版)一、选择题1.由线段a 、b 、c 组成的三角形不是直角三角形的是( )A.=7,b =24,c =25;B.a =13,b =14,c =15;C.a =54,b =1,c =34; D.a =41,b =4,c =5;2.根据图形(图1,图2)的面积关系,下列说法正确的是( )A.图1能说明勾股定理,图2能说明完全平方公式B.图1能说明平方差公式,图2能说明勾股定理C.图1能说明完全平方公式,图2能说明平方差公式D.图1能说明完全平方公式,图2能说明勾股定理3.等腰三角形的腰长为10,底长为12,则其底边上的高为( )A.13B.8C.12D.104.在Rt △ABC 中,∠C =90°.如果BC =3,AC =5,那么AB =( )A.34B.4C.4或34D.以上都不对5.如图所示:数轴上点A 所表示的数为a ,则a 的值是( )A. 5 +1B.5﹣1C.﹣ 5 +1D.﹣5﹣16.如图,在4×4的方格中,△ABC 的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7.△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,由下列条件不能判定△ABC 为直角三角形的是( )A.∠A:∠B:∠C=l:2:3B.三边长为a,b,c的值为1,2, 3C.三边长为a,b,c的值为11,2,4D.a2=(c+b)(c﹣b)8.《九章算术》第九章有如下题目,原文:今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?译文是:今有墙高1丈,倚木杆于墙.使木杆之上端与墙平齐.牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.间木杆长是多少?(1丈=10尺,1尺=10寸)( )A.5尺5寸B.1丈1尺C.5丈5寸D.5丈5尺9.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )A.90米B.100米C.120米D.150米10.如图一只蚂蚁从长宽都是3cm,高是8cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是( )A.13cmB.10cmC.14cmD.无法确定11.如图,已知∠AOB=60°,点P是∠AOB的角平分线上的一个定点,点M、N分别在射线OA、OB上,且∠MPN与∠AOB互补.设OP=a,则四边形PMON的面积为( )A.34a2 B.14a2 C.38a2 D.18a212.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8 cmB.5 2 cmC.5.5 cmD.1 cm二、填空题13.若三角形三边之比为3:4:5,周长为24,则三角形面积.14.如图,等边△OAB的边长为2,则点B的坐标为.15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DE⊥AB于点E,若CD=2,BD =4,则AE的长是_____.16.如图,运载火箭从地面L处垂直向上发射,当火箭到达点A处时,从位于地面R处的雷达测得AR的距离是40 km,此时测得∠ARL=30°,n(s)后,火箭到达点B处,此时测得∠BRL=45°,则火箭在这n(s)中上升的高度是 km.17.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.18.如图,已知等边三角形ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第二个等边三角形AB1C1;再以等边三角形AB1C1的B1C1边上的高AB2为边作等边三角形,得到第三个等边三角形AB2C2;再以等边三角形AB2C2的B2C2边上的高AB3为边作等边三角形,得到第四个等边三角形AB3C3……记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3……则S n= .三、解答题19.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.20.如图,已知四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.21.如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)22.如图,已知在△ABC中,AB=AC=13,D是AB上一点,且CD=12,BD=8.(1)求△ADC的面积.(2)求BC的长.23.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.24.已知△AOB和△MON都是等腰直角三角形,∠AOB=∠MON=90°.(1)如图1,连接AM,BN,求证:△AOM和△BON全等:(2)如图2,将△MON绕点O顺时针旋转,当点N恰好在AB边上时,求证:BN2+AN2=2ON2.25.如图,C为线段BD上的一个动点,分别过点B,D在BD两侧作AB⊥BD,ED⊥BD,连结AC,EC.已知AB =5,DE=9,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长.(2)请问:点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的结论,请构图求出代数式x2+4+(12-x)2+9的最小值.参考答案1.B.2.B3.B.4.A.5.B6.B.7.C.8.C9.B.10.B.11.A.12.A13.答案为:24.14.答案为:(1,3).15.答案为:2 3.16.答案为:(203﹣20).17.答案为:61.18.答案为:38(34)n-1.19.解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1 ∵a=19,a2+b2=c2∴192+b2=(b+1)2∴b=180∴c=181;(2)通过观察知c﹣b=1∵(2n+1)2+b2=c2∴c2﹣b2=(2n+1)2(b+c)(c﹣b)=(2n+1)2∴b+c=(2n+1)2又c=b+1∴2b+1=(2n+1)2∴b=2n2+2n,c=2n2+2n+1;20.解:连接AC.∵∠ABC =90°,AB =1,BC =2∴AC = 5在△ACD 中,AC 2+CD 2=5+4=9=AD2∴△ACD 是直角三角形∴S 四边形ABCD =12AB •BC +12AC •CD =12×1×2+12×5×2=1+ 5.故四边形ABCD 的面积为1+ 5.21.解:∵∠BDC =45°,∠ABC =90°∴△BDC 为等腰直角三角形∴BD =BC∵∠A =30°∴BC =12AC 在Rt △ABC 中,根据勾股定理得AC 2=AB 2+BC2 即(2BC)2=(4+BD)2+BC 2 解得BC =BD =2+23.22.解:(1)∵AB =13,BD =8∴AD =AB ﹣BD =5∴AC =13,CD =12∴AD 2+CD 2=AC 2∴∠ADC =90°,即△ADC 是直角三角形∴△ADC 的面积=12×AD ×CD =12×5×12=30;(2)在Rt △BDC 中,∠BDC =180°﹣90°=90°由勾股定理得:BC =413,即BC 的长是413.23.解:操作一:(1)14 (2)35º操作二:∵AC =9cm ,BC =12cm∴AB =15(cm)根据折叠性质可得AC =AE =9cm∴BE =AB ﹣AE =6cm设CD=x,则BD=12﹣x,DE=x在Rt△BDE中,由题意可得方程x2+62=(12﹣x)2解得x=4.5∴CD=4.5cm.24. (1)证明:∵∠AOB=∠MON=90°∴∠AOB+∠AON=∠MON+∠AON即∠AOM=∠BON∵△AOB和△MON都是等腰直角三角形∴OA=OB,OM=ON∴△AOM≌△BON(SAS)∴AM=BN;(2)证明:连接AM∵∠AOB=∠MON=90°∴∠AOB-∠AON=∠MON-∠AON即∠AOM=∠BON∵△AOB和△MON都是等腰直角三角形∴OA=OB,OM=ON∴△AOM≌△BON(SAS)∴∠MAO=∠NBO=45°,AM=BN∴∠MAN=90°∴AM2+AN2=MN2∵△MON是等腰直角三角形∴MN2=2ON2∴BN2+AN2=2ON2.25.解:(1)AC+CE=(8-x)2+25+x2+81.(2)当A,C,E三点共线时,AC+CE的值最小.(3)如图,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD(点A与点E在BD的异侧),使AB=2,ED=3,连结AE交BD于点C设BC=x,则AE的长即为x2+4+(12-x)2+9的最小值.过点E作EF⊥AB,交AB的延长线于点F.在Rt△AEF中,易得AF=2+3=5,EF=12∴AE=13即x2+4+(12-x)2+9的最小值为13.。
八年级初二数学 勾股定理复习题及答案
一、选择题1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm ,在容器内壁离容器底部3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为( )A .20cmB .18cmC .25cmD .40cm2.△ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( ) ①222a c b -=;②2()()0a b a b c -++=;③ ∠A =∠B -∠C; ④∠A ∶∠B ∶∠C =1∶2∶3 ;⑤111,,345a b c ===;⑥10,a = 24,b = 26c = A .2个B .3个C .4个D .5个3.如图,AB =AC ,∠CAB =90°,∠ADC=45°,AD =1,CD =3,则BD 的长为( )A .3B .11C .23D .4 4.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .6 5.如果直角三角形的三条边为3、4、a ,则a 的取值可以有( )A .0个B .1个C .2个D .3个6.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .67.如图,在数轴上点A 所表示的数为a ,则a 的值为( )A .15--B .15-C .5-D .15-+ 8.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( ) A .4B .16C .34D .4或349.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( ) A .B .C .D .10.由下列条件不能判定△ABC 为直角三角形的是( ) A .∠A+∠B=∠C B .∠A :∠B :∠C=1:3:2 C .a=2,b=3,c=4D .(b+c)(b-c)=a²二、填空题11.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.12.已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为_____.13.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的C 点处的食物,需要爬行的最短路程是___________________(π的值取3).14.在△ABC 中,若222225,75a b a b c -+===,,则最长边上的高为_____. 15.如图,在四边形ABCD 中,AC 平分∠BAD ,BC=CD=10,AC=17,AD=9,则AB=_____.16.如图,正方体的底面边长分别为2cm 和3cm ,高为5cm .若一只蚂蚁从P 点开始经过四个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为_____cm .17.如图,在矩形ABCD 中,AD >AB ,将矩形ABCD 折叠,使点C 与点A 重合,折痕为MN ,连接CN .若△CDN 的面积与△CMN 的面积比为1:3,则22MN BM的值为______________.18.如图,在△ABC中,AB=AC=10,BC=12,BD是高,则点BD的长为_____.19.如图,把平面内一条数轴x绕点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:已知点P是平面斜坐标系中任意一点,过点P作y轴的平行线交x轴于点A,过点P作x轴的平行线交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标.在平面斜坐标系中,若θ=45°,点P的斜坐标为(1,22),点G的斜坐标为(7,﹣22),连接PG,则线段PG的长度是_____.20.已知,在△ABC中,BC=3,∠A=22.5°,将△ABC翻折使得点B与点A重合,折痕与边AC交于点P,如果AP=4,那么AC的长为_______三、解答题21.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22.如图1,在等腰直角三角形ABC中,动点D在直线AB(点A与点B重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由. 23.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .24.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在ABD 内部,90EAP ∠=︒,2AE AP ==E 、P 、D 三点共线时,7BP =下列结论:①E 、P 、D 共线时,点B 到直线AE 5 ②E 、P 、D 共线时, 13ADP ABP S S ∆∆+==532ABD S ∆+③④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.25.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题? (2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值. ②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积. 26.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述); (2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.27.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.28.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD ,30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A 的坐标;(2)判断DF 与OE 的数量关系,并说明理由; (3)直接写出ADG ∆的周长.29.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.30.已知:四边形ABCD 是菱形,AB =4,∠ABC =60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD 的顶点A 重合,两边分别射线CB 、DC 相交于点E 、F ,且∠EAP =60°.(1)如图1,当点E 是线段CB 的中点时,请直接判断△AEF 的形状是 . (2)如图2,当点E 是线段CB 上任意一点时(点E 不与B 、C 重合),求证:BE =CF ; (3)如图3,当点E 在线段CB 的延长线上,且∠EAB =15°时,求点F 到BC 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为最短路径,由勾股定理求出A ′D 即圆柱底面周长的一半,由此即可解题. 【详解】解:如图,将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A ',连接A B '交EG 于F , 则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长, 即 25cm AF BF A B '+==, 延长BG ,过A '作A D BG '⊥于D ,3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=, Rt A DB '∴△中,由勾股定理得:2222251520cm A D A B BD ''=--=,∴该圆柱底面周长为:20240cm ⨯=,故选D . 【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.D解析:D 【分析】根据勾股定理的逆定理,三角形的内角和定理,分别对每个选项进行判断,即可得到答案. 【详解】解:∵222a c b -=,得222a b c =+,符合勾股定理逆定理,则①正确; ∵2()()0a b a b c -++=,得到222a c b +=,符合勾股定理逆定理,则②正确; ∵∠A =∠B -∠C ,得∠B=∠A+∠C , ∵∠A+∠B+∠C=180°, ∴∠B=90°,故③正确;∵∠A ∶∠B ∶∠C =1∶2∶3,∠A+∠B+∠C=180°, ∴318090123C ∠=︒⨯=︒++,故④正确;∵222111()()()453+≠,则⑤不能构成直角三角形,故⑤错误; ∵222102426+=,则⑥能构成直角三角形,故⑥正确; ∴能构成直角三角形的有5个; 故选择:D. 【点睛】本题考查了勾股定理的逆定理,以及三角形的内角和定理,解题的关键是熟练掌握用勾股定理的逆定理和三角形内角和定理进行判断三角形是直角三角形.3.B解析:B 【分析】过点A 作AE ⊥AD 交CD 于E ,连接BE ,利用SAS 可证明△BAE ≌△CAD ,利用全等的性质证得∠BED=90°,最后根据勾股定理即可求出BD. 【详解】解:如图,过点A 作AE ⊥AD 交CD 于E ,连接BE.∵∠DAE=90°,∠ADE=45°, ∴∠ADE=∠AED=45°,∴AE=AD=1,∴在Rt △ADE 中,DE=22112+=,∵∠DAE=∠BAC=90°,∴∠DAE+∠EAC=∠BAC+∠EAC ,即∠CAD=∠BAE , 又∵AB=AC,∴△BAE ≌△CAD(SAS), ∴CD=BE=3,∠AEB=∠ADC=45°, ∴∠BED=90°,∴在Rt △BED 中, BD=()22223211BE DE +=+=.故选B. 【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识,作辅助线构造出全等三角形是解题的关键.4.D解析:D 【解析】 【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积.【详解】 解:在中 ∵,,∴,∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D.【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积.5.C解析:C 【解析】 【分析】根据勾股定理求解即可,注意要确认a 是直角边还是斜边. 【详解】解:当a 是直角三角形的斜边时,22345a =+= ; 当a 为直角三角形的直角边时,22437a -=【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.6.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''+=PA PB -的最大值为:210.故答案为:210.7.A解析:A【分析】首先根据勾股定理得出圆弧的半径,然后得出点A 的坐标.【详解】2212=5+∴由图可知:点A 所表示的数为: 15-【点睛】本题主要考查的就是数轴上点所表示的数,属于基础题型.解决这个问题的关键就是求出斜边的长度.在数轴上两点之间的距离是指两点所表示的数的差的绝对值.8.D解析:D【解析】试题解析:当3和5都是直角边时,第三边长为:22+=34;35当5是斜边长时,第三边长为:2253-=4.故选D.9.B解析:B【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.【详解】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选B.【点睛】本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.10.C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A、∠A+∠B=∠C,可得∠C=90°,是直角三角形,错误;B、∠A:∠B:∠C=1:3:2,可得∠B=90°,是直角三角形,错误;C、∵22+32≠42,故不能判定是直角三角形,正确;D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,错误;故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题11.210或213或32 【分析】在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .【详解】∵90ACB ︒∠=,4,2AC BC ==,∴25AB =, 情况一:当25AD AB ==时,作AE CE ⊥于E∴ 1122BC AC AB AE ⋅=⋅,即45AE =,145DE = ∴22855CE AC AE =-= ∴22213CD CE DE =+=情况二:当25BD AB ==时,作BE CE ⊥于E ,∴1122BC AC AB BE ⋅=⋅,即55BE =,55DE = ∴22255CE BC BE =-= ∴22210CD CE DE =+=情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E ∴1122BC AC AB BE ⋅=⋅, ∴45BE =355CE ∴= ∵ABD △为等腰直角三角形∴152BF DF AB === ∴955DE DF E F DF BE ''=+=+= 25355CE EE CE BF CE ''=-=-=-= ∴2232CD CE E D ''=+=故答案为:1021332【点睛】本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键.12..(3,4)或(2,4)或(8,4).【分析】题中没有指明△ODP 的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P 的【详解】解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角△OPC中,CP=22-=3,则P的坐标是(3,4).54-=22OP OC②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角△PDM中,PM=22-=3,PD DM当P在M的左边时,CP=5﹣3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4).故P的坐标为:(3,4)或(2,4)或(8,4).故答案为:(3,4)或(2,4)或(8,4).【点睛】本题考查了等腰三角形的性质和勾股定理的运用等知识,注意正确地进行分类,考虑到所有可能的情况并进行分析求解是解题的关键.13.15厘米【分析】要想求得最短路程,首先要画出圆柱的侧面展开图,把A和C展开到一个平面内.根据两点之间,线段最短,结合勾股定理即可求出蚂蚁爬行的最短路程.【详解】解:如图,展开圆柱的半个侧面是矩形,π=厘米,矩形的宽BC=12厘米.∴矩形的长是圆柱的底面周长的一半,即AB=39∴蚂蚁需要爬行最短路程2222=+=+=厘米.12915AC BC AB故答案为:15厘米求两个不在同一平面内的两点之间的最短距离时,一定要展开到一个平面内,根据两点之间,线段最短.14.125 【分析】 解方程222225,7a b a b +=-=可求得a=4,b=3,故三角形ABC 是直角三角形,在利用三角形的面积转化得到斜边上的高.【详解】解:∵222225,7a b a b +=-=,将两个方程相加得:2232a =,∵a >0,∴a=4代入得:22425b +=,∵b >0,∴b=3,∵a=3,b=4,c=5满足勾股定理逆定理,∴△ABC 是直角三角形,如下图,∠ACB=90°,CD ⊥AB ,1122ABC S AC BC AB CD =⋅⋅=⋅⋅ , 即:1134522CD ⋅⋅=⋅⋅, 解得:CD=125, 故答案为:125. 【点睛】 本题考查求解三角形的高,解题关键是利用三角形的面积进行转化,在同一个三角形中,一个底乘对应高等于另一个底乘对应高.15.21【分析】在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,先证明△ADC ≌△AEC ,得出AE=AD=9,CE=CD=BC =10的长度,再设EF=BF=x ,在Rt △CFB 和Rt △CFA 中,由勾股定理求出x ,再根据AB=AE+EF+FB 求得AB 的长度.【详解】如图所示,在AB 上截取AE=AD ,连接CE ,过点C 作CF ⊥AB 于点F ,∵AC 平分∠BAD ,∴∠DAC=∠EAC .在△AEC 和△ADC 中,AE AD DAC EACAC AC ⎧⎪∠∠⎨⎪⎩===∴△ADC ≌△AEC (SAS ),∴AE=AD=9,CE=CD=BC =10,又∵CF ⊥AB ,∴EF=BF ,设EF=BF=x .∵在Rt △CFB 中,∠CFB=90°,∴CF 2=CB 2-BF 2=102-x 2,∵在Rt △CFA 中,∠CFA=90°,∴CF 2=AC 2-AF 2=172-(9+x )2,即102-x 2=172-(9+x )2,∴x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB 的长为21.故答案是:21.【点睛】考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.16.5【解析】【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【详解】展开图如图所示:由题意,在Rt △APQ 中,PD=10cm ,DQ=5cm ,∴蚂蚁爬行的最短路径长=PQ=2222105PD QD +=+=55(cm ),故答案为:55.【点睛】本题考查了平面展开﹣最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.17.12【解析】如图,过点N 作NG ⊥BC 于点G ,连接CN ,根据轴对称的性质有:MA=MC ,NA=NC ,∠AMN=∠CMN.因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠ANM=∠CMN.所以∠AMN=∠ANM,所以AM=AN.所以AM=AN=CM=CN.因为△CDN 的面积与△CMN 的面积比为1:3,所以DN:CM=1:3.设DN=x ,则CG=x ,AM=AN=CM=CN=3x ,由勾股定理可得()22322x x x -=, 所以MN 2=()()2222312x x x x +-=,BM 2=()()22232x x x -=.所以222212MN x BM x==12. 枚本题应填12.点睛:矩形中的折叠问题,其本质是轴对称问题,根据轴对称的性质,找到对应的线段和角,也就找到了相等的线段和角,矩形中的折叠一般会伴随着等腰三角形(也就是基本图形“平行线+角平分线→等腰三角形”),所以常常会结合等腰三角形,勾股定理来列方程求解.18.485 【解析】试题分析:根据等腰三角形的性质和勾股定理可知BC 边上的高为8,然后根据三角形的面积法可得111012822BD ⨯⨯=⨯⨯,解得BD=485. 19.25【分析】如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N ,先证明△ANP ≌△MNG (AAS ),再根据勾股定理求出PN 的值,即可得到线段PG 的长度.【详解】如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N .∵P (1,2),G (7.﹣2),∴OA =1,PA =GM =2,OM =7,AM =6,∵PA ∥GM ,∴∠PAN =∠GMN ,∵∠ANP =∠MNG ,∴△ANP ≌△MNG (AAS ),∴AN =MN =3,PN =NG ,∵∠PAH =45°,∴PH =AH =2,∴HN =1,∴2222215PN PH NH =+=+=∴PG =2PN =5.故答案为5【点睛】本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.20.522,322++【分析】过B作BF⊥CA于F,构造直角三角形,分两种情况讨论,利用勾股定理以及等腰直角三角形的性质,即可得到AC的长.【详解】分两种情况:①当∠C为锐角时,如图所示,过B作BF⊥AC于F,由折叠可得,折痕PE垂直平分AB,∴AP=BP=4,∴∠BPC=2∠A=45°,∴△BFP是等腰直角三角形,∴BF=DF=22,又∵BC=3,∴Rt△BFC中,CF=221BC BF-=,∴AC=AP+PF+CF=5+22;②当∠ACB为钝角时,如图所示,过B作BF⊥AC于F,同理可得,△BFP是等腰直角三角形,∴BF=FP=22又∵BC=3,∴Rt△BCF中,221BC BF-=,∴AC=AF-CF=3+22故答案为:5+223+22【点睛】本题主要考查了折叠问题以及勾股定理的运用,解决问题的关键是分两种情况画出图形进行求解.解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题21.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22257-=24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴22CD CE -222520-,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.22.(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析【分析】(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC=45°,可得AE ⊥BD ; (2)由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长; (3)分两种情况讨论,由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC ,可得AE ⊥BD ,由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长.【详解】解:(1)AE=BD ,AE ⊥BD ,理由如下:∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE ⊥BD ;(2)∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴22=2516=3EQ AE --,∴PQ=2AQ=6;(3)如图3,若点D 在AB 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD , ∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴22=2516=3EQ AE --,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE⊥BD是本题的关键.23.作图见解析,32 5【分析】作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,连接AN,首先用等积法求出AH的长,易证△ACH≌△A'NH,可得A'N=AC=4,然后设NM=x,利用勾股定理建立方程求出NM的长,A'M的长即为AN+MN的最小值.【详解】如图,作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,最小值为A'M的长.连接AN,在Rt△ABC中,AC=4,AB=8,∴2222AB AC=84=45++∵11AB AC=BC AH 22⋅⋅∴85 45∵CA⊥AB,A'M⊥AB,∴CA∥A'M∴∠C=∠A'NH,由对称的性质可得AH=A'H,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,,A 'M=A 'N+NM=4+x∴AM 2=AA '2-A 'M 2=()224-+⎝⎭x∴()2224=16-+-⎝⎭x x 解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.24.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵AE AP ==90EAP ∠=︒,∴22PE AE ==,∴()22227BE +=,解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒,∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒, ∴26sin 4532HB BE =︒==, ∴点B 到直线AE 的距离为62,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯ 13=,故②正确; ③在Rt AHB 中,由①知:6EH HB == ∴62AH AE EH =+=, 22222256623AB AH BH =+=+=+⎭⎝⎭,21153222ABD S AB AD AB ∆=⋅==+ ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,∵A C 、关于 BD 的对称, ∴523AB BC ==+,∴225231043AC BC ==+=+,∴ min PC AC AP =-,10432=+-,故④错误;⑤∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =, 在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS ≅,∴ABP ADE ∠=∠,∵AN BN =,∴ABP NAB ∠=∠,∴EAN ADE ∠=∠,∵90EAN DAN ∠+∠=︒,∴90ADE DAN ∠+∠=︒,∴AN DE ⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.25.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=c ∴=根据优三角形的定义,分以下三种情况:当2a b c +=时,6a +=,整理得24360a a -+=,此方程没有实数根当2a c b +=时,12a =,解得92a =当2b c a +=时,62a =,解得86a =>,不符题意,舍去综上,a 的值为92; ②由题意得:,,a b c 均为正数 根据优三角形的定义,分以下三种情况:(c b a ≥≥)当2a b c +=时,则1b k a=≥ 由三角形的三边关系定理得b a c a b -<<+则2a b b a a b +-<<+,解得3b a <,即3b k a=< 故此时k 的取值范围为13k ≤<当2a c b +=时,则1c k a=≥ 由三角形的三边关系定理得c a b a c -<<+ 则2a c c a a c +-<<+,解得3c a <,即3c k a=< 故此时k 的取值范围为13k ≤< 当2b c a +=时,则1c k b =≥ 由三角形的三边关系定理得c b a b c -<<+ 则2b c c b b c +-<<+,解得3c b <,即3c k b=< 故此时k 的取值范围为13k ≤<综上,k 的取值范围为13k ≤<;(3)如图,过点A 作AD BC ⊥,则180********ABC ABD ∠=︒-︒∠-==︒︒ 设BD x =22,AB BD x AD ∴====AC ===11422ABC S BC AD ∆=⋅=⨯= ABC ∆是优三角形,分以下三种情况:当2AC BC AB +=时,即44x =,解得103x =则103ABC S ∆===当2AC AB BC +=时,即28x =,解得65x =则65ABC S ∆===当2BC AB AC +=时,即42x +=,整理得234120x x ++=,此方程没有实数根综上,ABC ∆.【点睛】本题考查了等边三角形的性质、直角三角形的性质、勾股定理、三角形的三边关系定理等知识点,理解题中的新定义,正确分多种情况讨论是解题关键.26.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.27.(1)假;(2)∠A =45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a 2=c 2,再由勾股定理得a 2+b 2=c 2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论; (3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a ,AD=CD=a ,DB=AB-AD=c-a ,DG=BG=12(c-a ),AG=12(a+c ),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt △ABC 是类勾股三角形,。
八年级数学《勾股定理》练习题含答案
八年级数学《勾股定理》练习题含答案一、填空题1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______.4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).2(A)4 (B)6 (C)8 (D)108.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2(C)225cm2(D)无法计算三、解答题9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b;(2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.综合、运用、诊断一、选择题10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个(B)2个(C)3个(D)4个二、填空题11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.三、解答题13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC 的长.拓展、探究、思考14.如图,△ABC中,∠C=90°.(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S1+S2与S3的关系;图①(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S1+S2与S3的关系;图②(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S1+S2与S3的关系.图③答案:1.a2+b2,勾股定理.2.(1)13;(2)9;(3)2,3;(4)1,2.2.4.52,5.5.132cm.6.A.7.B.8.C.3.59.(1)a=45cm.b=60cm;(2)540;(3)a=30,c=34;(4)63;(5)12.1010.B.11..512.4.13..314.(1)S1+S2=S3;(2)S1+S2=S3;(3)S1+S2=S3.。
(新)八年级数学《勾股定理》精选练习题及答案解析
勾股定理精选题一、选择题1.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的大正方形.设直角三角形较长的直角边为a,较短的直角边为b,且a:b=4:3,则大正方形面积与小正方形面积之比为()A.25:9 B.25:1 C.4:3 D.16:92.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m3.下列结沦中,错误的有()①Rt△ABC中,已知两边分别为3和4,则第三边的长为5;②三角形的三边分别为a、b、c,若a2+b2=c2,则∠A=90°;③若△ABC中,∠A:∠B:∠C=1:5:6,则这个三角形是一个直角三角形;④若(x﹣y)2+M=(x+y)2成立,则M=4xy.A.0个B.1个C.2个D.3个4.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4 B.4πC.8πD.85.已知Rt△ABC的三边分别为a、b、c,则下列结论不可能成立的是()A.a2﹣b2=c2B.∠A﹣∠B=∠CC.∠A:∠B:∠C=3:4:5 D.a:b:c=7:24:256.《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为()A.x2﹣3=(10﹣x)2B.x2﹣32=(10﹣x)2C.x2+3=(10﹣x)2D.x2+32=(10﹣x)27.若△ABC的三边a、b、c满足(a﹣b)2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.如图,等腰△ABC中,AB=AC=10cm,BC=12cm,D为BC上一点,连接AD,E为AD上一点,连接BE,若∠ABE=∠BAE═∠BAC,则DE的长为()A.cm B.cm C.cm D.1cm9.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1 B.2018 C.2019 D.202010.满足下列条件的△ABC不是直角三角形的是()A.AC=3,BC=5,AB=4 B.AC:BC:AB=3:4:5C.∠A:∠B:∠C=1:2:3 D.∠A:∠B:∠C=3:4:5二、填空题11.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.12.如图所示,一棵36m高的树被风刮断了,树顶落在离树根24m处,则折断处的高度AB是m.13.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,则图中阴影部分的面积为.14.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=,∠ABC=°.15.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.t=时△ABP为直角三角形.16.已知等腰△ABC中,AB=AC=5,BC=6,则△ABC的面积为.17.已知△ABC中,AB=10,BC=21,CA=17,则△ABC的面积等于.18.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.19.已知长方形OABC,点A、C的坐标分别为OA=10,OC=4,点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,CP的长为________.20.如图,E是边长为4cm的正方形ABCD的边AB上一点,且AE=1cm,P为对角线BD上的任意一点,则AP+EP的最小值是____________cm.三、解答题21.如图,在Rt△ABC中,∠C=90°,AC=30cm,BC=21cm,动点P从点C出发,沿CA方向运动,动点Q从点B出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.那么运动几秒时,它们相距15cm?22.如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,试判断三角形的形状.B'=3.将纸片沿某条直线折叠,使点B落在点B' 23.如图,四边形ABCD是边长为9的正方形纸片,B'为CD边上的点,C处,点A的对应点为A',折痕分别与AD,BC边交于点M,N.求BN的长.24.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.已知,如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长.26.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON 方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.27.如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以0.25cm/s的速度移动,请你探究,当P 运动几秒时,P点与顶点A的连线PA与腰垂直.28.如图,已知AB=12,AB⊥BC于点B,AB⊥AD于点A,AD=5,BC=10.点E是CD的中点,求AE的长.29.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.30.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B 方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.勾股定理精选题(参考答案)一、选择题1.【答案】【解析】解:∵a:b=4:3,∴大正方形面积与小正方形面积之比为(a2+b2):(a﹣b)2=b2:b2=25:1.故选:B.2.【答案】【解析】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:C.3.【答案】【解析】C4.【答案】【解析】解:由勾股定理得,AB2=AC2+BC2=20,则阴影部分的面积=×AC×BC+×π×()2+×π×()2﹣×π×()2=×2×4+×π××(AC2+BC2﹣AB2)=4,故选:A.5.【答案】【解析】解:(A)当∠A=90°时,此时a2=b2+c2,故A能成立.(B)∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,故B能成立.(C)设∠A=3x,∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴x=15°,∴∠C=75°,故C不能成立.当∠C=90°,∴a2+b2=c2,故D能成立,故选:C.6.【答案】【解析】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.故选:D.7.【答案】【解析】解:∵(a﹣b)2+|a2+b2﹣c2|=0,∴a﹣b=0,a2+b2﹣c2=0,解得:a=b,a2+b2=c2,∴△ABC的形状为等腰直角三角形;故选:C.8.【答案】【分析】根据条件得出AE=BE,再使用勾股定理计算.【解析】解:∵AB=AC,∠BAE═∠BAC,∴AD⊥BC,∴∠BDE=90°,BD=BC=6,∵AB=10,∴AD==8,∵∠ABE=∠BAE,∴AE=BE,设DE=x,则AE=BE=8﹣x,在Rt△BDE中,BE2=DE2+BD2,∴(8﹣x)2=x2+62,解得:x=,即DE=cm,故选:C.9.【答案】【解析】解:设直角三角形的是三条边分别是a,b,c.根据勾股定理,得a2+b2=c2,即正方形A的面积+正方形B的面积=正方形C的面积=1.推而广之,“生长”了2019次后形成的图形中所有的正方形的面积和是2020×1=2020.故选:D.10.【答案】【解析】解:A、∵32+42=52∴满足△ABC是直角三角形;B、∵32+42=25,52=25,∴32+42=52,∴AC:BC:AB=3:4:5满足△ABC是直角三角形;C、∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴∠A:∠B:∠C=1:2:3满足△ABC是直角三角形;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C=×180°=75°,∴∠A:∠B:∠C=3:4:5,△ABC不是直角三角形.故选:D.二、填空题11.【答案】【解析】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.12.【答案】【解析】根据题意构造直角三角形,设AB=x米,则AC=(36﹣x)米,BC=24米,由勾股定理得出方程,解方程即可.解:由勾股定理得:x2+242=(36﹣x)2,解得:x=10;即折断处的高度AB是10m;故答案为:10.13.【答案】【解析】解:在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB==10,则S阴影=S半圆AC+S半圆BC+S△ABC﹣S半圆AB=π+π+×6×8﹣π=24.故答案为:2414.【答案】【解析】解:连接AC.根据勾股定理可以得到:AB2=12+32=10,AC2=BC2=12+22=5,∵5+5=10,即AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°.故答案为:10,45.15.【答案】【解析】解:在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4cm,由题意知BP=2tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即2t=4,t=2;②当∠BAP为直角时,BP=2tcm,CP=(2t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(2t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(2t﹣4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=2或t=,故答案为:2s或s16.【答案】【解析】解:如图,过点A作AD⊥BC,垂足为点D,∵AB=AC=5,BC=6,∴BD=CD=BC=×6=3,∵AD2+BD2=AB2,∴AD==4,∴S△ABC=BC•AD=×4×6=12,故答案为:12.17.【答案】【解析】解:过点A作AD⊥BC.设BD=x,则CD=21﹣x,在Rt△ABD中,AD2=102﹣x2,在Rt△ADC中,AD2=172﹣(21﹣x)2,∴102﹣x2=172﹣(21﹣x)2,100﹣x2=289﹣441+42x﹣x2,解得x=6,∴CD=15,在Rt△ACD中,AD==8,∴△ABC的面积=×BC•AD=×21×8=84.故答案为:84.18.【答案】3.6或4.32或4.8【解析】19.【答案】3,2, 8;【解析】以O 为等腰三角形的顶点,作等腰三角形1OPD ,因为1OP =5,114PH OC ==,所以由勾股定理求得13OH =,所以13CP =,同理,以D 为等腰三角形的顶点,可求出232,8CP CP ==.如图所示.20.【答案】5【解析】作E 点关于直线BD 的对称点E′,连接AE′,则线段AE′的长即为AP+EP 的最小值5.三、解答题21.【答案】【解析】解:设运动x 秒时,它们相距15cm ,则CP =xcm ,CQ =(21﹣x )cm ,依题意有 x 2+(21﹣x )2=152,解得x 1=9,x 2=12.故运动9秒或12秒时,它们相距15cm .22.【答案】【解析】因为a 2+b 2+c 2+50=6a+8b+10c ,所以a 2+b 2+c 2-6a-8b-10c+50=0,即a 2-6a+9+b 2-8b+16+c 2-10c+25=0,所以(a-3)2+(b-4)2+(c-5)2=0,所以a=3,b=4,c=5,因为a 2+b 2=c 2,所以三角形为直角三角形.23.【答案】 【解析】解:点A 与点A ',点B 与点B '分别关于直线MN 对称,∴AM A M '=,BN B N '=.设BN B N x '==,则9CN x =-.∵ 正方形ABCD ,∴ o 90C ∠=.∴ 222CN B C B N ''+=.∵ C B '=3,∴ 222(9)3x x -+=.解得5x =.∴ 5BN =.24.【答案】【解析】设EC=xcm ,则DE=(8-x )cm ,由折叠可知,EF=DE ,AD=AF ,在直角△ABF 中,由勾股定理得AB 2+BF 2=AF 2,即82+BF 2=102,所以BF=6cm ,所以FC=10-6=4(cm ).在直角△EFC 中,由勾股定理得FC 2+CE 2=EF 2,即42+x 2=(8-x )2,解之得x=3,即EC 的长度为3cm.25.【答案】【解析】过D 作DE ⊥AB ,垂足为E ,因为∠1=∠2,所以CD=DE=15,在Rt △BDE 中,BE 2=BD 2-DE 2=252-152=202,所以BE=20,因为∠1=2,∠C=∠DEA=90°,AD=AD ,所以Rt △ACD ≌Rt △AED ,又因为AB 2=AC 2+BC 2,即(AC+20)2=AC 2+(15+25)2,解得AC=30.26.【答案】【解析】解:(1)过点A 作AD ⊥ON 于点D ,∵∠NOM=30°,AO=80m ,∴AD=40m ,即对学校A 的噪声影响最大时卡车P 与学校A 的距离为40米;(2)由图可知:以50m 为半径画圆,分别交ON 于B ,C 两点,AD ⊥BC ,BD=CD=21BC ,OA=80m , ∵在Rt △AOD 中,∠AOB=30°,∴AD=21OA=21×80=40m , 在Rt △ABD 中,AB=50,AD=40,由勾股定理得:m AD AB BD 3040502222=-=-=, 故BC=2×30=60米,即重型运输卡车在经过BD 时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即3006018000=米/分钟, ∴重型运输卡车经过BD 时需要60÷300=0.2(分钟)=12(秒).答:卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.27.【答案】【解析】解:如图,作AD ⊥BC ,交BC 于点D ,∵BC=8cm ,∴BD=CD=21BC=4cm , ∴AD=3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时,∵AP2=PD2+AD2=PC2﹣AC2,∴PD2+AD2=PC2﹣AC2,∴PD2+32=(PD+4)2﹣52∴PD=2.25,∴BP=4﹣2.25=1.75=0.25t ,∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t ,∴t=25秒,∴点P 运动的时间为7秒或25秒.28.【答案】【解析】如图,延长AE交BC于点F.因为AB⊥BC,AB⊥AD,所以AD∥BC所以∠D=∠C,∠DAE=∠CFE,又因为点E是CD的中点,所以DE=CE.因为在△AED与△FEC中,∠D=∠C,∠DAE=∠CFE,DE=CE,所以△AED≌△FEC(AAS),所以AE=FE,AD=FC.因为AD=5,BC=10.所以BF=5.在Rt△ABF中,AF2=AB2+BF2=122+52=169,所以AF=13,所以AE=AF=6.5.29.【答案】【解析】解:(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,当t=6时,点P与A重合,也符合条件,∴当或6时,P在△ABC的角平分线上;(3)在Rt△ABC中,∵AB=5cm,BC=3cm,∴AC=4cm,根据题意得:AP=2t,当P在AC上时,△BCP为等腰三角形,∴PC=BC,即4﹣2t=3,∴t=,当P在AB上时,△BCP为等腰三角形,①CP=PB,点P在BC的垂直平分线上,如图2,过P作PE⊥BC于E,∴BE=BC=,∴PB=AB,即2t﹣3﹣4=,解得:t=,②PB=BC,即2t﹣3﹣4=3,解得:t=5,③PC=BC,如图3,过C作CF⊥AB于F,∴BF=BP,∵∠ACB=90°,由射影定理得;BC2=BF•AB,即32=×5,解得:t=,∴当时,△BCP为等腰三角形.30.【答案】【解析】解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm),∠B=90°,∴PQ===(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t=,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE==,∴CE=,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.。
八年级数学下册勾股定理习题(附答案)(含答案)
C勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm(B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D若BC =8,AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.EABCDBDE ABCD第18题图7cm三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。
八年级数学:勾股定理练习题(含解析)
八年级数学:勾股定理练习题(含解析)一、单选题1.已知直角三角形的两条直角边的长分别是1 )A .1BC .2D .32.下面各图中,不能证明勾股定理正确性的是( )A .B .C .D .3.一直角三角形的三边分别为2、3、x ,那么x 为( )A B C D .无法确定4.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了( )A .2cmB .3cmC .4cmD .5cm5.如图,在Rt ABC ∆中,90ACB ∠=o ,正方形,AEDC BCFG 的面积分别为25和144,则AB 的长度为( )A .13B .169C .12D .56.如图,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD⊥AC 于点D .则BD 的长为()A B C D 7.如图,三角形纸片ABC ,AB=AC ,∠BAC=90°,点E 为AB 中点,沿过点E 的直线折叠,使点B 与点A 重合,折痕现交于点F ,已知EF=32,则BC 的长是( )A B . C .3 D .8.如图所示,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是( )A .123S S S +=B .222123S S S +=C .123S S S +>D .123S S S +<9.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是( )A .9B .10C .D .10.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m 处,发现此时绳子末端距离地面2 m ,则旗杆的高度(滑轮上方的部分忽略不计)为( )A .12 mB .13 mC .16 mD .17 m11.在直线l 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=( )A.4 B.5 C.6 D.7二、填空题12.△ABC,∠A=90°,a=15,b=12,则c=________.13.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.14.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长备几何?”这个数学问题的意思是说:尺)的正方形,在水池正中央长有一根芦苇,“有一个水池,水面是一个边长为1丈(1丈10芦苇露出水面1尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是x尺,根据题意,可列方程为__________.15.如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共__个.16.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第2个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第3个等腰Rt△ADE,…,依此类推,则第2018个等腰直角三角形的斜边长是___________.三、解答题17.如图,四边形ABCD中,∠B=90°,BB=12,BB=9,BB=8,BB=17,求四边形ABCD的面积.18.如图,三个村庄A,B,C之间的距离分别为BB=5km,BB=12 km,BB=13 km.要从B修一条公路直达AC,已知公路的造价为26000元/km,修这条公路的最低造价是多少?19.“中华人民共和国道路交通管理条例”规定,小汽车在设有中心双实线、中心分隔带、机动车道与非机动车道分隔设施的城市街道上的行驶速度不得超过70千米/时.如图,一辆“小汽车”在一条城市道路上沿直线行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米的C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由20.如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.(1)求梯子底端B外移距离BD的长度;(2)猜想CE与BE的大小关系,并证明你的结论.21.设a=b=c=(1)当x取什么实数时,a,b,c都有意义;(2)若Rt△ABC三条边的长分别为a,b,c,求x的值.参考答案1.C【解析】解:直角三角形的两条直角边的长分别为1;故选C.2.C【解析】解:A、∵12ab+12c2+12ab=12(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×12ab +(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、根据图形不能证明勾股定理,故本选项符合题意;D、∵4×12ab +c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;故选C.3.C【解析】解:当3为斜边时,32=22+x2,解得:当x为斜边时,x2=32+22,解得:∴x故选C.4.A【解析】根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.5.A【解析】解:∵在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,又∵AC2=144,BC2=25,∴AB2=25+144=169,.故选:A.6.A【解析】如图,△ABC 的面积=12×BC×AE=2,由勾股定理得,则12解得 故选A .7.B【解析】解:E B A Q 沿过点的直线折叠,使点与点重合, B EAF 45∠∠∴==︒,AFB 90∠∴=︒,E AB AFB 90∠=︒Q 点为中点,且,1EF AB 2∴=, 3EF 2=Q , 3AB 2EF 232∴==⨯=, ΔRtABC 在中, AB =AC ,AB 3,=BC∴===故选B.8.A【解析】解:设三个半圆的直径分别为:d1、d2、d3,S 1=12×π×(12d)2=21π8d,S 2=12×π×(22d)2=22π8d,S 3=12×π×(32d)2=23π8d.由勾股定理可得:d 12+d22=d32,∴S1+S2=π8(d12+d22)=23π8d=S3,所以S1、S2、S3的关系是:S1+S2=S3.故选A.9.B【解析】如图=如图10==.故选B.10.D【解析】设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选D.11.A【解析】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A.12.9【解析】c9.==故答案为9.13.4【解析】解如图所示:在Rt ∆ABC 中,BC=3,AC=5, 由勾股定理可得:AB 2+BC 2=AC 2设旗杆顶部距离底部AB=x 米,则有32+x 2=52, 解得x=4 故答案为:4.14.2225(1)x x +=+ 【解析】设由题意可得:2225(1)x x +=+.故答案为2225(1)x x +=+. 15.4 【解析】解:根据题意可得以AB 为边画直角△ABC,使点C 在格点上,满足这样条件的点C 共 8个.故答案为8.16.)2018 【解析】解:∵△ABC是腰长为1的等腰直角三形,∴△ABC,第2=)2,第3个等腰直角三角形的斜边长是:2=)3,…,∴第2012)2018.2018.17.114【解析】解:如图所示,连接AC,∵∠B=90°,∴BB2=BB2+BB2=225=152,∵BB2+BB2=152+82=289,BB2=289,∴BB2+BB2=BB2,∴BB⊥BB,∴B 四边形BBBB =B Rt △BBB +B Rt △BBB =12×12×9+12×8×15=54+60=114.18.修这条公路的最低造价是12万元. 【解析】解:∵BC 2+AB 2=122+52=169,AC 2=132=169, ∴BC 2+AB 2=AC 2,∴∠ABC=90°,当BD⊥AC 时BD 最短,造价最低,∵S △ABC =12AB•BC=12AC•BD, ∴BB =BB •BB BB=6013km ,6013×2600=12000(万元), 答:最低造价为12000万元. 19.这辆“小汽车”超速了. 【解析】解:这辆“小汽车”超速了,理由:由题意知,130AB =米,50AC =米,且ABC △为直角三角形,AB 是斜边, 根据勾股定理,得222AB BC AC =+, 可以求得:120BC =米0.12=千米,6秒63600=时, 所以速度为小车此时速度为60.12723600÷=千米/时,所以这辆“小汽车”超速了.20.(1)BD=1m ;(2)CE 与BE 的大小关系是CE=BE ,证明见解析. 【解析】(1)∵AO⊥OD,AO=4m ,AB=5m ,,∵梯子的顶端A 沿墙下滑1m 至C 点, ∴OC=AO﹣AC=3m , ∵CD=AB=5m,∴由勾股定理得:OD=4m , ∴BD=OD﹣OB=4m ﹣3m=1m ;(2)CE 与BE 的大小关系是CE=BE ,证明如下: 连接CB ,由(1)知:AO=DO=4m ,AB=CD=5m , ∵∠AOB=∠DOC=90°, 在Rt△AOB 和Rt△DOC 中AB DCAO DO =⎧⎨=⎩, ∴Rt△AOB≌Rt△DOC(HL ), ∴∠ABO=∠DCO,OC=OB , ∴∠OCB=∠OBC,∴∠ABO﹣∠OBC=∠DCO﹣∠OCB, ∴∠EBC=∠ECB,∴CE=BE.21.(1)483x-≤≤;(2)x=25或2.【解析】解:(1)由二次根式的性质,得80 34020xxx-≥⎧⎪+≥⎨⎪+≥⎩,解得483x-≤≤;(2)当c为斜边时,由a2+b2=c2,即8-x+3x+4=x+2,解得x=-10,当b为斜边时,a2+c2=b2,即8-x+x+2=3x+4,解得x=2,当a为斜边时,b2+c2=a2,即3x+4+x+2=8-x,解得x=2 5∵48 3x-≤≤∴x=25或2.。
八年级数学下册《勾股定理》练习题及答案(人教版)
八年级数学下册《勾股定理》练习题及答案(人教版)班级姓名考号A.3条B.2条C.1条D.0条A.嘉嘉对,淇淇错B.嘉嘉错,淇淇对C.两人都对D.两人都错1131-A .12mB .13mC .15mD .24m若ACDA .12B .15C .24D .30A .2B .5C .223+D .256+11.如图,在ABC 中1AB AC ==,若45B ∠=︒,则线段BC 的长为__.12.如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、G 在小正方形的顶点上,则表示ABC 重心的点是__________;13.如图,小华将升旗的绳子拉倒竖直旗杆的底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗14.如图,在Rt ABC △中90C ∠=︒,∠B=60°,按以下步骤作图:△以点A 为圆心,以任意长为半径作弧,15.如图,在△ABC 中,△C =90°,BA =15,AC =12,以直角边BC 为直径作半圆,则这个半圆的面积是三、解答题.如图,ABC中,∠的平分线,交BC于点D.(1)请利用直尺和圆规作BACAD=,求10,620.定义:三边长和面积都是整数的三角形称为“整数三角形”.数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动.小亮用12根火柴棒,摆成如图所示的“整数三角形”;小颖分别用24根和30根火柴棒摆出直角“整数三角形”;小辉受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”.(1)请你画出小颖和小辉摆出的“整数三角形”的示意图;(2)你能否也从中取出若干根摆出等边“整数三角形”,如果能,请画出示意图;如果不能,请说明理由.参考答案1.C2.C3.B4.A5.D6.C7.D8.B9.B17.(1)解:如图,AD即为所求;∠(2)解:△AB=AC,AD平分BAC .解:如图,在AB ED=,即60AB=.10△又在Rt ABC2AB=-BC的长度是1122ABC S AC AB AB CD ∆== 238230525AC BC CD AB ⨯∴=== 20.(1)小颖摆出如图1所示的“整数三角形小辉摆出如图2所示三个不同的等腰“整数三角形”:(2)不能摆出等边“整数三角形”.。
八年级初二数学勾股定理练习题含答案
一、选择题1.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .600mB .500mC .400mD .300m 2.在ABC ∆中,D 是直线BC 上一点,已知15AB =,12AD =,13AC =,5CD =,则BC 的长为( )A .4或14B .10或14C .14D .103.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是( )cm .A .25B .20C .24D .1054.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )A .254cmB .152cmC .7cmD .132cm 5.在ΔABC 中,211a b c =+,则∠A( ) A .一定是锐角 B .一定是直角 C .一定是钝角 D .非上述答案6.如图,△ABC 中,AB=10,BC=12,AC=13△ABC 的面积是( ).A .36B .1013C .60D .1213 7.已知,,a b c 是ABC ∆的三边,且满足222()()0a b a b c ---=,则ABC ∆是( )A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形或直角三角形8.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对9.已知三组数据:①2,3,4;②3,4,5;③1,2,5,分别以每组数据中的三个数为三角形的三边长,能构成直角三角形的是( )A .②B .①②C .①③D .②③ 10.已知一个直角三角形的两边长分别为3和5,则第三边长是( )A .5B .4C .34D .4或34 二、填空题11.如图,在△中,,∠90°,是边的中点,是边上一动点,则的最小值是__________.12.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.13.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.14.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.15.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.16.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________.17.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB =13,EF =7,那么AH 等于_____.18.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD ,则线段BD 的长为_____.19.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________20.如图,直线423y x =+与x 轴、y 轴分别交于点B 和点A ,点C 是线段OA 上的一点,若将ABC ∆沿BC 折叠,点A 恰好落在x 轴上的'A 处,则点C 的坐标为______.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.23.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.24.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.25.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .(1)则BC =____________cm ;(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________?(3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.26.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在 ABD 内部,90EAP ∠=︒,2AE AP ==,当E 、P 、D 三点共线时,7BP =.下列结论:①E 、P 、D 共线时,点B 到直线AE 的距离为5;②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;=532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.27.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.28.阅读下列一段文字,然后回答下列问题.已知在平面内有两点()111, P x y 、()222, P x y ,其两点间的距离()()22121212PP x x y y =-+-,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为12x x -或1|y -2|y .(1)已知()2, 4A 、()3, 8B --,试求A 、B 两点间的距离______.已知M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1,试求M 、N 两点的距离为______;(2)已知一个三角形各顶点坐标为()1, 6D 、()3, 3E -、()4, 2F ,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标及PD PF +的最短长度.29.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,①则线段BC ,DC ,EC 之间满足的等量关系式为 ;②求证:BD 2+CD 2=2AD 2;(2)如图2,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.30.如图,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是边AB的高线,动点E从点A 出发,以每秒1个单位的速度沿射线AC运动;同时,动点F从点C出发,以相同的速度沿射线CB运动.设E的运动时间为t(s)(t>0).(1)AE=(用含t的代数式表示),∠BCD的大小是度;(2)点E在边AC上运动时,求证:△ADE≌△CDF;(3)点E在边AC上运动时,求∠EDF的度数;(4)连结BE,当CE=AD时,直接写出t的值和此时BE对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【详解】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,22AB BC=500m,∴CE=AC-AE=200,从B 到E 有两种走法:①BA+AE=700m ;②BC+CE=500m ,∴最近的路程是500m .故选B .【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC ≌△DEA ,并能比较从B 到E 有两种走法.2.A解析:A【分析】根据AC =13,AD =12,CD =5,可判断出△ADC 是直角三角形,在Rt △ADB 中求出BD ,继而可得出BC 的长度.【详解】∵AC =13,AD =12,CD =5,∴222AD CD AC +=,∴△ABD 是直角三角形,AD ⊥BC ,由于点D 在直线BC 上,分两种情况讨论:当点D 在线段BC 上时,如图所示,在Rt △ADB 中,229BD AB AD =-=,则14BC BD CD =+=;②当点D 在BC 延长线上时,如图所示,在Rt △ADB 中,229BD AB AD =-=, 则4BC BD CD =-=. 故答案为:A.【点睛】本题考查勾股定理和逆定理,需要分类讨论,掌握勾股定理和逆定理的应用为解题关键.3.A解析:A【分析】分三种情况讨论:把左侧面展开到水平面上,连结AB ;把右侧面展开到正面上,连结AB ,;把向上的面展开到正面上,连结AB ;然后利用勾股定理分别计算各情况下的AB ,再进行大小比较.【详解】把左侧面展开到水平面上,连结AB ,如图1()2210205925537AB =++==把右侧面展开到正面上,连结AB ,如图2()()222010562525AB =++== 把向上的面展开到正面上,连结AB ,如图3()()2210205725529AB =++==>>∴25>>∴需要爬行的最短距离为25cm故选:A .【点睛】本题考查了平面展开及其最短路径问题:先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.4.A解析:A【分析】由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm ,设AF=xcm ,则DF=(8-x)cm ,在Rt△AFD 中,利用勾股定理即可求得x 的值.【详解】∵四边形ABCD 是长方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m ,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF设AF=xcm ,则DF=(8-x )cm在Rt△AFD 中,AF 2=DF 2+AD 2,AD=6cm , 222(8)6x x =-+254x cm = 故选择A.【点睛】此题是翻折问题,利用勾股定理求线段的长度.5.A解析:A【解析】【分析】根据211a b c=+以及三角形三边关系可得2bc >a 2 ,再根据(b-c ) 2 ≥0,可推导得出b 2 +c 2 >a 2 ,据此进行判断即可得. 【详解】∵211a b c =+, ∴2b c a bc+=,∴2bc=a (b+c ),∵a 、b 、c 是三角形的三条边,∴b+c >a ,∴2bc >a·a , 即2bc >a 2 ,∵(b-c ) 2 ≥0,∴b 2 +c 2 -2bc≥0,b 2 +c 2 ≥2bc ,∴b 2 +c 2 >a 2 ,∴一定为锐角,故选A .【点睛】本题考查了三角形三边关系、完全平方公式、不等式的传递性、勾股定理等,题目较难,得出b 2 +c 2 >a 2 是解题的关键.6.A解析:A【分析】作AD BC ⊥于点D ,设BD x =,得222AB BD AD -=,222AC CD AD -=,结合题意,经解方程计算得BD ,再通过勾股定理计算得AD ,即可完成求解.【详解】如图,作AD BC ⊥于点D设BD x =,则12CD BC x x =-=-∴222AB BD AD -=,222AC CD AD -=∴2222AB BD AC CD -=-∵AB=10,AC=213∴(()22221021312x x -=-- ∴8x = ∴22221086AD AB BD =-=-=∴△ABC 的面积111263622BC AD =⨯=⨯⨯= 故选:A .【点睛】本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.7.D解析:D【分析】由(a-b )(a 2-b 2-c 2)=0,可得:a-b=0,或a 2-b 2-c 2=0,进而可得a=b 或a 2=b 2+c 2,进而判断△ABC 的形状为等腰三角形或直角三角形.【详解】解:∵(a-b )(a 2-b 2-c 2)=0,∴a-b=0,或a 2-b 2-c 2=0,即a=b 或a 2=b 2+c 2,∴△ABC 的形状为等腰三角形或直角三角形.故选:D .【点睛】本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a 2+b 2=c 2的三角形是直角三角形.8.C解析:C【分析】利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断.【详解】解:由已知可得CD=BD=5,22251213+=即222BD AD AB +=,ABD ∴是直角三角形,90ADB ∠=︒,90ADC ∴∠=︒222AD CD AC ∴+=13AC ∴=13AB AC ∴==故ABC 是等腰三角形.故选C【点睛】本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.9.D解析:D【分析】根据三角形勾股定理的逆定理符合222a b c +=即为直角三角形 ,所以将数据分别代入,符合即为能构成直角三角形.【详解】由题意得:①2222+3=134≠ ;②2223+4=25=5 ;③()2221+2=5=5 , 所以能构成直角三角形的是②③. 故选D . 【点睛】 考查直角三角形的构成,学生熟悉掌握勾股定理的逆定理是本题解题的关键,利用勾股定理的逆定理判断是否能够成直角三角形. 10.D 解析:D【详解】解:∵一个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x ,则由勾股定理得到:x =2253-=4;②当5是此直角三角形的直角边时,设另一直角边为x ,则由勾股定理得到:x =2253+=34故选:D二、填空题11.【解析】如图,过点作⊥于点,延长到点,使,连接,交于点,连接,此时的值最小.连接,由对称性可知∠45°,,∴ ∠90°.根据勾股定理可得.12.21021332【分析】在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .【详解】∵90ACB ︒∠=,4,2AC BC ==, ∴25AB =, 情况一:当25AD AB ==时,作AE CE ⊥于E∴ 1122BC AC AB AE ⋅=⋅,即455AE =,1455DE = ∴22855CE AC AE =-= ∴22213CD CE DE =+=情况二:当25BD AB ==时,作BE CE ⊥于E ,∴1122BC AC AB BE ⋅=⋅,即455BE =,1455DE = ∴22255CE BC BE =-= ∴22210CD CE DE =+=情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E∴1122BC AC AB BE ⋅=⋅,∴45BE = 355CE ∴= ∵ABD △为等腰直角三角形 ∴152BF DF AB === ∴955DE DF E F DF BE ''=+=+= 25355CE EE CE BF CE ''=-=-=-= ∴2232CD CE E D ''=+=故答案为:1021332【点睛】本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键. 13.48【分析】用a 和b 表示直角三角形的两个直角边,然后根据勾股定理列出正方形面积的式子,求出2S 的面积.【详解】解:本图是由八个全等的直角三角形拼成的,设这个直角三角形两个直角边中较长的长度为a ,较短的长度为b ,即图中的AE a =,AH b =,则()221S AB a b ==+,2222S HE a b ==+,()223S TM a b ==-, ∵123144S S S ++=,∴()()2222144a b a b a b ++++-= 22222222144a b ab a b a b ab ++++++-=2233144a b +=2248a b +=,∴248S=.故答案是:48.【点睛】本题考查勾股定理,解题的关键是要熟悉赵爽弦图中勾股定理的应用.14.(0,21009)【解析】【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【详解】∵∠OAA1=90°,OA=AA1=1,以OA1为直角边作等腰Rt△OA1A2,再以OA2为直角边作等腰Rt△OA2A3,…,∴OA1=2,OA2=(2)2,…,OA2018=(2)2018,∵A1、A2、…,每8个一循环,∵2018=252×8+2∴点A2018的在y轴正半轴上,OA2018=()20182=21009,故答案为(0,21009).【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.15.413【分析】延长AD至点E,使得DE=AD=4,结合D是中点证得△ADC≌△EDB,进而利用勾股定理逆定理可证得∠E=90°,再利用勾股定理求得BD长进而转化为BC长即可.【详解】解:如图,延长AD至点E,使得DE=AD=4,连接BE,∵D是BC边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,222264213BD BE DE=++=,∴BC =2BD =413, 故答案为:413.【点睛】 本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.16.23或2【分析】先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.【详解】在Rt ABC 中,90,30,2C A BC ∠=∠==,∴AB=2BC=4, ∴22224223AC AB BC =-=-=,当AC 为腰时,则该三角形的腰长为23;当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3,设DE=x ,则AD=2x ,∵222AE DE AD +=,∴222(3)(2)x x +=∴x=1(负值舍去),∴腰长AD=2x=2,故答案为:32【点睛】此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.17.【分析】根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可.【详解】∵AB =13,EF =7,∴大正方形的面积是169,小正方形的面积是49,∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即141202ab ⨯=,∴2ab=120,a2+b2=169,∴(a+b)2=a2+b2+2ab=169+120=289,∴a+b=17,∵a﹣b=7,解得:a=12,b=5,∴AE=12,DE=5,∴AH=12﹣7=5.故答案为:5.【点睛】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab的值.18.7或29或65【分析】分三种情形讨论:(1)如图1中,以点C所在顶点为直角时;(2)如图2中,以点D所在顶点为直角时;(3)如图3中,以点A所在顶点为直角时.【详解】(1)如图1中,以点C所在顶点为直角时.∵AC=CD=4,BC=3,∴BD=CD+BC=7;(2)如图2中,以点D所在顶点为直角时,作DE⊥BC与E,连接BD.在Rt△BDE中DE=2,BE=5,∴BD2229=+=;DE BE(3)如图3中,以点A所在顶点为直角时,作DE⊥BC于E,在Rt△BDE中,DE=4.BE=7,∴BD2265=+=.DE BE故答案为:7或29或65.【点睛】本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.19.【解析】【分析】延长BC,AD交于E点,在直角三角形ABE和直角三角形CDE中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.【详解】如图,延长AD、BC相交于E,∵∠A=60°,∠B=∠ADC=90°,∴∠E=30°∴AE=2AB,CE=2CD∵AB=3,AD=4,∴AE=6, DE=2设CD=x,则CE=2x,DE=x即x=2x=即CD=故答案为:【点睛】本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE和直角△CDE,是解题的关键.20.(0,34).【分析】由423y x=+求出点A、B的坐标,利用勾股定理求得AB的长度,由此得到53122OA'=-=,设点C的坐标为(0,m),利用勾股定理解得m的值即可得到答案.【详解】在423y x=+中,当x=0时,得y=2,∴A(0,2)当y=0时,得4203x +=,∴32x =-,∴B(32-,0), 在Rt △AOB 中,∠AOB=90︒,OA=2,OB=32,∴52AB ===, ∴53122OA '=-=, 设点C 的坐标为(0,m )由翻折得ABC A BC '≌,∴2A C AC m '==-,在Rt A OC '中, 222A C OC A O ''=+,∴222(2)1m m -=+,解得m=34, ∴点C 的坐标为(0,34). 故答案为:(0,34). 【点睛】此题考查勾股定理,翻折的性质,题中由翻折得ABC A BC '≌是解题的关键,得到OC 与A’C 的数量关系,利用勾股定理求出点C 的坐标. 三、解答题21.(1)BE =1;(2)见解析;(3)(2y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM BM ,进而可得BE +CF (BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D 是线段BC 的中点,∴BD=DC=12BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,∴BE=12BD=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∵∠BMD=∠CND,∠B=∠C,BD=CD,∴△MBD≌△NCD(AAS),∴BM=CN,DM=DN.在△EMD和△FND中,∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,∴△EMD≌△FND(ASA),∴EM=FN,∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=12BC=12AB;(3)过点D作DM⊥AB于M,如图3,同(2)的方法可得:BM=CN,DM=DN,EM=FN.∵DN=FN,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.BF 的长为32【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3∴BF ===【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.23.(1)2)83;(3)5.5秒或6秒或6.6秒 【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒,)PQ cm ==;(2)解:根据题意得:BQ BP =,即28t t =-, 解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形; (3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E , 则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.24.(1)①详见解析;②详见解析;(2)DE2=EB2+AD2+EB·AD,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明△ACD≌△BCF;②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,FG=32BF∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF2=(EB+12BF)2+(3BF)2∴DE2=(EB+12AD)2+(3AD)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.25.(1)12;(2)t=12.5s时,13 cm;(3)11s或12s或13.2s【分析】(1)由勾股定理即可得出结论;(2)由线段垂直平分线的性质得到PC= PA=t,则PB=16-t.在Rt△BPC中,由勾股定理可求得t的值,判断出此时,点Q在边AC上,根据CQ=2t-BC计算即可;(3)用t分别表示出BQ和CQ,利用等腰三角形的性质可分BQ=BC、CQ=BC和BQ=CQ三种情况,分别得到关于t的方程,可求得t的值.【详解】(1)在Rt△ABC中,BC2222212016AC AB=-=-=(cm).故答案为:12;(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,∴PC = PA =t ,PB =16-t .在Rt △BPC 中,222BC BP CP +=,即2221216)t t +-=(, 解得:t =252. ∵Q 从B 到C 所需的时间为12÷2=6(s ),252>6, ∴此时,点Q 在边AC 上,CQ =25212132⨯-=(cm );(3)分三种情况讨论:①当CQ =BQ 时,如图1所示,则∠C =∠CBQ .∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°,∴∠A =∠ABQ ,∴BQ =AQ ,∴CQ =AQ =10,∴BC +CQ =22,∴t =22÷2=11(s ).②当CQ =BC 时,如图2所示,则BC +CQ =24,∴t =24÷2=12(s ).③当BC =BQ 时,如图3所示,过B 点作BE ⊥AC 于点E ,则BE 121648205AB BC AC ⋅⨯===, ∴CE 2222483612()55BC BE =-=-==7.2. ∵BC =BQ ,BE ⊥CQ ,∴CQ =2CE =14.4,∴BC +CQ =26.4,∴t =26.4÷2=13.2(s ).综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.26.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=, ∵2AE AP ==90EAP ∠=︒,∴22PE AE ==,∴()22227BE +=,解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒,∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒, ∴26sin 4532HB BE =︒==, ∴点B 到直线AE 的距离为62,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯ 13=,故②正确; ③在Rt AHB 中,由①知:6EH HB == ∴62AH AE EH =+=, 22222256623AB AH BH =+=+=+⎭⎝⎭,21153222ABD S AB AD AB ∆=⋅==+ ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,∵A C 、关于 BD 的对称, ∴523AB BC ==+,∴225231043AC BC ==+=+,∴ min PC AC AP =-,10432=+-,故④错误;⑤∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =, 在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS ≅,∴ABP ADE ∠=∠,∵AN BN =,∴ABP NAB ∠=∠,∴EAN ADE ∠=∠,∵90EAN DAN ∠+∠=︒,∴90ADE DAN ∠+∠=︒,∴AN DE ⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.27.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.28.(1)13,5;(2)等腰直角三角形,理由见解析;(3)当P 的坐标为(1304,)时,PD+PF【解析】【分析】(1)根据阅读材料中A 和B 的坐标,利用两点间的距离公式即可得出答案;由于M 、N 在平行于y 轴的直线上,根据M 和N 的纵坐标利用公式1|y -2|y 即可求出MN 的距离; (2)由三个顶点的坐标分别求出DE ,DF ,EF 的长,即可判定此三角形的形状;(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时PD PF +最短,最短距离为DF',P 的坐标即为直线DF'与x 轴的交点.【详解】解:(1)∵()2, 4A 、()3, 8B --∴AB 13==故A 、B 两点间的距离为:13.∵M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1∴()MN 415=--=故M 、N 两点的距离为5.(2)∵()1, 6D 、()3, 3E -、()4, 2F∴()()22DE 13635=++-= ()()22DF 14625=-+-= ()()22EF 343252=--+-=∴DE=DF ,222DE DF EF +=∴△DEF 为等腰直角三角形 (3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时DP+PF 最短设直线DF'的解析式为y=kx+b 将D (1,6),F'(4,-2)代入得:642k b k b +=⎧⎨+=-⎩解得83263k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线DF'的解析式为:826y 33x =-+ 令y=0,解得13x 4=,即P 的坐标为(1304,) ∵PF=PF'∴PD+PF=PD+ PF'= DF'()()22146273-++=故当P 的坐标为(1304,)时,PD+PF 73 【点睛】本题属于一次函数综合题,待定系数法求一次函数解析式以及一次函数与x 轴的交点,弄清楚材料中的距离公式是解决本题的关键.29.(1)①BC=DC+EC,理由见解析;②证明见解析;(2)6.【解析】【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【详解】(1)①解:BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=EC,∴BC=DC+BD=DC+EC,;故答案为:BC=DC+EC;②证明:∵Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=∠ACB+∠ACE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(2)解:作AE⊥AD,使AE=AD,连接CE,DE,如图2所示:∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE===6,∵∠DAE=90°,∴AD=AE=DE=6.【点睛】本題是四边形综合题目,考查的是全等三角形的判定和性质、等直角三角形的性质、勾股定理、直角三角形的判定等知识:本题综合性强,熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键.30.(1)t,45;(2)详见解析;(3)90°;(4)t的值为2﹣1或2+1,BE=3.【解析】【分析】(1)根据等腰直角三角形的性质即可解决问题;(2)根据SAS即可证明△ADE≌△CDF;(3)由△ADE≌△CDF,即可推出∠ADE=∠CDF,推出∠EDF=∠ADC=90°;(4)分两种情形分别求解即可解决问题.【详解】(1)由题意:AE=t.∵CA=CB,∠ACB=90°,CD⊥AB,∴∠BCD=∠ACD=45°.故答案为t,45.(2)∵∠ACB=90°,CA=CB,CD⊥AB,∴CD=AD=BD,∴∠A=∠DCB=45°.∵AE=CF,∴△ADE≌△CDF(SAS).(3)∵点E在边AC上运动时,△ADE≌△CDF,∴∠ADE=∠CDF,∴∠EDF=∠ADC=90°.(4)①当点E在AC边上时,如图1.在Rt△ACB中,∵∠ACB=90°,AC=CB,AB=2,CD⊥AB,∴CD=AD=DB=1,AC=BC2=∵CE=CD=1,∴AE=AC﹣CE2=1.=1,∴t2。
八年级数学勾股定理30道必做题(含答案和解析)
八年级数学勾股定理30道必做题(含答案和解析)1、如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为a ,b ,c. A ,B ,N ,E ,F 五点在同一直线上,则c = .(用含有a ,b 的代数式表示).答案:√a 2+b 2.解析:由三个正方形如图的摆放.∵四边形ABCD ,EFGH ,NHMC 都是正方形. ∴∠CNB +∠ENH =90°.又∵∠CNB +∠NCB =90°,∠ENH +∠EHN =90°. ∴∠CNB =∠EHN ,∠NCB =∠ENH. 在△CBN 和△NEH 中:{∠BNC =∠EHNNC =HN ∠NCB =∠HNE .∴△CBN ≌△NEH (ASA ). ∴HE =BN.在Rt △CBN 中,BC 2+BN 2=CN 2.又已知三个正方形的边长分别为a ,b ,c. 则有a 2+b 2=c 2. ∴c =√a 2+b 2.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.三角形——直角三角形——勾股定理. 四边形——正方形——正方形的性质.2、在Rt △ABC 中,斜边长BC =3,AB 2+AC 2+BC 2的值为( ). A.9 B.18 C.6 D. 无法计算答案:B.解析:在Rt△ABC中,斜边长BC=3.BC2=AB2+AC2=9.∴AB2+AC2+BC2=9+9=18.考点:三角形——直角三角形——勾股定理.3、三角形三边长分别为① 3,4,5;② 9,40,41;③ 5,12,13;④ 6,8,10;⑤ 7,24,25;⑥ 8,15,17.其中能构成直角三角形的有.答案:①②③④⑤⑥.解析:① 3,4,5;② 9,40,41;③ 5,12,13;④ 6,8,10;⑤ 7,24,25;⑥ 8,15,17.全都能构成直角三角形.考点:三角形——直角三角形——勾股数.4、已知点A(3,5),B(-1,1)那么线段AB的长度为().A.4B.3√2C.4√2D.5答案:C.解析:已知A(3,5)和B(-1,1),由两点间的距离公式可知AB=√(3+1)2+(5−1)2=4√2.考点:函数——平面直角坐标系——坐标与距离.5、等腰直角三角形的斜边为10,则腰长为,斜边上的高为.答案:1.5√2.2.5.解析:等腰三角形的三边关系为1∶1∶√2.因为等腰直角三角形的斜边为10,则腰长为5√2.斜边上的高,即为斜边的中线,为斜边的一半,长为5.考点:三角形——直角三角形——等腰直角三角形——勾股定理.6、若正方形的周长为40,则其对角线长为().A.100B.20√2C.10√2D.10答案:C.解析:正方形边长为10,根据勾股定理得对角线长为10√2.考点:三角形——直角三角形——勾股定理.四边形——正方形——正方形的性质.7、在Rt△ABC中,∠C=90°,∠A=30°,BC=1,则AC的长是().A.2B.√32C.√3D.√3+2答案:C.解析:略.考点:三角形——直角三角形——勾股定理.8、等边三角形的边长为4,则它的面积是.答案:4√3 .解析:等边三角形的面积=√34×42=4√3.考点:三角形——直角三角形——含30°角的直角三角形.9、已知一个直角三角形的两条直角边分别为3,4,则此三角形斜边是__________,斜边上的高为__________.A.5;125B.6;145C.6;125D.5;145答案:A.解析:略.考点:三角形——三角形基础——三角形面积及等积变换.直角三角形——勾股定理.10、直角三角形两直角边长分别为5和12,则它的斜边上的高为.答案:6013.解析:设斜边的长为c,斜边上的高为h.∵直角三角形的两直角边长分别为5和12.∴c=√52+122=13.∴5×12=13h,解得h=60.13考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.11、如图所示,小明同学在距离某建筑物6米的点A处测得条幅两端点B,C点的仰角分别为60°和30°,则条幅的高度BC为米(结果可以保留根号).答案:4√3.=2√3,BC=BD−CD=4√3.解析:依题可知,BC=6√3,CD=√3考点:三角形——直角三角形——含30°角的直角三角形.三角形——锐角三角函数——解直角三角形.12、一张直角三角形的纸片,按图所示折叠,使两个锐角的顶点A,B重合,若∠B=30°,AC=√3,则DC的长为.答案:1.解析:由题知∠DAE=∠B=30°.∴∠DAC=90°-∠B-∠DAE=30°.AC=1.∴在Rt△ADC中,DC=√33考点:三角形——直角三角形——含30°角的直角三角形.13、已知:如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,D是AB延长线上一点且∠CDB=45°.求DB与DC的长.答案:证明见解析.解析:过C作CE⊥AB于E.在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4.∴BC=2,∠ABC=60°.∴∠BCE=30°.∴BE=1,CE=√3.在Rt△CDE中,∠CED=90°,∠CDB=45°.∴∠ECD=45°.∴DE=CE=√3.∴CD=√CE2+DE2=√6.∴BD=√3-1.考点:三角形——直角三角形——含30°角的直角三角形——等腰直角三角形——勾股定理.14、如图,数轴上有两个Rt△OAB,Rt△OCD,OA,OC是斜边,且OB=1,AB=1,CD=1,OD=2,分别以O为圆心,OA,OC为半径画弧交x轴于E,F,则E,F分别对应的数是.答案:−√2,√5.解析:在Rt△OAB中,OA=√OB2+AB2=√2.∴OE=√2.∴点E对应的数为−√2.在Rt△OCD中,OC=√OD2+CD2=√5.∴OF=√5.∴点F对应的数为√5.考点:数——有理数——数轴.三角形——直角三角形——勾股定理.15、在△ABC中,三条边的长分别为AB=√5,BC=√10,AC=√13,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格,其中每个小正方形的边长为1,再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样就不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上.(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为√2a,√13a,√17a(a>0).请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积填写在横线上.(3)若△ABC中有两边的长分别为√2a,√10a(a>0).且△ABC的面积为2a2,试运用构图法在图3的正方形网格(每个小正方形的边长为a)中画出所有符合题意的△ABC(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上..答案:(1)72a2.(2)52(3)4a或2√2a.解析:(1)△ABC的面积为72.(2)△ABC的面积为52a2.(3)图中三角形为符合题意的三角形.第三边的长度为4a或2√2a.考点:函数——平面直角坐标系——坐标与面积.三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.16、在Rt△ABC中,∠C=90°,若a+b=5,c=4,则S△ABC=.答案:94.解析:在Rt△ABC中,由勾股定理得,a2+b2=c2.又有(a+b)2=a2+b2+2ab,∴(a+b)2-c2=2ab.∴S△ABC=12ab=94.考点:三角形——直角三角形——勾股定理.17、已知Rt△ABC的周长为2+√6,其中斜边AB=2,则这个三角形的面积为.答案:12.解析:在Rt△ABC中,设BC=a,AC=b.由勾股定理得a2+b2=4.由题意得a +b +2=2+√6. ∴a +b =√6. ∴ab =(a+b)2−(a 2+b 2)2=6−42=1.∴s =12ab =12.考点:式——整式——完全平方公式.三角形——直角三角形——勾股定理.18、在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为 . 答案:132cm. 解析:略.考点:三角形——直角三角形——勾股定理.19、如图所示,在平静的湖面上,有一支红莲,高出水面1m ,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m ,求水深是多少?答案:水深为1.5米.解析:设水深AC 为x 米.则红莲的长是(x +1)米.在Rt △ABC 中,根据勾股定理得,AC 2+BC 2=AB 2. ∴(x +1)2=x 2+4. 解得x =1.5. 答:水深为1.5米.考点:三角形——直角三角形——勾股定理——勾股定理的应用.20、如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA ⊥AB ,AD =1,BD =√17,则BC 的长为 ..答案:178解析:在Rt△ABD中,由勾股定理可知,AD=1,BD=√17,AB=4.设BC=BD=x,AC=4-x..由勾股定理可知12+(4-x)2=x2,解得x=178考点:三角形——直角三角形——勾股定理.21、如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于.答案:6.解析:∵AB=10,EF=2.∴大正方形的面积是100,小正方形的面积是4.∴四个直角三角形的面积和为100-4=96.ab=96.设AE=a,DE=b,即4×12∴2ab=96,a2+b2=100.∴a+b=14.∵a-b=2.解得a=8,b=6.∴AE=8,DE=6.∴AH=8-2=6.考点:方程与不等式——二元一次方程组——解二元一次方程组.三角形——直角三角形——勾股定理.四边形——正方形——正方形的性质.22、在Rt△ABC中,AC=5,BC=12,则AB边的长是.答案:13或√119.解析:若AC=5,BC=12都是直角边,则AB=13.若BC=12是斜边,则AB=√122−52=√119.考点:三角形——直角三角形——勾股定理.23、等腰三角形的一边长为12,另一边长是10,则其面积为.答案:48或5√119.解析:作出底边上的高AD.当AB=AC=12,BC=10时,BD=5.由勾股定理得:AD=√AB2−BD2=√119.∴S=12BC×AD=12×10×√119=5√119.当AB=AC=10,BC=12时,BD=6.由勾股定理得:AD=√AB2−BD2=√102−62=8.∴S=12BC×AD=48.考点:三角形——直角三角形——勾股定理.24、在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为cm2.答案:66或126.解析:如图所示,分如下两种情况:由勾股定理可得,B1H=B2H=5,CH=16.∴CB1=21,CB2=11.∴△ABC的面积为66或126cm2.考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.25、下列各组数中,不能构成直角三角形的是().A.3,4,5B.1,1,√2C.5,12,13D.4,6,8答案:D.解析:∵32+42=52,∴选项A正确.∵12+12=(√2)2,∴选项B正确.∵52+122=132,∴选项C正确.∵42+62≠82,∴选项D错误.考点:三角形——直角三角形——勾股定理的逆定理.26、在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,如果三边长满足b2-a2=c2,那么△ABC中互余的一对角是.答案:∠A和∠C.解析:∵b2-a2=c2.∴b2=a2+c2.∴△ABC为直角三角形,且∠B=90°.∴∠A+∠C=90°.考点:几何初步——角——余角和补角.三角形——直角三角形——勾股定理的逆定理.27、如图所示,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD.求证:△AEF 是直角三角形.答案:证明见解析.解析:如图所示,延长FE交AB的延长线于点G.∵∠C=∠GBE=90°,CE=BE,∠1=∠2.∴△CEF≌△BEG.∴EF=EG,CF=BG.设正方形ABCD的边长为a,则CF=14a,DF=34a.在Rt△ADF中,根据勾股定理,得AF2=AD2+DF2=a2+(34a)2=2516a2.∴AF=54a,BG=14a.∴AG=54a.∴AF=AG.∵EF=EG.∴AE⊥FG.∴∠AEF=90°.∴△AEF是直角三角形.考点:三角形——全等三角形——全等三角形的应用.三角形——等腰三角形——等腰三角形的性质.三角形——直角三角形——勾股定理——勾股定理的逆定理.28、如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.答案:四边形ABCD的面积为1+√5.解析:连接AC.∵∠ABC=90°,AB=1,BC=2.∴AC=√AB2+BC2=√5.在△ACD中,AC2+CD2=5+4=9=AD2.∴△ACD是直角三角形.∴S四边形ABCD=12AB×BC+12AC×CD=12×1×2+12×√5×2=1+√5.故四边形ABCD的面积为1+√5.考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理——勾股定理的逆定理.29、在△ABC中,点D为BC的中点,点M,N分别为AB,AC上的点,且MD⊥ND.(1)若∠A=90°,以线段BM,MN,CN为边能否构成一个三角形?若能,该三角形是锐角三角形,直角三角形或钝角三角形?(2)如果BM2+CN2=DM2+DN2,求证AD2=14(AB2+AC2).答案:(1)能,该三角形是直角三角形.(2)证明见解析.解析:(1)略.(2)延长ND至E,使DE=DN,连接EB,EM,MN.因为DE=DN,DB=DC,∠BDE=∠CDN,则△BDE≌△CDN.从而BE=CN,∠DBE=∠C.而DE=DN,∠MDN=90°,故ME=MN.因此DM2+DN2=MN2=ME2.即BM2+BE2=ME2,则∠MBE=90°.即∠MBD+∠DBE=90°.因为∠DBE=∠C,故∠MBD+∠C=90°.则∠BAC=90°.AD为Rt△ABC斜边BC上的中线.BC.故AD=12(AB2+AC2).由此可得AD2=14考点:三角形——全等三角形——全等三角形常用辅助线——倍长中线.三角形——全等三角形——全等三角形的性质——全等三角形的判定.三角形——直角三角形——勾股定理.30、阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP’C,连接PP’,得到两个特殊的三角形,从而将问题解决.(1)图1中∠APB的度数等于.(2)如图3,在正方形ABCD内有一点P,且PA=2√2,PB=1,PD=√17,则∠APB的度数等于,正方形的边长为.(3)如图,在正六边形ABCDEF内有一点,且PA=2,PB=1,PF=√13,则∠APB的度数等于,正六边形的边长为(并写出解答过程).答案:(1)150°.(2)1.135°.2.√13.(3)1.120°.2.√7.解析:(1)∵△ABC为正三角形,PA=P’A.∴△AP P’为正三角形.∴∠A P’P=60°,P’P=AP=3.∵P’C=PB=4,PC2=P’P2+P’C2.∴∠PP’C=90°.∴∠APB=∠AP’C=150°.(2)1.135°;2.√13.(3)图4中∠APB的度数等于120°,正六边形的边长为√7.将△APB绕点A逆时针旋转120°得到△A P’F,连接P’P.过点A作AN⊥P’P,过点A作AH⊥FP’于点H.∵△APB绕点A逆时针旋转120°得到△A P’F.∴∠PAP’=120°,P’A=PA=2,P’F=PB=1.∴∠AP’P=30°.在Rt△ANP’中,P’A=2AN=2.∴P’N=√3.∴PP’=2√3.在△FPP’中,PF=√13,PP’=2√3,P’F=2.∴PF2=P’F2+P’P2.∴∠FP’P=90°.∴∠APB=∠FP’A=∠FP’P+∠AP’P=120°.∴∠HP’A=60°.在Rt△HP’A中,AP’=2, ∠P’AH=30°.∴HP’=1.在Rt△HFA中,FA2=FH2+HA2.∴FA=√FH2+HA2=√7.考点:三角形——直角三角形——勾股定理——勾股定理的逆定理.几何变换——图形的旋转——旋转全等.。
八年级数学勾股定理练习题及答案
勾股定理练习题温故而知新:1.勾股定理222. a=c+b直角三角形两条直角边a,b的平方和等于斜边c的平方,即2.勾股定理的验证勾股定理的证明方法很多,据说已有400余种,其证明的内涵极其丰富.常用的证法是面积割补法,如图所示.3.直角三角形的性质两锐角互余(角的关系)、勾股定理(边的关系),30°角所对的直角边等于斜边的一半(边角关系),这些性质在求线段的长度、证明线段倍分关系、证明线段平方关系等方面有广泛的应用.例1 (2013·安顺)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,小鸟至少飞行()A.8米B.10米C.12米D.14米解析:小鸟飞行的最短路线如图所示为线段AB;过点A向10米高的树作垂线,垂足为C,则易知AC=8米,BC=10-4=6(米);根据勾股定理可得2222=10(米).=AB=6?BCAC?8B答案:小结:在解决实际问题时,往往根据题意把实际问题转化为数学问题,构造直角三角形利用勾股定理来解决.有时根据需要巧设未知数,借助勾股定理列方程求解,常可使问题简便.例2 (2013·衢州)如图,将一个有45°角的三角板的直角顶点放在一张宽为3cm的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,则三角板最大边的长为()A.3 cmB.6 cm22cm D.6C.3 cm解析:如图所示在图中标上字母,过点A作AD⊥BD,垂足为D,则AD=3 cm;因为∠ABD=30°,所以AB=2AD=6 cm;又△ABC是等腰直角三角形,故BC=AB=6 cm,根据勾股定理可得22222(cm)6=AC==6?AB6?BC答案:D小结:在直角三角形中,30°角所对的直角边等于斜边的一半,45°的直角三角形中,斜边2倍. 是直角边的例3 如图所示,公园里有一块形如四边形ABCD的草地,测得BC=CD=10米,∠B=∠C=120°,∠A=45°.求出这块草地的面积.解析:连结BD,作CE⊥BD,交BD于E点,构造含特殊锐角(30°或45°)的直角三角形.求解.答案:解:连结BD,作CE⊥BD,交BD于E点.∵DC=BC,∴△BCD是等腰三角形.∵∠BCD=120°, ∴∠BCE=60°.12233m, BE=105=∴m,10m, 则EC=BC=5m,∴BE=BD=2BC=又ECBC?211233). (×10m=25=BD=EC·×5S BDCV22又∠DBA=∠CBA-∠CBE=90°,∠A=45°,∴△DBA是等腰直角三角形.11233S)m.10=150=BD·AB=×10(∴×DABV2223SS. )+25∴这块草地的面积S=m+=(150DABBDCVV小结:对于本题中这类图形,适当添加辅助线,将图形切割为基本图形,再进行相关计算.举一反三:1.(2013·黔西南)一直角三角形的两边长分别为3和4,则第三边的长为()757或D.5A.5 B.C.解析:分长为4的边为直角边和斜边两种情况考虑.2.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()323 A. B.4333 C. D.解析:由题意易知∠BDE=90°,在Rt△BDE中,DE=4,BE=8,根据勾股定理可得2222DE?BE43. ==BD=48?(2013·湘西)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E6.,若AC=6,BC=8,CD=3.(1)求DE的长;)求AD的面.解析)根据角平分线的性质可DE=CD1(2)BD=BC-CD=5,S=BD·AC=×5×6=15.ADB△22例4 勾股定理揭示了直角三角形三边之间的关系,其中蕴含着丰富的科学知识和人文价值.图是一棵由正方形和含30°角的直角三角形按一定规律长成的勾股树,树主干自下而上第一个正方形和第一个直角三角形的面积之和为S,第二个正方形和第二个直角三角形的面积之1和为S,…,第n个正方形和第n个直角三角形的面积之和为S,设第一个正方形的边长n2为1.请解答下列问题:(1)S=_______;1解析:根据正方形的面积公式求出面积,再根据直角三角形三条边的关系运用勾股定理求出三角形的直角边,求出S. 1答案:解:∵第一个正方形的边长为1,∴正方形的面积为1,又∵直角三角形一个角为30°,2131??2??1,,另一条直角边就是∴三角形的一条直角边为??222??.3331∴三角形的面积为×÷2=,∴S=1+.12882(2)通过探究,用含n的代数式表示S,则S=________. n解析: 利用正方形与三角形面积扩大与缩小的规律推导出公式.333,它的面积就是,也就是第一个正方形面积的答案:解:∵第二个正方形的边长为,2443,同理,第二个三角形的面积也是第一个三角形的面积的433,依此类推,)×∴S=(1+284333332, )+)× ()××,即S=(1+S=(1338844433n?1(n为整数).S=()×()1+n84222,同时也反映了以直角三角形三边)勾股定理反映直角三角形三边关系即a=c+b(小结:1为正方形的面积关系,是勾股定理的另一种表现形式;(2)从简单到复杂,从特殊到一般是探究规律型问题的一般方法.举一反三:4.(2013·莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积分别为2,5,1,2,则最大的正方形E的面积是__________.解析:S=S+S=S+S+S+S10.=2+1+5+2=DCBA213.例5 如图,△ABC中,已知∠BAC=45°,AD⊥BC于点D,BD=2,DC=3,求AD的长.小萍灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:分别以AB,AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点分别为E,F,延长EB,FC相交于G点,可得四边形AEGF为正方形.设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.解析:由四边形AEGF为正方形及对称性质得EG=GF=AE=AD=x, BD=BE=2,CD=CF=3.BG=x-2,CG=x-3,BC=BD+CD=5,在Rt△BGC中利用勾股定理列方程求解. 答案:解:∵AD=x,则AE=EG=GF=x.∵BD=2,DC=3,∴BE=2,CF=3.∴BG=x-2,CG=x-3.222,+CG BGC在Rt△中,BG =BC2222-5x-6=,化简得x )(+x-3)0, =5-2∴(x即(x+1)(x-6)=0,可得x+1=0 或x-6=0.∵x+1>0,∴x=6,∴AD=x=6.小结:(1)对折不改变图形的大小及形状,也就是说折叠前后的图形全等,并且成轴对称,其中折痕所在的直线即为对称轴;(2)利用方程的方法求解平面图形,是方程的一种简单应用,有时候也让我们的解题更为便捷.3.如图是一张直角三角形的纸片,两直角边AC=6 cm,BC=8 cm,现将△ABC折叠,使点B与点A重合,折痕)的长为(DE,则DE为22222+π=49;<;<;1 5+BC=5+2);(答案:(1)AB222222222+π. r+BC=h=h+(解:(2)路线1:πr=AC)=AB l1222.r)=(2:h+=(AB+BC)2路线l2222222222+π.-4r)-4- =(h=πhrrr)-(h+2r∴ll21222222-4)r-4h]·(πrπr>-4hr-4r0. >0,当即[->0时,ll214h2. r>-4h>0. 又r>0, ∴(π解得-4)r2??4222222ll-4)r-4h]·r0,<即当(π-<<0时,πr0. -4hr-4r214h2, <0.∴rπ>0, ∴(<-4)r-4h又r2??44h22ll时,>,选择路线所以当r>2. 122??44h22ll,选择路线1.<r当0<<时,212??4小结:在这道题中,勾股定理和以前学过的不等式,以及圆柱体的一些相关知识联系到了一起,对我们的综合能力要求较高.举一反三:5.(2013·东营)如图,圆柱形容器中,高为1.2 m,底面周长为1 m,在容器内壁离容器底部0.3 m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3 m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为___________m(容器厚度忽略不计).BE?A'E=1.3(m)=. 0.5?1.2。
勾股定理练习题(含答案)_初二数学_数学_初中教育_教育专区
勾股定理练习题一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2.2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D.222c b a =+3. 如果Rt △的两直角边长分别为k 2-1,2k (k>1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+14.已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 337.※直角三角形的面积为,斜边上的中线长为,则这个三角形周S d 长为( )(A (B2d +d -(C ) (D )2d +d +8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为()A :3 B :4 C :5 D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足则三角形的形状是()2(6)100a -=A :底与边不相等的等腰三角形 B :等边三角形 C :钝角三角形 D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.15.一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___. 16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .19.一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .二、综合发展:1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗? 3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?AE B4.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?小汽车小汽车观测点答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3.解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6.解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10可知满足勾股定理,即是直角三角形.答案:直角.8.解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.卡祖玛咖,卡祖玛咖官网 lxMQovlLvRTh。
八年级初二数学勾股定理知识点及练习题及答案
一、选择题1.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0)2.在ABC ∆中,D 是直线BC 上一点,已知15AB =,12AD =,13AC =,5CD =,则BC 的长为( ) A .4或14B .10或14C .14D .103.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC 上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm4.如图,已知45∠=MON ,点A B 、在边ON 上,3OA =,点C 是边OM 上一个动点,若ABC ∆周长的最小值是6,则AB 的长是( )A .12B .34C .56D .15.已知等边三角形的边长为a ,则它边上的高、面积分别是( )A.2,24a aB.23,24a aC.233,24a aD.233,44a a6.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东75︒的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为()A.北偏西15︒B.南偏西75°C.南偏东15︒或北偏西15︒D.南偏西15︒或北偏东15︒7.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是()A.3 B.5 C.4或5 D.3或518.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点B落在点B′处,则重叠部分△AFC的面积为()A.12 B.10C.8 D.69.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则BC的长是()A.32B.2 C.22D1010.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25B.111,4,5222C.3,4,5D.114,7,822二、填空题11.如图,AB =12,AB ⊥BC 于点B , AB ⊥AD 于点A ,AD =5,BC =10,E 是CD 的中点,则AE 的长是____ ___.12.如图,在ABC △中8,4,AB AC BC AD BC ===⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为________.13.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD ,则线段BD 的长为_____.14.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___ 15.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______16.在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,且a +b =35,c =5,则ab 的值为______.17.Rt △ABC 中,∠BAC =90°,AB =AC =2,以 AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段 BD 的长为_____.18.如图,BAC 90∠=度,AB AC =,AE AD ⊥,且AE AD =,AF 平分DAE ∠交BC 于F ,若BD 6=,CF 8=,则线段AD 的长为______.19.如图,小正方形的边长为1,连接小正方形的三个格点可得△ABC ,则AC 边上的高的长度是_____________.20.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________三、解答题21.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.(1)经过多少秒,△BMN 为等边三角形; (2)经过多少秒,△BMN 为直角三角形.22.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.23.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由. 24.已知a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,(1)求a ,b ,c 的值;(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.25.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E . (1)根据题意用尺规作图补全图形(保留作图痕迹); (2)设,BC m AC n ==①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由. ②若线段2AD EC =,求mn的值.26.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD . (1)补全图形.(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.27.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .(1)直接写出BC =__________,AC =__________; (2)求证:ABD ∆是等边三角形;(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;(4)P 是直线AC 上的一点,且13CP AC =,连接PE ,直接写出PE 的长.28.如图,点A是射线OE:y=x(x≥0)上的一个动点,过点A作x轴的垂线,垂足为B,过点B作OA的平行线交∠AOB的平分线于点C.(1)若OA=52,求点B的坐标;(2)如图2,过点C作CG⊥AB于点G,CH⊥OE于点H,求证:CG=CH.(3)①若点A的坐标为(2,2),射线OC与AB交于点D,在射线BC上是否存在一点P 使得△ACP与△BDC全等,若存在,请求出点P的坐标;若不存在,请说明理由.②在(3)①的条件下,在平面内另有三点P1(2,2),P2(2,22),P3(2+2,2﹣2),请你判断也满足△ACP与△BDC全等的点是.(写出你认为正确的点)29.如图1, △ABC和△CDE均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a,且点A、D、E在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM⊥AE于E.若CM=7, BE=10, 试求AB的长.(3)如图3,若a=120°, CM⊥AE于E, BN⊥AE于N, BN=a, CM=b,直接写出AE的值(用a, b 的代数式表示).30.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.(体验)(1)从特殊入手许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:的大小的形状…直角三角形…直角三角形…请仔细体会其中的道理,并填空:_____,_____;(2)猜想一般结论在中,设,,(),①若为直角三角形,则满足;②若为锐角三角形,则满足____________;③若为钝角三角形,则满足_____________.(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面(如图1),设,,,请帮助小慧说明为锐角三角形的道理.(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是()A.一定是锐角三角形B.可能是锐角三角形或直角三角形,但不可能是钝角三角形C.可能是锐角三角形或直角三角形或钝角三角形【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,∴P的坐标是(4,0)或(22,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A 的坐标是(2,2), ∴OA= 22, ∴OA=AP=22∴P 的坐标是(-22,0). 故选D .2.A解析:A 【分析】根据AC =13,AD =12,CD =5,可判断出△ADC 是直角三角形,在Rt △ADB 中求出BD ,继而可得出BC 的长度. 【详解】∵AC =13,AD =12,CD =5, ∴222AD CD AC +=, ∴△ABD 是直角三角形,AD ⊥BC , 由于点D 在直线BC 上,分两种情况讨论: 当点D 在线段BC 上时,如图所示,在Rt △ADB 中,229BD AB AD =-=,则14BC BD CD =+=;②当点D 在BC 延长线上时,如图所示,在Rt △ADB 中,229BD AB AD =-=,则4BC BD CD =-=.故答案为:A. 【点睛】本题考查勾股定理和逆定理,需要分类讨论,掌握勾股定理和逆定理的应用为解题关键.3.C解析:C【分析】当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.【详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,由折叠的性质知,BC′=BC=3cm,∴AC′=AB-BC′=2cm.故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.4.D解析:D【分析】作点A关于OM的对称点E,AE交OM于点D,连接BE、OE,BE交OM于点C,此时△ABC周长最小,根据题意及作图可得出△OAD是等腰直角三角形,OA=OE=3,,所以∠OAE=∠OEA=45°,从而证明△BOE是直角三角形,然后设AB=x,则OB=3+x,根据周长最小值可表示出BE=6-x,最后在Rt△OBE中,利用勾股定理建立方程求解即可.【详解】解:作点A关于OM的对称点E,AE交OM于点D,连接BE、OE,BE交OM于点C,此时△ABC周长最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE,∵△ABC周长的最小值是6,∴AB+BE=6,∵∠MON=45°,AD⊥OM,∴△OAD是等腰直角三角形,∠OAD=45°,由作图可知OM垂直平分AE,∴OA=OE=3,∴∠OAE=∠OEA=45°,∴∠AOE=90°,∴△BOE 是直角三角形,设AB=x ,则OB=3+x ,BE=6-x ,在Rt △OBE 中,()()2223+3+6x x =-,解得:x=1,∴AB=1.故选D.【点睛】本题考查了利用轴对称求最值,等腰直角三角形的判定与性质,勾股定理,熟练掌握作图技巧,正确利用勾股定理建立出方程是解题的关键.5.C解析:C【分析】作出等边三角形一边上的高,利用直角三角形中,30°角所对的直角边等于斜边的一半,得出BD ,利用勾股定理即可求出AD ,再利用三角形面积公式即可解决问题.【详解】解:如图作AD ⊥BC 于点D .∵△ABC 为等边三角形,∴∠B =60°,∠B AD =30° ∴1122BD AB a == 由勾股定理得,2222213()2AD AB BD a a a =-=-= ∴边长为a 的等边三角形的面积为12×a ×3a =3a 2, 故选:C .【点睛】本题考点涉及等边三角形的性质、含30°角的直角三角形、勾股定理以及三角形面积公式,熟练掌握相关性质定理是解题关键.6.C解析:C【分析】先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.【详解】解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵222241857632490030+=+==,∴乙船的航行方向与甲船的航行方向垂直,∵甲船的航行方向是北偏东75°,∴乙船的航行方向是南偏东15°或北偏西15°.故选:C .【点睛】本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.7.C解析:C【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.【详解】解:∵在△ABC 中,AC =AM =3,设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x x x x +-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,∴x =5或x =4;故选C .【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键.8.B解析:B【分析】已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=,1102AFC S AF BC ∴=⋅⋅=△. 故选:B .【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键.9.D解析:D【分析】根据条件可以得出∠E =∠ADC =90°,进而得出△CEB ≌△ADC ,就可以得出AD =CE ,再利用勾股定理就可以求出BC 的值.【详解】解:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°,∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CEB ≌△ADC (AAS ),∴CE =AD =3,在Rt △BEC中,,故选D .【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.10.B解析:B【分析】根据勾股定理的逆定理分别计算各个选项,选出正确的答案.【详解】A 、22272425+=,能组成直角三角形,故正确;B 、22211145222⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能组成直角三角形,故错误; C 、222345+=,能组成直角三角形,故正确; D 、2221147822⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,能组成直角三角形,故正确; 故选:B .【点睛】 本题考查了勾股定理的逆定理:已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形.二、填空题11.5【详解】解:如图,延长AE 交BC 于点F ,∵点E 是CD 的中点,∴DE=CE ,,∵AB ⊥BC ,AB ⊥AD,∴AD ∥BC,∴∠ADE=∠BCE 且DE=CE ,∠AED=∠CEF,∴△AED ≌△FEC (ASA ),∴AD=FC=5,AE=EF,∴BF=BC-FC=5,∴在Rt △ABF 中,2213AF AB BF =+=,6.52AF AE ==故答案为:6.5.12.15 【分析】 根据题意点B 与点C 关于AD 对称,所以过点C 作AB 的垂线,与AD 的交点即点P ,求出CE 即可得到答案【详解】∵8,AB AC AD BC ==⊥∴点B 与点C 关于AD 对称过点C 作CE ⊥AB 于一点即为点P ,此时PB PE +最小∵8,4,AB AC BC AD BC ===⊥∴BD=2在Rt △A BC 中, 222282215AD AB BD =-=-= ∵S △ABC=1122BC AD AB CE ⋅⋅=⋅⋅ ∴42158CE ⨯=得15CE =故此题填15【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题 13.72965【分析】分三种情形讨论:(1)如图1中,以点C 所在顶点为直角时;(2)如图2中,以点D 所在顶点为直角时;(3)如图3中,以点A 所在顶点为直角时.【详解】(1)如图1中,以点C 所在顶点为直角时.∵AC =CD =4,BC =3,∴BD =CD +BC =7;(2)如图2中,以点D 所在顶点为直角时,作DE ⊥BC 与E ,连接BD .在Rt △BDE 中DE =2,BE =5,∴BD 2229DE BE +(3)如图3中,以点A 所在顶点为直角时,作DE ⊥BC 于E ,在Rt△BDE中,DE=4.BE=7,∴BD2265=+=.DE BE故答案为:7或29或65.【点睛】本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.14.5或13【分析】根据已知可得题意中的图是一个勾股图,可得S P+S Q=S K为从而易求S K.【详解】解:如下图所示,若A=S P=4.B=S Q=9,C=S K,根据勾股定理,可得A+B=C,∴C=13.若A=S P=4.C=S Q=9,B=S K,根据勾股定理,可得A+B=C,∴B=9-4=5.∴S K为5或13.故答案为:5或13.【点睛】本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.15.322或11或5或109 5【分析】分别就E,F在AC,BC上和延长线上,分别画出图形,过D作DG⊥AC,DH⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.【详解】解:①过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D是AB的中点,∴DG=12 BC同理:DH=12 AC又∵BC=AC∴DG=DH在Rt△DGE和Rt△DHF中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL)∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=GC-GE=CH-HF=CF=AB-BF=3∴EF=223332+=②过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D 是AB 的中点, ∴DG=12BC 同理:DH=12AC 又∵BC=AC∴DG=DH在Rt△DGE 和Rt△DHF 中DG=DH,DE=DF ∴Rt△DGE≌Rt△DHF(HL )∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=CF=AC+AE=AB+BF=7+4=11 ∴EF=221111112+=③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作DH⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形,∴∠1+∠2=45°∴∠EDF=2(∠1+∠2)=90°∴△EDF 为等腰直角三角形可证AED CFD △△≌∴AE=CF=3,CE=BF=4∴2222435EF CE CF =+=+=④有第③知,EF=5,且△EDF 为等腰直角三角形,∴52,可证△E CF E DE ''∆∽,2223y x +=5252x =+综上可得:25x =∴2222E F DE DF DE '''''=+=1095E F ''= 【点睛】本题考查了全等三角形和勾股定理方面的知识,做出辅助线、运用数形结合思想是解答本题的关键.16.10【分析】先根据勾股定理得出a 2+b 2=c 2,利用完全平方公式得到(a +b )2﹣2ab =c 2,再将a +b =5c =5代入即可求出ab 的值.【详解】解:∵在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,∴a 2+b 2=c 2,∴(a +b )2﹣2ab =c 2,∵a +b =5c =5,∴(52﹣2ab =52,∴ab =10.故答案为10.【点睛】本题考查勾股定理以及完全平方公式,灵活运用完全平方公式是解题关键.17.4或2510【分析】分三种情况讨论:①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.【详解】①以A为直角顶点,向外作等腰直角三角形DAC,如图1.∵∠DAC=90°,且AD=AC,∴BD=BA+AD=2+2=4;②以C为直角顶点,向外作等腰直角三角形ACD,如图2.连接BD,过点D作DE⊥BC,交BC的延长线于E.∵△ABC是等腰直角三角形,∠ACD=90°,∴∠DCE=45°.又∵DE⊥CE,∴∠DEC=90°,∴∠CDE=45°,∴CE=DE=2222⨯=.在Rt△BAC中,BC2222=+=22,∴BD22222222BE DE()()=+=++= 25;③以AC为斜边,向外作等腰直角三角形ADC,如图3.∵∠ADC=90°,AD=DC,且AC=2,∴AD=DC=AC sin45°=222⨯=.又∵△ABC、△ADC是等腰直角三角形,∴∠ACB=∠ACD=45°,∴∠BCD=90°.又∵在Rt△ABC中,BC2222=+=22,∴BD222222210 BC CD=+=+=()().故BD的长等于4或510.故答案为4或25或10.【点睛】本题考查了等腰直角三角形的性质、勾股定理等知识.解题的关键是分情况考虑问题, 18.65【分析】由“SAS”可证ABD ≌ACE ,DAF ≌EAF 可得BD CE =,4B ∠∠=,DF EF =,由勾股定理可求EF 的长,即可求BC 的长,由勾股定理可求AD 的长.【详解】解:如图,连接EF ,过点A 作AG BC ⊥于点G ,AE AD ⊥,DAE DAC 290∠∠∠∴=+=,又BAC DAC 190∠∠∠=+=,12∠∠∴=,在ABD 和ACE 中 12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴≌()ACE SAS .BD CE ∴=,4B ∠∠=BAC 90∠=,AB AC =, ∴B 345∠∠==4B 45∠∠∴==,ECF 3490∠∠∠∴=+=,222CE CF EF ∴+=,222BD FC EF ∴+=,AF 平分DAE ∠,DAF EAF ∠∠∴=,在DAF 和EAF 中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,DAF ∴≌()EAF SAS .DF EF ∴=.222BD FC DF ∴+=.22222DF BD FC 68100∴=+=+=,∴DF 10=BC BD DF FC 610824∴=++=++=,AB AC =,AG BC ⊥, 1BG AG BC 122∴===, DG BG BD 1266∴=-=-=,∴22AD AG DG 65=+=故答案为65【点睛】考查等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.19.355【详解】 四边形DEFA 是正方形,面积是4; △ABF,△ACD 的面积相等,且都是 ×1×2=1. △BCE 的面积是:12×1×1=12. 则△ABC 的面积是:4﹣1﹣1﹣12=32. 在直角△ADC 中根据勾股定理得到:AC=222+1=5.设AC 边上的高线长是x .则12AC•x=5x=32, 解得:x=355.355. 20.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形. 点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式.三、解答题21.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.【分析】(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=12BN 列方程求解可得. 【详解】解 (1)设经过x 秒,△BMN 为等边三角形,则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10,答:经过10秒,△BMN 为等边三角形;(2)经过x 秒,△BMN 是直角三角形,①当∠BNM =90°时,∵∠B =60°,∴∠BMN =30°,∴BN =12BM ,即2x =12(30-x), 解得x =6;②当∠BMN =90°时,∵∠B =60°,∴∠BNM =30°,∴BM =12BN ,即30-x =12×2x , 解得x =15,答:经过6秒或15秒,△BMN 是直角三角形.【点睛】本题考查勾股定理的逆定理,等边三角形的判定.22.BF 的长为32【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中, BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3∴222232BF BD FD BD =+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.23.(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析【分析】(1)由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC=45°,可得AE⊥BD;(2)由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长;(3)分两种情况讨论,由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC,可得AE⊥BD,由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长.【详解】解:(1)AE=BD,AE⊥BD,理由如下:∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS)∴AE=BD,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE⊥BD;(2)∵PE=EQ,AE⊥BD,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴,∴PQ=2AQ=6;(3)如图3,若点D在AB的延长线上,∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS)∴AE=BD,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ,AE⊥BD,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE ⊥BD 是本题的关键.24.(1)a =8,b =15,c =17;(2)能,60【分析】(1)根据算术平方根,绝对值,平方的非负性即可求出a 、b 、c 的值;(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长【详解】解:(1)∵a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,∴2881||7(15)a a c b -+-+-=﹣,∴a ﹣8=0,b ﹣15=0,c ﹣17=0, ∴a =8,b =15,c =17;(2)能.∵由(1)知a =8,b =15,c =17,∴82+152=172.∴a 2+c 2=b 2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40; 三角形的面积=12×8×15=60. 【点睛】此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状.25.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详见解析;②512m n = 【分析】(1)根据题意,利用尺规作图画出图形即可;(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案;②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.【详解】(1)解:作图,如图所示:(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根.理由如下:依题意得, BD BC m ==,在Rt ABC 中,90ACB ∠=︒222BC AC AB ∴=+22AB m n =+22AD AB BD m n m ∴=-=+222AD m AD n ∴+-)()2222222m n m m m n m n =+++- 222222222222m n m m n m m m n m n =+-+++-0=;∴线段AD 的长度是方程22 20x mx n +-=的一个根②依题意得:,,AD AE BD BC AB AD BD ====2AD EC = 2233AD AE AC n ∴=== 在RT ABC 中,90ACB ∠=222BC AC AB ∴+=22223m n n m ⎛⎫+=+ ⎪⎝⎭ 22224493m n n mn m +=++ 25493n mn = 512m n ∴= 【点睛】本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.26.(1)见解析;(2)∠ADC=45α︒+;(3)2BD DE =【分析】(1)根据题意画出图形即可;(2)根据对称的性质,等腰三角形的性质及角与角之间的和差关系进行计算即可; (3)画出图形,结合(2)的结论证明△BED 为等腰直角三角形,从而得出结论.【详解】解:(1)如图所示;(2)∵点B 与点D 关于直线AP 对称,∠BAP=α,∴∠PAD=α,AB=AD ,∵90BAC ∠=︒,∴902DAC α∠=︒-,又∵AB=AC ,∴AD=AC ,∴∠ADC=1[180(902)]2α⨯︒-︒-=45α︒+; (3)如图,连接BE ,由(2)知:∠ADC=45α︒+,∵∠ADC=∠AED+∠EAD ,且∠EAD=α,∴∠AED=45°,∵点B 与点D 关于直线AP 对称,即AP 垂直平分BD ,∴∠AED=∠AEB=45°,BE=DE ,∴∠BED=90°,∴△BED 是等腰直角三角形,∴22222BD BE DE DE =+=, ∴2BD DE =. 【点睛】本题考查了轴对称的性质,等腰三角形的性质,勾股定理等知识,明确角与角之间的关系,学会添加常用辅助线构造直角三角形是解题的关键.27.(1)2,232)证明见解析(3221(423221【分析】(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;(3)由(1)(2)可知,=23AC AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.【详解】(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =, ∴122BC AB ==,∴22=23AC AB BC =-; (2)∵ED 为AB 垂直平分线,∴ADB=DA ,在Rt △BDE 中,∵122BE AE AB ===,23DE =, ∴22=4BD BE DE =+,∴BD=2BE ,∴∠BDE 为60°,∴ABD ∆为等边三角形; (3))由(1)(2)可知,=23AC ,AD=4,∴22=27CD AC AD =+,∵BCD ACD ACBD S SS =+四边形, ∴111()222BC AD AC AC AD BF CD +⨯=⨯+⨯, ∴2217BF =; (4)分点P 在线段AC 上和AC 的延长线上两种情况,如图,过点E 作AC 的垂线交AC 于点Q ,∵AE=2,∠BAC=30°,∴EQ=1,∵=23AC ,∴=3CQ QA =,①若点P 在线段AC 上,则23=333PQ CQ CP =-=, ∴2223PE PQ EQ =+; ②若点P 在线段AC 的延长线上,则253=3333 PQ CQ CP=++=,∴22221 =PE PQ EQ=+;综上,PE的长为23或221.【点睛】本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF的长,二是对点P的位置要分情况进行讨论.28.(1)(5,0);(2)见解析;(3)①P(4,2),②满足△ACP与△BDC全等的点是P1、P2,P3.理由见解析【分析】(1)由题意可以假设A(a,a)(a>0),根据AB2+OB2=OA2,构建方程即可解决问题;(2)由角平分线的性质定理证明CH=CF,CG=CF即可解决问题;(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.只要证明△ACP≌△CDB(SAS),△ABP是等腰直角三角形即可解决问题;②根据SAS即可判断满足△ACP与△BDC全等的点是P1、P2,P3;【详解】解:(1)∵点A在射线y=x(x≥0)上,故可以假设A(a,a)(a>0),∵AB⊥x轴,∴AB=OB=a,即△ABO是等腰直角三角形,∴AB2+OB2=OA2,∴a2+a2=(52)2,解得a=5,∴点B坐标为(5,0).(2)如图2中,作CF⊥x轴于F.∵OC平分∠AOB,CH⊥OE,∴CH=CF,∵△AOB是等腰直角三角形,∴∠AOB=45°,∵BC∥OE,∴∠CBG=∠AOB=45°,得到BC平分∠ABF,∵CG⊥BA,CF⊥BF,∴CG=CF,∴CG=CH.(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.由(2)可知AC平分∠DAE,∴∠DAC=12∠DAE=12(180°﹣45°)=67.5°,由OC平分∠AOB得到∠DOB=12∠AOB=22.5°,∴∠ADC=∠ODB=90°﹣22.5°=67.5°,∴∠ADC=∠DAC=67.5°,∴AC=DC,∠BDC=∠OBD+∠DOB=90°+22.5°=112.5°,∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣67.5°﹣67.5°=45°,∠OCB=45°﹣22.5°=22.5°,∠ACP=180°﹣∠ACD﹣∠OCB=180°﹣45°﹣22.5°=112.5°,在△ACP和△CDB中,AC ADACP DB CP DB=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△CDB(SAS),∴∠CAP=∠DCB=22.5°,∴∠BAP=∠CAP+∠DAC=22.5°+67.5°=90°,∴△ABP是等腰直角三角形,∴AP=AB=OB=2,∴P(4,2).②满足△ACP与△BDC全等的点是P1、P2,P3.理由:如图4中,由题意:AP 1=BD ,AC =CD ,∠CAP 1=∠CDB ,根据SAS 可得△CAP 1≌△CDB ; AP 2=BD ,AC =CD ,∠CAP 2=∠CDB ,根据SAS 可得△CAP 2≌△CDB ;AC =CD ,∠ACP 3=∠BDC ,BD =CP 3根据SAS 可得△CAP 3≌△DCB ;故答案为P 1、P 2,P 3.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质、勾股定理、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.29.(1)见解析;(2)26;(323+3 【分析】(1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出3,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE(2)∵∠DCE=90°,CD=CE ,∴△DCE 为等腰直角三角形,∵CM ⊥DE ,∴CM 平分DE ,即M 为DE 的中点∴CM=12DE , ∴DE=2CM=14,∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE=10,∠CAD=∠CBE∴AE=AD+DE=24如图,设AE ,BC 交于点H ,在△ACH 和△BEH 中,∠CAH+∠ACH=∠EBH+∠BEH ,而∠CAH=∠EBH ,∴∠BEH=∠ACH=90°,∴△ABE 为直角三角形 由勾股定理得2222AB=AE BE =2410=26++(3)由(1)(2)可得△ACD ≌△BCE ,∴∠DAC=∠EBC ,∵△ACB ,△DCE 都是等腰三角形,∠ACB=∠DCE=120°∴∠CAB=∠CBA=∠CDE=∠CED=30°,∵CM ⊥DE ,∴∠CMD=90°,DM=EM ,∴CD=CE=2CM ,3CM∴33∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°, ∴∠NBE=30°,∴BE=2EN,BN=3EN ∵BN=a∴BE=2EN=23a=AD∴AE=AD+DE=2323a b【点睛】本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键. 30.【体验】(1),5;(2)②;③;【探索】为锐角三角形;道理见解析;【应用】.【解析】【分析】本题从各个角度证明了勾股定理,运用图形与证明结合,依次证明即可,具体见详解.【详解】体验:(1)如上图,(2)根据大角对大边,若为直角三角形,则满足,那么锐角、钝角如下;②;③.【探索】在中,,在中,,在中,,∴,∴为锐角同理,和都为锐角.∴为锐角三角形.【应用】根据【探索】中的方法,进行探究可以发现,可能是锐角三角形或直角三角形或钝角三角形,故答案选C【点睛】本题考查了勾股定理的证明及应用,以及三角形的边与边的关系,能利用数形结合是解答此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学
勾股定理部分
1. 下列各组中,不能构成直角三角形的是 ( ).
(A )9,12,15 (B )15,32,39 (C )16,30,32 (D )9,40,41
2. 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ).
(A )6 (B )8 (C )10 (D )12
3. 已知:如图2,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为 ( ).
(A )9 (B )3 (C )
49 (D )2
9 4. 如图3,在△ABC 中,AD ⊥BC 与D ,AB=17,BD=15,DC=6,则AC 的长为( ).
(A )11 (B )10 (C )9 (D )8 5. 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(2
2
=-+,则此三角形是( ).
(A )锐角三角形 (B )钝角三角形 (C )等腰直角三角形 (D )直角三角形 11. 写出两组直角三角形的三边长 .(要求都是勾股数) 12. 如图6(1)、(2)中,(1)正方形A 的面积为 . (2)斜边x= .
13. 如图7,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面
积分别记为1S ,2S ,则1S +2S 的值等于 .
14. 四根小木棒的长分别为5cm ,8cm ,12cm ,13cm ,任选三根组成三角形,其中有 个直角三角形.
15. 如图8,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现直角边沿
直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为 . 16.(8分)如图9,AB=4,BC=3,CD=13,AD=12,∠B=90°,求四边形ABCD
的面积.
19.(8分)如图12,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了
20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?
20.(8分)如图13(1)所示为一个无盖的正方体纸盒,现将其展开成平面图,如图13(2)所示.
已知展开图中每个正方形的边长为1.
(1)求该展开图中可画出最长线段的长度,并求出这样的线段可画几条.
(2)试比较立体图中∠ABC与平面展开图中/C
/
/
的大小关系.
B
A
21.(8分)如图14,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.
(1)这个梯子底端离墙有多少米?
(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?
,8.现在要将绿地扩充成等腰
22.(8分)有一块直角三角形的绿地,量得两直角边长分别为6m m
三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.
勾股定理答案
1.C
2.B
3.C
4.B
5.D 11.略 12.(1)36,(2)13 13. 2π 14. 1 15. 4
15
16. 在Rt △ABC 中,AC=54322=+. 又因为222
13125
=+,即222CD AC AD =+. 所以∠DAC=90°.
所以1252
1
4321⨯⨯+⨯⨯=
+=∆∆ABC Rt ACD Rt ABCD S S S 四边形=6+30=36. 19. 如图12,在Rt △ABC 中,根据勾股
定理可知,
BC=30004000500022=-(米). 3000÷20=150米/秒=540千米/小时. 所以飞机每小时飞行540千米. 20. (1)10;(2)4条
21. (1)7米;(2)不是.设滑动后梯子的底端到墙的距离
为x 米,得方程,
2
2
2
)424(25--=x ,解得x=15,所以梯子向后滑动了8米.
22.在Rt ABC △中,9086ACB AC BC ∠===°,,由勾股定理有:10AB =,扩充部分为Rt ACD △,扩充成等腰ABD △,应分以下三种情况:①如图1,当10AB AD ==时,可求6CD CB ==,得ABD △的周长为32m .②如图2,当10AB BD ==时,可求4CD =,由勾股定理得:45AD =,得ABD △的
周长为()
2045m +.③如图3,当AB 为底时,设AD BD x ==,则6CD x =-,由勾股定理得:
25
3
x =,得
ABD
△的
周长为
80m 3
.
A
D
C B
A
D
B
C A
D
B
C 图1
图2
图3。