2018届高三数学理二轮复习课件:系列4部分 精品
合集下载
2018年高考数学复习研讨会课:2018年考纲和数学二轮复习 (共114张PPT)
二轮复习学生的日常工作
作————做题
听————听讲 想 ————归纳
二轮复习学生的日常工作 作题----作 写 刷
作题 想明白
写题 说清楚,写规范 刷题 磨技巧 提能力
二轮复习学生的日常工作 听讲
解决疑难
把握重点 掌握方法 注重细节
二轮复习学生的日常工作 想——思考
归纳 总结试题 整理与反思.
2018年考纲和 数学二轮复习
Ⅰ
话题一 2018年考纲
关键词 稳定没变化
2018年考纲 知识与能力
知识要求:了解,理解,掌握 能力意识 :空间想象能力, 抽象概括能力, 推理论证能力, 运算求解能力, 数据处理能力, 应用意识,创新意识
2018年考纲 个性品质 考查要求
个性品质:具有一定的数学视野,认识数学 的科学价值和人文价值,崇尚数学的理性 精神,形成审慎的思维习惯,体会数学的 美学意义; 考查方面:数学基础知识,数学思想方法, 数学能力,应用意识和创新意识
• 其一 站在命题者的角度,思考试题的命制。 (稳定与创新) • 其二 站在作题者的角度,思考试题拿分的 策略。(方法与手段)
站在命题者的角度思考试题的命制
命题者命题受下面约束 考生的知识,方法———课程标准 ,教材 考试的目的 内容 ——— 考试大纲
命题者命题思路有历年高考题可以管窥
考纲研究
《考试大纲》既是命题 的准绳,更是复习的 依据。
2018年考纲 考试范围
考试范围:文科考生必考内容为《课程标准》 的必修内容和选修系列1内容, 理科考生必考内容为《课程标准》 的必修内容和选修系列2内容,选考内容均 为选修系列4的“坐标系与参数方程”、 “不等式选讲”等2个专题。
话题二 二轮复习
名师导学2018届高三数学理二轮复习课件:专题8选修系列4 精品
其中 0≤α<π.因此 A 的极坐标为(2sin α,α),B 的
极坐标为(2 3cos α,α).
所以|AB|=|2sin α-2 3cos α|=4|sinα-π3 |.
当 α=5π6 时,|AB|取得最大值,最大值为 4.
【命题立意】本题考查圆的极坐标方程与圆的参 数方程,考查化归转化的意识及方程思想.
极坐标方程,直线与圆的位置关系,椭圆的离心率.
例4在直角坐标系 xOy 中,曲线 C1 的参数方程为
x=2cos α, y=2+2sin α(α
为参数),M
是
C1
上的动点,P
点满
足O→P=2O→M,点 P 的轨迹为曲线 C2.
(1)求 C2 的方程;
(2)在以 O 为极点,x 轴的正半轴为极轴的极坐标
即 A(1, 3),B(- 3,1),C(-1,- 3),D( 3,-1). (2)设 P(2cos φ,3sin φ),令 S=|PA|2+|PB|2+|PC|2
+|PD|2,则 S=16cos2φ+36sin2φ+16=32+20sin2φ. 因为 0≤sin2φ≤1,所以 S 的取值范围是[32,52].
2.高考真题
考题 1(2015 全国Ⅰ)如图,AB 是⊙O 的直 径,AC 是⊙O 的切线,BC 交⊙O 于点 E.
(1)若 D 为 AC 的中点,证明:DE 是⊙O 的切线;
(2)若 OA= 3CE,求∠ACB 的大小.
【解析】(1)如图,连接 AE,由 已知得 AE⊥BC,AC⊥AB.
在 Rt△AEC 中,由已知得 DE= DC,故∠DEC=∠DCE.
程为ρ=2acos θ.
(2)圆心为a,π2 (a>0),半径为 a 的圆的极坐标
2018届高三数学理二轮复习课件:3.2.2 精品
2
所以AB∈( 6 2,6 2).
答案:( 6 2,6 2)
【规律方法】 1.利用正、余弦定理解三角形的技巧 没有图的需作出正确的示意图.利用正、余弦定理先 解够条件的三角形,然后逐步求解其他三角形.有时 需设出未知量,由几个三角形列出方程或构造方程组, 求解即可.
2.求解三角函数图象与性质问题的技巧 首先利用三角恒等变换化简所给三角函数式,再利用 函数图象变换,求解单调区间(单调性)、周期性、奇 偶性、对称性、最值的相应方法进行求解.
答案:1-ln2
【规律方法】求曲线过点P(x0,y0)的切线方程的技巧 若已知曲线过点P(x0,y0),求曲线过点P(x0,y0)的切 线,则需分点P(x0,y0)是切点和不是切点两种情况求 解. (1)点P(x0,y0)是切点的切线方程为y-y0=f′(x0)(xx0).
(2)当点P(x0,y0)不是切点时可分以下几步完成: 第一步:设出切点坐标P′(x1,f(x1)); 第二步:写出过P′(x1,f(x1))的切线方程y-f(x1) =f′(x1)·(x-x1); 第三步:将点P的坐标(x0,y0)代入切线方程,求出x1; 第四步:将x1的值代入方程y-f(x1)=f′(x1)(x-x1),可 得过点P(x0,y0)的切线方程.
33
3
所以|MN|=|f(t)-g(t)|=|sin (2t -s) in
3
= 3|cos2t|,
则cos2t=±1时,|MN|的最大值为3 .
答案: 3
|(2t )
3
2.已知a,b,c分别是△ABC三个内角A,B,C所对的边,且 满足(2c+b)cosA+acosB=0,若a=4,则△ABC的面积的最 大值是________.
所以AB∈( 6 2,6 2).
答案:( 6 2,6 2)
【规律方法】 1.利用正、余弦定理解三角形的技巧 没有图的需作出正确的示意图.利用正、余弦定理先 解够条件的三角形,然后逐步求解其他三角形.有时 需设出未知量,由几个三角形列出方程或构造方程组, 求解即可.
2.求解三角函数图象与性质问题的技巧 首先利用三角恒等变换化简所给三角函数式,再利用 函数图象变换,求解单调区间(单调性)、周期性、奇 偶性、对称性、最值的相应方法进行求解.
答案:1-ln2
【规律方法】求曲线过点P(x0,y0)的切线方程的技巧 若已知曲线过点P(x0,y0),求曲线过点P(x0,y0)的切 线,则需分点P(x0,y0)是切点和不是切点两种情况求 解. (1)点P(x0,y0)是切点的切线方程为y-y0=f′(x0)(xx0).
(2)当点P(x0,y0)不是切点时可分以下几步完成: 第一步:设出切点坐标P′(x1,f(x1)); 第二步:写出过P′(x1,f(x1))的切线方程y-f(x1) =f′(x1)·(x-x1); 第三步:将点P的坐标(x0,y0)代入切线方程,求出x1; 第四步:将x1的值代入方程y-f(x1)=f′(x1)(x-x1),可 得过点P(x0,y0)的切线方程.
33
3
所以|MN|=|f(t)-g(t)|=|sin (2t -s) in
3
= 3|cos2t|,
则cos2t=±1时,|MN|的最大值为3 .
答案: 3
|(2t )
3
2.已知a,b,c分别是△ABC三个内角A,B,C所对的边,且 满足(2c+b)cosA+acosB=0,若a=4,则△ABC的面积的最 大值是________.
【高考数学】2018届高三数学(理)二轮复习课件:专题四 数列4.2(高频考点汇总PPT课件)
◎ 变式训练 1.已知等差数列{an}的前 n 项和为 Sn,且 a1=1,S3=a5.令 bn=(-1)n-1an, 则数列{bn}的前 2n 项和 T2n 为( A.-n C.n 解析: ) B.-2n D.2n 设等差数列{an}的公差为 d,由 S3=a5,得 3a2=a5,∴3(1+d)=1
4×3 S4=4a1+ 2 d=24 ∴ S =7a +7×6d=63 1 2 7
⇒an=2n+1.
(2)∵bn=2an+an=22n+1+(2n+1)=2×4n+(2n+1), ∴Tn=2×(4+42+…+4n)+(3+5+…+2n+1) 41-4n n3+2n+1 =2× + 2 1-4 8 n =3(4 -1)+n2+2n.
答案:
2n n+1
3. (2017· 合肥市第一次教学质量检测)已知等差数列{an}的前 n 项和为 Sn, 且 满足 S4=24,S7=63. (1)求数列{an}的通项公式; (2)若 bn=2an+an,求数列{bn}的前 n 项和 Tn. 解析: (1)∵{an}为等差数列,
a1=3 ⇒ d=2
题型二
与数列求和有关的综合问题
已知数列{an}和{bn}满足 a1a2a3…an=( 2)bn(n∈N*).若{an}为等比数 列,且 a1=2,b3=6+b2. (1)求 an 与 bn; 1 1 (2)设 cn=a -b (n∈N*).记数列{cn}的前 n 项和为 Sn. n n ①求 Sn; ②求正整数 k,使得对任意 n∈N*均有 Sk≥Sn.
高考·题型突破
题型一
数列求和
(2017· 山东卷)已知{an}是各项均为正数的等比数列, 且 a1+a2=6, a1a2 =a3. (1)求数列{an}的通项公式; (2){bn}为各项非零的等差数列,其前 n 项和为 Sn.已知 S2n+1=bnbn+1,求数列
2018届高三数学理二轮复习课件:3.2.1 精品
2 4x 1 1
4x 1 1, 2
设 4x -11=t(0<t<
-51),则e1+e2=
2 t. t2
令f(t)= 2 t ,
t2
则f′(t)=
t 2t 2
2t 2
.
又0<t<5 -1,所以f′(t)在(0, -15)上有f′(t)<0,
故f(t)在(0, -51)上为减函数,所以f(t)>f( -15)= , 5
B.2 2 1
C. 5 2 2
D. 5 2 2
【解析】选D.设|PF2|=m,|QF2|=n,
则由题意得|PF1|=|PQ|=m+n,|QF1|2=PQ 2 m n,
则
QF1 PF1
QF2 PF2
n
2 m
2a,
n
n
2a,
解得
m
2
2又 因2 a为,|PF1|2+|PF2|2=|F1F2|2,
数形结合可知 0g
a
5
1,
h 5
,
则 2 loga 5,解得0 a
5. 5
2.已知函数f(x)= a(x 1 )-2lnx(a∈R),g(x)=- a ,若
x
x
至少存在一个x0∈[1,e],使f(x0)>g(x0)成立,则实
数a的范围为( )
A.[ 2, ) e
B.(0, )
C[. 0, )
1,
x
0,
令φ(x)=sin
(
loga
x-)1(x<0),
x(a
0,
a
1),
x
0,
2
则φ(x)关于y轴对称的函数为g(x)=-sin ( x-)1(x>0),
2018届高考数学理新课标二轮专题复习课件:3-2数列 精品
3.(2016·太原检测)已知数列{an}满足:a1=12,3(11+-aann+1)=
2(1+an) 1-an+1 ,an·an+1<0(n≥1,n∈N*);数列{bn}满足:bn=an+12-
an2(n≥1,n∈N*). (1)求数列{an},{bn}的通项公式; (2)证明:数列{bn}中的任意三项不可能成等差数列.
当 d=-1 时,a3=0 与已知矛盾,d=2. ∵an=a1+(n-1)d=2+2(n-1)=2n.(3 分) 由 bn+Sn=2,得 Sn=2-bn. 当 n=1 时,b1+S1=2,解得 b1=1; 当 n≥2 时,bn=Sn-Sn-1=(2-bn)-(2-bn-1)=bn-1-bn,即 bn=12bn-1. ∴数列{bn}是首项为 1,公比为12的等比数列,故 bn=2n1-1.(6 分)
(2)由(1)知 Sn=2-2n1-1, ∴cn=an2Sn=2n-2nn-1.(7 分) ∴Tn=2(1+2+3+…+n)-(210+221+232+…+2nn-1)=n(n+1) -(210+221+232+…+2nn-1). 令 Rn=210+221+232+…+2nn-1,
则12Rn=211+222+233+…+2nn, 两式相减得12Rn=1+12+212+…+2n1-1-2nn=11--2121n-2nn=2- n+2n 2, ∴Rn=4-n2+n-21 , ∴Tn=n2+n-4+n2+n-21 .(12 分)
(2)∵an·bn=(-1)n-123n×(-1)n+1n=32nn , ∴Tn=3(21+222+233+…+2nn), ∴12Tn=3(212+223+…+n-2n 1+2nn+1), 以上两式相减得:12Tn=3(211+212+…+21n-2nn+1)=3(1-21n- 2nn+1), ∴Tn=6(1-n2+n+21 ).
2018届高考数学理二轮复习全国通用课件 专题四 立体几何 第2讲 精品
∵棱柱 ADE-BCF 是直三棱柱,∴AB⊥平面 BCF,∴B→A是平面 BCF 的一个法向量,且 OM⊄平面 BCF,∴OM∥平面 BCF. (2)设平面 MDF 与平面 EFCD 的一个法向量分别为 n1=(x1,y1, z1),n2=(x2,y2,z2).∵D→F=(1,-1,1),D→M=12,-1,0, D→C=(1,0,0),C→F=(0,-1,1),由nn11· ·DD→→FM==00,.
(2)线面夹角
设直线 l 与平面 α 的夹角为 θ0≤θ≤π2 ,则 sin θ=||aa|·|μμ||=|cos a,μ |.
(3)面面夹角
设平面 α,β的夹角为 θ(0≤θ<π), 则|cos θ|=||μμ|·|vv||=|cos μ,v |.
热点一 向量法证明平行与垂直 【例1】 如图,在直三棱柱ADE-BCF中,平面
ABFE和平面ABCD都是正方形且互相垂直,M为 AB的中点,O为DF的中点,运用向量方法求证: (1)OM∥平面 BCF; (2)平面 MDF⊥平面 EFCD.
证明 法一 由题意,得 AB,AD,AE 两 两垂直,以 A 为原点建立如图所示的空间 直角坐标系. 设正方形边长为 1,则 A(0,0,0),B(1,0,0), C(1,1,0),D(0,1,0),F(1,0,1),M12,0,0, O12,12,12. (1)O→M=0,-12,-12,B→A=(-1,0,0), ∴O→M·B→A=0,∴O→M⊥B→A.
(4)面面垂直
α⊥β⇔μ⊥v⇔μ·v=0⇔a2a3+b2b3+c2c3=0.
2.直线与直线、直线与平面、平面与平面的夹角计算 设直线 l,m 的方向向量分别为 a=(a1,b1,c1),b=(a2,b2, c2),平面 α,β的法向量分别为 μ=(a3,b3,c3),v=(a4,b4, c4)(以下相同). (1)线线夹角 设 l,m 的夹角为 θ0≤θ≤π2 , 则 cos θ=||aa|·|bb||= a21|+a1ab212+ +bc211b2a+22+c1bc222+| c22.
2018届高三数学理二轮复习课件:3.1.1 精品
【典例2】(2015·全国卷Ⅱ)如图,长方形ABCD的边 AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运 动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则f(x)的图象大致为( )
【解析】选B.由已知得,当点P在BC边上运动时,即
0≤x≤ 时,PA+PB= tan2x+t4anx,
2
且 f( ) 且f( 轨),迹非直线型.
42
【变式训练】(2015·浙江高考)函数f(x)= (x 1 ) cosx
x
(-π≤x≤π且x≠0)的图象可能为 ( )
【解析】选D.f(x)的定义域关于原点对称,因为f(-x)=
( x 1 ) cosx=- (x 1 ) cosx=-f(x),故函数是奇函数,所
3.解题规律:(1)对于干扰项易于淘汰的选择题,可采用 筛选法,能剔除几个就先剔除几个. (2)使用题干中的部分条件淘汰选项. (3)如果选项中存在等效命题,那么根据答案唯一,等效 命题应该同时排除.
(4)如果选项存在两个相反的,或互不相容的判断,那么 其中至少有一个是假的. (5)如果选项之间存在包含关系,必须根据题意才能判 定.
因为圆C:(x+1)2+(y+1)2=r2(r>0)表示以C(-1,-1)为
圆心,半径为r的圆,
所以由图可得,当半径满足r<CM或r>CP时,圆C不经过
区域D上的点,
因为CM=112 112=C2P=2,
112 1 32=2 5,
所以当0<r<2 2或r 时2 ,5 圆C不经过区域D上的点,
4
当点P在CD边上运动时,即 x 3 , x 时,
4
2018高考数学理二轮复习课件:2-3-2 数形结合思想 精品
第二步:转化为几何问题. 第三步:解决几何问题. 第四步:回归代数问题. 第五步:回顾反思.应用几何意义数形结合法解决问题需要熟悉常见的几何结构的代数形式,主要有: (1)比值——可考虑直线的斜率;(2)二元一次式——可考虑直线的截距;(3)根式分式——可考虑点到直线的 距离;(4)根式——可考虑两点间的距离.
(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形 的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地 说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目 的,如应用曲线的方程来精确地阐明曲线的几何性质.
类型三
利用数形结合求最值 LEIXING
0≤x≤ 3
例3
若点 P(x,y)是不等式组y≤3
x≤ 3y
恒成立,则实数 a 的取值范围是_[3_,__+__∞__).
表示的平面区域 Ω 内的一动点,且不等式 2x-y+a≥0
解析 将不等式 2x-y+a≥0 化为 a≥y-2x,只需求出 y-2x 的最大值即可.令 z=y-2x,作出
利用数形结合求方程解应注意两点
(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨 论方程的解一定要注意图象的准确性、全面性,否则会得到错解.
(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去 数形结合.
模拟演练 1 已知函数 f(x)满足 f(x)+1=fx+1 1,当 x∈[0,1]时,f(x)=x,若在区间(-1,1]上方程 f(x)
例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖 掘利用图形的几何特征,将会使得复杂的问题简单化.
(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形 的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地 说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目 的,如应用曲线的方程来精确地阐明曲线的几何性质.
类型三
利用数形结合求最值 LEIXING
0≤x≤ 3
例3
若点 P(x,y)是不等式组y≤3
x≤ 3y
恒成立,则实数 a 的取值范围是_[3_,__+__∞__).
表示的平面区域 Ω 内的一动点,且不等式 2x-y+a≥0
解析 将不等式 2x-y+a≥0 化为 a≥y-2x,只需求出 y-2x 的最大值即可.令 z=y-2x,作出
利用数形结合求方程解应注意两点
(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨 论方程的解一定要注意图象的准确性、全面性,否则会得到错解.
(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去 数形结合.
模拟演练 1 已知函数 f(x)满足 f(x)+1=fx+1 1,当 x∈[0,1]时,f(x)=x,若在区间(-1,1]上方程 f(x)
例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖 掘利用图形的几何特征,将会使得复杂的问题简单化.
2018年高三数学二轮复习专题课件(理科)1-3-2
证明 (1)由 an+1=3an+1 得 an+1+12=3an+12. 又 a1+12=32,所以{an+12}是首项为32,公比为 3 的等比数列. 所以 an+12=32n, 因此{an}的通项公式为 an=3n-2 1.
真题感悟·考点整合 热点聚焦·题型突破 归纳总结·思维升华 专题训练·对接高考
真题感悟·考点整合 热点聚焦·题型突破 归纳总结·思维升华 专题训练·对接高考
[真题感悟] (2014·新课标全国卷Ⅱ)已知数列{an}满足 a1=1,an+1=3an+ 1. (1)证明{an+12}是等比数列,并求{an}的通项公式; (2)证明a11+a12+…+a1n<32.
真题感悟·考点整合 热点聚焦·题型突破 归纳总结·思维升华 专题训练·对接高考
[考点整合] 1.数列{an}的前n项和Sn与an的关系. 2.常用的数列求和方法. 3.数列{an}是单调递增数列,则an+1-an>0,n∈N*;
数列{an}是单调递减数列,则an+1-an<0,n∈N*.
真题感悟·考点整合 热点聚焦·题型突破 归纳总结·思维升华 专题训练·对接高考
4.常见的放缩技巧 (1)1n-n+1 1=nn1+1<n12<n-11n=n-1 1-1n; (2)n12<n2-1 1=12n-1 1-n+1 1.
5.应用题基本类型 (1)储蓄模型:本金为 a 元,每期利率为 r,存期为 n,当按单 利计算时,本利和为 y=a(1+nr),当按复利计算时,本利和 为 y=a(1+r)n; (2)产值模型:基数为 N,单位时间段的平均增长率为 p,则 经过 n 个单位时间段后,产值 y=N(1+p)n.
真题感悟·考点整合 热点聚焦·题型突破 归纳总结·思维升华 专题训练·对接高考
【高考数学】2018届高三数学(理)二轮复习课件:知识板块4(高频考点汇总PPT课件)
3.三种函数的性质 函数 图象 y=sin x y=cos x y=tan x
单 调 性
π 在-2+2kπ,
π (k∈Z)上 + 2 k π 2 3π 2 +2kπ
在 在[-π+2kπ,2kπ](k ∈Z)上单调递增;在 [2kπ,π+2kπ](k∈Z) 上单调递减 对称中心: π +kπ,0(k∈Z); 2 对称轴: x=kπ(k∈Z)
→ → → a (1)O 为△ABC 的外心⇔|OA|=|OB|=|OC|=2sin A. → → → (2)O 为△ABC 的重心⇔OA+OB+OC=0. → → → → → → (3)O 为△ABC 的垂心⇔OA· OB=OB· OC=OC· OA. → → → (4)O 为△ABC 的内心⇔aOA+bOB+cOC=0.
谢谢观看!
(2)余弦定理 b2+c2-a2 a2+c2-b2 ①cos A= 2bc ,cos B= 2ac , a2+b2-c2 cos C= 2ab . ②b2+c2-a2=2bccos A,a2+c2-b2=2accos B, a2+b2-c2=2abcos C.
3.三点共线的判定 → → → → → 三个点 A,B,C 共线⇔AB,AC共线;向量PA,PB,PC中三终点 A,B,C → → → 共线⇔存在实数 α,β 使得PA=αPB+βPC,且 α+β=1. 4.三角形“四心”的向量形式的充要条件 设 O 为△ABC 所在平面上一点,角 A,B,C 所对的边分别为 a,b,c,则
π - +kπ, 2 π (k∈Z) + k π 2
π 单调递增;在2+2kπ,
(k∈Z)上单调递减 对 称 性 对称中心: (kπ,0)(k∈Z); 对称轴: π x=2+kπ(k∈Z)
【数学课件】2018高考理科数学二轮复习数学思想领航ppt课件及练习(8份)
数学思想领航二轮复习
高考试题一是着眼于知识点新颖巧妙的组合;二是着眼于对数学思
想方法、数学能力的考查.如果说数学知识是数学内容,可用文字和符
号来记录与描述,那么数学思想方法则是数学意识,重在领会、运用,
属于思维的范畴,用以对数学问题的认识、处理和解决.高考中常用到
的数学思想主要有函数与方程思想、数形结合思想、分类讨论思想、转
思维升华 解析 答案
3 跟踪演练1 函数y=logax(a>0,且a≠1)的反函数的图象过点(a, a ),则a
1 3 的值为____.
解析 因为函数 y = logax(a>0 ,且 a≠1) 的反函数 y = ax(a>0 ,且 a≠1) 的图
3
象过点(a, a ),所以 a =aa,
3
即a
1 3
1 1 a =a ,所以a= .经检验知a= 符合要求. 3 3
解析
答案
方法二 平面向量问题的函数(方程)法
模型解法
平面向量问题的函数(方程)法是把平面向量问题,通过模、数量积等转
化为关于相应参数的函数(方程)问题,从而利用相关知识结合函数或方
程思想来处理有关参数值问题.破解此类题的关键点:
①向量代数化,利用平面向量中的模、数量积等结合向量的位置关系、
满足条件的点坐标,求其中的参数问题.破解此类题的关键点:
①点代入函数,把所给点坐标代入已知函数的解析式中,得到关于参数
的方程或不等式.
②解含参方程,求解关于参数的方程或不等式.
③检验得结论,得出参数的值或取值范围,最后代入方程或不等式进行
检验.
典例1 A.2
函数y=ax (a>0,且a≠1)的反函数的图象过点( a ,a),则a的值为 B.3
高考试题一是着眼于知识点新颖巧妙的组合;二是着眼于对数学思
想方法、数学能力的考查.如果说数学知识是数学内容,可用文字和符
号来记录与描述,那么数学思想方法则是数学意识,重在领会、运用,
属于思维的范畴,用以对数学问题的认识、处理和解决.高考中常用到
的数学思想主要有函数与方程思想、数形结合思想、分类讨论思想、转
思维升华 解析 答案
3 跟踪演练1 函数y=logax(a>0,且a≠1)的反函数的图象过点(a, a ),则a
1 3 的值为____.
解析 因为函数 y = logax(a>0 ,且 a≠1) 的反函数 y = ax(a>0 ,且 a≠1) 的图
3
象过点(a, a ),所以 a =aa,
3
即a
1 3
1 1 a =a ,所以a= .经检验知a= 符合要求. 3 3
解析
答案
方法二 平面向量问题的函数(方程)法
模型解法
平面向量问题的函数(方程)法是把平面向量问题,通过模、数量积等转
化为关于相应参数的函数(方程)问题,从而利用相关知识结合函数或方
程思想来处理有关参数值问题.破解此类题的关键点:
①向量代数化,利用平面向量中的模、数量积等结合向量的位置关系、
满足条件的点坐标,求其中的参数问题.破解此类题的关键点:
①点代入函数,把所给点坐标代入已知函数的解析式中,得到关于参数
的方程或不等式.
②解含参方程,求解关于参数的方程或不等式.
③检验得结论,得出参数的值或取值范围,最后代入方程或不等式进行
检验.
典例1 A.2
函数y=ax (a>0,且a≠1)的反函数的图象过点( a ,a),则a的值为 B.3
2018届高考数学理新课标二轮专题复习课件:2-3推理、计数原理、二项式定理 精品
1.综合分析数学归纳,正难则反遍地开花. 2.归纳推理的一般步骤. (1)通过观察个别情况发现相同的性质; (2)推出一个明确表述的一般性结论.
3.类比推理的一般步骤. (1)找出两类事物之间的相似性或一致性; (2)用一类事物的性质去推测另一类事物的性质,得出一个明 确的命题(猜想),但结论不一定正确,有待进一步证明.
ccoossα αccoossβ β+ -ssiinnα αssiinnβ β= =2143, ,得csionsααscionsββ==2521414. ,
所以 tanαtanβ=csoinsα αscionsββ=151,考虑到ttaannα β的值是由 scionsααcsoinsβ β确定的,可以设想条件应该是关于 sinαcosβ,cosα sinβ的二元方程,类比原问题条件形式,自然联想到两角和与差 的正弦公式,因此,这组条件可以是“sin(α-β)=23,sin(α+β) =14”.
可
以
推
测
,
1
+
5
+
15
+
…
+
1 24
n(n
+
1)(n
+
2)(n
+
3)
=
________.
【解析】 根据式子中的规律可知,等式右侧为 5×4×13×2×1n(n+1)(n+2)(n+3)(n+4)=1210n(n+1)(n+2)(n+ 3)(n+4).
【答案】 1120n(n+1)(n+2)(n+3)(n+4)
(2)(2015·山东)观察下列各式: C10=40; C30+C31=41; C50+C51+C52=42; C70+C71+C72+C73=43; …… 照此规律,当 n∈N*时, C2n-10+C2n-11+C2n-12+…+C2n-1n-1=________.