水力学典型例题分析(上)
《水力学》练习题1—6
水力学习题1一、单项选择题1.某流体的运动粘度v=3×10-6m2/s,密度ρ=800kg/m3,其动力粘度μ为( )A.3.75×10-9Pa·sB.2.4×10-3Pa·sC.2.4×105Pa·sD.2.4×109Pa·s2.图中相互之间可以列总流伯努利方程的断面是A.1-1断面和2-2断面B.2-2断面和3-3断面C.1-1断面和3-3断面D.3-3断面和4-4断面3.如图所示,孔板上各孔口的大小形状相同,则各孔口的出流量是( )A.Q A>Q BB.Q A=Q BC.Q A<Q BD.不能确定4.并联管道A、B,两管材料、直径相同,长度 B=2 A,两管的水头损失关系为( )A.hfB =hfAB.hfB =2hfAC.hfB =1.41hfAD.hfB =4hfA5.如图所示,水泵的扬程是( )A.z1B.z2C.z1+ z2D.z1+ z2+h w6.在已知通过流量Q、渠道底坡i、边坡系数m及粗糙系数n的条件下,计算梯形断面渠道尺寸的补充条件及设问不能是( )A.给定水深h,求底宽bB.给定宽深比β,求水深h与底宽bC.给定最大允许流速[v]max,求水底h与底宽bD.给定水力坡度J,求水深h与底宽b7.断面单位能量e随水深h的变化规律是( )A.e存在极大值B.e存在极小值C.e随h增加而单调增加D.e随h增加而单调减少8.下列各型水面曲线中,表现为上凸型的水面曲线是( )A.M3型B.C3型C.S3型D.H3型9.根据堰顶厚度与堰上水头的比值,堰可分为( )A.宽顶堰、实用堰和薄壁堰B.自由溢流堰、淹没溢流堰和侧收缩堰C.三角堰、梯形堰和矩形堰D.溢流堰、曲线型实用堰和折线型实用堰10.速度v、长度l、运动粘度v的无量纲组合是( )A.vlv2B.v lv2C.v lv22D.vlv二、填空题(不写解答过程,将正确的答案写在每小题的空格内。
水力学考试题及答案解析
水力学考试题及答案解析一、单项选择题(每题2分,共20分)1. 水力学中,流体的连续性方程描述的是()。
A. 质量守恒B. 动量守恒C. 能量守恒D. 动量和能量守恒答案:A解析:连续性方程是流体力学中描述质量守恒的基本方程,它表明在没有质量源或汇的情况下,流体的流量在流经任何截面时都是恒定的。
2. 伯努利方程适用于()。
A. 可压缩流体B. 不可压缩流体C. 静止流体D. 任何流体答案:B解析:伯努利方程适用于不可压缩流体,即流体的密度在流动过程中保持不变。
3. 在流体流动中,雷诺数(Re)是描述流体流动状态的重要参数,它与()无关。
A. 流体的密度B. 流体的粘度C. 流动的速度D. 管道的直径答案:B解析:雷诺数是流体流动状态的无量纲数,它与流体的密度、流动的速度和管道的直径有关,但与流体的粘度无关。
4. 流体在管道中流动时,若管道直径增大,则流速()。
A. 增大B. 减小C. 不变D. 无法确定答案:D解析:根据连续性方程,流体的流速与管道的横截面积成反比。
若管道直径增大,而流量保持不变,则流速会减小;若流量增加,则流速可能增大或减小,具体取决于流量的增加程度。
5. 流体的粘性是由于()。
A. 流体分子间的吸引力B. 流体分子间的排斥力C. 流体分子的热运动D. 流体分子的无规则运动答案:A解析:流体的粘性是由于流体分子间的吸引力,这种吸引力使得流体在流动时产生内部摩擦力。
6. 流体的表面张力是由于()。
A. 流体分子间的吸引力B. 流体分子间的排斥力C. 流体分子的热运动D. 流体分子的无规则运动答案:A解析:流体的表面张力是由于流体分子间的吸引力,这种吸引力使得流体的表面具有收缩的趋势。
7. 在流体流动中,若流速增加,则流体的动能()。
A. 增大B. 减小C. 不变D. 无法确定答案:A解析:流体的动能与流速的平方成正比,因此流速增加时,流体的动能也会增加。
8. 流体的压强能是由于()。
水力学例题
例题1:如下图所示,一圆锥体绕自身轴线等速旋转,锥体与固定壁面间的距离为K ,空隙全部被动力粘滞系数为μ的牛顿流体所充满。
当旋转角速度为ω,锥体底部半径为R ,高为H ,求作用于圆锥的阻力矩。
解:M=⎰⎰⎰⎰====Kdhr KdA rKdAr Ku dAr322cos 2πμωαπμωωμμτ=HK Rαπμωcos23而22cos RHH+=α;故:M=2232RHKR+⨯πμω例题2:涵洞进口处,装有与水平线成600倾角而边长为1m 的正方形平板闸门(AB=1m ),求闸门所受静水总压力的大小及作用点。
解:坐标只能建在水面上。
A kp p 807.91807.9=⨯=aB kp p 300.18)231(807.9=+⨯=KNp p P BA 050.14112=⨯⨯+=h h Ay I y y C C C C C D 6.160sin 433.112160sin 433.1160sin 121160sin 03=+=⨯⨯+=+=0=D x矩形和圆形的C y 和C I 值矩形:2hy C =123bhI C =圆形:r y C =44rI C π=例题3:一直立矩形闸门,用三根工字梁支撑,门高及上游水深H 均为3m,把此闸门所受静水压强分布图分为三等份,每根工字梁分别设在这三等份的重心,求三个工字梁的位置?解:设静水压力分布图的面积为A ,则每一等份为A/3mh H A h 3,21313211221=∴⨯==γγ mh H A h 45.2,213232212222=∴⨯==γγm h h h h m h h c 091.22718.0121212=-+==-m Ah J h y c xc c 11.2718.0091.212)718.0(091.2322=⨯+=+=mh H h h m h H c 725.2255.02232=-+==-mAh J h y c xc c 73.2725.212)55.0(725.22333=+=+=mh h h h h h h y m h y 11.22)(31,15.1322121121211=++-+===。
水力学习题详解
1—5:∵Gsina =T ,∴45.04.0135⨯⨯==⨯dtdu A G μτ∴s Pa ⋅=105.0μ 1—6:∵M=T (r +=hr r r h r u Ar 22)(2)()(2δπδδωμδπδμτ+⨯+=+⨯=∴s Pa r h M ⋅=+=07.0])(2[3δπωδμ 2—5:H h p p a a γγ++=11,22h p p a γ+=H p p 煤煤煤γγγ+⨯-=⨯-1000115100010021,得:3/25.5m N =煤γ 2—6:)()()()(404323210z z z z z z z z p p p ---+---=γγγγ=252448Pa2—10:∵0===z y x f f f 由)(dz f dy f dx f dp z y x ++=ρ得:dp =0 ∴p =C=p 02—11:∵0=+dz f dx f z x (1),将2/98.0s m f x -=,2/8.9s m g f z -=-=,m dx 5.1-=代入(1)式得:m dz 15.0=15.1)]([00⨯=-+=+=+=γγγγA dz dz h h p p =2—12:m h h H R R h H 1.0)(21)(1122=∴-=-ππ mh H gR z 4.02122=-==ω得:)/(67.18)15.0(8.02s rad g==ω∵s rad n /7.1830==πω ∴min /17830r n ==πω2—13:2mDA B 1.5m2m30kNA h P c 38.765.1260sin 38.90=⨯⨯⨯==γ=⨯⨯⨯+=+=25.131225.133A y I y y c c c D 3.11m0)1(60cos 20=+--⨯c D y y P T ∴T =2—16:设上面的水对水闸的压力为P 1,则作用点为y D1,则:HHb H H b H y D 934sin sin 2)sin (12sin 231=⋅+=αααα 设下面的水对水闸的压力为P 2,则作用点为y D2,则:h hb h h b h y D 934sin sin 2)sin (12sin 232=⋅+=ααααP 1的作用点到o 点的距离为:x H x y H D -=--932sin 1α P 2的作用点到o 点的距离为:H x h h x 932)934sin (-=--α以o 点为转轴:)932(sin 2)932(sin 2h x hb h g x H Hb H g-⋅=-⋅αραρ 解得:x =0.795m2—18:不是。
水力学习题评讲课件
22
3.26 一台离心泵, 抽水量为0.22m3/s, 水泵进口允许真空度已知 为4.5m水柱, 水泵进口直径d=300mm(题3.26图), 从水池经 管道进口的吸水滤头至水泵进口的水头损失为1m, 求能避免汽 蚀的水泵进口轴线至水源水面的最大高度(称为水泵的最大安装 高度)hs。
解: 选择水池水面作为基准面
解: 以管轴线0-0为基准线,
写A→B的伯方程:
hp
pA
u
2 A
0
pa
0
g 2g
g
0 uA A
0 d
u
2 A
pa pA
2g g
(1)
题3.11图
5
又由水银压差计公式:
(zB
pB
g
)
(
z
A
pA )
g
pg g
g
h
在本题中: zA=zB=0,故知: pB pA p g g h
(2)
g
g
将(2)代入(1)中得:
u
2 A
p g g h
hp
2g g
0 uA A
0
uA
2gh pg g g
2g(12.6hp )
题3.11图
d
uA 2g(12.6hp ) 29.812.60.06 3.85m / s
Q
vA
0.84u A
1
4
0.22
0.84 3.85
1 3.14 0.22 4
0.102m3
/s
6
3.12 一个水深1.5m, 水平截面积为3m×3m的水箱(题3.12 图), 箱底接一直径d=200mm, 长为2m的竖直管, 在水箱进 水量等于出水量情况下作恒定出流, 试求点3的压强。略去水 流阻力, 即hw=0。
(完整版)水力学试题带答案
水力学模拟试题及答案1、选择题:(每小题2分)(1)在水力学中,单位质量力是指()a、单位面积液体受到的质量力;b、单位体积液体受到的质量力;c、单位质量液体受到的质量力;d、单位重量液体受到的质量力。
答案:c(2)在平衡液体中,质量力与等压面()a、重合;b、平行c、相交;d、正交。
答案:d(3)液体中某点的绝对压强为100kN/m2,则该点的相对压强为a、1 kN/m2b、2 kN/m2c、5 kN/m2d、10 kN/m2答案:b(4)水力学中的一维流动是指()a、恒定流动;b、均匀流动;c、层流运动;d、运动要素只与一个坐标有关的流动。
答案:d(5)有压管道的管径d与管流水力半径的比值d /R=()a、8;b、4;c、2;d、1。
答案:b(6)已知液体流动的沿程水力摩擦系数 与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于a、层流区;b、紊流光滑区;c、紊流过渡粗糙区;d、紊流粗糙区答案:c(7)突然完全关闭管道末端的阀门,产生直接水击。
已知水击波速c=1000m/s,水击压强水头H = 250m,则管道中原来的流速v0为a、1.54m b 、2.0m c 、2.45m d、3.22m答案:c(8)在明渠中不可以发生的流动是()a、恒定均匀流;b、恒定非均匀流;c、非恒定均匀流;d、非恒定非均匀流。
答案:c(9)在缓坡明渠中不可以发生的流动是()。
a、均匀缓流;b、均匀急流;c、非均匀缓流;d、非均匀急流。
答案:b(10)底宽b=1.5m的矩形明渠,通过的流量Q =1.5m3/s,已知渠中某处水深h = 0.4m,则该处水流的流态为a、缓流;b、急流;c、临界流;答案:b(11)闸孔出流的流量Q与闸前水头的H()成正比。
a、1次方b、2次方c、3/2次方d、1/2次方答案:d(12)渗流研究的对象是()的运动规律。
a、重力水;b、毛细水;c、气态水;d、薄膜水。
答案:a(13)测量水槽中某点水流流速的仪器有a、文丘里计b、毕托管c、测压管d、薄壁堰答案:b(14)按重力相似准则设计的水力学模型,长度比尺λL=100,模型中水深为0.1米,则原型中对应点水深为和流量比尺为a、1米,λQ =1000;b、10米,λQ =100;c、1米,λQ =100000;d、10米,λQ=100000。
水力学习题附答案
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
水力学例题 (1)
第1章 绪论例1:已知油品的相对密度为0.85,求其重度。
解:3/980085.085.0m N ⨯=⇒=γδ例2:当压强增加5×104Pa 时,某种液体的密度增长0.02%,求该液体的弹性系数。
解:0=+=⇒=dV Vd dM V M ρρρρρd dV V -= Padp d dp V dV E p 84105.2105%02.01111⨯=⨯⨯==-==ρρβ例3:已知:A =1200cm 2,V =0.5m/sμ1=0.142Pa.s ,h 1=1.0mm μ2=0.235Pa.s ,h 2=1.4mm 求:平板上所受的内摩擦力F绘制:平板间流体的流速分布图及应力分布图 解:(前提条件:牛顿流体、层流运动)dy du μτ= ⎪⎪⎩⎪⎪⎨⎧-=-=⇒2221110h u h u V μτμτ 因为 τ1=τ2 所以sm h h Vh u h uh u V /23.02112212211=+=⇒=-μμμμμN h uV A F 6.411=-==μτ第2章 水静力学例1:如图,汽车上有一长方形水箱,高H =1.2m ,长L =4m ,水箱顶盖中心有一供加水用的通大气压孔,试计算当汽车以加速度为3m/s 2向前行驶时,水箱底面上前后两点A 、B 的静压强(装满水)。
解:分析:水箱处于顶盖封闭状态,当加速时,液面不变化,但由于惯性力而引起的液体内部压力分布规律不变,等压面仍为一倾斜平面,符合0=+s gz ax 等压面与x 轴方向之间的夹角g a tg =θPaL tg H h p A A 177552=⎪⎭⎫ ⎝⎛⋅+==θγγ PaL tg H h p B B 57602=⎪⎭⎫ ⎝⎛⋅-==θγγ例2:(1)装满液体容器在顶盖中心处开口的相对平衡分析:容器内液体虽然借离心惯性力向外甩,但由于受容器顶限制,液面并不能形成旋转抛物面,但内部压强分布规律不变:Cz gr p +-⋅=)2(22ωγ利用边界条件:r =0,z =0时,p =0作用于顶盖上的压强:g r p 222ωγ=(表压)(2)装满液体容器在顶盖边缘处开口的相对平衡压强分布规律:Cz gr p +-⋅=)2(22ωγ边缘A 、B 处:r =R ,z =0,p =0g R C 222ωγ-=作用于顶盖上的压强:()2222r R gp --=ωγ例3:已知:r 1,r 2,Δh求:ω0 解:212120=-s z gr ω (1)222220=-s z gr ω (2)因为 h z z s s ∆==21所以212202r r h g -∆=ω例4已知:一圆柱形容器,直径D =1.2m ,完全充满水,顶盖上在r 0=0.43m 处开一小孔,敞开测压管中的水位a =0.5m ,问此容器绕其立轴旋转的转速n 多大时,顶盖所受的静水总压力为零?已知:D =1.2m ,r 0=0.43m ,a =0.5m 求:n解:据公式 )(Z d z Y d y X d x dp ++=ρ 坐标如图,则 x X 2ω=,y Y 2ω=,g Z -= 代入上式积分:C z gr p +-⋅=)2(22ωγ (*)由题意条件,在A 点处:r =r 0,z =0,p =γa 则 C gr a +-⋅=)02(202ωγγ 所以 )2(202gr a C ωγ-⋅=所以 )2()2(20222gr a z gr p ωγωγ-⋅+-⋅= 当z =0时: )2(220222gr a gr p ωγωγ-⋅+=它是一旋转抛物方程:盖板上静压强沿径向按半径的二次方增长。
长沙理工大学水力学水力学考精彩试题问题详解
填空题(每空1分,共20分)1、流体阻抗变形运动的特性称为粘滞性,其大小由粘滞系数来表征,它与切应力以及剪切变形速率之间符合牛顿内摩擦定律。
2、按运动要素是否随时间变化,把液体分为恒定流和非恒定流,其中各点运动要素都不随时间变化的流动称为恒定流。
3、按流体微团是否绕自身轴旋转,将流体运动分为有涡流和无涡流。
4、水头损失的从本质上讲都是液体质点之间相互摩擦和碰撞,或者说,都是液流阻力做功消耗的机械能。
5、液体运动的两种流态是层流和紊流。
6、雷诺数之所以能判别液流形态,是因为它反映了流体惯性力和粘滞力的对比关系。
7、对于不可压缩的液体,三元流动连续性方程为。
8、液体微团运动的四种基本形式分别为:平移、旋转、角变形和线变形。
9、以渠底为基准面,过水断面上单位重量液体具有的总机械能称为断面单位能量。
10、在明渠水流中,从缓流到急流过渡的局部水力现象叫水跌。
11、水流经过泄水建筑物时发生水面连续地光滑跌落的现象称为堰流。
12、在水力计算中,根据堰的体型特点,即按堰壁厚度与水头的相对大小,将堰分为薄壁堰、实用堰和宽顶堰。
13、确定渗流系数的方法有:经验法、实验室测定法和现场测定法。
二、作图题(共14分)1、绘出图中各挡水面上的静水压强分布图。
(每题4分,共2题)2、绘出图中二向曲面上的铅垂水压力的压力体。
(每题3分三、简答题(每题6分,共2×6=12分)1、有哪两种描述液体运动的方法? 分别叙述这两种方法。
拉格朗日法以研究个别流体质点的运动为基础,通过对每个流体质点运动规律的研究来获得整个流体的运动规律。
欧拉法以考察不同流体质点通过固定的空间的运动情况来了解整个流体空间内的流动情况,即着眼于研究运动要素的分布场。
2、明渠均匀流形成的条件是什么?1、明渠中水流必须是恒定流2、渠道必须是长直棱柱形渠道,糙率系数沿程不变3、明渠中的流量沿程不变4、渠道必须是顺坡一,名词解释:1.连续介质:流体质点完全充满所占空间,没有间隙存在,其物理性质和运动要素都是连续分布的介质。
水力学典型例题分析(上)
例题1在旋转锥阀与阀座之间有厚度为1δ,动力粘度为μ的一层油膜,锥阀高为h,上、下底半径分别为1r 和2r 。
试证明,锥阀以角速度ω旋转时,作用在锥阀上的阻力矩为:2222121212()()()2r r r r r r h T πμωδ++-+=〔解〕证明:任取r 到r+dr 的一条微元锥面环带,在半径r 处的速度梯度是δωγ,切应力ωγτμδ=,假定锥面上的微元环形面积为dA ,则作用在锥阀微元环带表面上的微元摩擦力是dF=τdA微元摩擦力矩 dT=τdA ⨯r下面讨论dA 的表达式,设半锥角为θ,显然,由锥阀的几何关系可得 222121)(hr r r r Sin +--=θθππθSin rdr dA rdr dASin 22== ∴ dr r Sin rdA dT 32θδπμωτ== ()1122441232sin 2sin r r rrr r T dT r dr πμωπμωδθδθ-===⎰⎰ 将)(4241r r -进行因式分解,并将Sin θ的表达式代入化简整理上式可得 2222121212()()()2T r r r r r r h πμωδ=++-+ 例题2盛有水的密闭容器,其底部圆孔用金属圆球封闭,该球重19.6N ,直径D=10cm ,圆孔直径d=8cm ,水深H 1=50cm 外部容器水面低10cm ,H 2=40cm ,水面为大气压,容器内水面压强为p 0求:(1)当p 0也为大气压时,求球体所受的压力; (2)当p 0为多大的真空度时,球体将浮起。
解:(1)计算p 0=p a 时,球体所受的水压力因球体对称,侧向水压力相互抵消,作用在球体上仅有垂直压力。
如解例题2(a)图,由压力体的概念球体所受水压力为()()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=464622132213d H H D d H H D P γπγππ ())(205.0408.04.05.061.014.3980023↑=⎥⎦⎤⎢⎣⎡⨯--⨯⨯=N(2)计算密闭容器内的真空度 设所求真空度为Hm(水柱)高,欲使球体浮起,必须满足由于真空吸起的“吸力”+上举力=球重,如解例题2(b)图所示,即有平衡式6.19205.042=+d H πγ()()m d H 39.008.014.398004205.06.194205.06.1922=⨯⨯⨯-=-=γπ γKP ≥0.39 p K ≥9800×0.39=3822N/m2当真空度p K ≥3822N/m 2时,球将浮起。
水力学习题(上)
1-1 已知某水流流速分布为10/172.0y u =,u 的单位为m/s ,y 为距壁面的距离,单位为m 。
(1)求y=0.1、0.5、1.0m 处的流速梯度;(2)若水的运动粘滞系数s cm /1010.02=ν,计算相应的切应力。
解:(1)依题知①当y=0.1时,s y dy du19.01.0572.0)1.0(072.0--=≈⨯= ②当y=0.5时,19.05.0134.0)5.0(0072.0--=≈⨯=s dy duy ③当y=1.0时,19.01.0072.0)0.1(072.0--==⨯=s dy duy(2)依题知①当y=0.1时,Pa 41078.5572.000101.0-⨯≈⨯=τ②当y=0.5时,Pa 41035.1134.000101.0-⨯≈⨯=τ③当y=1.0时,Pa 41027.7072.000101.0-⨯≈⨯=τ1-2 已知温度20℃时水的密度3/2.998m kg =ρ,动力粘滞系数23/10002.1m s N ⋅⨯=-μ,求其运动粘滞系数ν?解:1-3 容器内盛有液体,求下述不同情况时该液体所受单位质量力?(1)容器静止时;(2)容器以等加速度g 垂直向上运动;(3)容器以等加速度g 垂直向下运动。
解:(1)依题知(2)依题知gmgg mmg mg f f f z y x 2,0-=--===(3)依题知gmg 0,0=-===mmg mg f f f z y x1-4 根据牛顿内摩擦定律,推导动力粘滞系数μ和运动粘滞系数ν的量纲。
1-5 两个平行边壁间距为25mm ,中间为粘滞系数为μ=0.7Pa ·s 的油,有一mm 250mm 250⨯的平板,在距一个边壁6mm 的距离处以s /mm 150的速度拖行。
设平板与边壁完全平行,并假设平板两边的流速分布均为线性,求拖行平板的力。
1-6 一底面积为40×45cm 2的矩形平板,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,斜面倾角θ=22.62º,如图所示。
水力学第三版课后练习题含答案
水的重量为:
w =γV = 1000×10×π(4/2)^2×5 = 314150 N
水的压力为:
p =γh = 1000×5 = 5000 Pa
3. 结论
以上是水力学第三版中的一些基础练习题,希望对读者能有所帮助,更好地理解和掌握水力学的知识点。另外,需要注意的是,在计算的过程中需要保证单位的一致性,避免因单位不同而导致计算结果出现偏差。
p = γh = 1000×2 = 2000 Pa
2.2.2. 练习题
3.一段长10m,宽为2m的水沟,水深为2m。求该水沟中水的重量和水的压力。
答案:
水的重量为:
w =γV = 1000×10×2×10×2 = 400000 N
水的压力为:
p = γh = 1000×2 = 2000 Pa
3.一个直径为4m的圆形水池,水面高度为5m。求该水池中水的压力和水的重量。
水力学第三版课后练习题含答案
1. 问题描述
在水流动中,常会涉及到一些基本的概念和公式。以下为水力学第三版中的一些基础练习题,帮助读者更好地理解和掌握这些知识点。
2. 水力学练习题
2.1. 第一章
2.1.1. 例题
1.一个直径为10cm的圆形水管中,水流速度为2m/s,求该管中的中的水流量为:
答案:
根据公式Q=bhv可得,该沟中的水流量为:
Q = 2×1×0.5×10 = 10 m^3/s
2.2. 第二章
2.2.1. 例题
1.一个长10m,宽为3m的矩形水槽中,水深为2m。求该水槽中水的重量和水的压力。
答案:
水的重量为:
w =γV = 1000×10×10×3×2 = 600000 N
水的压力为:
水力学大纲习题解答
qV
l
4 12104 V 2 0.239(m/s) 2 d 3.14 0.008 4qV
雷诺数
0.239 0.008 Re 127.5 2000 6 1510 Vd
为层流列截面1-1和2-2的伯努利方程
图示 润滑油管路
pa pa V12 V 22 h 1 0 2 hf g 2g g 2g
Re
vd
979 2000
为层流
每小时流量为:
若重油的流动为层流,则:
1 v umax 1.175 m / s 2
用v =1.175m/s计算Re
1 2 Q 1.175 d 3600 4 18.68m 3 / h
例题 : 如图所示水泵管路系统 , 已知:流量 Q=101m3/h,管径d=150mm,管路的总水头 损失 hw1-2=25.4m, 水泵效率 η=75.5% ,试求: (1)水泵的扬程Hp(2)水泵的功率Np
1
1 0
2 0
z
解:由连续性方程得
A2 0.42 v1 v2 1 4m / s 2 A1 0.2
v2 30.2 12 81 H 02 z 1 m 2g 9.8 2 9.8 19.6 P2
2
H 01 H 02
1 2
以0-0为基准面计算两断面的总能量
H0
2
1
解:水头损失
hw h f h j l v2 v2 ( 进 2 弯 出) d 2g 2g
写出1-1到2-2断面的伯努利方程
2
H 00 0 0 0 0 hw
9v 2 hw H0 4 2g
水力学课后计算题及答案解析
水力学课后计算题及答案第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yuAT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
水力学典型复习题及答案详解
水力学练习题及参考答案一、是非题(正确的划“√”,错误的划“×)1、理想液体就是不考虑粘滞性的实际不存在的理想化的液体。
(√)2、图中矩形面板所受静水总压力的作用点与受压面的形心点O重合。
(×)3、园管中层流的雷诺数必然大于3000。
(×)4、明槽水流的急流和缓流是用Fr判别的,当Fr>1为急流。
(√)5、水流总是从压强大的地方向压强小的地方流动。
(×)6、水流总是从流速大的地方向流速小的地方流动。
(×)6、达西定律适用于所有的渗流。
(×)7、闸孔出流的流量与闸前水头的1/2次方成正比。
(√)8、渐变流过水断面上各点的测压管水头都相同。
(√)9、粘滞性是引起液流运动能量损失的根本原因。
(√)10、直立平板静水总压力的作用点就是平板的形心。
(×)11、层流的沿程水头损失系数仅与雷诺数有关。
(√)12、陡坡上出现均匀流必为急流,缓坡上出现均匀流必为缓流。
(√)13、在作用水头相同的条件下,孔口的流量系数比等直径的管嘴流量系数大。
(×)14、两条明渠的断面形状、尺寸、糙率和通过的流量完全相等,但底坡不同,因此它们的正常水深不等。
(√)15、直立平板静水总压力的作用点与平板的形心不重合。
(√)16、水力粗糙管道是表示管道的边壁比较粗糙。
(×)17、水头损失可以区分为沿程水头损失和局部水头损失。
(√)18、牛顿内摩擦定律适用于所有的液体。
(×)19、静止液体中同一点各方向的静水压强数值相等。
(√)20、明渠过流断面上各点的流速都是相等的。
(×)21、缓坡上可以出现均匀的急流。
(√)22、静止水体中,某点的真空压强为50kPa,则该点相对压强为-50 kPa。
(√)24、满宁公式只能适用于紊流阻力平方区。
(√)25、水深相同的静止水面一定是等压面。
(√)26、恒定流一定是均匀流,层流也一定是均匀流。
水力学试题和答案
思考题1.1静水压强有哪些特性?静水压强的分布规律是什么?1.2试分析图中压强分布图错在哪里?1.3何谓绝对压强,相对压强和真空值?它们的表示方法有哪三种?它们之间有什么关系?1.4图示一密闭水箱,试分析水平面A—A,B—B,C—C是否皆为等压面?何谓等压面?等压面的条件有哪些?1.5一密闭水箱(如图)系用橡皮管从C点连通容器Ⅱ,并在A,B两点各接一测压管,问:思 1 . 4 思1 . 5(1)AB两测压管中水位是否相同?如相同时,问AB两点压强是否相等?(2)把容器Ⅱ提高一些后,p比原来值增大还是减小?两测压管中水位变化如何?1.6什么叫压力体?如何确定压力体的范围和方向?习 题1.1 图示为一密闭容器,两侧各装一测压管,右管上端封闭,其中水面高出容器水3 m ,管内液面0p 压强为78 kPa ;左管与大气相通。
求:(1)容器内液面压强c p ;(2)左侧管内水面距容器液面高度h 。
1.2 盛有同种介质(密度==B A ρρ 1 132.6 kg/m 3)的两容器,其中心点A 与B 位于同一高程,今用U 形差压计测定A 与B 点之压差(差压计内盛油,密度=0ρ867.3 kg/m 3 ), A 点还装有一水银测压计。
其他有关数据如图题1.2所示。
问:(1)A 与B 两点之压差为多少?(2)A 与B 两点中有无真空存在,其值为多少?1.3 图示一圆柱形油桶,内装轻油及重油。
轻油密度1ρ为6 632.6 kg / m 3,重油密度2ρ为887.75k g/m 3,当两种油重量相等时,求:(1)两种油的深度1h 及2h 为多少?(2)两测压管内油面将上升至什么高度?1.4 在盛满水的容器盖上, 加上6 154N 的荷载G (包括盖重),若盖与容器侧壁完密合,试求A ,B ,C ,D 各点的相对静水压强(尺寸见图)。
1.5 今采用三组串联的U 形水银测压计测量高压水管中压强,测压计顶端盛水。
当M 点压强等于大气压强时,各支水银面均位于0一0水平面上。
水力学课后计算题及答案解析
水力学课后计算题及答案第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yuAT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
水力学考前必看例题
V1
Q 5.4
9.957
/
5.4
1.8m
/
s
Q V2 2.97 9.957 / 2.97 3.35m / s
FR F1 F2 Q(2V2 1V1)
52.92 16 9.957(3.35 1.8)
21.487kN 水流对坎的冲击力与FR大小相等,方向相反。
解:上半球受到的压力包括两部分,球内部水的压力 和外部水的压力,总压力为二者压力之差。
上半球压力实体如图:
总压力: F gV gr2 H1 H2
代入数值计算得: F 153800N
第三章习题
10、12、14、17、19 题
10. 水管直径D=50mm,末端阀门关闭时,压力表读值 PM1=21 kPa,阀门打开后读值降至5.5 kPa 。如不计水 头损失,求通过的流量Q。
则:
Q
2
(
1 2.972
1 5.42 ) 0.8 9.8
Q2 (0.07527 0.03429 ) 9.8 Q 9.957 m3 / s
19.矩形断面的平底渠道,其宽度B=2.7m,渠底在某断面处抬高h1=0.5m, 抬高前的水深为H=2m,抬高后的水面降低h2=0.4m,忽略边壁和底部阻力。 试求:(1)渠道的流量Q;(2)水流对底坎的推力FR。
解:根据文丘里流量计公式得:
d12
K 4
2g 3.14 0.22
4
2 9.8 0.139 0.036
( d1 )4 1
( 0.2)4 1
3.873
d2
0.1
Q K
(
1)hm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题1在旋转锥阀与阀座之间有厚度为1δ,动力粘度为μ的一层油膜,锥阀高为h,上、下底半径分别为1r 和2r 。
试证明,锥阀以角速度ω旋转时,作用在锥阀上的阻力矩为:T =〔解〕证明:任取r 到r+dr 的一条微元锥面环带,在半径r 处的速度梯度是δωγ,切应力ωγτμδ=,假定锥面上的微元环形面积为dA ,则作用在锥阀微元环带表面上的微元摩擦力是dF=τdA微元摩擦力矩 dT=τdA ⨯r下面讨论dA 的表达式,设半锥角为θ,显然,由锥阀的几何关系可得 222121)(hr r r r Sin +--=θθππθSin rdr dA rdr dASin 22== ∴ dr r Sin rdA dT 32θδπμωτ== ()1122441232sin 2sin r r rrr r T dT r dr πμωπμωδθδθ-===⎰⎰将)(4241r r -进行因式分解,并将Sin θ的表达式代入化简整理上式可得221212()(2T r r r r πμωδ=++例题2盛有水的密闭容器,其底部圆孔用金属圆球封闭,该球重19.6N ,直径D=10cm ,圆孔直径d=8cm ,水深H 1=50cm 外部容器水面低10cm ,H 2=40cm ,水面为大气压,容器内水面压强为p(1)当p 0也为大气压时,求球体所受的压力; (2)当p(1)计算p 0=p a如解例题2(a)图,由压力体的概念球体所受水压力为()()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=464622132213d H H D d H H D P γπγππ ())(205.0408.04.05.061.014.3980023↑=⎥⎦⎤⎢⎣⎡⨯--⨯⨯=N(2) 设所求真空度为Hm(水柱)高,欲使球体浮起,必须满足由于真空吸起的“吸力”+上举力=球重,如解例题2(b)6.19205.042=+d H πγ()()m d H 39.008.014.398004205.06.194205.06.1922=⨯⨯⨯-=-=γπ γKP ≥0.39 p K ≥9800×0.39=3822N/m2当真空度p K ≥3822N/m 2时,球将浮起。
例题3管道从1d 突然扩大到2d 时的局部水头损失为j h ',为了减小水头损失的数值,在1d 与2d 之间再增加一个尺寸为d 的管段,试问:(1)d 取何值时可使整体的损失为最小;(2)此时的最小水头损失j h 为多少?〔解〕(1)根据已知的圆管突然扩大局部水头损失公式gV V h j 2)('221-=根据连续方程2211A V A V =,增加直径为d 的管段后,仍满足2211A V VA A V == 由此可得22112211)(,)(d d V V d d V V== (4-1) 在1d 与2d 之间加入直径为d 的管段后,水头损失j h 应该是两个突然扩大的局部水头损失之和,即gV V g V V h j 2)(2)(2221-+-= []V V V V V V V g2222122122221-+-+=⎥⎦⎤⎢⎣⎡-+-+=))((2)()(2)(21211221212121V V V V V V V VV V gV将(4-1)式代入⎥⎦⎤⎢⎣⎡--++=21221214212121)()(2)(2)()(12d d d d d d d d d d gV h j 求导数 ⎥⎦⎤⎢⎣⎡++-=---32241321541214482d d d d d d d g V dd dh j⎥⎦⎤⎢⎣⎡++-=--22122132121)(12)4(2d d d d d d g V 当0=dd dh j 时,j h 取得极小值令0=dddh j ,则⎪⎩⎪⎨⎧=++-==--0)(12)(002212213d d d d d d 不合题意,舍去 22121)(1)(2d dd d +=2221222122d d d d d += 2221212dd d d d +=(4-2)(2)求j h 的极小值[]2221min )()(21v v v v gh j -+-=将211)(d d V V =及222)(ddV V =代入上式,则 222212min11221()()2jd d h V V V V gd d ⎧⎫⎡⎤⎡⎤⎪⎪=-+-⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎪⎪⎩⎭再将(4-2)式代入并整理可得⎥⎦⎤⎢⎣⎡--+-=22221212222222212221min)12()2((21d d d d V d d d V g h j 利用(4-1)式,则 ⎥⎦⎤⎢⎣⎡-+-=2212221221min)1(4)1(421V V V V V V g h jgV V V V V V g 2)(21)(41)(4121221221221-⨯=⎥⎦⎤⎢⎣⎡-+-='min21j j h h =加中间段所得的损失正是原来突然扩大不加中间段时损失的一半,由此可见,逐渐扩大比突然扩大的损失要小得多。
例题4比重S=0.85,运动粘度ν=0.125cm 2/s 的油在粗糙度△=0.04mm 的钢管中流动,管径d=300mm ,流量Q=100l/s,试确定:(1)流动型态;(2)沿程阻力系数λ(3)粘性底层厚度δ(4)管壁上的切应力0τ 〔解〕首先判别流态 2000339533.010125.01.0444>=⨯⨯⨯⨯===-ππννd Q VdR e紊流(1)假定光滑紊流区,用布拉修斯公式计算λ值,即0233.03164.025.0==e R λ粘性底层厚度 0233.08.3225.0==eR dδ 粘性底层厚度 mm m R d e 9.110898.10233.0339533.08.328.323≈⨯=⨯==-λδ由于3.002.09.104.0<==∆δ,流动处于紊流光滑区,前述假定正确。
(2)沿程阻力系数λ=0.0233 (3)粘性底层厚度δ=1.9mm (4)管壁处的切应力2*20)(8181AQ S V ρλλρτ== 89.4)3.01.04(100085.00233.081220=⨯⨯⨯⨯⨯⨯=πτ2/m N 例题5两水池的水位差H=24m ,中间由四段管道连接,如图所示。
已知水池水位保持不变,管长 l 1=l 2=l 3=l 4=100m ,管道直径d 1=d 2=d 4=100mm ,d 3=200mm ,沿程阻力系数,02.0,025.03421====λλλλ阀门局部阻力系数 ζ=30,其余局部阻力忽略不计。
试求: (1)管道中的流量(2)如果关闭阀门,流量如何变化〔解〕将阀门处的局部水头损失折合成第3管段适当长度L e 上的沿程水头损失,则ζ g V 223=3λ2332e l v d g令 33d le λζ=,故 33λζd l e = 沿程水头损失 252282Q dg lg d V l h f πλλ=⋅⋅= 令 528d g lS πλ=,管道摩阻2SQ h f =先求出每条管道的摩阻值 7.206561.08.9100025.08852512111=⨯⨯⨯⨯==ππλd g l SS 333252530.280.02(10030)8()0.022065.679.80.2e l l g d λππ⨯⨯+⨯+===⨯⨯可见 S 1=S 2=S 4=10 S 3(1)求管道通过的流量根据连续方程 Q 1=Q 4=Q 2+Q 3=Q (4-1) 2管与3管并联 2f h =3f h 233222Q S Q S = 1032332QS S Q Q == (4-2) 将(4-2)式代入(4-1)式,得Q Q Q =+33101Q Q 76.03= (4-3) Q Q 24.02= (4-4) 在图示的复杂管道中421f f f h h h H ++=2422221Q S Q S Q S ++= 24221)24.0(Q S S S +⨯+=)(124.017.2065622++⨯=Q223.42503Q =s l Q /76.2323.4250324==所以sl Q Q s l Q Q sl Q Q /06.1876.0/70.524.0/76.233241======(2)当关闭了管中的阀门,流量如何变化阀门全部关闭后,成为三条管道串联,即 Q Q Q Q ===421 242221421Q S Q S Q S h h h Hf f f ++=++=因为 7.20656421===S S S 所以 27.206563Q H ⨯= 4210873.37.20656324-⨯=⨯=Qs l Q /68.19=可见,关闭阀门后,虽然2管的流量增大了,但1管和4管的流量减小,使得从水池A 到水池B 的输水能力降低了。
例题6梯形断面土渠,通过的流量Q=0.75s m /3,底坡i=5501,边坡系数m=1.5。
砂质粘土,粗糙系数n=0.025,当渠道中水深为0.4~1.0m 时不冲允许流速V ′=1.0m/s ,不淤允 许流速V ″=0.4m/s ,试按宽深比β=1.5设计断面尺寸。
〔解〕当渠道中形成均匀流时 Q=ACRi面积 A=(b +m h )h =(1.5h+1.5h )h=3.02h 湿周 χ= b+2h21m +=1.5h+2h 25.11+=5.11h水力半径 R =χA =h h h 587.011.50.32= 谢才系数 C=n161RQ=A n 132R i =3.0⨯2h ⨯025.01⨯(0.587h)32⨯5501=3.587h 38h 38=587.3Q = 21.0587.375.0=h=0.56mb=βh=1.5 ⨯0.56=0.84m 校核渠道允许流速 A=3.0 ⨯0.562=0.941 2m =V A Q =797.0941.075.0=s m / '"V V V << 断面平均流速在允许流速范围之内。
例题7证明:当断面比能E s 及渠道断面形式,尺寸(b 、m)一定时,最大流量相应的水深是临界水深。
证明 22222gAQ h gV h E sαα+=+= (4---1))(222h E gA Q s -=α(4---2)当E s 一定时,断面形式,尺寸一定,A=f(h),上式为Q=F(h),绘出Q ~h 关系曲线见6-3-4图。
由图可知,Q=F(h)取得极大值,将(4-2)式对h 取一阶导数,可得 ])(2[222A h E dhdAA g dh dQ Q S --=α 令)(,0h F Q dhdQ==取得极大值,只能 ,0)(22=--A h E dh dA A S 因为,B dhdA=则0)(2=--A h E B s 将(4-1)式代入上式,可得23Q A g Bα=(4-3)式即为水流作临界流时临界水深关系式,可见,当断面比能Es 一定,断面形状、尺寸一定时,最大流量时的水流作临界流,水深即为临界水深h s ,即kk B A gQ 32max=α (4-3) 5、某矩形断面渠道,底宽b=2m ,试确定: (1)流量Q=2m 3/s 时的临界水深及最小断面比能 (2)断面比能Es=1m 时的临界水深及最大流量 〔解〕(1)当Q=2m 3/s 时当Q 一定时,断面比能最小时的水深为临界水深 22222gAQ h gV h E sαα+=+= (5-1)将上式对h 取一阶导数,并令0=dhdE s,Es 取得极小值,此时临界水深满足 32332)(k k k k h b bbh B A g Q ===αgq gb Q hk2223αα==0.45k h m === 最小断面比能7.025.045.0)45.02(8.9220.145.02222min=+=⨯⨯⨯⨯+=+=g V h E K k s α(2)当Es=1m 时 ,流量最大时的水深为临界水深,由(5-1)式可得 )(222h E A gQ s -=α将上式对h 取一阶导数,并令0=dhdQ,Q 取得极大值,此时临界水深满足3232k kk mh b B A gQ ==α 223gbQ h mkα=(5-3)因为 22222kmk k k s gAQ h gV h E αα+=+= (5-4)联立求解(5-3)式和(5-4)式,可得 s m Q m hk /43.3,67.03max ==k h =0.67m ,max Q =3.43m 3/s故临界水深为0.67m ,最大流量为3.43m 3/s 。