高压HP-RTM工艺
碳纤维增强复合材料hp-rtm成型工艺及孔隙控制研究
碳纤维增强复合材料hp-rtm成型工艺及孔隙控制研究碳纤维增强复合材料(CFRP)是一种具有优异性能的材料,被广泛应用于航空航天、汽车制造、船舶制造和体育器材等领域。
其中,HP-RTM(High-Pressure Resin Transfer Molding,高压树脂转移成型)是一种常用的CFRP成型工艺。
本文将对HP-RTM工艺及孔隙控制进行研究。
HP-RTM工艺属于封闭式模具成型方法,其中包括母模、子模和螺旋开关等。
首先,在模具中布置纤维预浸料和加热元件,然后将两个模具合拢,经过压力施加和树脂注射,使树脂充分浸润纤维,并且通过加热元件进行硬化。
最后,将模具分开,取出成型件。
HP-RTM工艺具有以下优点:1.成型速度快。
树脂注射压力高,注射时间短,加热硬化时间也短,可以提高生产效率。
2.成型件的质量稳定。
由于高压注射,树脂能够充分浸润纤维,可以获得性能均匀一致的成型件。
3.可以生产复杂结构的零件。
HP-RTM工艺适用于生产具有复杂几何形状的零件,如整体翼板和车身结构。
HP-RTM工艺也存在一些问题,其中最重要的是控制成型过程中的孔隙问题。
孔隙是指CFRP制品中的小空洞或气泡,会降低成型件的强度和耐久性。
孔隙的形成主要有两个方面的原因,一是树脂注射过程中的气体积聚,二是纤维预浸料中的气体气泡。
为了解决孔隙问题,可以采取以下措施:1.控制树脂注射过程。
增加注射压力和注射速度可以减少气体积聚,同时在注射前进行真空处理也是有效的手段。
2.优化纤维预浸料的制备工艺。
提高纤维预浸料的浸润性和挤出性可以降低气泡的生成。
3.采用树酯成型树脂(Resin Transfer Molding,RTM)前驱体。
RTM前驱体在注射过程中可以释放出溶剂,减少气泡的形成。
4.模具结构的优化设计。
增加模具表面的喷嘴和逃孔,提高树脂的流动性,减少气体积聚的产生。
在实际应用中,HP-RTM成型工艺及孔隙控制研究还需要进一步探索和完善,特别是对孔隙形成机理的深入研究和优化控制方法的开发。
RTM成型工艺及分类介绍
RTM成型工艺及分类介绍1、RTM成型工艺与分类RTM是指低粘度树脂在闭合模具中流动、浸润增强材料并固化成形的一种工艺技术,属于复合材料的液体成形或结构液体成形技术范畴。
其具体方法是在设计好的模具中,预先放入经合理设计、剪裁或经机械化预成形的增强材料,模具需有周边密封和紧固,并保证树脂流动顺畅;闭模后注入定量树脂,待树脂固化后即可脱模得到所期望产品。
SMC、BMC模压、注射成型、RTM、VEC技术都属闭模成型工艺。
由于环境法的制定和对产品要求的提高使敞模成型复合材料日益受到限制,促使了闭模成型技术的应用,近年来尤其促进了RTM技术的革新和发展。
2、RTM的类型RTM工艺起始于上世纪50年代,目前,RTM成型工艺己广泛应用于建筑、交通、电讯、卫生、航天航空等领域。
下面介绍几种RTM技术。
01、RTM,树脂传递模塑。
该技术源自聚氨酯技术,成型时关闭模具,向预制件中注入树脂,玻纤含量低,约20-45%。
02、VARIT,真空辅助树脂传递注塑。
该技术利用真空把树脂吸入预制件中,同时也可压入树脂,真空度约10-28英寸汞柱。
03、VARTM,真空辅助树脂传递注塑。
制品孔隙一般较少,玻纤含量可增高。
04、VRTM,真空树脂传递模塑。
05、VIP,真空浸渍法。
06、VIMP,可变浸渍塑法。
树脂借助真空或自重移动,压实浸渍。
07、TERTM,热膨胀RTM。
在预制件中插入芯材,让树脂浸渍并对模具与成形品加热。
芯材受热膨胀,压实铺层。
利用这种压实作用,结合表面加压成型。
08、RARTM,橡胶辅助RTM。
在TERTM方法中不用芯材而用橡胶代之。
橡胶模具压紧成型品,使孔隙大大减少,玻纤含量可高达60-70%。
09、RIRM,树脂注射循环模塑。
真空与加压结合,向多个模具交替注入树脂,使树脂循环,直至预制件被充分浸透。
10、CIRTM,Co-Injection RTM。
共注射RTM,可注入几种不同的树脂,也可使用几种预制件,可利用真空袋和柔性表面的模具。
碳纤维增强复合材料hp-rtm成型工艺及孔隙控制研究
碳纤维增强复合材料(CFRP)是一种结构轻、强度高的先进材料,广泛应用于航空航天、汽车、体育器材等领域。
其中,HP-RTM (高压快速反应注射成型)是一种常用的CFRP复合材料成型工艺,它可以实现高质量、高效率的制造,并具有良好的孔隙控制能力。
HP-RTM成型工艺的基本步骤如下:1.模具准备:首先,准备一个具有所需形状和尺寸的模具,通常使用金属材料制作。
模具表面需要经过处理以提高表面平整度和表面润滑性,以便于后续注塑过程。
2.预制准备:根据需要,预先制备好所需的干预产物,即CFRP的纤维布和树脂浸润材料。
纤维布通常采用碳纤维预浸料,其中已经预先浸渍了树脂。
此外,还可以在纤维布上涂覆树脂胶粘剂以实现更好的树脂流动性和浸润性能。
3.注塑过程:将预制准备好的纤维布放置在模具的合适位置,然后将模具封闭。
接下来,通过高压注塑机将树脂推入模具内,使其浸润纤维布。
注塑过程中,高压和高温有利于树脂的流动和浸润性能提高。
4.固化过程:完成树脂注塑后,模具中的复合材料需要经过固化过程。
这一步主要是通过控制温度和时间来使树脂完全固化。
通常,温度较高且持续一定时间可以确保固化反应的充分进行。
在HP-RTM成型过程中,孔隙控制是一个关键的技术难题。
孔隙是指复合材料中的气体或液体空隙,对材料的强度和可靠性有不良影响。
为了控制孔隙的生成,研究人员采取了以下措施:1.注塑条件优化:通过调整注塑过程中的参数,如注塑温度、压力和时间,以提高树脂的浸润性能和流动性,减少气体捕获和孔隙形成。
2.模具设计和表面处理:合理设计模具结构,使得树脂在注塑过程中能够均匀分布并填充纤维布,减少树脂注塑过程中的空隙和气体捕获。
同时,模具表面的润滑处理可以减少树脂在模具表面的附着,并更好地填充纤维布。
3.树脂配方优化:通过调整树脂配方和添加剂,改善树脂的流动性和抗气泡性能,减少孔隙的生成。
常见的方法包括添加表面活性剂和消泡剂。
4.气体抽真空处理:在注塑过程中,通过在模具中抽真空来减少气体的含量,并帮助树脂充分浸润纤维布,减少孔隙的产生。
HP-RTM工艺研究及快速固化树脂应用
02 HP-RTM工艺研究进展 RTM工艺优点
RTM工艺主要有三个优点: 第一,可制造高质量、高精度、低孔隙率、高纤维含量的构件; 第二,无需胶衣也可制备内外表面光滑的制品,生产效率相对高; 第三,闭模操作,污染小。
RTM工艺用树脂要满足以下几个要求: 第一,室温或工作温度下具有低粘度(200-600mPa.s)及一定的贮存期; 第二,树脂对增强材料具有良好的浸润性、匹配性及粘附性; 第三,树脂体系不含溶剂,固化时无低分子物析出;固化时发热量少; 第四,树脂从凝胶化、固化到脱模时间短,收缩率低以保证制品尺寸准确; 第五,树脂在固化温度下具有良好的反应性,且后处理温度低。
东华大学
公司于2014年5月份开始和东 华大学合作,主要开发汽车复 合材料领域的相关产品,同时 依托东华的复合材料技术,对 惠柏进行技术支持和培训
北京航空航天大学
公司于2015年6月开始和北航 签署产学研协议,主要开发 T800高韧性预浸料树脂及其他 新工艺产品。
01 公司介绍 惠柏新材优势
产学研合作
02 HP-RTM工艺研究进展 HP-RTM工艺简介及优点
为了解决目前RTM工艺方面存在的生产效率低、产品精度不高、孔隙率高等不足,高压树脂传递模塑工艺 (High Pressure Resin Transfer Molding)应运而生。HP-RTM工艺技术是近年来推出的一种应对大批量生产高 性能热固性复合材料零件的新型RTM工艺技术。它采用预成型件、钢模,真空辅助排气,高压混合注射和 在高压下完成树脂对纤维的浸渍和固化的工艺,实现低成本、短周期(大批量)、高质量生产。
目前采用HP-RTM工艺制作的宝马i3车身Life模块结构已经得到了市场的验证,并指引了汽车工业的发展方向。
02 HP-RTM工艺研究进展 实际案例
HP高压RTM
HP-RTM工艺之我见原创2016-04-13 bamstone(刘伟)福财笑有近几年来,HP-RTM工艺炒得火热,朋友圈和业内网站,隔三差五就会冒出来一个相关的信息来。
我多次在朋友圈或是和朋友私下聊天中发表此工艺属于“坑”的观点,总是引来朋友们的非议。
作为一个复合材料行业的普通技术人员,车咕噜话说过太多遍,我觉得似乎有必要将个人观点加以整理,以避免继续“车咕噜”。
有感于从事复合材料专业的人太少,真正得窥门径的人更少,因此将微信朋友圈中发表的一点浅见整理出来,希望能够给打算上这个工艺的人看到,也算功德一件。
(看“洋鬼子”骗中国人的钱,实在是看得伤心,忍不住跳出来说说。
)上文说到的“朋友们的非议”,开头的第一句话,大抵都是:“宝马都在用这个工艺,为什么你说他不好”。
正好,我有位朋友供职于宝马,具他透露,宝马只是在十年前的i3项目中使用了此工艺,后面的i4至i7中并没有使用。
至于后面使用的是什么工艺,该友人说,公司严格保密,他也不清楚。
由此也可以明白,如果不是宝马已经放弃,宝马公司怎么可能允许设备开发商向第三方转让?初次看到这个工艺的介绍,我的第一感觉就是,开发这个工艺的公司,应该不是复合材料行业的,到是像一个“用资源改变原理”(引自刘慈欣先生科幻小说《三体》)的重型机械行业的企业。
后来,经过调查了解,果不其然,真是这种情况。
我们不妨来脑补一下HP-RTM工艺的出台过程。
宝马公司打算用碳纤维复合材料来制造i3汽车的车身,当时,传统的,用来生产碳纤维复合材料的工艺有哪些呢?大抵上,有以下几种:手糊、真空导入及RTM、预浸料热压罐成型、预浸料模压成型。
长期的金属车身制造,已经使汽车行业形成了定性思维:冲压、焊装、总装、涂装,一共四大生产工艺,四个车间。
对于汽车厂来说,生产线是不能停的,一旦停线就是重大事故。
那么,汽车厂自然会把生产效率列为不能让步的重要条件。
现有的工艺中,效率最高的,自然是预浸料模压工艺,但是还是不够快。
陶氏改进环氧树脂系统HP-RTM工艺60秒内成型
陶氏改进环氧树脂系统HP-RTM工艺60秒内成型
Reinforce Plastics网站消息称,陶氏汽车系统(Dow Automotive System)近日完成对旗下VORAFORCE 5300环氧树脂系统的性能提升,改进方向主要针对复合材料行业HP-RTM工艺(高压树脂传递模塑成型工艺)。
陶氏方面宣称,借助改进后的环氧树脂系统,HP-RTM工艺或湿法模压工艺(wet compression)的成型时间可控制在60秒之内,满足碳纤维复合材料规模量产的技术需求。
“陶氏采用了创新的配方,使得树脂系统拥有了超低的黏度,同时大大缩短了树脂注入和固化的时间。
”陶氏化学全球战略市场经理Peter Cate表示说,“汽车零部件商因此可以实现轻量化汽车部件的规模量产。
”
如果您喜欢本文,请点击右上角按钮,分享本文给您的好友!
如果您有以下需要,可以随时联系我们:
·发布企业产品信息
·宣传企业形象
·了解国内外玻纤产品信息。
HP-RTM Technology
Process description HP-RTMSource: Institut für Verbundwerkstoffe GmbHWith injection method under high pressure up to approx. 100bar Preparing injection mold 注射模准备Finished part 成品Part demolding 制件脱模Resin injection 注入树脂Close tool 闭模Insert reinforcing material 放入增强材料Producepreform 制件预成型Dryreinforcing fiber 干燥增强纤维高压树脂传递模塑工艺描述采用高达100bar 压力下的注射手段闭模Process description HP-RTMWith injection method under high pressureDry fiber productsPreformP r e f o m p l a c e me n t 放置预成制件RTM press 传递模塑压机Cured RTM Component 传递模塑成品C om ponen t A C om pone nt BRTM Equipment传递模塑设备泵混和头干燥纤维制品预成型采用高压下注射手段高压树脂传递模塑工艺描述02 | 2010 –page 1RTM process overview树脂传递模塑工艺流程Source: BMW AGSource: Krauss MaffeiRTM mixing headRTM 混合头Release agent coating 涂覆脱模剂Unroll Cutting 开卷切割Part removal 取件Cleaning lower tool 清理下模Placing inserts 放置添加物2. Press process 压制过程1.Upstream process 上游工艺过程3. Downstream process 下游工艺过程Place inserts 放置添加物Stitching 缝纫Laying Packaging 平铺Cuttingpreform 切割预成型Preforming 预成型RTM process 树脂传递模塑工艺Cleaning upper tool 清理上模Loading form 放置预成型件Resin injection 注入树脂Raw material storage 原材料存储IMC process 模内喷涂工艺Parts storage 制件存储Measuring parts 制件测量Outline trimming 外廓修边MillingStamping 磨、冲Water jet Cutting 水切割Cleaning 清洁Pretreatingsurface 表面预处理Bonding 粘接Verifying 校验02 | 2010 –page 2RTM-equipment 树脂传递模塑工艺设备Molds 模具Automation 自动化Mixing head 混合头Presses 压机Tank storage存储罐Line control 生产线控制Mold Heating 模具加热Dosing Facility 喂料装置Form cleaning 模具清理Preform press 预成型压机Daily Dose 日常喂料Preform Production 预成型Post processing后加工DIEFFENBACHERKrauss Maffei高压树脂传递模塑应用实例高压树脂传递模塑应用实例02 | 2010 –page 1Process overview, classification and process partnersF iber-R einforced P lastics FRPC ompression M olding Technology CMS heet M olding C ompoundSMC Direct Strand Molding CompoundD-SMCLong Fiber T hermoplastics D irect processLFT-D E-LFT-D Tailored LFT-D G lass M at Reinforced T hermoplasticGMTH igh P ressureR esin T ransfer M olding HP-RTMC o -o p e r a t i o n p a r t n er工艺纵览、分类及合作伙伴纤维增强复合材料FRP模压成型技术CM 长纤维增强热塑塑料高压树脂传递模塑。
HP-RTM树脂体系固化反应动力学及流变行为研究
HP-RTM树脂体系固化反应动力学及流变行为研究刘钟铃;袁悦;张莉;何鹏【摘要】HP-RTM(高压树脂传递模塑)工艺是近些年针对汽车行业兴起的碳纤维复合材料快速成型工艺,较传统的成型工艺在保证制品力学性能的前提下,其复合材料部件生产周期可缩短至10 min以内,大幅缩短了复合材料部件制造周期,成为汽车领域复合材料成型的首选工艺之一.针对HP-RTM工艺用快速固化环氧树脂体系(RX-1),采用DSC(差示扫描量热仪)和流变仪研究了其固化反应热行为和流变行为,并根据经典动力学模型Kissinger法研究RX-1树脂体系固化反应动力学,计算了反应活化能Ea.研究结果表明:RX-1树脂体系在120℃、60 s内其黏度已突增到1.76×106 Pa·s,完全实现凝胶化,该体系在一定的工艺温度下能实现在2 min内完成固化,利用Kissinger法求得RX-1树脂固化过程表观活化能Ea为54.88 kJ/mol.研究成果为HP-RTM成型工艺参数设定与优化提供了技术基础和理论依据.【期刊名称】《高科技纤维与应用》【年(卷),期】2019(044)003【总页数】5页(P32-36)【关键词】碳纤维复合材料;环氧树脂;HP-RTM;快速固化;反应动力学【作者】刘钟铃;袁悦;张莉;何鹏【作者单位】康得复合材料有限责任公司,河北廊坊065000;康得复合材料有限责任公司,河北廊坊065000;康得复合材料有限责任公司,河北廊坊065000;康得复合材料有限责任公司,河北廊坊065000【正文语种】中文【中图分类】TQ342+.740 前言能源短缺及环境污染问题已成为制约我国汽车产业可持续发展的突出问题。
按照目前汽车的平均油耗水平及汽车保有量的增长速度计算,到2020年我国汽车保有量将超过1.5亿辆,汽车燃油消耗将超过2.5亿t/a[1]。
为应对气候变化改善环境,世界多个国家和地区已经出台相应政策限制汽车燃油消耗量,我国也已颁布《节能与新能源汽车产业发展规划(2012-2020年)》,要求到2020年乘用车平均燃料消耗量降至5L/100 km,节能型乘用车燃料消耗量降至4.5 L/100 km以下[2]。
复合材料HP-RTM和湿法模压成型工艺
HP-RTM是英文High Pressure Resin Transfer Molding的简写,全称是高压树脂传递模塑成型工艺,简称HP-RTM成型工艺。
它是指利用高压压力将树脂对冲混合并注入到预先铺设有纤维增强材料和预置嵌件的真空密闭模具内,经树脂流动充模、浸渍、固化和脱模,获得复合材料制品的成型工艺。
上述介绍中关键词介绍:▪高压压力:这里的高压是相对于传统RTM(Resin Transfer Molding)工艺而言,HP-RTM 把注胶压力提升到80bar。
高压注胶的好处是树脂可以更快的达到每个拐角,因此可以提高产品的纤维含量,提高产品性能,对于造型复杂的零件更加适用;▪预先铺设:这里预先铺设的纤维增强材料是指已经经过剪裁预成型的纤维材料;▪预置嵌件:嵌件是指在成型前放置于模具里的零件,材质有金属和非金属,这样使得成型后的制品,嵌件被包入本身的结构中,不可拆卸。
是否需要预置嵌件由制品的结构设计决定。
以上流程可以通过一个简单的工艺流程图来体现:前面提到HP-RTM成型工艺是相对于传统RTM工艺而言进行优化后的成型工艺,在不同的优化方向上,也相应开发出了其它的以RTM工艺为基础,进一步提高生产效率和制品性能的工艺,比如现在HRC拥有的HP-CRTM(High Pressure Compression Resin Transfer Molding)成型工艺.HP-CRTM成型工艺是在HP-RTM工艺技术中的树脂注胶前,将模具上移0.5~1mm,增大密封模腔间隙,模具可以有更宽的浇道,降低树脂流动阻力,注胶结束后再将模具在高压下完全闭合,树脂体系随闭合压力流动充模,成型压力相对较低,这样既保证纤维不乱纹,又保证了较高的注射速度。
工艺流程图体现为:HP-RTM成型工艺是现在广泛应用在多行业的复合材料成型工艺之一,它的优点在于可能实现相对于传统RTM工艺的低成本、短周期、大批量、高质量生产(良好的制件表面),在汽车制造、造船、飞机制造、农业机械、铁路运输、风力发电、体育用品等多行业均有应用。
HP-RTMT-RTM
适用于汽车规模化生产的连续纤维织物(毡、布、带)增强复合材料最新成型工艺综述成型工艺的名称HP-RTM高压-树脂传递模塑T-RTM热塑性塑料-树脂传递模塑gap impregnation technology间隙浸渍技术(RTM 的拓展)该工艺的简明示意图构件典型的应用产品与.零件BMWi3全车车身骨架构件大众公司某型轿车中立柱轿车引擎盖应用实绩i3的车身包括Life 和Drive 两个模块,它之所以这么轻,是因为车身选择了创新的碳纤维材质:先由纤维丝纺成纱线,再织成布料,之后将织成的布料放入模具,加入树脂硬化后才诞生, 在宝马i3之前,从未有企业在一款车上大量使用碳纤维。
公开报导的日期2013年i3正式下线前的十年,宝马公司一直致力于碳纤维复合材料制品与创新技术的研发。
2011年1月德国夫琅霍夫学院在10th ACCE 正式发布HP-RTM 技术在K 2010展会中,恩格尔和克劳斯玛菲这两家公司都第一次在两个复杂的成型单元中证明了这项技术2014.03发表于德国《Kunststoffe 》杂志.2012.06发表于德国《Kunststoffe 》杂志 2014.03研发人 C.Hopmann 教授获得德国国家塑料工业大奖主要研发、应用的公司(IKV) at RWTH AachenUniversity、应用的基体树脂及粘度 环氧树脂epoxy 或聚氨酯树脂PUR 1.0PaS 类似于10倍的机油粘度 己内酰胺或CBT0.01PaS 犹如血水一样的粘度热固/热塑树脂均可基体树脂和装备供应厂家、.制品的纤维含量可达到 % 707575固化或聚合成型的类型 反应注射成型.原位聚合 反应注射成型 反应注射加压浸渍成型快速成型的周期5分,最快的有2分 60秒~120秒 2分~5分成型时的工艺条件模温120℃树脂注射压力40bar 锁模力3600t!压机成型温度 120~150℃ 模具加压压力大于25bar制品表观质量 钢模 A 级表面 可同步实施模内涂漆,达到A 级表面选择优秀的纤维和树脂,直接在钢模内制成A 级表面简要工艺流程T-RTM 类同,仅是基体树脂改変。
产品表面处理CMF:HP-RTM工艺生产应用
HP-RTM主要优点
➢ 树脂快速充满模腔。 ➢ 改善了树脂浸渍增强材料的质量。 ➢ 加速树脂反应性系统可以获得短的固化周期。 ➢ 对空气的排除和产品的孔隙减少具有重大意义。 ➢ 产品具有卓越的表面性能和质量。 ➢ 产品的厚度和三维形状尺寸偏差低。 ➢ 具有高的工艺稳定性和重复性。 ➢ 使用内脱模剂和自清洁系统。
汉高日本公司展出高压RTM车顶材料
日本“人与车科技展2014”展出使用“ Loctite MAX3” 的碳纤维增强树脂基复合材料的成形品(汽车的车顶)。
新型基体树脂“Loctite MAX3”耐热性与环氧树脂相同125℃, 比环氧基 体树脂成形时间短。延展率和韧性超过了环氧树脂、拉伸弹性模量和 拉伸强度与环氧树脂同等。Loctite MAX3树脂在高温下的粘度较低, 树脂注入工序中,更容易渗入到纤维材料中。缩短向成形模具注入树 脂到脱模的时间(脱模时间)。车顶材料以高压RTM 工艺成形时,脱 模时间为5.5分钟,为环氧树脂的1/5左右
早期设计复杂的模具注射阀,代替人 工插入模具自动化稍微提高
RTM成型工艺历史
先进的轻型树脂传递模塑工艺LRTM,首 次应用是于1970年,德国。真空密封环境 中进行,挥发性有机化合物零排放量
HP-RTM成型工艺
➢ 注射压力在10-60bar,工艺周期大约6分钟。
➢ 德国加工机械领域的专家迪芬巴赫公司(Dieffenbacher)和克 劳斯玛菲公司(KraussMaffei)共同开发了高压树脂传递模塑 成型工艺 (HP-RTM)的自动化生产线。包括预成型加工、压 制过程以及修整工艺。相比于传统的RTM工艺,HP-RTM工艺 减少了树脂注射次数,提 高了预制件的浸渍质量,并缩短了成 型周期。
克劳斯玛菲RIM-star HP-RTM 产品壳体
HP-RTM等新工艺之误区
2017(第三届)复合材料模压成型工艺技术与市场应用研讨会-会议讲座资料()
百思而为 成就通达
HP-RTM的误区(《HP-RTM工艺之我见》)
2. 未取得任何技术上的突破,“外行 式”暴力型解决方案,纯粹拿钱砸,“以资 源改变原理”,“霸王硬上弓”,毫无美感 (科学和艺术应该是相通的)。
1.对碳纤维SMC的改进。2.提高了纤维含量。3.提高了强度。
2017(第三届)复合材料模压成型工艺技术与市场应用研讨会-会议讲座资料()
百思而为 成就通达
来自维基百科
The material is one-third as dense as metal titanium but stronger,[9] and consists of chopped carbon fiber tows that are sandwiched between two layers of filmed resin.[10] It uses about 500,000 intertwined turbostratic fibers per square inch.[5] The structure of the high strength carbon fibers is described as turbostratic, that is the fibers contain intertwined and folded sheets of carbon atoms aligned with the length of the fiber, and the intertwining improved the fiber strength.
HP-RTM等新工艺之误区
常州百思通复合材料有限公司
LCM常见工艺类型介绍
LCM常见工艺类型介绍LCM (Liquid Composite Molding)是指液体复合成型工艺,是一种常见的复合材料加工工艺。
在LCM中,树脂被注入到预先放置的增强材料中,并通过压力来充实并固化复合材料。
LCM具有如下几种常见的工艺类型:1. RTM(Resin Transfer Molding):RTM是LCM的一种常见工艺类型。
在RTM中,纤维增强材料事先放置在模具中,然后树脂通过压力被注入增强材料中。
RTM适用于密集纤维结构的复材制品,具有高强度和低重量的特点。
2. SRIM(Structural Reaction Injection Molding):SRIM也是LCM的一种类型。
在SRIM中,树脂与增强材料的混合物通过喷射成型进入模具中,然后在模具中发生反应,形成强化的复材产品。
SRIM适用于制造复材构件,如汽车车身等。
3. VARTM(Vacuum Assisted Resin Transfer Molding):VARTM是一种通过负压实施树脂注入的LCM工艺。
在VARTM中,纤维增强材料被放置在模具中,以后面覆盖塑料薄膜封闭并制造真空。
树脂通过负压被注入增强材料中。
VARTM是一种较为经济的工艺,适用于大型构件的生产。
4. LRI(Liquid Resin Infusion):LRI是一种注液法的LCM工艺。
在LRI中,纤维增强材料被放置在模具中,并通过真空吸出对其进行预处理。
然后,树脂通过注液法被注入增强材料中。
LRI工艺对于制造大型构件和复杂形状的产品非常适用。
这些仅是LCM工艺的一些常见类型,每种工艺都具有其独特的特点和适用范围。
通过选择合适的LCM工艺类型,可以实现高效、精确和经济的复合材料制造。
继续介绍LCM常见工艺类型:5. HP-RTM(High-Pressure Resin Transfer Molding):HP-RTM是一种高压树脂注塑成型工艺。
通过在模具中施加高压,树脂可以快速充实和固化,从而实现高强度、高精度的复合材料制品。
高温可回收高压树脂传递成型(HP-RTM)环氧树脂的性能及其与商业系统的比较说明书
HIGHER TG RECYCLABLE HIGH PRESSURE RESIN TRANSFERMOLDING (HP-RTM) EPOXY PROPERTIES AND HOW THEYCOMPARE TO A COMMERCIAL SYSTEMS. Pastine1*, G. Meirson2**, R. Banatao1, S. Kosinski1, M. Nasrullah1, V. Ugresic2,F. Henning31Connora Technologies Inc., 1488 Zephyr Avenue, Hayward, CA USA 94544*Phone: +1 (415) 315-9524 Email:**********************2Fraunhofer Project Centre, 2544 Advanced Ave, London, Ontario, Canada N6M 0E1**Phone: +1 (519) 661-2111 Email:***************3Department of Polymer Engineering, Fraunhofer Institute for Chemical Technology ICT, GermanyAbstractImplementation of composites in automotive manufacturing is driven by cost reduction. High Pressure Resin Transfer Molding (HP-RTM) allows part manufacturing cycle time to be on the order of minutes. Thermoset materials used in HP-RTM are not recyclable, which leads to artificially high production costs due to the lack of a suitable means to reincorporate waste in the value chain. Connora has developed a series of new epoxy curing agents called Recyclamines®. Use of these curing agents enables manufacturing of recyclable thermoset products. In the present work, Connora’s higher Tg curing agents were coupled with Hexion’s commercial epoxy resin to produce epoxy/carbon plaques. Mechanical properties of the resulting plaques were compared with epoxy/carbon plaques produced using Hexion’s commercial epoxy resin and curing agent. Mechanical properties of both systems were found to be similar at room temperature conditions.BackgroundApplication of composite materials in various technologies in the automotive industry has recently been on the rise. One such application is HP-RTM, which delivers two or more components (e.g., resin and curing agent) from separate tanks to the mixing head where they are mixed and injected into the mold under high pressure to create a thermoset. The mold usually contains a fiber fabric or a preform made from a fiber fabric. As the liquid thermoset material is injected into the mold and infused into the fiber fabric, a matrix develops resulting from the reaction between resin and curing agent. Efficient mixing and fast injection enables the use of elevated temperature molds, facilitating part production times in mere minutes. Short cycle times in conjunction with elevated physical performance makes HP-RTM-produced parts particularly attractive for the automotive industry. One major disadvantage of HP-RTM is sustainability, however, as neither the thermoset materials nor the carbon fiber reinforcement are reusable.Connora Technologies has pioneered the development of recyclable, amine-based curing agents for epoxy resin to facilitate the creation of recyclable thermoset products and composites. Connora’s recyclable amine technology has a cleavage point in the center of the molecule, which under a specific set of conditions, breaks all cross-links in the epoxy matrix. Thus, cleavage of this bond effectively converts the epoxy thermoset matrix into a thermoplastic material. Figure 1 displays this reaction scheme. Replacement of recyclable amines for conventional amine curing agents allows for the recycling and/or repurposing of both matrix and the fiber fabric in post-manufacturing waste and end-of-life streams.Figure 1: Schematic representation of recyclable epoxy technology Previous research on the subject of HP-RTM manufacturing [1] focused on reuse of the fabric by reimpregnation with resin after the original resin matrix had been recycled. The new composite manufactured from recycled fabric had very similar properties to the initial composite manufactured from a virgin carbon fabric. In this research, panels (900x550 mm2) were manufactured using Hexion commercial resin in combination with Connora’s newly developed higher Tg hardener system. Mechanical properties of the resulting panels were tested and compared with properties of panels manufactured with Hexion’s commercial Resin and Hardener system.MaterialsHexion’s Epikote 6000 resin with either Connora’s Recyclamine 3182 or Recyclamine 3382 were loaded into the HP-RTM machine and injected into the mold. SGL supplied the unidirectional and multidirectional carbon fiber preforms placed in the mold. SGL preforms were also injected with Hexion’s Epikote 6150 resin and Hexion’s Epikure 6150 hardener. Moldingwas assisted by Hexion’s Heloxy 112 internal mold release.EquipmentThe trial was performed by Fraunhofer Project Center (FPC) in London, Ontario. Krauss Maffei Rimstar 8/4/8 HP-RTM and Dieffenbacher CompresPlus 2500 ton servohydraulic press were used in the trial. Both are represented in Figure 2. A rectangular 900x550 mm2 mold was installed in the press. This mold was specifically designed to address the needs of the automotive industry by sizing it appropriately for real automotive parts. The mold is equipped with a center gate injection port, pressure sensors and two vacuum ports located at the horizontal edges. The mold design allows for part production of varying thickness. A thickness of 2.0 mm for unidirectional parts and 2.2 mm for multidirectional parts (±45o orientation) were selected for the current trial.Figure 2: FPC equipment- press and HP-RTMPanel ManufacturingThe HP-RTM apparatus operates in the following manner: 1) Resin components are first loaded into separate tanks; 2) The components are then delivered by pumps to the mix head, which mixes the materials and injects the mixture into the mold; 3) Prior to injection, vacuum ports are opened and a vacuum is generated inside the mold, the ports are closed one second before injection ; 4) During injection the press applies a force on the mold called “injection force” and after injection, it applies another force called “curing force.” The HP-RTM’s and Press’s settings are presented in Table 1.Table 1 – Trial process parameters that held constantAnalyzing MethodsTensile tests were conducted on MTS load frame, model C45.105E. The testing displacement rate was set to 2 mm/min. The strain data was recorded using video extensometer. Tensile testing in 0◦ was performed according to DIN EN 2561 standard, wherein the load frame is equipped with 100 kN load cell, model MTS LPS.105. Tensile testing in 90◦ was performed according to DIN EN 2597, wherein the testing displacement rate is set to 2 mm/min. Flexural tests were performed using the 3-point bending method according to ASTM D7264/D7264M-07 standard, using a 10 kN load cell model MTS LPS.104 for the measurements. A 2 mm/min displacement rate was chosen for the tests. Compression tests were performed according to ASTM D3410/D3410M-03 standards with a displacement rate of 1.5 mm/min. The strain data was recorded using video extensometer. The frame was equipped with 100 kN load cell for the tests. The interlaminar shear strength (ILLS) tests were performed using the EN ISO 14130 standard. The displacement rate was set to 2 mm/min and the load measurements were taken using a 10 kN load cell. Tensile and compression tests were performed on the UD panels. Flexure and ILSS tests were performed on the multidirectional panels (±45o tests).Results and DiscussionsConnora’s Recyclamine hardeners in combination with Hexion’s Epikote 6000 resin were easy to process. A typical manufactured panel is shown in Figure 6. The measured gel times of Hexion’s Epikote 6000/Recyclamine 3382 and Hexion’s Epikote 6000/Recyclamine 3182 were quite fast at 140 o C and 130 o C, and are summarized in Table 2. Hexion’s Epikote 6150/Epikure 6150 commercial system gel time at 140 o C was taken from the material’s TDS.Figure 6: Panel manufactured at a trial using Hexion’s Epikote 6000/Recyclamine 3182 systemTable 2: Gel time on hot press at 140o CTypically, a commercial HP-RTM system can be de-molded with a sufficient Tg at a cycle time three times the recorded gel time. Similarly, this guideline roughly applied to the Connora epoxy resin systems. Composites were fabricated at press temperatures of 120, 130, and 140 o C, with cure cycles ranging from 90 sec to 5 min. Table 3 provides the demold Tg and % cure measured for select panels using the Epikote 6000/Recyclamine 3182 system containing 1 PHR IMR. Tg and % cure values of the Recycalmine 3382 systems were found to be similar to 3182 system. As a reference, the Hexion control system yielded a demold Tg of 118 o C at 120 o C for 5 minutes.Table 3: Tg Values and % cure of Recycalbe Carbon composites at different cure intervalsFor a comparison of mechanical properties, composite panels were selected with the respective cure conditions as show in Table 4.Table 4: Cure conditions evaluated in the studySamples were cut from produced panels with water jet and tested in a variety of tests: tension, flexure, compression and ILSS. Each test was performed on five samples from each panel. The comparison of mechanical properties from Hexion’s commercial 6150 system, Connora’s R ecyclamine 3182/Hexion’s 6000 Epikote resin system and Connora’s Recyclamine 3382/Hexion’s 6000 Epikote resin system obtained by mechanical tests is shown in Figures 7-10.Figure 7 compares tensile properties of the composites prepared with each system. Properties were compared in both 0o and 90o orientation, where 90o orientation properties primarily represent those of the matrix, and 0o orientation primarily those of the fiber. While the strength properties are higher for the Recyclamine systems, modulus is higher for the Hexion 6150 commercial system in both directions. However, both systems exhibit similar tensile properties once standard deviation is accounted for.Figure 7: Tensile properties comparison between composites produced from three different systems in both0o and 90o orientations.Figure 8 compares compression properties for composites produced using Conn ora’s Recyclamines and Hexion’s 6150 system. Results indicate compression properties of each composite compare similarly to tension properties shown in Figure 7. Namely, Hexion’s 6150 system exhibits a better modulus while Connora’s Recyclamines produce composites with higher strength. As is the case with tensile properties, all three systems perform similarly once standard deviation is accounted for..Figure 8: Compression properties comparison between composites produced from three different systemsin both 0o and 90o orientations.Figure 9 compares flexural properties of composites prepared with the three different resin systems using a preform with ±45o fiber orientation. The properties were measured and compared at both room and elevated temperature (80o C). Results in Figure 9 indicate the three systems exhibit similar flexural properties at room temperature. However, at elevated temperature the flexural properties of Hexion’s 6150 system drop less than Connora’s Recyclamine systems. This phenomenon is a result of the Hexion 6150 system’s10-15°C h igher Tg than Connora’s Recyclamine systems.Figure 9: flexural properties comparison between composites produced from three different systems in ±45o panels at room and at elevated temperature (80o C)Figure 10 compares the interlaminar shear strength (ILSS) of the three systems in samples with ±45o fiber orientation. Figure 10 shows room temperature ILSS properties are identical among the three composites. Once temperature is elevated to 80o C the ILSS properties of all drop significantly. At 80 o C, the Hexion system showed significantly higher ILSS properties than Connora’s Recyclamine, also explained by the higher Tg of Hexion’s commercial system.Figure 10: ILSS properties comparison between composites produced from three different systems in ±45opanels at room and at elevated temperature (80o C)A common misconception about recyclable epoxy technology is that its chemical resistance is inferior to that of conventional non-recyclable epoxy. This misconception was refuted by an additional test in which samples were subjected to preconditioning before testing. Five 90o tensile samples from each group were submerged in gasoline, 1% sulfuric acid and 5% acetic acid for a week. A visual comparison of samples before and after conditioning is displayed in Table 5. After conditioning, the samples were tested and the resulting properties compared with those obtained from as molded samples without preconditioning. Figure 11 reveals that all three systems respond similarly to preconditioning. All three precondition solutions reduce thecomposite s’ modulus and increase their strength. This result is explained by solvent absorption softening the composite.Table 5 shows sulfuric acid treatment exposed the stitches in composites manufactured from all three systems by acid-etching the exterior epoxy layer. Acetic acid treatment exposed the stitches on the composite manufactured with Hexion’s 6150 system but did not expose the stitching of composites manufactured with Recyclamine systems. Gasoline pretreatment did not aesthetically alter the samples. Figure 11 shows all three pretreatments exhibit reduced the modulus of composites produced from each of the three different systems and increased their strength. All three tested systems reacted similarly to the pretreatments.Table 5: Effect of gasoline and acids on compositesGlass Transition TemperatureSystem As Produced Gasoline Sulfuric Acid Acetic Acid Epikote 6150/Epikure 6150Epikote 6000/Recyclamine 3382Epikote 6000/Recyclamine 3182Figure 11: Effect of solvents conditioning on different systems propertiesSummary and Next StepsConnora’s Recyclamine curing agents were easy to process in HP-RTM technology and the resulting composites exhibited comparable mechanical properties to Hexion’s commercial resin system when tested at room temperature. At elevated temperature, Hexion’s commercial system exhibited better results than Connora’s Recyclamine systems presumably due to the slightly higher Tg of the Hexion system. Connora’s Recyclamine system responded well to preconditioning with gasoline, sulfuric acid and acetic acid. All results presented in this study are averages and standard deviations of five samples for each test which. While five is the minimum number of tests to assess statistical significance, more tests are recommended for enhanced statistical analysis.AcknowledgementsSteve Greydanus of Hexion was kind enough to donate all the Hexion materials used in the trial and also provided guidance toward efficient HPRTM processing. This work was supported by the National Science Foundation, through an SBIR Phase II Grant: Award #1632433Bibliography1. Pastine, S.J. (2016) Recylable High Pressure Resin Transfer (HP-RTM) Molding Epoxy Systemsand Their Composite Properties, ACCE 2016. Novi, Michigan. Conference proceedings.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Composites–Co-molding of local reinforcements foroptimized force transmission and locallyincreased mechanical performance–Local reinforcement with fabrics, non-wovens and component specific pre-forms–Optimization of crash worthiness of LFTparts and injection molded parts by theintegration of high strength fiber structures–Utilization of glass, aramid and carbonfibers etc. for efficient light weight design ICT TrägerTailored LFTdemonstrationpartTailored Structures for Efficient Lightweight ConstructionComposites at a GlanceMaterial and Process Development for:–Long fiber reinforced thermoplastics,e.g. LFT direct process (LFT-D/ILC)–Advanced LFT – use of engineeringthermoplastics as matrix polymerin the LFT-D/ILC process–Tailored LFT – co-molding of LFT withlocal continuous fiber reinforcement(Tailored Fiber Placement)–Processing of thermoset composites andprocess development for thermoset materialse.g. SMC–Development of natural fiber reinforcedcomposites in combination with biopolymers–Plastic-metal-hybrid – compression moldedlong fiber reinforced parts with metal insertsfor joining of metal and polymer components–Component and process simulation forLFT-parts and structures–Cast-Polyamide – in-situ-polymerizationfor the production of fiber reinforced highperformance partsStructural compositedoor-moduleSchematic layout of the LFT-D process with In-Line-Com-pounding (LFT-D/ILC)Twin screw mixing extruder with fiber direct incorporationDirect Process forLong Fiber Reinforced Thermoplastics (LFT)LFT Direct Process (LFT-D)Production of glass fiber reinforced thermoplastic parts with fiber direct incorporation: Direct incorporation of reinforcement fibers into the polymer resin melt and succeeding molding of the component parts–Development of component-specific material compositions and properties –Adjustable fiber content and free choice of reinforcement typeAdvantages–Reduced production costs by the elimination of semi-finished products and logistical effort –Increased production flexibility –LFT-strand with variable thickness for optimized mold fillLFT-D with In-Line Compounding (LFT-D/ILC)–Versatility regarding material composition –Just-in-time production–In-line compounding of polymers and additives–Use of engineering polymers –significant increase of propertiesThis process and material development was awarded with theJEC Award 2002Our partner Dieffenbacher GmbH & Co. KG was awarded for the development of processing equipment with theAVK-TV Innovationspreis 2001Tailored LFT – Co-Molding of LFT and Continuous Fiber ReinforcementsMaterial–Long fiber reinforced and continuous fiber reinforced thermoplastics (Tailored LFT)–In-Line-Compounding of LFT material in the LFT-D/ILC process–Local reinforcement of LFT-parts with fabrics and pultruded profilesFront-end carrier BMW E46 made of Tailored LFTResearch Topics–Mold fill analysis for compression molding of LFT and SMC–Investigation of rheological material data for LFT-D and SMC materials–Structural analysis with finite element simulation of co-molded LFT parts and SMC structures–Available Software: Catia V5, Ansys,Express, Moldflow, Marc, Coda and othersProcess Simulation ofLong Fiber Reinforced MaterialsTailored LFT Process–Co-molding of woven fabric and LFT in one single compression molding step–Completely automated production process:Transfer and positioning of LFT andreinforcements are automated with cycle times of 35 seconds per componentPrototype Part–Front-end carrier of BMW E46(3 series) made of Tailored LFT–Weight reduction of 30 % compared to original steel construction, approximately 10 % weight reduction compared to a plastic-metal-hybrid solutionThis project was funded by the german federal ministry of research and education and supervised by PTJ Jülich (Project number: 03N3069)Our Offer–Material and process development –Technology and equipment development –CAD, FEM–CharacterizationEquipment –Schmidt & Heinzmann SMC equipment –BMC Z-blade compounder–Fjellman and Dieffenbacher press –Reaktometer and Plastometer –Diffractometer–Process data acquisition–Wide range of characterization methodsMain Research –Class-A SMC–CF and Tailored SMC–Low density and foaming of SMC –Optimization of reproducibility,quality and emissions–Natural fibers and polymers –Recycling technologies –In-line data acquisition–Structural and process simulation –Nano technologyLong Fiber Reinforced Thermosetting Composites (SMC/BMC)Schmidt &Heintzmann SMC lineFjellmann SMC pressPart manufactured in low density SMCThermoplastic-RTM-Process (T-RTM)Development Topics–Thermoplastic composites with continuous fibre reinforcement–Tailored Fiber Placement technology (TFP),as positioning and stitch bonding of rovings and textile layers–Reduction of cycle time and costs –Process development for large scale productionProcess–Activated anionic polymerization to cast polyamide 6 with different textile fiber structures–T-RTM-process (Thermoplast-Resin Transfer Molding), developed at Fraunhofer ICTReinforcements–Organic and inorganic fibers(carbon, aramide, glass and others)–Textile structures like non-woven, woven or knitted fabrics, mats or combinations of these reinforcementsProcess AdvantagesSuitable for series production:–One-step-process with short cycle time –Low energy consumption from monomer to a finished component–Large, thick-walled and stress-freecomponents, also with varied thickness and embedded metallic inserts–Excellent single fiber impregnation by a low-viscosity melt also in thick structuresTwo or three component reaction injection molding machine,maximum melttemperature 200 °CSchematic layout ofthe T-RTM-processOur Offer Press Center for Production of Prototypes and Small Batch Series–Hydraulic high speed press withclosing force of 6.300 kN and active servo-controlled parallel motion system –SMC line–Press with closing force of 3.000 kN with heatable press table (up to 400 °C)–Dieffenbacher LFT-D extrusion line with in-line compounding (LFT-D/ILC)–Single screw plasticizing unit for long fiber reinforced thermosets and thermoplastics –High temperature RTM injection equipment for thermoset and thermoplastic reactive systems–Pivotable press for molding of liquid and reactive systemsOther Processing Equipment–2K injection molding machine with closing force of 1.100 kN and injection molding machines with closing forces of 600 kN and 350 kN–Twin screw extrusion lines with 27 mm diameter and 40 mm diameter –Different comminution devices for plastics and fiber reinforced materials –IR heating system (Heating area 1500 mm x 900 mm)–Automated clamping and transfer system for production of fabric reinforced sandwich structures and thermoforming respectively –Facilities for physical and chemical foaming of thermoplasticsMaterial and Component Characterization –Incineration oven 550 x 750 x 400 mm,up to 1.200 °C–Component construction and simulation –CATIA, ANSYS and EXPRESS–Testing facilities for material characterizationSpecial Equipment–Press center for molding and formulation trials–Compounding of customer specific LFT compounds–Processing of engineering plastics with long fiber reinforcement–Product development of advanced LFT structures with specific local reinforcements–Production of thermoset composite structures–Production of structural components with high performance fibers and cast-polyamide–Testing of composites and determination of service ranges–Consulting in material optimized and process optimized design of fiber reinforced products–Process development and modification of processes for specific products –Component and process simulation for LFT parts and structures–Development of closed loop recycling concepts for composites–Recycling of fiber reinforced materialsOther Competences in Polymer Engineering at the Fraunhofer ICT –Material- and process development in the range of polymers, polymer foams and conducting polymers –Product development –Extrusion–Injection molding and special injection molding processes–Mold technologies and Rapid-Tooling –Microwave applications in polymer engineering–Plasma- and Corona treatment e.g. for surface refinement–Comminution, treatment for recycling and recycling technologies–Polymer testing and characterizationContactBy Air –Airport Frankfurt/Main (approx. 120 km)–Airport Straßburg/France (approx. 100 km)–Airport Stuttgart (approx. 80 km)–Baden Airport Karlsruhe (approx. 40 km,only regional flights)By CarApproaching from the direction of Frankfurt/Main or Basel (CH):Motorway A5, exit Karlsruhe-Durlach, follow B10towards direction of Pforzheim until Pfinztal-Berghausen,follow B293 towards direction of Bretten, after the railway underpass turn left and follow the signs to the Fraunhofer ICT.Approaching from the direction of Stuttgart/München:Motorway A8, exit Pforzheim-West, follow B10 towards direction of Karlsruhe until Pfinztal-Berghausen, follow B293 towards direction of Bretten, for further directions please see above.By TrainTrain to Karlsruhe Hauptbahnhof; there you take the »Stadtbahn« S4 tram which departs every 20 or 40minutes towards Bretten/Eppingen/Heilbronn; exit at the stop »Berghausen-Hummelberg«. Please do NOT use the »Eilzug«. Note that the tram only stops on request (i.e. please press the button on the door). Travelling time approx. 25 minutes walk up the hill for about 10 minutes.By TaxiTake a taxi from Karlsruhe Hauptbahnhof to the Fraunhofer ICT – travelling time between 15 and 30 minutes. Price: 20,– Euro.Fraunhofer-Institut fürChemische Technologie ICTJoseph-von-Fraunhofer-Straße 7D-76327 Pfinztal (Berghausen), Germany Phone: +49(0)721-4640-0Fax: +49(0)721-4640-111info@ict.fhg.de www.ict.fhg.deDirectorsProf. Dr.-Ing. Peter Eyerer Dr.-Ing. Peter ElsnerGeneral ManagementDr.-Ing. Karl-Friedrich Ziegahn Phone: +49(0)721-4640-388kfz@ict.fhg.deCompositesDr.-Ing. Frank HenningPhone: +49(0)721-4640-420E-Mail: hg@ict.fhg.de Dr. Jan DiemertPhone: +49(0)721-4640-433di@ict.fhg.de。