§3[1].1__LTI离散系统的响应

合集下载

信号与线性系统分析-(第四版)第三章

信号与线性系统分析-(第四版)第三章

(2) 特解 yp(k) p(2)k,k 0
p(2)k 4 p(2)k1 4 p(2)k2 2k
p 4 p(2)1 4 p(2)2 1
p
1 4
特解
yp
(k)
1 4
(2)k
(3) 全解
y(k
)
(C1k
C2
)(2)k
1 4
(2)k,k
0
根据初始条件
1 y(0) C2 4 0
1 y(1) 2C1 2C2 4 2 1
y(k) 4 y(k 1) 4 y(k 2) f (k) 已知初始条件y(0)=0,有y(1)= - 1,激励 f (k) 2k , k 0。
求方程的全解。
解: (1) 齐次解 特征方程
齐次解
2 4 4 0 特征根 1 2 2
yh(k) (C1k C2 )(2)k 代入差分方程
10cos(0.5 k)
P Q 1
yp (k) cos(0.5 k) sin(0.5 k)
2 cos(0.5 k )
4
y(k) yh (k) yp (k)
C1
1 2
k
C2
1 3
k
2 cos(0.5 k )
4
y(0) C1 C2
2 cos( ) 0
4
y(1) C1 C2 2 cos(0.5 ) 1
y(2) 3 y(1) 2 y(0) f (2) 2
y(3) 3y(2) 2y(1) f (3) 10
y(4) 3 y(3) 2 y(2) f (4) 10
便于计算机求解
二、差分方程的经典解
LTI系统的数学模型:n阶常系数线性差分方程
y(k) an1 y(k 1) a0 y(k n) bm f (k) bm1 f (k 1) b0 f (k m)

信号与系统第三章

信号与系统第三章

y (4) 3 y (3) 2 y (2) f (4) 10 ...
特点:便于用计算机求解
2、差分方程的经典解
• 若单输入-单输出的LTI系统的激励为 f(k),全响应为y(k),则描述系统激 励与响应之间关系的数学模型是n阶 常系数线性差分方程,一般可写为:
a y (k i ) b
例3.1-1
• 解:将差分方程中除y(k)以外的各项都移到等 号右端,得
y(k ) 3 y(k 1) 2 y(k 2) f (k )
对k=2,将已知初始值y(0)=0,y(1)=2代入上式,得
y(2) 3 y(1) 2 y(0) f (2) 2
依次迭代可得 y (3) 3 y (2) 2 y (1) f (3) 10
位移单位序列:
运算:
• 加: (k) 2 (k) =3(k)
乘:(k) (k) (k)
延时:
0
取样性质:f (k)(k) f (0)(k)
2. 单位阶跃序列: (k)
(1)定义: (2)运算:
3) δ(k)与ε(k)的关系:
δ(k)=△ε(k)= ε(k)-ε(k-1) 差分表示,对应 的微分δ(t)=dε(t)/dt ε(k)=
第三章 离散系统的时域分析
连续系统与离散系统的比较
时域连续系统
f (t ) y(t )
常系数线性微分方程 卷积积分
时域离散系统
f (k ) y (k )
常系数线性差分方程 卷积和
y(t ) yzi (t ) yzs (t )
yzs (t ) f (t ) h(t )
y(k ) yzi (k ) yzs (k )

离散系统的时域分析_OK

离散系统的时域分析_OK

pk[c cos k Dsin k] 或Apk cos(k )
其 中
Ae j
C
jD
Ar1k r1 k cos( k r1) Ar2k r2 k cos( k r2) ... A0 k cos( k 0)
8
2. 特解
激励 f (k)
特解 yp (k)
km
Pmk m Pm1k m1 ... P1k P0 k r Pmk m Pm1k m1 ... P1k P0
y
f
(1)
3y f
(0) 2 y f
(1)
f
(1)
1
14
系统的零状态响应是非齐次差分方程的全解,分别求出方程
的齐次解和特解,得
yf
(k)
C f1
(1)k
C f2
(2)k
yp (k)
C f1
(1)k
C f2
(2)k
1 3
(2)k
将初始值代入上式,得
y
f
(0)
C
f
1
C
f
2
1 3
1
yf
(1)
1C f
yx
(1)
y(1)
0,
yx
2
y
2
1 2
yx (0) 3 yx (1) 2 yx 2 1
yx 1 3yx 0 2 yx 1 3
2021/9/5
求得初始值
13
1 1, 1 2
yx
(k)
Cx1
(1)k
Cx2
(2)k
yx yx
(0) (1)
Cx1 Cx2 Cx1 2Cx2
差分方程与微分方程的求解方法在很大程度上是相互对 应的.

信号与系统复习题

信号与系统复习题

信号与系统试题库一、填空题绪论:1.离散系统的激励与响应都是____离散信号 __。

2.请写出“LTI ”的英文全称___线性非时变系统 ____。

3.单位冲激函数是__阶跃函数_____的导数。

4.题3图所示波形可用单位阶跃函数表示为()(1)(2)3(3)t t t t εεεε+-+---。

5.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为____02()t t δ-_________。

6. 线性性质包含两个容:__齐次性和叠加性___。

7. 积分⎰∞∞-ω--δ-δdt )]t t ()t ([e 0t j =___01j t e ω--_______。

8.已知一线性时不变系统,当激励信号为f(t)时,其完全响应为(3sint-2cost )ε(t);当激励信号为2f(t)时,其完全响应为(5sint+cost)ε(t),则当激励信号为3f(t)时,其完全响应为___7sint+4cost _____。

9. 根据线性时不变系统的微分特性,若:f(t)−−→−系统y f (t) 则有:f ′(t)−−→−系统_____ y ′f (t)_______。

10. 信号f(n)=ε(n)·(δ(n)+δ(n-2))可_____δ(n)+δ(n-2)_______信号。

11、图1所示信号的时域表达式()f t =()(1)(1)tu t t u t --- 。

12、图2所示信号的时域表达式()f t =()(5)[(2)(5)]u t t u t u t +----。

13、已知()()()2f t t t t εε=--⎡⎤⎣⎦,则()f t '=()(2)2(2)u t u t t δ----。

14、[]2cos32td ττδτ-∞⎛⎫+ ⎪⎝⎭⎰=8()u t 。

15、[]()1td τδττ-∞'-⎰=()()u t t δ+。

信号与系统复习题

信号与系统复习题

信号与系统期末复习题一、填空题1.描述线性非时变连续系统的数学模型是_微分方程______________________________。

2.离散系统的激励与响应都是___离散时间信号_____。

4.请写出“LTI ”的英文全称___线性时不变____。

5.若信号f(t)的FT 存在,则它满足条件是_____________________。

8、周期信号的频谱是离散的,频谱中各谱线的高度,随着谐波次数的增高而逐渐减小,当谐波次数无限增多时,谐波分量的振幅趋向于无穷小,该性质称为__收敛性____ 9、若某信号)(t f 的最高频率为3kHz ,则)3(t f 的奈奎斯特取样频率为 18 kHz 。

10、某系统的频率特性为23)(3)(2+++=ωωωωj j j j H ,则其冲激响应为h(t)= )()3(2t e e tt ε--- 。

11、=*)(3)(2n n n n εε )()23(11n n n ε++- 。

12、已知1)(2-=z z z F ,则f(n)= )(])1(1[21n nε-- 。

13、某LTI 连续系统的输入信号为)()(2t e t f t ε-=,其冲激响应)()(t t h ε=,则该系统的零状态响应为)(n y zs 为)(]1[212t e t ε-- 。

14.(4分)()()u t u t *= t u (t )[][]u n u n *= (n +1)u [n +1]=(n +1) u [n ]15.(4分)已知信号f (t )= Sa (100t )* Sa (200t ),其最高频率分量为f m = 50/π Hz ,奈奎斯特取样率f s = 100/π Hz 16.(4分)已知F )()]([ωj F t f =,则F 3[()]j tf t e = [(3)]F j ω-F()(2)n f t t n δ∞=-∞⎡⎤-⎢⎥⎣⎦∑= 1[()]2n F j n ωπ∞=-∞-∑17.(2分)设某因果离散系统的系统函数为az zz H +=)(,要使系统稳定,则a 应满足 | a | < 118.(2分)已知某系统的频率响应为3()4j H j e ωω-=,则该系统的单位阶跃响应为 4 u (t -3)19.(3分)已知某系统的系统函数为2()1H s s =+,激励信号为()3cos 2x t t =,则该系统的稳态响应为()2(arctan 2)y t t =- 20.(3分)已知)2)(21()(--=z z z z X ,收敛域为221<<z ,其逆变换为 21()[]2[1]32n n u n u n ⎡⎤-+--⎢⎥⎣⎦二、选择题1.连续信号)(t f 与)(0t t -δ的卷积,即=-*)()(0t t t f δ(a) )(t f (b) )(0t t f - (c) )(t δ (d) )(0t t -δ 2.连续信号)(t f 与)(0t t -δ的乘积,即=-)()(0t t t f δ(a) )()(0t t f δ (b) )(0t t f - (c) )(t δ (d) )()(00t t t f -δ 3.线性时不变系统的数学模型是(a) 线性微分方程 (b) 微分方程 (c) 线性常系数微分方程 (d) 常系数微分方程4.若收敛坐标落于原点,S 平面有半平面为收敛区,则(a) 该信号是有始有终信号 (b) 该信号是按指数规律增长的信号 (c) 该信号是按指数规律衰减的信号(d) 该信号的幅度既不增长也不衰减而等于稳定值,或随时间n t t ,成比例增长的信号 5.若对连续时间信号进行频域分析,则需对该信号进行 (a) LT (b) FT (c) Z 变换 (d) 希尔伯特变换 6.无失真传输的条件是(a) 幅频特性等于常数 (b) 相位特性是一通过原点的直线 (c) 幅频特性等于常数,相位特性是一通过原点的直线(d) 幅频特性是一通过原点的直线,相位特性等于常数 7.描述离散时间系统的数学模型是(a) 差分方程 (b) 代数方程 (c) 微分方程 (d) 状态方程 8.若Z 变换的收敛域是 1||x R z > 则该序列是(a) 左边序列 (b)右边序列 (c)双边序列 (d) 有限长序列 9.若以信号流图建立连续时间系统的状态方程,则应选(a) 微分器的输出作为状态变量 (b) 延时单元的输出作为状态变量 (c) 输出节点作为状态变量 (d)积分器的输出作为状态变量 10.若离散时间系统是稳定因果的,则它的系统函数的极点 (a) 全部落于单位圆外 (b) 全部落于单位圆上 (c) 全部落于单位圆内 (d) 上述三种情况都不对11、某LTI 系统的微分方程为)()(2)(t f t y t y =+',在f(t)作用下其零状态响应为t e -+1,则当输入为)()(2t f t f '+时,其零状态响应为: (a) t e -+2 (b) t e --2 (c) t e -+32 (d)1 12、某3阶系统的系统函数为ks s s ks s H ++++=32)(23,则k 取何值时系统稳定。

02-1 LTI离散系统响应的求解课件

02-1 LTI离散系统响应的求解课件

特解
(1)齐次解:齐次差分方程的解。
y(k ) an1 y(k 1) L a0 y(k n) 0
(a)通一信阶方原 程理
y(k) a0 y(k 1) 0 y(k)
y(k 1) a0 y(k) C(a0 )k
特征方程: a0 0 特征根: a0 差分方程齐次解形式: Ck
解:(1)求齐次解。 2 4 4 0
可解得特征根 1 2 2 为二重根,齐次解形式为:
y (k ) [C k C ](2yp (k )
P
2 k
,
k
0
将 yp (k ), yp (k 1), yp (k 2) 代入微分方程中得
P 2k 4P 2k 1 4P 2k 2 2k 4P 1
y(k):响应信号
初始状态: y(-1) ,y(-2),…, y(-n)
二、L通T信I离原散理系统响应的求解 1、迭代法:差分方程是递推的代数方程,若已知初
始条件和激励,利用迭代法可求得其数值解。
例:若描述某系统的差分方程为: y(k ) 3 y(k 1) 2 y(k 2) f (k)
已知初始条件 y(0)=0, y(1)=2, 激励 f (k) 2k(k) , 求 y(k)。 解: y(k ) 3 y(k 1) 2 y(k 2) f (k)
4
4
通信原理
通信原理
LTI离散系统响应的求解
主讲人:曹红梅 通信与信息工程学院
1
1
一、L通T信I离原散理系统的描述
LTI离散系统描述方法:n阶线性常系数差分方程
y(k ) an1 y(k 1) L a0 y(k n) bm f (k ) bm1 f (k 1) L b0 f (k m)
f(k):激励信号

信号与系统(郑君里)复习要点

信号与系统(郑君里)复习要点

信号与系统复习书中最重要的三大变换几乎都有。

第一章 信号与系统 1、信号的分类①连续信号和离散信号 ②周期信号和非周期信号 连续周期信号f (t )满足f (t ) = f (t + m T ), 离散周期信号f(k )满足f (k ) = f (k + m N ),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。

③能量信号和功率信号 ④因果信号和反因果信号2、信号的基本运算(+ - × ÷) 2.1信号的(+ - × ÷)2.2信号的时间变换运算 (反转、平移和尺度变换) 3、奇异信号3.1 单位冲激函数的性质f (t ) δ(t ) = f (0) δ(t ) , f (t ) δ(t –a) = f (a) δ(t –a)例: 3.2序列δ(k )和ε(k ) f (k )δ(k ) = f (0)δ(k ) f (k )δ(k –k 0) = f (k 0)δ(k –k 0) 4、系统的分类与性质4.1连续系统和离散系统4.2 动态系统与即时系统 4.3 线性系统与非线性系统 ①线性性质 T [a f (·)] = a T [ f (·)](齐次性) T [ f 1(·)+ f 2(·)] = T[ f 1(·)]+T[ f 2(·)] (可加性)②当动态系统满足下列三个条件时该系统为线性系统:)0(d )()(f t t t f =⎰∞∞-δ)(d )()(a f t a t t f =-⎰∞∞-δ?d )()4sin(91=-⎰-t t t δπ)0('d )()('f t t f t -=⎰∞∞-δ)0()1(d )()()()(n n n f t t f t -=⎰∞∞-δ4)2(2])2[(d d d )(')2(0022=--=--=-==∞∞-⎰t t t t tt t t δ)(1||1)()()(t a a at n n n δδ⋅=)(||1)(t a at δδ=)(||1)(00a t t a t at -=-δδ)0()()(f k k f k =∑∞-∞=δy (·) = y f (·) + y x (·) = T[{ f (·) }, {0}]+ T[ {0},{x (0)}] (可分解性) T[{a f (·) }, {0}] = a T[{ f (·) }, {0}]T[{f 1(t ) + f 2(t ) }, {0}] = T[{ f 1 (·) }, {0}] + T[{ f 2 (·) }, {0}](零状态线性)T[{0},{a x 1(0) +b x 2(0)} ]= aT[{0},{x 1(0)}] +bT[{0},{x 2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f (t - t d )] = y f (t - t d)(时不变性质)直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。

离散时间LTI系统的零输入响应

离散时间LTI系统的零输入响应

主讲人:陈后金电子信息工程学院离散时间LTI系统的零输入响应◆零输入响应的定义◆零输入响应的形式◆零输入响应的求解1.零输入响应的定义][0=-∑=i k y a i n i 数学模型:输入信号为零,仅由系统的初始状态单独作用而产生的响应称为零输入响应,记为。

][zi k y(1)特征根是不等实根r 1, r 2, ⋯, r n(2)特征根是相等实根r 1=r 2=⋯=r n (3)特征根是成对共轭复根0j 2,1e j Ωρ±=±=b a r k nn k k r C r C r C k y +++= 2211zi ][k n n k k r kC kr C r C k y 121zi ][-+++= k ΩC k ΩC k y k k 0201zi sin cos ][ρρ+=2.零输入响应的形式零输入响应y zi [k ]的形式求解过程第一步:求出差分方程对应的特征根;第二步:根据特征根确定零输入响应的形式;第三步:将初始状态代入零输入响应表示式,解出待定系数即得到零输入响应。

[例]离散LTI 系统差分方程为y [k ]+3y [k -1]+2y [k -2]=x [k ],k ≥0,初始状态为y [-1]=0,y [-2]= 1/2,求系统零输入响应y zi [k ]。

解:系统的特征方程为系统的特征根为C 1=1,C 2-2232=++r r 2,121-=-=r r zi 12[](1)(2)k ky k C C =-+-2141]2[021]1[2121=+=-=--=-C C y C C y 0)2(2)1(][z i ≥---=k k y kk (两不等实根)某离散LTI 系统的差分方程式为:y [k ]+4y [k -1]+4y [k -2]=x [k ]初始状态为y [-1]=0,y [-2]= 1/2,求系统的零输入响应y zi [k ]。

解:系统的特征方程为系统的特征根为C 1= C 2= -20442=++r r 221-==r r k k C k C k y )2()2(][21zi -+-=022]1[21=-=-C C y 2142]2[21=+-=-C C y 0,)2(2)2(2][zi ≥----=k k k y kk (两相等实根)[例]系统的特征根为222=++r r j r j r --=+-=1,121⎪⎭⎫ ⎝⎛+=k C k C k y k 43πsin 43πcos 2][21zi 0]1[21=--=-C C y 2/12/]2[2==-C y 0],43πsin 43πcos [2][zi ≥+-=k k k k y k某离散LTI 系统的差分方程式为:y [k ]+2y [k -1]+2y [k -2]=x [k ]初始状态为y [-1]=0,y [-2]= 1/2,求系统的零输入响应y zi [k ]。

[工学] 第3章1 LTI系统的描述及特点_连续LTI系统响应

[工学] 第3章1  LTI系统的描述及特点_连续LTI系统响应

2、冲激平衡法 求系统的单位冲激响应
h ( n ) (t ) an1h ( n1) (t ) a1h' (t ) a0 h(t ) bm ( m) (t ) bm1 ( m1) (t ) b1 ' (t ) b0 (t )
由于t >0+后, 方程右端为零, 故 n>m 时
求解系统的零状态响应yzs (t)方法:
1) 直接求解初始状态为零的微分方程。
2) 卷积法:
利用信号分解和线性时不变系统的特性求解。
卷积法求解系统零状态响应yzs(t)的思路
1) 将任意信号分解为单位冲激信号的线性组合
2) 求出单位冲激信号作用在系统上的响应 —— 冲激响应 3) 利用线性时不变系统的特性,即可求出任意 信号f(t)激励下系统的零状态响应yzs (t) 。
?线性时不变系统的描述及特点?连续时间lti系统的响应连续时间系统的冲激响应卷积积分及其性质连续时间系统的冲激响应卷积积分及其性质?离散时间lti系统的响应离散时间系统的单位脉冲响应卷积和及其性质系统的响应离散时间系统的单位脉冲响应卷积和及其性质?冲激响应表示的系统特性第第3章系统的时域分析lti系统分析方法概述一系统理论中的主要问题
§3.1 线性时不变系统的描述及特点
例1 求并联电路的端电压 vt 与激励 is t 间的关系。

1 电阻 iR t vt R
iR
iL
L C
电感
d vt 电容 iC t C dt iR t iL t iC t iS t 根据KCL
s1 2,s2 3
y x (t ) K1e 2t K 2 e 3t
y(0)=yx(0)=K1+K2=1

信号与线性系统分析复习题及答案

信号与线性系统分析复习题及答案

信号与线性系统复习题单项选择题。

1. 已知序列3()cos()5f k k π=为周期序列,其周期为 ( C ) A . 2 B. 5 C. 10 D. 122. 题2图所示()f t 的数学表达式为 ( B )图题2A .()10sin()[()(1)]f t t t t πεε=+- B. ()10sin()[()(1)]f t t t t πεε=-- C. ()10sin()[()(2)]f t t t t πεε=-- D. ()10sin()[()(2)]f t t t t πεε=+-3.已知sin()()()t f t t dt t πδ∞-∞=⎰,其值是 ( A )A .π B. 2π C. 3π D. 4π4.冲激函数()t δ的拉普拉斯变换为 ( A )A . 1 B. 2 C. 3 D. 45.为了使信号无失真传输,系统的频率响应函数应为 ( D ) A . ()djwt H jw e= B. ()djwt H jw e-= C. ()djwt H jw Ke= D. ()djwt H jw Ke-=6.已知序列1()()()3kf k k ε=,其z 变换为 ( B )A .13z z + B.13z z - C.14z z + D.14z z -7.离散因果系统的充分必要条件是 ( A ) A .0,0)(<=k k h B. 0,0)(>=k k h C. 0,0)(<<k k h D. 0,0)(>>k k h8.已知()f t 的傅里叶变换为()F jw ,则(3)f t +的傅里叶变换为 ( C ) A .()jwF jw e B. 2()j wF jw eC. 3()j wF jw eD. 4()j wF jw e9.已知)()(k k f kεα=,)2()(-=k k h δ,则()()f k h k *的值为( B ) A .)1(1--k k εαB. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα10.连续时间系统的零输入响应的“零”是指( A ) A. 激励为零 B. 系统的初始状态为零 C. 系统的冲激响应为零 D. 系统的阶跃响应为零 11. 已知序列kjek f 3)(π=为周期序列,其周期为 ( )A . 2 B. 4 C. 6 D. 812. 题2图所示()f t 的数学表达式为 ( )A .)1()1()(--+=t t t f εε B.)1()1()(-++=t t t f εε C. )1()()(--=t t t f εε D. )1()()(-+=t t t f εε13.已知)2()(),1()(21-=-=t t f t t f εδ,则 12()()f t f t *的值是 ( ) A .)(t ε B. )1(-t ε C. )2(-t ε D. )3(-t ε14.已知ωωj j F =)(,则其对应的原函数为 ( ) A .)(t δ B. )('t δ C. )(''t δ D. )('''t δ15.连续因果系统的充分必要条件是 ( ) A . 0,0)(==t t h B. 0,0)(<=t t h C. 0,0)(>=t t h D. 0,0)(≠=t t h16.单位阶跃序列)(k ε的z 变换为 ( )A .1,1<+z z z B. 1,1>+z z z C. 1,1<-z z z D. 1,1>-z z z 17.已知系统函数ss H 1)(=,则其单位冲激响应()h t 为 ( )A .)(t ε B. )(t t ε C. )(2t t ε D. )(3t t ε18.已知()f t 的拉普拉斯变换为()F s ,则)5(t f 的拉普拉斯变换为 ( )tA .)5(s F B. )5(31s F C. )5(51s F D. )5(71s F 19.已知)2()(2-=-k k f k εα,)2()(-=k k h δ,则()()f k h k *的值为( )A .)1(1--k k εα B. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα20.已知)(t f 的傅里叶变换为)(ωj F ,则)(jt F 的傅里叶变换为( ) A. )(ωπ-fB. )(ωπfC. )(2ωπ-fD. )(2ωπf21. 下列微分或差分方程所描述的系统是时变系统的是 ( ) A . )(2)()(2)(''t f t f t y t y -=+ B. )()(sin )('t f t ty t y =+ C. )()]([)(2't f t y t y =+ D. )()2()1()(k f k y k y k y =--+22. 已知)()(),()(21t t f t t t f εε==,则)()(21t f t f *的值是 ( ) A .)(1.02t t ε B. )(3.02t t ε C. )(5.02t t ε D. )(7.02t t ε23.符号函数)sgn(t 的频谱函数为 ( )A .ωj 1 B. ωj 2 C. ωj 3 D. ωj 424.连续系统是稳定系统的充分必要条件是 ( ) A . M dt t h ≤⎰∞∞-)( B. M dt t h ≥⎰∞∞-)(C.M dt t h ≤⎰∞∞-)( D.M dt t h ≥⎰∞∞-)(25.已知函数)(t f 的象函数)5)(2()6()(+++=s s s s F ,则原函数)(t f 的初值为 ( )A . 0 B. 1 C. 2 D. 3 26.已知系统函数13)(+=s s H ,则该系统的单位冲激响应为 ( ) A .)(t e tε- B.)(2t e tε- C.)(3t e tε- D. )(4t e tε- 27.已知)2()(),1()(1-=-=-k k h k k f k δεα,则)()(k h k f *的值为 ( )A .)(k kεα B.)1(1--k k εα C.)2(2--k k εα D. )3(3--k k εα28. 系统的零输入响应是指( ) A.系统无激励信号 B. 系统的初始状态为零C. 系统的激励为零,仅由系统的初始状态引起的响应D. 系统的初始状态为零,仅由系统的激励引起的响应 29.偶函数的傅里叶级数展开式中 ( )A .只有正弦项 B.只有余弦项 C. 只有偶次谐波 D. 只有奇次谐波 10. 已知信号()f t 的波形,则)2(t f 的波形为 ( ) A .将()f t 以原点为基准,沿横轴压缩到原来的12B. 将()f t 以原点为基准,沿横轴展宽到原来的2倍C. 将()f t 以原点为基准,沿横轴压缩到原来的14D. 将()f t 以原点为基准,沿横轴展宽到原来的4倍 填空题1. 已知象函数223()(1)s F s s +=+,其原函数的初值(0)f +为___________________。

信号与系统期中考试答案

信号与系统期中考试答案

一、(15%)已知连续时间信号x t ()和离散时间信号x n []的波形图如下图所示。

画出下列各信号的波形图,并加以标注。

1. ()()11x t x t =-, 2. ()()221x t x t =-, 3. 3()()x x t ττ=-第三个自变量不为t !! 4. {}1[][][]e x n x n Even x n ==, 5. 2[][][1]x n x n n δ=-答案二、(25%)简要回答下列问题。

1. 推导离散时间信号[]0j n x n e ω=成为周期信号的条件(3%);若是周期信号,给出基波周期的求法(3%)。

答案:若为周期信号,则00()j nj n N e e n ωω+=∀,。

推出01j N e ω=,再推出02,,0N k k z k ωπ=∈≠。

得出02kNωπ=为有理分数。

0002min ,1k N N z k z k πω⎧⎫⎪⎪=∈∈≥⎨⎬⎪⎪⎩⎭,且2.指出离散时间信号[]j n x n e ω=频率取值的主值范围(2%),指出它的最低频率和最高频率(2%)。

答案2πωπωπ-≤<≤<或0。

min max 02,21),k k z k k z ωπωππ=∈=+∈或。

而或(。

3.断下列两个系统是否具有记忆性。

① ()()()()222y t x t x t =-,(1%)② [][][]0.51y n x n x n =--。

(1%)答案 ① 无记忆性 ② 有记忆性4. 简述连续时间和离散时间线性时不变(LTI )系统的因果性、稳定性与单位冲激响应(Unit impulse response )的关系(4%)。

答案因果性与()()()[][][]h t h t u t h n h n u n ==或互为充要条件。

稳定性与|()||[]|n h t dt h n +∞+∞=-∞-∞<+∞<+∞∑⎰或互为充要条件。

5. 很广泛一类因果系统可用常系数微分方程:()()00k k NM k kk k k k d y t d x t a b dt dt ===∑∑表征,画出该类系统的增量线性系统结构(2%),用该结构说明全响应的构成方法及每一部分的物理含义(4%),在什么条件下该类系统为LTI 系统(3%)? 答案()()()x i y t y t y t =+, ()()*()x y t x t h t =是仅由输入信号引起响应:零状态响应,()i y t 是仅由初始状态引起的响应:零输入响应。

第三章 LTI离散系统的响应

第三章 LTI离散系统的响应

f (k ) (k i) f (i)

3.2 单位序列响应和阶跃响应
( 2)单 位 阶跃 序 列 1 k 0 (k ) 0 k 0 (k )
移位单位阶跃序列 (k i ) 1 k i 0 k i
(k 2)
11Fra bibliotek0
1 2 3
k
k
0
1 2 3 4 5
3.1 LTI离散系统的响应 2. 差分方程
包含未知序列y(k)及其各阶差分的方程式称为差分方程。 将差分展开为移位序列,得一般形式 y(k) + an-1y(k-1) +…+ a0y(k-n) = bmf(k)+…+ b0f(k-m)
例1:若描述某系统的差分方程为 y(k) + 3y(k – 1) + 2y(k – 2) = f(k) 已知初始条件y(0)=0, y(1)=2, 激励f(k)=2kε(k), 求y(k)。 解: y(k) = – 3y(k – 1) – 2y(k – 2) + f(k) y(2)= – 3y(1) – 2y(0) + f(2) = – 2 y(3)= – 3y(2) – 2y(1) + f(3) = 10 …… 一般不易得到解析形式的(闭合)解。
Czi1=1 , Czi2= – 2
所以 yzi(k)=(– 1)k – 2(– 2)k , k≥0
3.1 LTI离散系统的响应 (2)零状态响应yzs(k) 满足 yzs(k) + 3yzs(k –1) + 2yzs(k –2) = f(k) yzs(–1)= yzs(–2) = 0 递推求初始值 yzs(0), yzs(1), yzs(k) = – 3yzs(k –1) – 2yzs(k –2) + 2k , k≥0 yzs(0) = – 3yzs(–1) – 2yzs(–2) + 1 = 1 yzs(1) = – 3yzs(0) – 2yzs(–1) + 2 = – 1 分别求出齐次解和特解,得 yzs(k) = Czs1(–1)k + Czs2(–2)k + yp(k) = Czs1(– 1)k + Czs2(– 2)k + (1/3)2k 代入初始值求得 Czs1= – 1/3 , Czs2=1 所以 yzs(k)= – (– 1)k/3+ (– 2)k + (1/3)2k , k≥0

信号与系统试题库史上最全(内含答案)

信号与系统试题库史上最全(内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题〔5个小题〕,占30分;计算题〔7个大题〕,占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试答复该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.有限频带信号)(t f 的最高频率为100Hz ,假设对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。

[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。

[答案:3]6.)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。

[答案:521(25)()22j f t e F j ωω--↔]7.)(t f 的波形图如下图,画出)2()2(t t f --ε的波形。

[答案: ]8.线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。

[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。

[答案:)0(+f =2,0)(=∞f ]10.假设LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。

其中:)()21()(k k g k ε=。

[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

信号与系统(程耕国)下册课后习题答案

信号与系统(程耕国)下册课后习题答案

信号与系统(程耕国)下册课后习题答案6.2 精选例题例 1 设一个LTI 离散系统的初始状态不为零,当激励为)()(1n u n f =时全响应为)(121)(1n u n y n ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛=,当激励为)()(2n u n f -=时全响应为)(121)(2n u n y n ⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-=。

(1)当系统的初始状态保持不变,且激励为)(4)(3n u n f =时,求系统的全响应)(3n y 。

(2)当系统的初始状态增加一倍,且激励为)2(4)(4-=n u n f 时,求系统的全响应)(4n y 。

(3)求该系统的单位序列响应)(n h 。

解:设系统的初始状态保持不变,当激励为)()(1n u n f =时系统的零输入响应和零状态响应分别为)(n y x 、)(n y f 。

依题意,有:)(121)()()(1n u n y n y n y n f x ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛=+= ○1根据LTI 系统的性质,当激励为)()(2n u n f -=时全响应为)(121)(()(2n u n y n y n y n f x ⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-=-=) ○2联立式○1、○2,可解得:⎪⎪⎩⎪⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=++++)(12121)()(2121(1111n u n y n u n y n n f n n x )同样,根据LTI 系统的基本性质,不难得到:(1)当系统的初始状态保持不变,且激励为)(4)(3n u n f =时,系统的全响应为:)(4)()(3n y n y n y f x +=)(121214)(21211111n u n u n n n n ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=++++)(421321511n u n n ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=++(2)当系统的初始状态增加一倍,且激励为)2(4)(4-=n u n f 时,系统的全响应为:)2(4)(2)(4-+=n y n y n y f x)2(121214)(21211111-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=--++n u n u n n n n(3)由于)1()()(--=n u n u n δ,所以该系统的单位序列响应为:)1()()(--=n y n y n h f f)1(12121)(1212111-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=++n u n u n n n n 例2 一个LTI 连续系统对激励)(sin )(t tu t f =的零状态响应)(t y f 如例2图所示,求该系统的冲激响应)(t h 。

离散系统的零状态响应

离散系统的零状态响应

k
对比 : g (t ) h( )d

t
2. 已知g (k )求h(k ) :
(k ) (k ) (k 1) h(k ) g (k ) g (k 1)
X
例题(书P127例5-9)(自学,不要求)
求离散系统 y k 4 y k 1 3 y k 2 2 k y 1 1, y( 2) 1 的单位响应 (其中k 0)
(k ) (k j ) (k ) (k 1) (k j )

第 7 页
由于 (k ) h(k )根据LTI性质
g ( k ) h( k j )
j 0 i
j 0
i
(i)
k
h(i)
单位序列响应的初值h1 (0),1h1 (1), h(2)可由下式递推得到
h1 (k ) (k ) a1h1 (k 1) an 1h1 (k n 1) anh1 (k n)
h(k ) b0 h1 (k ) b1h1 (k-1) bm 1h (k m 1) bmh1 (k m)
ik 6 4
k i 0
i
k-6
k 0
y (k ) 0
k i a
3.k 4
k-6 k
k 6 0
k
4.k 6 0 k 6 4
4
i0
k-6
5.k 6 4即 : k 10
k-6
k
y(k) 0
X
1.k 0, y (k ) 0
2.0 k 4 y (k ) a
设系统激励仅在是δ(k) →h1(k),此时系统差分方程变为:

离散时间LTI系统的单位脉冲响应

离散时间LTI系统的单位脉冲响应
解:h[k]满足方程 h[k ] 3h[k 1] 2h[k 2] d [k ]
(1) 确定h[k]的形式
特征方程为 特征根为
r 2 3r 2 0 r1 1, r2 2
h[k ] C1 (1) k C 2 (2) k , k 0
2. 单位脉冲响应的求解
离散时间LTI系统的单位脉冲响应
谢 谢
本课程所引用的一些素材为主讲老师多年的教学积累,来
源于多种媒体及同事、同行、朋友的交流,难以一一注明出处, 特此说明并表示感谢!
解:h[k]满足方程 h[k ] 3h[k 1] 2h[k 2] d [k ] (3) 确定齐次解的待定系数 代入初始条件
h[0] C1 C2 1, h[1] C1 2C2 3
C1=-1,C2= 2
h[k ] [(1) k 2(2) k ]u[k ]
h [k]
1. 单位脉冲响应的定义
若描述离散时间LTI系统的常系数线性差分方程为

a y[k i] b x[k j ]
i 0 i j 0 j
n
m
则离散时间LTI系统的单位脉冲响应h[k]应满足

i 0
n
ai h[k i] b jd [k j ]
j 0
m
2. 单位脉冲响应的求解
[例] 某离散因果LTI系统的差分方程为 y[k ] 3 y[k 1] 2 y[k 2] x[k ] 求系统的单位脉冲响应h[k]。
选择初始条件基本原则是必须将d[k]的作用体现在初始条件中 解:h[k]满足方程 h[k ] 3h[k 1] 2h[k 2] d [k ] (2) 求等效初始条件 对于因果系统有h[-1] = h[-2] = 0,代入上面方程可推出 h[0] d [0] 3h[1] 2h[2] 1

2020年智慧树知道网课《信号与系统(山东联盟-山东师范大学)》课后章节测试满分答案

2020年智慧树知道网课《信号与系统(山东联盟-山东师范大学)》课后章节测试满分答案

第一章测试1【判断题】(10分)正弦连续函数一定是周期信号A.对B.错2【判断题】(10分)正弦离散函数一定是周期序列。

A.错B.对3【判断题】(10分)余弦连续函数一定是周期信号。

A.错B.对4【判断题】(10分)余弦离散序列一定是周期的A.对B.错5【判断题】(10分)两个离散周期序列的和一定是周期信号。

A.对B.错6【判断题】(10分)两个连续周期函数的和一定是周期信号。

A.对B.错7【判断题】(10分)两个连续正弦函数的和不一定是周期函数。

A.对B.错8【判断题】(10分)取样信号属于功率信号。

A.对B.错9【判断题】(10分)门信号属于能量信号。

A.错B.对10【判断题】(10分)两个连续余弦函数的和不一定是周期函数。

A.错B.对第二章测试1【判断题】(10分)微分方程的齐次解称为自由响应。

A.对B.错2【判断题】(10分)微分方程的特解称为强迫响应。

A.错B.对3【判断题】(10分)微分方程的零状态响应是稳态响应的一部分A.对B.错4【判断题】(10分)微分方程的零输入响应是稳态响应的一部分A.对B.错5【判断题】(10分)微分方程的零状态响应包含齐次解部分和特解两部分。

A.错B.对6【判断题】(10分)微分方程的零状态响应中的特解部分与微分方程的强迫响应相等。

A.错B.对7【判断题】(10分)对LTI连续系统,当输入信号含有冲激信号及其各阶导数,系统的初始值往往会发生跳变。

A.对B.错8【判断题】(10分)对线性时不变连续系统,当输入信号含有阶跃信号,系统的初始值往往会发生跳变A.对B.错9【判断题】(10分)冲激函数匹配法是用于由零负初始值求解零正初始值。

A.对B.错10【判断题】(10分)LTI连续系统的全响应是单位冲激响应与单位阶跃响应的和。

A.对B.错第三章测试1【判断题】(10分)LTI离散系统的响应等于自由响应加上强迫响应。

A.错B.对2【判断题】(10分)LTI离散系统的响应等于齐次解加上零状态响应的和。

(完整)信号与系统 西安邮电 习题答案

(完整)信号与系统 西安邮电 习题答案

第一次1.1 画出下列各个信号的波形[式中()()r t t t ε=为斜升函数]知识要点:本题主要考查阶跃函数和单位阶跃序列的性质,包括()t ε和()k ε的波形特性以及它们与普通函数结合时的波形变化特性。

解题方法:首先考虑各信号中普通函数的波形特点,再考虑与()t ε或()k ε结合时的变化情况;若()t f 只是普通信号与阶跃信号相乘,则可利用()t ε或()k ε的性质直接画出0>t 或0≥k 部分的普通函数的波形;若()t f 是普通函数与阶跃信号组合成的复合信号,则需要考虑普通函数值域及其对应的区间。

(1) ()()()t t t f εsin = 解:正弦信号周期ππωπ2122===T 1-12ππt()f t(2) ()()sin f t t επ= 解:()0 sin 01 sin 0t f t t ππ<⎧=⎨>⎩,正弦信号周期22==ππT(3)()()cosf t r t=解:()0 cost0 cos cos0f tt t <⎧=⎨>⎩,正弦信号周期221Tππ==(4) ()()kkkfε)12(+=-1-212k3135()f k …………(5) ()()()111k f k k ε+⎡⎤=+-⎣⎦-2-412k312()f k …………45-1-31。

2 画出下列各信号的波形[式中()()r t t t ε=为斜升函数]知识要点:本题主要考查阶跃函数和单位阶跃序列的性质,包括()t ε和()k ε的波形特性以及它们与普通函数结合时的波形变化特性。

解题方法:首先考虑各信号中普通函数的波形特点,再考虑与()t ε或()k ε结合时的变化情况;若()t f 只是普通信号与阶跃信号相乘,则可利用()t ε或()k ε的性质直接画出0>t 或0≥k 部分的普通函数的波形;若()t f 是普通函数与阶跃信号组合成的复合信号,则需要考虑普通函数值域及其对应的区间。

离散时间LTI系统的零输入响应

离散时间LTI系统的零输入响应
谢谢
本课程所引用的一些素材为主讲老师多年的教学积累,来 源于多种媒体及同事、同行、朋友的交流,难以一一注明出处, 特此说明并表示感谢!
yzi [k] 2k(2)k 2(2)k ,
k 0
C1 = C2= -2
3.零输入响应的求解
[例]某离散LTI系统的差分方程式为:y[k]+2y[k-1]+2y[k-2]=x[k]
初始状态为y[-1]=0, y[-2]= 1/2,求系统的零输入响应yzi[k]。
解: 系统的特征方程为 r2 2r 2 0
(1) 特征根是不等实根 r1, r2, , rn
y [k] C r k C r k C r k
zi
11
22
nn
(2) 特征根是相等实根 r1=r2==rn
y [k] C rk C krk C k n1r k
zi
1
2
n
(3) 特征根是成对共轭复根 r1 , 2 a j b e j 0
解: 系统的特征方程为 r2 3r 2 0
系统的特征根为
yzi
[k
]
Cr11(11)k,
r2
C
2(两不等实根) (2)k
2
y[1]
C1
1 2
C2
0
y[2] C 1 C 1
1 42 2
C1=1,C2-2
yzi[k] (1)k 2(2)k k0
3.零输入响应的求解
[例]某离散LTI系统的差分方程式为:y[k]+4y[k-1]+4y[k-2]=x[k]
yzi[k] C1 k cos Ω0k C2 k sin Ω0k
3.零输入响应的求解
求解过程 第一步:求出差分方程对应的特征根; 第二步:根据特征根确定零输入响应的形式;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2f(k) = [f(k)] = [f(k) – f(k-1)] = f(k) – f(k-1)
= f(k)–f(k-1) –[f(k-1) –f(k-2)]= f(k) –2 f(k-1) +f(k-2) (5) m阶差分:
mf(k) = f(k) + b1f(k-1) +…+ bmf(k-m)

1.6-12


第 23 页
4. 线性系统与非线性系统
• 线性系统:指满足线性性质的系统。f (·) 系统 y (·)
• 线性性质:齐次性和可加性
T
齐次性: f(·) →y(·)
a f(·) →a y(·)
y(·) = T[ f (·)] f (·) → y(·)
可加性:
f1(·) →y1(·) f2(·) →y2(·)
■ 第 14 页
零输入响应举例
系统的方程 yk 3yk 1 2yk 2 f k f k 1
f k 2k k y0 y1 0
求系统的零输入响应。 解:零输入响应yzi(k),即当f(k)=0时的解。
yk 3yk 1 2yk 2 0
2 3 2 0 1 2, 2 1
yzi k C1 2k C2 1k

第5页
二、差分方程的经典解
y(k) + an-1y(k-1) +…+ a0y(k-n) = bmf(k)+…+ b0f(k-m)
与微分方程经典解类似,y(k) = yh(k) + yp(k) 1.齐次解:
齐次方程
y(k) + an-1y(k-1) + … + a0y(k-n) = 0 特征方程
1 + an-1λ– 1 + … + a0λ– n = 0 , 即
■ 第 15 页
求初始状态
题中y(0)=y(1)=0 ,是激励加上以后的,不能说明状态为 0,需迭代求出 y(-1), y(-2) 。
n 1 y1 3y0 2y1 21 200
0 0 2 y1 2 1 1
所以y 1 1
2
n 0 y0 3y1 2y 2 200 211
0 3 y1 2 y 2 1
k r (Pmk m Pm1k m1 P1k P0 )(有r重为0的特征根)
Pak (a不等于特征根)
ak
(P1k P0 )ak (a等于特征单根)
(Prk r Pr1k r1 P0 )ak (a等于r重特征根)
cos k sin k P1 cos k P2 sin k(特征根不等于e j )
k
k (k 1)


第2页
定义差分
(1)一阶前向差分定义:f(k) = f(k+1) –f(k) (2)一阶后向差分定义:f(k) = f(k) –f(k –1) 式中,和称为差分算子,无原则区别。本书主要用 后向差分,简称为差分。 (3)差分的线性性质:
[af1(k) + bf2(k)] = a f1(k) + b f2(k) (4)二阶差分定义:

第3页
2. 差分方程
包含未知序列y(k)及其各阶差分的方程式称为差 分方程。
将差分展开为移位序列,得一般形式 y(k) + an-1y(k-1) +…+ a0y(k-n) = bmf(k)+…+ b0f(k-m)
差分方程本质上是递推的代数方程,若已知初始条 件和激励,利用迭代法可求得其数值解。
一般不易得到解析形式的(闭合)解。
例 差分方程的迭代解法


第4页
差分方程迭代解举例
例:若描述某系统的差分方程为 y(k) + 3y(k – 1) + 2y(k – 2) = f(k)
已知初始条件y(0)=0,y(1)=2,激励f(k)=2kε(k), 求y(k)。
解: y(k) = – 3y(k – 1) – 2y(k – 2) + f(k) k=2 y(2)= – 3y(1) – 2y(0) + f(2) = – 2 k=3 y(3)= – 3y(2) – 2y(1) + f(3) = 10 k=4 y(4)= – 3y(3) – 2y(2) + f(4) = – 10 ……


第 21 页


第 22 页
LTI连续系统的微分特性和积分特性
本课程重点讨论线性时不变系统 (Linear Time-Invariant),简称LTI系统。
① 微分特性: 若 f (t) → yzs(t) , 则 f ’(t) → y ’ zs (t) 1.6-11
② 积分特性:
t
t
若 f (t) → yzs(t) , 则 f (x) d x yzs(x) d x


第 10 页
差分方程全解举例
例:系统方程 y(k)+ 4y(k – 1) + 4y(k – 2) = f(k) 已知初始条件y(0)=0,y(1)= – 1;激励f(k)=2k,k≥0。 求方程的全解。
■ 第 11 页
差分方程全解举例
例:系统方程 y(k)+ 4y(k – 1) + 4y(k – 2) = f(k)
首先递推求出初始值yzi(0), yzi(1), yzi(k)= – 3yzi(k –1) –2yzi(k –2) yzi(0)= –3yzi(–1) –2yzi(–2)= –1 yzi(1)= –3yzi(0) –2yzi(–1)=3
特征根为λ1= –1 ,λ2= – 2
■ 第 19 页
解为
yzi(k)=Czi1(– 1)k+Czi2(–2)k
齐次解形式: Ck
C由初始状态定(相当于0-的条件)
2.零状态响应:初始状态为0,即
yzs1 yzs 2 0
经典法:齐次解+特解 例1
例 2
求解方法
卷积法


第 13 页
零输入响应举例
系统的方程 yk 3yk 1 2yk 2 f k f k 1
f k 2k k y0 y1 0
求系统的零输入响应。
f1(·) +f2(·) →y1(·)+y2(·)
综合,线性性质:
af1(·) +bf2(·) →ay1(·)+by2(·)


第 24 页
动态系统是线性系统的条件
动态系统不仅与激励{ f (·) }有关,而且与系统的 初始状态{x(0)}有关。 初始状态也称“内部激励”。
y (·) = T [{ f (·) }, {x(0)}], yzs(·) = T [{ f (·) }, {0}], yzi(·) = T [ {0},{x(0)}]
k 0 k 1
y0 C1 C2 2 y1 2C1 3C2 1
解出
C1 5, C2 3 yk 52k 33k

第8页
差分方程齐次解重根例
求差分方程y(k) + 6y(k – 1) + 12y(k – 2) +8y(k – 3) = 0 的解。
解:特征方程 3 62 12 8 0 23 0



第7页
差分方程齐次解单根例
求解二阶差分方程y(k) – 5y(k – 1) + 6y(k – 2) = 0 已知y(0) =2, y(1) =1,求y(k) 。
解:特征方程 2 5 6 0 2 3 0
特征根 1 2, 2 3
齐次解
yk C12k C2 3k
定C1, C2
仿照微分运算,定义离散信号的差分运算。
1. 差分运算
d f (t) lim f (k) lim f (t t) f (t) lim f (t) f (t t)
dt
t0 t
t 0
t
t 0
t
离散信号的变化率有两种表示形式:
f (k) f (k 1) f (k)
k
(k 1) k
f (k) f (k) f (k 1)
举例1
举例2


第 25 页
•时不变系统:指满足时不变性质的系统。 • 时不变性(或移位不变性) :
f(t ) → yzs(t )
f (t)
f(t - td) → yzs(t - td)
yzs (t)
O
T
f (t t0 )
①可分解性: y (·) =yzs(·) + yzi(·)
②零状态线性: T[{af1(t) +bf2(t) }, {0}] = aT[{ f1 (·) }, {0}] +bT[{ f2 (·) }, {0}] ③零输入线性: T[{0},{ax1(0) +bx2(0)} ]= aT[{0},{x1(0)}] +bT[{0},{x2(0)}]
■ 第 18 页
零输入零状态举例
例:系统方程为 y(k) + 3y(k –1) + 2y(k –2) = f(k) 已知激励f(k)=2k , k≥0,初始状态y(–1)=0, y(–2)=1/2, 求系统的零输入响应、零状态响应。
解:(1)yzi(k)满足方程 yzi(k) + 3yzi(k –1)+ 2yzi(k –2)= 0 yzi(–1)= y(–1)= 0, yzi(–2) = y(–2) = 1/2
三重特征根 1,2,3 2
齐次解 yk (C2k 2 C1k C0 ) 2k
由初始条件定C1, C2 , C3

第9页
2.特解yp(k):
特解的形式与激励的形式类似 例
相关文档
最新文档