模拟CMOS集成电路设计复习提纲PPT
合集下载
CMOS模拟集成电路设计_ch3单级放大器
• 小信号等效分析
辅助定理:在线性电路中,电压增益等于-GmRout,其中Gm表示输出 与地短接时电路的跨导;Rout表示当输入电压为零时电路的输出电阻。
线性电路的输出端口可用诺顿定理来等效,可得,输出电压为-IoutRout, 定义Gm=Iout/Vin,可得Vout=-GmVinRout。 诺顿定理:线性有源单口网络等效 电流源的恒流源等于有源单口网络 的短路电流,内阻等于网络中所有 独立源不激励时的端口电阻。
33
2019/2/9
直流或低频下!
小信号增益
电阻负载
小结
输出电阻
( RD || rO )
g m2 1 g mb 2
输入电阻
摆幅
线性度
g m Rout
gm g m 2 g mb 2
∞ ∞ ∞
-
小
-
较好
共 源 级
二极管 负载
忽略λ
g m RD 1 g m Rs
忽略λ
{[1 ( g m g mb ) Rs ]rO Rs } || RD
AV 2 I D (1 1 ) I D ID
12 2019/2/9
共源级放大器
• 1.4 带源级负反馈的共源级放大器
– 小信号直接分析方法
Vin V1 gmV1 Rs Vout / RD gmV1 0 Vout gm RD RD Av Vin 1 gm RS 1 / gm RS
1 g mb
带源级 负反馈
-
小
好
差
忽略λγ
gm 1 g m g mb
共漏极
(电流源负载)
gm
忽略λ
忽略λ
{[1 ( g m g mb )rO ]Rs rO } || RD
CMOS模拟集成电路分析与设计 ppt课件
如果栅电压为负,则耗尽层变薄,栅 与衬底间电容增大。
对于大的负偏置,则电容接近于CGC。
PPT课件
24
1.2 MOS管的极间电容(1)
G
S
C1
C2 C4
C3
Cbs
反型层 耗尽层
d
L
d
p型衬底
D
Cbd
PPT课件
25
1.2 MOS管的极间电容(2)
栅与沟道之间的栅氧电容:
C2=WLCox,其中Cox为单位面积栅氧电容εox/tox;
CMOS模拟集成电路分析与设计
主讲教师:吴建辉 Tel:83795677
E-mail:wjh@
PPT课件
1
教材及参考书
教材:
吴建辉编著:“CMOS模拟集成电路分析与设 计”(第二版),电子工业出版社。
参考书:
Razavi B: Design of analog CMOS integrated circuits
11
1、有源器件
主要内容:
1.1 几何结构与工作原理 1.2 极间电容 1.3 电学特性与主要的二次效应 1.4 低频及高频小信号等效模型 1.5 有源电阻
PPT课件
12
1.1 MOS管几何结构与工作原理(1)
B p+
G
tox
S
D
G D
n+
n+
p+
n阱 p型衬底
(a)
S
B
p+
n+
W
多晶
d p+接触孔
PPT课件
3
模拟电路与模拟集成电路
分立元件音频放大电路
晶体管数 匹配性 电阻值 电容值 寄生效应影响
CMOS模拟集成电路设总复习
I VT ln(n) R1
Vout
mR2 R1
VT
ln(n) VEB3
Vout 2 ln(n) k VEB3 2m ln(n) 8.67 102 2.2 0
T
q T
只要满足右式的所有m,n均可 mln(n) 12.7
知识点
1.MOS器件原理 2.电流镜 3.带隙基准 4.反相器(三种类型) 5.差分放大器 6.共源共栅放大器 7.输出放大器 8.运算放大器
0.7
0.91V
M1饱和:VDS1 VGS1 VT
Vb VGS2 VGS1 VT
Vb VGS1 VGS2 VT
2I REF
K ' (W / L)2
2I REF K '(W / L)1
VT
2 0.1103
2 0.1103
110106 40 0.7 110106 40
1.11V
例题
L
COX
OX
tOX
K': 跨导参数
K ' COX 0
MOS管的大信号模型
饱和区电流(以NMOS为例):
iD
K'
W 2L
(vGS
VT
)2
线性区电流(以NMOS为例):
iD
K'W L
[(vGS
VT
)
( vDS 2
)]vDS
PMOS的饱和区和线性区电流表达式?
小信号模型
MOS管的小信号模型
输出电阻
VSG3 VDD VICmax VTN 2.5 2 0.7 1.2
VSG3
K 'P
2ID (W /
L)3
| VTP
| 1.2
模拟CMOS集成电路设计复习提纲(课堂PPT)
Summary # 20
西电微电子:模拟集成电路设计
共源共栅级的输出阻抗(3)
Rup gm3ro3ro4
Rup
Rdown gm2ro2ro1
Rdown
Rout Rup || Rdown
Av0 g R m1 out
gm1 gm2ro2ro1 || gm3ro3ro4
Summary # 21
gm1 ro2 || ro1
Summary # 13
西电微电子:模拟集成电路设计
二极管接法MOSFET负载的共源级
Rup Rdown
Rup
1 gm2
Rdown ro1
Rout
Rup
|| Rdown
1 gm2
|| ro1
ro1 1 gm2ro1
1 gm2
(
1 gm2
ro1 )
Av0
Vout Vin
Summary #2
西电微电子:模拟集成电路设计 华大微电子:模拟集成电路设计
MOSFET的I-V特性
饱和区:I D
1 2
Cox
W L
VGS
Vth 2
沟长调制:I D
1 2
Cox
W L
VGS
Vth
21
VDS
线性区:I D
Cox
W L
VGS
Vth VDS
1 2
VD2S
深线性区:I D
Rout Rup || Rdown (RD || ro )
Vout Vin
gmRout
gm (RD
|| ro )
gmRD (RD ro )
Summary # 12
西电微电子:模拟集成电路设计
模拟CMOS集成电路设计课件
医学图像处理、音频处理
PPT学习交流
6
5
2、集成电路工艺
速度高, 功耗大, 集成度低
最早MOS工 艺,速度低
超高速、高频 IC
光电集成器件
主流工艺,集 成度高、功耗 低、速度快、 抗干扰性强
PPT学习交流
7
6
CMOS工艺
B
S
G
D
B
S
G
D
n+
n+
p+
p+
p 型衬底
n 型阱
n 阱CMOS工艺
B
S
G
D
20
沿沟道x点处的电荷密度为: 沟道x点的电势,以源级为参考点
电流为:
载流子为电子,电荷为负,电荷运动方向与电流 方向相反
其中: 得到:
v=μE μ为载流子的迁移率,E为电场 E=-dV(x)/dx
PPT学习交流
22
21
在整个沟道长度内积分得:
由于ID沿沟道方向是常数,因此:
电流随VGS的 增大而增加
漏极的反型层消失,出现由耗尽层
构成的夹断区。
➢电子沿沟道从源极向漏极运动,达
到夹断区边缘时,受夹断区强电场
的作用,很快漂移到漏极。 B
➢VDS的变化主要体现在夹断区上,
p+
对沟道长度和沟道内的场强影响不
大,因此可以近似认为沟道电流保
p-
持恒定。
VDS
-+
-+
VGS
G
S
D
n+
n+
夹断区
PPT学习交流
20
19
2、NMOS 管IV特性推导与分析
PPT学习交流
6
5
2、集成电路工艺
速度高, 功耗大, 集成度低
最早MOS工 艺,速度低
超高速、高频 IC
光电集成器件
主流工艺,集 成度高、功耗 低、速度快、 抗干扰性强
PPT学习交流
7
6
CMOS工艺
B
S
G
D
B
S
G
D
n+
n+
p+
p+
p 型衬底
n 型阱
n 阱CMOS工艺
B
S
G
D
20
沿沟道x点处的电荷密度为: 沟道x点的电势,以源级为参考点
电流为:
载流子为电子,电荷为负,电荷运动方向与电流 方向相反
其中: 得到:
v=μE μ为载流子的迁移率,E为电场 E=-dV(x)/dx
PPT学习交流
22
21
在整个沟道长度内积分得:
由于ID沿沟道方向是常数,因此:
电流随VGS的 增大而增加
漏极的反型层消失,出现由耗尽层
构成的夹断区。
➢电子沿沟道从源极向漏极运动,达
到夹断区边缘时,受夹断区强电场
的作用,很快漂移到漏极。 B
➢VDS的变化主要体现在夹断区上,
p+
对沟道长度和沟道内的场强影响不
大,因此可以近似认为沟道电流保
p-
持恒定。
VDS
-+
-+
VGS
G
S
D
n+
n+
夹断区
PPT学习交流
20
19
2、NMOS 管IV特性推导与分析
模拟CMOS集成电路设计精粹ppt1
低电流时MOST工作在弱反型区说明沟道电导率很小。实际上此时沟道已经不存在了。 流过沟道的漂移电流,现在变成了扩散电流,这时的模型变得截然不同。模型的表达 式是指数特性,而不是平方率特性。更重要的是,要知道在什么区域弱反型区逐渐代 替强反型区。实际上这个区域很宽,也叫中等-反型区。对于设计者来说,知道两个 区域转变时VGS-VT的值,特别是电流的大小很重要。
通常需要用多大的VGS值?在高端,不让器件进入大电流区或速度饱和区,要远离速度饱和区的 转变点。后面将计算该转变点VGS-VT的近似值,当前的工艺大约为0.5V。在低电流端,也不想使用弱 反型区。∵该区域中电流和跨导的绝对值变得特别小,这时noise很大,另外电路速度也很低。在某 种情况下可能允许低信噪比和低速度,如生物学应用和生医探头。在其它大部分应用中,需要更好的 信噪比,更高的速度,这时希望器件工作在接近弱反型区的地方,但不是弱反型区里面,典型值VGSVT为0.15~0.2V。下面给出这样设计的原因。
先来研究一下线性区。 在很多应用场合,MOST只是用于简单的开关。VDS很小,MOST工作在线性区(也称欧姆区)。在 这个区域,MOST晶体管实际上是一个小电阻,提供了线性的V-A特性。此时沟道两端即源端和漏端有 相同的导电能力。 接下来研究一下这个电阻的精确阻值是多少?
对于很小的VDS,看一下图中的左下角,IDS~VDS曲线是线性的,MOST工作特性表现为电阻。 KP:工艺参数,属于特定的CMOS工艺 A/V2
既然我们已知如何描述一个处在中间电流区(强反型区)的MOST管,下面重点研究低电流区(弱 反型区)和大电流区(速度饱和区)的晶体管,希望找出在这些区域转变时的VGS的临界值。在低电 流时得到了弱反型区,也叫低阈值区,∵大多数情况下,它的输入电压<VT。亦叫指数区,∵电流-电 压特性呈指数关系,比例系数是nkT/q,很接近于双极型管的kT/q。k是玻尔兹曼常数,q是电子的电 量,∴在300k(27℃),kT/q≈26mv。和双极型管的区别还是前面提得的n,n取决于偏置电压,其值 不精确,这与双极型器件相比时,MOST的一个不利因素。
模拟CMOS集成电路设计复习提纲
物理验证与DRC/LVS检查
01
02
03
物理验证
检查版图是否符合工艺要 求,确保可制造性。
DRC检查
进行设计规则检查,确保 版图满足工艺要求。
LVS检查
进行电路原理图与版图一 致性检查,确保两者匹配。
03
CMOS集成电路的模拟技 术
SPICE模拟器简介
1
SPICE(Simulation Program with Integrated Circuit Emphasis):一种用于模拟和分析集成 电路性能的软件工具。
新工艺
新型工艺技术如纳米压印、电子束光刻等不断涌现,这些新工艺能够制造更小尺寸的集成电路,提高集成度并降 低制造成本。
集成电路的可扩展性挑战
制程节点
随着集成电路制程节点不断缩小,制 程技术面临物理极限的挑战,如量子 隧穿效应、漏电等问题,需要探索新 的物理机制和制程技术。
异构集成
为了实现更高效能、更低功耗的集成 电路,需要将不同材料、不同工艺的 芯片集成在一起,形成异构集成技术, 这需要解决不同芯片之间的互连、兼 容等问题。
功耗优化
总结词
功耗优化旨在降低CMOS集成电路的功 耗,以提高芯片的能效和延长电池寿命 。
VS
详细描述
功耗优化主要通过降低晶体管导通电阻、 减小时钟信号功耗和优化电路结构来实现 。例如,采用低阻抗材料和工艺技术来降 低导通电阻,采用时钟门控技术来减小时 钟信号功耗,优化电路逻辑和结构等。这 些措施有助于降低功耗,提高能效,延长 电池寿命。
和规范,如元件选择、布线规则、版图设计等。
设计实践
02
结合具体的设计案例,分析可靠性设计的实际应用和效果,总
结经过实验和仿真等方法,对设计的可靠性进行验证和评估,确
CMOS模拟集成电路设计ch图实用PPT课件
2021/4/5
16
第16页/共22页
3、衬底耦合
• 衬底耦合效应
2021/4/5
17
第17页/共22页
• 减小衬底耦合效应的措施
▪采样差动电路形式
▪数字信号与时钟以互补形式分布
▪采样更精确的工作模式, 如信号采样
▪与衬底相连的内引线的电 感最小 ▪保护环
2021/4/5
18
第18页/共22页
叉指数N↑→CP↑
CP
N 1 (2E 2
2W N
)C jsw
N 1
[(N 1)E N W ]C2j0s2w1/4/5
3
第3页/共22页
• 2.2 对称性
2021/4/5
4
第4页/共22页
• 2.2 对称性(续)
2021/4/5
5
第5页/共22页
• 2.2 对称性(续)
2021/4/5
6
第6页/共22页
N: 圈数
Use a value that gives a layo2u0t21c/4o/n5 venient to work other parts of
14
circuits
第14页/共22页
• 2.5 连线
▪利用差动信号将 串扰转换成共模 干扰 ▪屏蔽
▪电压降
2021/4/5
15
第15页/共22页
N-well 1000 -1500 20000 30000
R V1
V2 I
RO
Hale Waihona Puke 1TC(T
25 ) 2021/4/5
VC
第11页/共22页
(V1 V2 ) BC
(V1 V2 2
CMOS模拟集成电路设计ch绪论实用PPT课件
• 模拟电路的建模和仿真难度大,对设计者经验和7直觉 第7页/共16页
模 拟 集 成 电 路 的 设 计 开 发 流 程
8
第8页/共16页
电路 设计
版图 设计
封装 测试
电路设计
9
第9页/共16页
版图设计
10
第10页/共16页
Why CMOS?
与双极工艺(BJT)相比 • 优点
• 输入阻抗大,加工成本低,低功耗,易于按比例缩小,易于实现数模混合电 路(是SOC较佳选择),设计自由度大(小信号特性依赖于器件尺寸和直 流偏量,双极只依赖于直流偏量)
15
第15页/共16页
感谢您的欣赏!
16
第16页/共16页
— 模拟电路的重要性和应用领域
自然界信号 (模拟量)
信号太小 时需要先 放大
4
滤除信号频带外的干扰
第4页/共16页
高速度、 高精度、 低功耗的 模数转换器
模拟集成电路的应用
5
第5页/共16页
结论
• 模拟电路是现代电路系统中必不可少的部分 • 数字电路无法完全取代模拟电路 • 电子产业需要大量优秀的模拟电路设计师
6
第6页/共16页
模拟电路设计的难点
• 设计关注点多:包括速度、功耗、增益、精度、电源 电压等;数字电路主要是速度、功耗
• 高精度模拟电路对低噪声、低串扰、抗干扰等要求很 高;数字电路在这方面要求低很多
• 器件的二阶效应对电路性能影响大;对工艺参数变化 的敏感度比数字电路高很多
• 设计的自动化程度低,很多靠手工设计;数字电路设 计自动化程度高
• 缺点 • 低增益,速度慢(在改善,几十GHz),噪声大(也在改善)
11
模 拟 集 成 电 路 的 设 计 开 发 流 程
8
第8页/共16页
电路 设计
版图 设计
封装 测试
电路设计
9
第9页/共16页
版图设计
10
第10页/共16页
Why CMOS?
与双极工艺(BJT)相比 • 优点
• 输入阻抗大,加工成本低,低功耗,易于按比例缩小,易于实现数模混合电 路(是SOC较佳选择),设计自由度大(小信号特性依赖于器件尺寸和直 流偏量,双极只依赖于直流偏量)
15
第15页/共16页
感谢您的欣赏!
16
第16页/共16页
— 模拟电路的重要性和应用领域
自然界信号 (模拟量)
信号太小 时需要先 放大
4
滤除信号频带外的干扰
第4页/共16页
高速度、 高精度、 低功耗的 模数转换器
模拟集成电路的应用
5
第5页/共16页
结论
• 模拟电路是现代电路系统中必不可少的部分 • 数字电路无法完全取代模拟电路 • 电子产业需要大量优秀的模拟电路设计师
6
第6页/共16页
模拟电路设计的难点
• 设计关注点多:包括速度、功耗、增益、精度、电源 电压等;数字电路主要是速度、功耗
• 高精度模拟电路对低噪声、低串扰、抗干扰等要求很 高;数字电路在这方面要求低很多
• 器件的二阶效应对电路性能影响大;对工艺参数变化 的敏感度比数字电路高很多
• 设计的自动化程度低,很多靠手工设计;数字电路设 计自动化程度高
• 缺点 • 低增益,速度慢(在改善,几十GHz),噪声大(也在改善)
11
模拟CMOS集成电路设计精粹1PPT课件
Analog Design-Current Mode
1
整体 概述
一 请在这里输入您的主要叙述内容
二
请在这里输入您的主要 叙述内容
三 请在这里输入您的主要叙述内容
2
Contents
1. Comparison of MOST and Bipolar transistor models 2. Amplifiers,Source followers & Cascodes 3. Differential Voltage & Current amplifer 4. Stability of Operational amplifier 5. Systematic Design of Operational Amplifier 6. Important opamp configerations 7. Fully-differential amplifiers 8. Current-input Operational Amplifers 9. Rail-to-rail input and output amplifers 10. Class AB and driver amplifier 11. Feedback Voltage & Transconductance Amplifier 12. Feedback Transmpedance & Current Amplifier 13. Bandgap and current reference circuits 14. Switched-capacitor filters 15 Continuous-time filter
3
模拟电路设计是艺术性与科学性的结合。 之所以称之为艺术,是因为设计时要在必须的规范和可以忽略的规范间寻求适当的折中,而这需 要创造力。 之所以称为科学,是因为需要一定的设计水平和设计方法来指导设计,就必然需要更深入地研究 设计时的折中。 本课程指引学生进入这个崭新的艺术与科学的世界,它将指导学生学习模拟电路设计的各个方面 ,这是了解电路设计艺术性与科学性的基础。 所有的设计都是关于电路的,而所有的电路都包括晶体管,器件的各种模型又是分析电路特性所 必需的。本课程不断地采用实际中所采用的反馈闭环形式设计。
1
整体 概述
一 请在这里输入您的主要叙述内容
二
请在这里输入您的主要 叙述内容
三 请在这里输入您的主要叙述内容
2
Contents
1. Comparison of MOST and Bipolar transistor models 2. Amplifiers,Source followers & Cascodes 3. Differential Voltage & Current amplifer 4. Stability of Operational amplifier 5. Systematic Design of Operational Amplifier 6. Important opamp configerations 7. Fully-differential amplifiers 8. Current-input Operational Amplifers 9. Rail-to-rail input and output amplifers 10. Class AB and driver amplifier 11. Feedback Voltage & Transconductance Amplifier 12. Feedback Transmpedance & Current Amplifier 13. Bandgap and current reference circuits 14. Switched-capacitor filters 15 Continuous-time filter
3
模拟电路设计是艺术性与科学性的结合。 之所以称之为艺术,是因为设计时要在必须的规范和可以忽略的规范间寻求适当的折中,而这需 要创造力。 之所以称为科学,是因为需要一定的设计水平和设计方法来指导设计,就必然需要更深入地研究 设计时的折中。 本课程指引学生进入这个崭新的艺术与科学的世界,它将指导学生学习模拟电路设计的各个方面 ,这是了解电路设计艺术性与科学性的基础。 所有的设计都是关于电路的,而所有的电路都包括晶体管,器件的各种模型又是分析电路特性所 必需的。本课程不断地采用实际中所采用的反馈闭环形式设计。
模拟CMOS集成电路分析与设计总复习
描述电路响应速度和稳定性的参数。
03
CMOS集成电路设计
电路设计流程
确定设计目标
明确电路的功能、性能指标和限制条件,如 功耗、面积、速度等。
电路设计
根据设计目标,选择合适的电路结构和元件 参数,进行电路设计和仿真验证。
版图绘制
将电路设计转换为版图,确保电路元件和互 连符合工艺要求。
物理验证
对版图进行物理验证,检查版图的正确性和 工艺兼容性。
01
新材料和新器件结构
探索新型半导体材料(如硅基氮化镓 、碳化硅等)和新型器件结构(如 FinFET、GAAFET等),以提高性能 、降低功耗和解决制程技术瓶颈。
02
异构集成和系统级封 装
发展异构集成技术,将不同工艺的芯 片高效集成在同一封装内,实现更强 大的系统功能。同时,研究系统级封 装技术,以提高集成度和降低成本。
形成。
优点
低功耗、高集成度、低成本、低噪 声等。
应用领域
计算机、通信、消费电子等领域。
CMOS集成电路的工作原理
工作原理
开关状态转换
CMOS集成电路利用N型和P型半导体 的特性,通过正负电压的交替作用, 实现逻辑门的开关状态转换。
当输入端接收到信号时,反相器中的 N型和P型半导体材料会交替导通和截 止,从而实现开关状态转换。
电源管理应用
电源管理芯片
CMOS集成电路在电源管理领域中扮演着重要角色,如电源管理芯片等。这些芯片能够实现电压调节、电流控制等功 能,从而保证电子设备正常工作和延长电池寿命。
电源转换
CMOS集成电路还可以用于实现各种电源转换,如DC-DC转换、AC-DC转换等。这些转换电路能够将电源转换为电 子设备所需的电压和电流等级,以满足不同设备的电源需求。
模拟CMOS集成电路设计精粹ppt 第二章
只要L和C串联损耗阻抗为0,L和C就不产生noise,在无源器件中,只有电阻产生额外的noise。电路 中加入了L就会使得gm和输出电阻都与f有关。如果不含串联的R or L,输入阻抗ZinL是容性的,现在 则变成了纯阻性的,其值为gmLS/CGS,或LSω T,原因是输入CGS被电感抵消了。这样输入电阻可以很容 易地被设计成50 ,从而与50传输线(同轴电缆,天线等)相匹配。这种方法可设计出一个超高f低 noise放大器。
采用两种相同的电流偏置,但右边电路(2)中M2和M1并联,哪一种更好呢?(2)放大器中,输出电 阻较大,∴增益相对较高,相应的带宽窄一些。可用另一个晶体管构成电流源,这个晶体管是PMOST 器件,它的栅极与参考电压相连,产生直流偏置电流。还存在下面两种电路形式。
第一种放大器有一个恒定的直流偏置电流,∵作为电流源的M2的栅极与一个直流参考电压相连。低f 情况下,负载CL不起作用, 此时,M1和M2的直流电流不随信号电平而变化。被定义为A类放大器。第 二种,连接并同时驱动两个管的栅极,结果完全不同。根据所输入信号电平的不同,流过两个管的电 流变化非常大。这就是AB类放大器。实际上,在数字输入信号和模拟输入信号中都有可能采用第二种 放大器。
实现这样一种串联反馈电阻的一个简单方法是采用一个nMOST管,让其工作在线性区。但只有当VDS2很 小,在100mV~200mV之间才有可能。两个晶体管的VGS也不同。 MOST M1工作在饱和区,包含一个参数 K‘,而M2是作为一个电阻使用,包含参数KP,它们的参数n不同,n本身也是一个不确定的值
在增益表达式中,保留输出电阻,能较好地理解同样的输出电阻是怎样来决定输出极点或者带宽的。 在计算GBW时,这个输出电阻被消去,这和单管情况一样。但GBW变成了2倍,∵单管的跨导增大了2倍, ∴这是电流复用的一个简单例子。GBW是最重要的技术指标,它表明在任意f下,可以获得多大的电压 增益。它通过gm取决于电流。
拉扎维模拟CMOS集成电路设计(前十章全部课件)
Cox:单位面积栅氧化层电容
Φ MS:多晶硅栅与硅衬底功函数之差 Qdep耗尽区的电荷,是衬源电压VBS的函数
模拟集成电路设计绪论 Ch. 1 # 23
重邮光电工程学院
MOS管的开启电压VT及体效应
VTH VTH0 2F VSB 2 F ,
2qsiNsub Cox
(a)自然界信号的数字化 ( b)增加放大器和滤波器以提高灵敏度
模拟集成电路设计绪论 Ch.1# 3
重邮光电工程学院
数字通信
数字信号通过有损电缆的衰减和失真
失真信号需放大、滤波和数字化后才再处理
模拟集成电路设计绪论 Ch.1# 4
重邮光电工程学院
数字通信
1 0
11
10 01
00
使用多电平信号以减小所需的带宽 组合二进制数据 DAC 多电平信号 ADC 确定所传送电平
模拟集成电路设计绪论 Ch. 1 # 4
重邮光电工程学院
MOS器件符号
MOS管等效于一个开关!
模拟集成电路设计绪论 Ch. 1 # 5
重邮光电工程学院
MOS器件的阈值电压VTN(P)
(a)栅压控制的MOSFET
(c)反型的开始
(b)耗尽区的形成
(d)反型层的形成
模拟集成电路设计绪论 Ch. 1 # 6
源极跟随器
无体效应
有体效应
模拟集成电路设计绪论 Ch. 1 # 24
重邮光电工程学院
MOSFET的沟道调制效应
模拟集成电路设计绪论 Ch. 1 # 25
重邮光电工程学院
MOSFET的沟道调制效应
L
L’
L' L L 1 1/ L' (1 L / L) L 1 1/ L' (1 V DS ), VDS L / L L nCox W ID (VGS VTH )2 (1 VDS) 2 L
Φ MS:多晶硅栅与硅衬底功函数之差 Qdep耗尽区的电荷,是衬源电压VBS的函数
模拟集成电路设计绪论 Ch. 1 # 23
重邮光电工程学院
MOS管的开启电压VT及体效应
VTH VTH0 2F VSB 2 F ,
2qsiNsub Cox
(a)自然界信号的数字化 ( b)增加放大器和滤波器以提高灵敏度
模拟集成电路设计绪论 Ch.1# 3
重邮光电工程学院
数字通信
数字信号通过有损电缆的衰减和失真
失真信号需放大、滤波和数字化后才再处理
模拟集成电路设计绪论 Ch.1# 4
重邮光电工程学院
数字通信
1 0
11
10 01
00
使用多电平信号以减小所需的带宽 组合二进制数据 DAC 多电平信号 ADC 确定所传送电平
模拟集成电路设计绪论 Ch. 1 # 4
重邮光电工程学院
MOS器件符号
MOS管等效于一个开关!
模拟集成电路设计绪论 Ch. 1 # 5
重邮光电工程学院
MOS器件的阈值电压VTN(P)
(a)栅压控制的MOSFET
(c)反型的开始
(b)耗尽区的形成
(d)反型层的形成
模拟集成电路设计绪论 Ch. 1 # 6
源极跟随器
无体效应
有体效应
模拟集成电路设计绪论 Ch. 1 # 24
重邮光电工程学院
MOSFET的沟道调制效应
模拟集成电路设计绪论 Ch. 1 # 25
重邮光电工程学院
MOSFET的沟道调制效应
L
L’
L' L L 1 1/ L' (1 L / L) L 1 1/ L' (1 V DS ), VDS L / L L nCox W ID (VGS VTH )2 (1 VDS) 2 L
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共源共栅电路的热噪声
低频情况下,共栅管几乎不贡献噪声!!!
折叠共源共栅电路的热噪声
为了降低这种电路的噪声,应提高Vdsat3
差分对的热噪声
为了降低这种电路的噪 声,应提高负载管的 Vdsat
共源共栅运放的噪声
Vie2q
2V12
1
gm7 gm1
其中V12
4kT
2 3gm1
Rout rI1 || gm2ro2 ro1 || rI2
折叠点看进去的电阻为 ro1 || rI2
Av0 gm1Rout
第四章 差分放大器
• 差分放大器的输出电阻 • 差分放大器的增益 • 输入共模电平Vin,CM的范围
差分放大器的输出阻抗与增益(1)
Rout=RD || ro1
增益的计算
Av0 gm2 gm4ro4ro2 || gm6ro6ro8
小信号带宽
• 小信号带宽通常定义为单位增益频率fu • 3dB频率f3dB与fu的示意如下(均为对数坐标)
GBW与小信号建立时间(1)
设放大器的低频增益A0 ,带宽BW fd. 则增益带宽积GBW A0fd 若该放大器为单极点系统
华大微电子:模拟集成电路设计
复习提纲
华大微电子:模拟集成电路设计
第二章 器件模型
• MOSFET的I-V特性
– 饱和区电流公式 – 线性区电流公式 – 沟道长度调制效应
• MOSFET的小信号模型
– 低频小信号模型:图2.36
• gm、ro的表达式
– 完整小信号模型:图2.38
华大微电子:模拟集成电路设计
s
1 A0
1
0
1
s
A0
0
电压-电压反馈
Vout
A0
Vin 1 A0
• 前馈网络A0:V-V;反馈网络:V-V • 信号检测:前馈网络的输出,电压信号,并联
• 信号返回:前馈网络的输入,电压信号,串联
• 也称串联-并联反馈:
– “串联-并联反馈”,反馈信号与输入信号串联,检测信号与输出信号并 联
共源共栅差分对
Rout gm3ro3ro1 || gm5ro5ro7
Av0 gm1Rout
第六章 频率特性
• Miller效应 • 极点与结点的关联
第七章 噪声
• 噪声类型:热噪声、闪烁噪声 • 总输出噪声 • 输入参考噪声 • 单级放大器的噪声
– 共源级: – 共源共栅级: – 折叠共源共栅级
Rup gm3ro3ro4
Rup
Rdown gm2ro2ro1
Rdown
Rout Rup || Rdown
Av0 g R m1 out
gm1 gm2ro2ro1 || gm3ro3ro4
折叠共源共栅的输出电阻与增益
Rout rI1 || gm2ro2ro1
Vout Vin
gmRout
gm (RD
|| ro )
gmRD (RD ro )
电流源负载的共源级
Rup ro2
Rdown ro1
Rup Rdown
Rout Rup || Rdown ro2 || ro1 Av0 g R m1 out
gm1 ro2 || ro1
完整的MOSFET小信号模型
• 用于计算各节点的时间常数 • 找出极点
第三章 单级放大器
• 共源级 • 共漏级 • 共栅级 • 共源共栅级
共源级
• 电阻负载 • 电流源负载 • 二极管接法的MOSFET负载 • 源级负反馈
共源MOSFET
Vgs V1 Vin
Rout
Vout I out
Vout
R0
Iin 1 R0GmF
电流-电流反馈
Iout
AI
Iin 1 AI
• 前馈网络AI:I-I;反馈网络:I-I • 信号检测:前馈网络的输出,电流信号,串联 • 信号返回:前馈网络的输入,电流信号,并联 • 也称并联-串联反馈
电流-电流反馈的特性
• 输入端并联,
– 输入电阻减小
Av0
g R m1 out
g m1ro1 RD RD ro1
gm1RD (ro1 RD )
Rout=
1 gm3
|| ro1
1 gm3
Av0
g R m1 out
g m1 gm3
( ro1
1 gm3
)
差分放大器的输出阻抗与增益(2)
Rout ro1 || ro3
Av0 gm1 ro1 || ro3
|Vin 0
Vin
0时,Iout
Vout ro
Rout ro 单管增益
Vout Vin
gmro
二极管接法的MOSFET
Rout
1 gm
1 ro
1 gm
(gmro 1)
带电阻负载的共源级
Rup Rdown
Rup RD
Rdown ro
Rout Rup || Rdown (RD || ro )
2
Vdsat
1
2Cox
W L
ID
1
L
华大微电子:模拟集成电路设计
MOSFET小信号模型(1)
• VBS=0时的低频小信号模型 • 用于计算输出电阻、低频小信号增益
华大微电子:模拟集成电路设计
MOSFET小信号模型(2)
• 考虑衬偏效应时的低频小信号模型 • 用于计算输出电阻、低频小信号增益
Iout
Gm
Vin 1 Gm RF
• 前馈网络Gm:V-I;反馈网络RF:I-V • 信号检测:前馈网络的输出,电流信号,串联 • 信号返回:前馈网络的输入,电压信号,串联 • 也称串联-串联反馈 • Gm:前馈网络增益,导纳的量纲 • RF:反馈网络增益,电阻的量纲 • Gm×RF:无量纲
第八章 反馈
• 反馈概述
– 降低增益灵敏度 – 扩展带宽 – 环路增益、开环增益、闭环增益等概念
• 四种反馈结构 • 负载的影响
– 四种二端口网络模型
反馈
X(s):输入信号 Y(s):输出信号 Y(s)/ X(s):闭环传输函数,闭环增益 H(s):前馈网络;开环传输函数,开环增益 G(s):反馈网络;若与频率无关,可用代替 H(s)× G(s):环路增益 :反馈系数
A(s) A0 1 s
电压-电流反馈的应用:光纤接收器
• 左图,输入阻抗R1
– 时间常数大,带宽小
• 右图,输入阻抗为R1/(1+A)
– 时间常数小,带宽大
电压-电流反馈的特性
• 输入端并联,
– 输入电阻减小
• 输出端并联,
– 输出电阻减小
Rin ,c l
1
Rin R0GmF
Rout ,c l
Rout 1 R0GmF
共源共栅级的输出阻抗(2)
参考源极电阻负反馈的共源级电路
Rt ro1 ro2 (gm2 gmb2 )ro2ro1
Rt
(gm2 gmb2 )ro2ro1
gm2ro2ro1 (忽略衬偏效应)
Rout gm3ro3Rt
gm3ro3 gm2ro2ro1
共源共栅级的输出阻抗(3)
O1 T11 X1 T12 X 2
O2 T21X1 T22 X 2
反馈网络类型
X1
X2
电压-电压反馈 电压(并联检测)电流
O2 电压(串联返回)
G模型
短路求T22
开路求T11 串联 -并联
电流 -电压反馈 电流(串联检测)电流
电压(串联返回)
Z模型
开路求T22
开路求T11 串联 -串联
VDS
线性电阻:Ron
Cox
W L
1
VGS
Vth
华大微电子:模拟集成电路设计
几个常用的表达式
饱和区:I D
1 2
Cox
W L
VGS
Vth
2
Vdsat VGS Vth
gm
Cox
W L
Vdsat
2ID Vdsat
ro
1
I D
2
I
D
Cox
W L
gmro
MOSFET的I-V特性
饱和区:I D
1 2
Cox
W L
VGS
Vth 2
沟长调制:I D
1 2
Cox
ቤተ መጻሕፍቲ ባይዱ
W L
VGS
Vth
21
VDS
线性区:I D
Cox
W L
VGS
Vth VDS
1 2
VD2S
深线性区:I D
Cox
W L
VGS
Vth
电流-电压反馈的特性
• 输入端串联,
– 输入电阻增大
• 输出端串联,
– 输出电阻增大
Rin,cl (1 Gm RF )Rin Rout,cl (1 Gm RF )Rout Iout Gm Vin 1 Gm RF
电压-电流反馈
Vout
R0
Iin 1 R0 GmF
• 前馈网络R0:I-V;反馈网络gmF:V-I • 信号检测:前馈网络的输出,电压信号,并联 • 信号返回:前馈网络的输入,电流信号,并联 • 也称并联-并联反馈 • R0:前馈网络增益,电阻的量纲 • GmF:反馈网络增益,导纳的量纲 • R0×GmF :无量纲