基坑围护结构监测点布设方案设计
基坑监测点布设的原则和要求
目录一、工程概况 (1)二、监测依据 (1)三、监测目的 (1)四、监测范围、项目 (2)五、监测点的布置 (2)六、监测警戒值及精度 (3)七、监测方法及要求 (4)八、监测点保护及恢复方法 (5)九、监测仪器设备及人员 (6)十、监测频率 (7)十一、异常情况下的监测措施 (8)十二、异常情况下的处理措施 (8)十三、数据记录、处理及监测成果 (9)十四、安全文明施测 (10)十五、应急处置措施 (11)附录1、基坑监测点布置图 (16)附录2、水平位移和竖向位移监测日报表 (17)附件3、巡视检查日报表样表 (18)基坑监测方案一、工程概况参建五方主体情况建设单位:设计单位:勘察单位:监理单位:施工单位:二、监测依据1、设计图纸及相关技术资料。
2、《建筑变形测量规范》JGJ8-20163、《建筑地基基础设计规范》GB 50007-20114、《建筑基坑工程监测技术规范》GB50497-20095、《工程测量规范》GB50026-20076、《国家一、二等水准测量规范》GB/T12897-20067、《建筑深基坑工程施工安全技术规范》JGJ311-20138、《城市测量规范》CJJ/T8-20119、《精密工程测量规范》GB/15314-9410、危大工程管理政府及公司文件三、监测目的在基坑施工期间,须周期性的对基坑变形情况和周边建筑物情况进行监测,及时发现隐患,并根据监测成果相应地及时调整施工速率及采取相应措施,确保施工安全快捷、经济合理。
本工程监测的目的主要有:①、为基坑周围环境进行及时、有效的保护提供依据;②、保证基坑内施工人员和设备料等材料安全,防止出现安全隐患。
四、监测范围、项目1、监测方法:①、建设单位委托第三方监测机构进行监测;②、我施工方主要采取的监测方法包括测量仪器观测、现场观察等;2、监测范围:基坑周边、坡顶、坡底;为保证基坑施工顺利进行及相邻建筑物安全,在基坑开挖过程中对基坑、周围建筑物、道路、管线进行监测。
工程基坑监测点布设方案
第五章监测点布置和埋设监测点布设原则1.以设计提供的主体围护结构监测平面图为参考;2.各监测项目的测点布设位置及密度应与基坑开挖顺序、被保护对象的位置及特性相配套;同时为综合把握基坑变形状况,提高监测数据的质量,应保证每一开挖区段内有监测点;遵循规范结合实际,参照围护体布置及开挖分区等参数,进行测点布置;3.基坑监测点总体布设原则:1监测点应充分结合基坑工程监测等级、基坑设计参数特性和基坑施工参数特性进行合理布置;2监测点布置应最大限度反映基坑围护结构体系受力和变形的变化趋势;3基坑围护结构侧边中部、阳角处、受力或变形较大处应布置测点,重点区域应加密监测点;4不同监测项目的监测点宜布置在同一断面上,便于数据比对;5监测点间距布置应满足规范要求,应满足设计及相关单位的合理要求;6各监测项目的测点布置,需兼顾基坑分块施工特点,确保每分块开挖施工中,均有对应测点有效工作,从而为分块施工过程提供数据信息;4.区间隧道监测点布置每10环在管顶和管底各设置一个,盾构始发井和接受井部位各设置一个断面;收敛监测布置间隔同隧道内管片沉降监测;围护结构体系观察基坑工程的现场监测应采用仪器监测与巡视检查相结合的方法;整个基坑工程施工期内,与仪器监测频率相对应,应进行巡视检查,并形成书面巡视报表;巡视检查内容主要针对四部分:围护结构、施工工况、周边环境和监测设施;一般现场巡视内容汇总表现场巡视检查以目测为主,可辅以锤、钎、量尺、放大镜等工器具以及摄像、摄影等设备进行;每日由专人对自然条件、支护结构、施工工况、周边环境、监测设施等的巡视检查情况进行书面记录,及时整理,并与仪器监测数据进行综合分析;巡视检查如发现异常和危险情况,应及时通知委托方及其他相关单位;围护结构顶部水平位移监测基坑开挖期间大面积土方卸载,围护结构将产生一定水平位移,为掌握围护结构顶部位移信息,布设墙顶水平位移监测点,围护结构顶水平位移值亦可作为测斜自管口向下计算时的管口位移修正值;测点布置与围护结构测斜孔位置一一对应;围护结构顶部水平位移监测点,一般直接布设在顶圈梁上,依据测点布设时机相对圈梁浇筑混凝土时间,可区分为先埋和后埋两种方式;“先埋”即在围护体顶部结构施工过程中,如圈梁钢筋笼绑扎过程中,在方案设计位置,将钢筋标杆预先竖直牢靠绑扎或焊接在钢筋笼上,预埋钢筋标杆顶部带“十”字应高出设计圈梁顶部1~2cm以上,混凝土浇筑完毕后,钢筋标杆即牢靠固定在圈梁中或在圈梁混凝土浇筑后12h内,将专用道钉按入测点设计位置,待混凝土完全凝固后,测点亦牢靠固定在圈梁中;“后埋”即围护结构顶部结构施工完成后,用冲击钻于测点设计位置用膨胀螺栓把强制对中盘固定,监测时放上小棱镜即可;水平位移点位埋设示意图周边地表沉降监测因开挖引起基坑围护结构向坑内的变形及坑底隆起等原因,会导致坑外土体出现一定程度的变形,会对影响范围内道路以及地面造成影响,如道路变形过大,将导致道路不能正常、安全使用,故需对基坑周边地表进行沉降监测;为了保证监测数据的准确性,道路及沉降测点标志采用窖井测点形式,采用人工开挖或钻具成孔的方式进行埋设;道路、地表沉降监测测点应埋设平整,防止由于高低不平影响人员及车辆通行,同时,测点埋设稳固,做好清晰标记,方便保存;地表沉降监测点埋设实样图周边建构筑物沉降监测因开挖引起基坑围护体向坑内的变形及坑底隆起等原因,会导致坑外土体出现一定程度的变形,会对影响范围内建筑物造成影响,如建筑物变形过大,将导致该建筑物不能正常、安全使用,故需对建筑物进行沉降和水平位移监测;建筑物垂直位移测点可利用射钉枪进行布设或使用冲击钻进行“L”形测标布设;需确保测点与建筑物连结紧密,不能有松动;建筑物沉降监测点埋设示意图基坑施工监测控制标准以上各项监测的报警指标根据设计施工蓝图确定,应在方案评审会上确认;施工过程中出现以下情况,应启动应急预案并加强监测和巡视:雨季:加强围护安全监测和巡视,必要时增设监测点;小雨时监测工作正常进行,中雨以上雨量时光学监测工作停测,但测斜监测、轴力监测、等科目仍应正常进行,数据异常时需进行加测;围护渗漏:渗漏处加强围护安全监测和巡视;地面裂缝:加强对裂缝处沉降监测、裂缝附近围护安全监测和巡视;监测数据持续报警:加密监测频率,出现异常时及时通知相关单位;监测预警:巡视预警:施工过程中通过巡视,发现一般安全隐患或不安全状态应予以预警;若风险点在扩大,则应在报表中注明,并予以巡视预警;综合预警:施工过程中根据现场参与各方的监测、巡视信息,并通过核查、综合分析和专家论证等,及时综合判定出工程风险不安全状态而进行的预警;施工过程中当判断为综合预警状态时,在信息报送的同时,应及时组织分析,加强监测、巡视,进行先期风险处置;第六章监测仪器和监测方法沉降测量6.1.1 基准点及工作基点的埋设基准点布设于隧道及基坑开挖影响区外,一般为开挖边界100米之外不受干扰的地方,在土质地区,应埋设水泥桩,优先考虑设立在基础好,沉降稳定,便于施测,便于保存,稳固的永久性建筑物上,也可以埋设于在变形影响区域外的原状土层上;工作点的选取应适观测点与基岩基准点的距离而定,初步确定为每个基准点联测3个工作点;基准点埋设方式如下图所示;墙角精密水准点埋设示意图基准点与工作基点的埋设要牢固可靠,如采用标准地表桩,必须将其埋入原状土,并做好井圈和井盖;在坚硬的道面上埋设地表桩,应凿出道面和路基,将地表桩埋入原状土或钻孔打入1米以上的螺纹钢筋做地表观测桩,并同时打入保护钢管套;基准点与工作基点可适现场情况使用第三方交桩控制点或其他已有的精密水准点;地面基准点埋设示意图6.1.2测量方法基准点采用观测采用闭合水准路线时可以只观测单程,采用附合水准路线形式必须进行往返观测,取两次观测高差中数进行平差;观测顺序:往测:后、前、前、后,返测:前、后、后、前;根据使用仪器徕卡DNA03电子水准仪的精度是每公里偶然中误差为0.3mm,同时考虑本工程监测点是按照三等垂直位移监测精度进行观测,其视线长度≤50m,一般附合路线线路长约1km 左右,则在该路线上的测站数为:105021000 线线S S n 站各测站高程中误差为:04.0103.0 n m m 偶站mm在本线路中最弱点将是第5站,即n=5,其单向观测最高程中误差为:09.023.204.05)( 站单向最弱点m m mm当采用往返观测时,最弱点高程中误差为:06.0204.02)( 最弱点(单向)往返最弱点m m mm可以看出,采用该仪器按本观测方案可以达到垂直变形监测要求;观测注意事项如下:①对使用的电子水准仪、条码水准尺应在项目开始前和结束后进行检验,项目进行中也应定期进行检验;当观测成果异常,经分析与仪器有关时,应及时对仪器进行检验与校正;②观测应做到三固定,即固定人员、固定仪器、固定测站;③观测前应正确设定记录文件的存贮位置、方式,对电子水准仪的各项控制限差参数进行检查设定,确保附合观测要求;④应在标尺分划线成像稳定的条件下进行观测;⑤仪器温度与外界温度一致时才能开始观测;⑥数字水准仪应避免望远镜直对太阳,避免视线被遮挡,仪器应在生产厂家规定的范围内工作,震动源造成的震动消失后,才能启动测量键,当地面震动较大时,应随时增加重复测量次数;⑦每测段往测和返测的测站数均应为偶数,否则应加入标尺零点差改正;⑧由往测转向返测时,两标尺应互换位置,并应重新整置仪器;⑨完成闭合或附合路线时,应注意电子记录的闭合或附合差情况,确认合格后方可完成测量工作,否则应查找原因直至返工重测合格;6.1.3数据处理及分析1数据传输及平差计算观测记录采用电子水准仪自带记录程序进行,观测完成后形成原始电子观测文件,通过数据传输处理软件传输至计算机,检查合格后使用专用水准网平差软件进行严密平差,得出各点高程值;平差计算要求如下:①应使用稳定的基准点为起算,并检核独立闭合差及与2个以上的基准点相互附合差满足精度要求条件,确保起算数据的准确;②使用商用华星测量控制网平差软件,平差前应检核观测数据,观测数据准确可靠,检核合格后按严密平差的方法进行计算;③平差后数据取位应精确到0.1mm;通过变形观测点各期高程值计算各期阶段沉降量、阶段变形速率、累计沉降量等数据;2变形数据分析观测点稳定性分析原则如下:①观测点的稳定性分析基于稳定的基准点作为基准点而进行的平差计算成果;②相邻两期观测点的变动分析通过比较相邻两期的最大变形量与最大测量误差取两倍中误差来进行,当变形量小于最大误差时,可认为该观测点在这两个周期内没有变动或变动不显着;③对多期变形观测成果,当相邻周期变形量小,但多期呈现出明显的变化趋势时,应视为有变动;监测点预警判断分析原则如下:①将阶段变形速率及累计变形量与控制标准进行比较,如阶段变形速率或累计变形值小于预警值,则为正常状态,如阶段变形速率或累计变形值大于预警值而小于报警值则为预警状态,如阶段变形速率或累计变形值大于报警值而小于控制值则为报警态,如阶段变形速率或累计变形值大于控制值则为控制状态;②如数据显示达到警戒标准时,应结合巡视信息,综合分析施工进度、施工措施情况、支护围护结构稳定性、周边环境稳定性状态,进行综合判断;③分析确认有异常情况时,应及时通知有关各方采取措施;垂直位移基准网观测主要技术指标及要求水准观测仪器及主要技术指标水平位移测量现场监测基准点采用强制归心的水泥观测墩,顶面长宽各0.4米,地下部分埋深大于1.2米,地面部分高1.0米;监测点埋设时先在圈梁、围护桩或地下连续墙的顶部用冲击钻钻出深约10cm的孔,再把强制归心监测标志放入孔内,缝隙用锚固剂填充;埋设形式如下图;监测基点实景图监测点实景图5.2.1埋设技术要求测点标志埋设时应注意保证与测点间的通视,保证强制对中标志顶面的水平,测点埋设完毕后,应进行必要的保护、防锈处理,并作明显标记;监测点标志使用预制强制归心标志,可与桩顶沉降点制作成同一标识;5.2.2观测方法1基准点及工作基点观测根据基坑周边环境情况,水平位移基准点及监测控制点组成附合、闭合导线或导线网,参考下图观测方案;水平位移基准点及工作基点必须使用强制对中装置;基准点及工作基点布置示意图基准网测量采用2″级全站仪,测距精度2mm+2ppm;可按下式估算导线相邻点的相对点位中误差:"1t u m S T m m S1-1 其中S 为导线平均边长,m 为测角中误差″,1T 为测距相对中误差mm;取导线平均边长60米,测角中误差1.41”,测距中误差使用TC1800进行6测回观测,可达0.5毫米,于是得到导线相邻点的相对点位中误差ij M 为0.64毫米; mm M M M U T IJ 64.022 1-2水平位移监测控制点的测量选用Ⅰ级全站仪导线测量的方法,按国标“精密工程测量规范”的四等三角测量技术要求施测;其主要技术要求如下:①水平角观测采用方向观测法,6测回观测,方向数多于3个时应归零;方向数为2个时,应在观测总测回中以奇数测回和偶数测回分别观测导线前进方向的左角和右角,左角、右角平均值之和,与360°的差值不大于±″;②半测回归零数≤±4″;一测回中2倍照准差变动范围≤8″;同一方向各测回较差≤±4″;③观测时为了减少望远镜调焦误差对水平角的影响,每一方向的读数正倒镜不调焦完成; ④方位角闭合差≤±″n n 为测站数;⑤测距应往返观测各两测回,并进行温度、气压、投影改正;根据场地的稳定条件,应定期对基准网进行检核,一般每3个月检查1次,发现工作基点相对关系发生变化时应及时进行基准网复测;5.2.3监测点观测由于施工场地内环境条件一般较差,考虑现场情况,监测点水平位移观测一般采用极坐标法,使用工作基点为起算点,采用极坐标法测定各监测点坐标,计算围护桩顶测点的变形量;极坐标法进行监测点观测,测量方法与导线测量相同,在选定的工作基点上安置全站仪,精确整平对中,瞄准另一个工作基点作为起始方向,并用其它工作基点作检核,按测回法依次测定各监测点与测站连线的角度、距离,计算监测点坐标,根据各测次与初始值的坐标,计算桩顶水平位移矢量;极坐标法进行监测点水平位移监测中误差为:mmMmij8.022,满足精度要求;5.2.4数据处理及分析1数据传输及平差计算观测记录采用全站仪多测回测角测量记录程序进行,观测时可完成各项限差指标控制,观测完成后形成电子原始观测文件,通过数据传输处理软件传输至计算机,使用控制网平差软件进行严密平差,得出各点坐标;平差计算要求如下:①平差前对控制点稳定性进行检验,对各期相邻控制点间的夹角、距离进行比较,确保起算数据的可靠;②使用华星测量控制网平差软按严密平差的方法进行计算;③平差后数据取位应精确到0.1mm;通过各期变形观测点二维平面坐标值,计算投影至垂直于基坑方向的矢量位移,并计算各期阶段变形量、阶段变形速率、累计变形量等数据;2变形数据分析观测点稳定性分析原则如下:①观测点的稳定性分析基于稳定的基准点作为基准点而进行的平差计算成果;②相邻两期观测点的变动分析通过比较相邻两期的最大变形量与最大测量误差取两倍中误差来进行,当变形量小于最大误差时,可认为该观测点在这两个周期内没有变动或变动不显着;③对多期变形观测成果,当相邻周期变形量小,但多期呈现出明显的变化趋势时,应视为有变动;监测点预警判断分析原则如下:①将阶段变形速率及累计变形量与控制标准进行比较,如阶段变形速率或累计变形值小于预警值,则为正常状态,如阶段变形速率或累计变形值大于预警值而小于报警值则为预警状态,如阶段变形速率或累计变形值大于报警值而小于控制值则为报警态,如阶段变形速率或累计变形值大于控制值则为控制状态;②如数据显示达到警戒标准时,应结合巡视信息,综合分析施工进度、施工措施情况、基坑围护结构稳定性、周边环境稳定性状态,进行综合判断;③分析确认有异常情况时,应立即通知有关各方;仪器型号:索佳SRX2、南方NTS-332R;精度:±2″,±2mm+2ppm;。
基坑监测方案完整版
长江国际花园期住宅小区(凯迪大酒店)酒店二期项目基坑工程监测方案扬州大学工程设计研究院二○一九年一月监测方案工程名称:长江国际花园期住宅小区(凯迪大酒店)酒店二期工程地点:泰兴市虹桥镇虹桥大道北侧,飞虹路东侧建设单位:江苏凯地置业有限公司编写:校对:审核:扬州大学工程设计研究院2019年01月25日目录1. 工程概况 (4)2. 监测目的及编制依据 (4). 监测目的 (4). 编制依据 (4)3. 监测内容及布点方法 (5). 本工程主要监测项目 (5). 基准点布设 (5). 监测点布设 (6)4. 监测方法及精度 (9). 平面控制网及水准基准网 (11). 观测注意事项 (11). 数据处理及分析 (11). 围护桩(坡)顶面位移及沉降 (12). 围护结构外围地下水位观测 (13). 周围道路及建筑沉降 (14). 深层土体水平位移 (14). 锚杆内力 (14). 巡视检查 (15)5. 仪器设备和人员组成 (15)6. 监测频率 (16)7. 预警值和预警制度 (17). 监测报警 (17). 监测报警措施 (17)8. 监测数据的处理及信息反馈 (17). 监测数据的分级管理 (17). 监测数据的分析和预测 (18). 监测数据的反馈 (18)9. 技术保证措施 (18). 测试方法 (19). 测试仪器 (19). 监测点的保护 (19). 数据处理 (19)10. 服务承诺 (19)11. 合理化建议 (20)1.工程概况长江国际花园期住宅小区(凯迪大酒店)酒店二期。
受业主委托,拟对此基坑进行坡顶的位移及沉降监测、圈梁的位移及沉降监测、围护结构外围地下水位监测、深层土体水平位移监测、支撑轴力、周围道路及建筑沉降监测。
2.监测目的及编制依据. 监测目的1)为确保围护结构和邻近建筑物的安全,必须加强结构监测和环境监测。
2)将监测数据与设计预测值相比较,从而分析判断前一步施工工艺和施工参数是否符合预期要求,以确定和优化下一步的施工参数,做到信息化施工;3)将现场监测结果反馈设计单位,使设计能根据现场工况发展,及时对开挖方案进行调整,优化设计,使支护结构的设计既安全可靠又经济合理,达到信息化施工。
基坑监测点布置及监测频率要点表
基坑纵横轴线或有代表性的位置由密到
缝、地面超
回 点,每一基坑 疏布置测点
载状况
填 不少于 8 点
自然环境 设
(雨水、气 计
温、洪水 时
等)
非予应力锚杆
和土钉抽取构
锚杆、土钉 全
每根锚杆上的测点应设置在受力、变形
件的 5 %,予
的应力和轴 过
较大且有代表性的位置和地质复杂的区
应力锚杆抽取
力
程
域
构件的 10 %,
个,每一支撑
至
行测量
不少于 3 点
拆
用安装在混凝土支撑内 部、与受力钢筋串联连接 的应力传感器测试。钢支 撑采用与支撑串联连接的
、与支撑断面尺寸相同 的应力传感器测试。精度
开挖深度 ≤5m 及基 础底板完 成后,1 次/2 天; 其它 1 次/ 天
除
不低于 1/100(F·S)
立柱变形
全 不少于构件的 过 20 %,且不少 程 于3个
基坑设计深度(m)
≤5.0 5.0-10.0 10.0-15.0 >15.0
1 次/1d 1 次/2d 1 次/2d 1 次/2d
-
1 次/1d 1 次/1d 1 次/1d
-
-Leabharlann 2 次/1d 2 次/1d
1 次/1d 1 次/1d 2 次/1d 2 次/1d
1 次/3d 1 次/2d 1 次/1d 1 次/1d
基坑监测点布置及监测频率要点表
基坑监测频率
《建筑基坑支护技术规程》JGJ120-2012 规定 1、基坑向下开挖期间,监测不应少于每天一次,直至开挖停止后连续三天的监测数值稳 定; 2、当地面、支护结构或周边建筑物出现裂缝、沉降,遇到降雨、降雪、气温骤变,基坑 出现异常的渗水,坑外地面荷载增加等各种环境条件或异常情况时,应立即进行连续监 测,直至连续三天的监测数值稳定; 3、当位移速率大于前次监测的位移速率时,则应进行连续监测; 4、基坑监测频率与基坑类别、施工开挖深度、基坑设计深度有着密切的关系,在以后的 工作实践中应综合考虑各项参数,准确判断监测频率;如遇突发情况,加大监测频率。
深基坑监测施工方案
深基坑监测方法1、组织机构项目部测量监测工作由总工程师全面管理,下设测量主管、监测主管1名,负责具体的施工测量、监测工作管理及安排;专职测量工程师1名,负责现场施工测量放样及内业资料的整理;专职测量、监测工各1名。
2、仪器配置根据工程特点和控制要求,经理部配备一台全站仪及其配套的对中器、反射镜。
仪器标称精度:测角精度为±2″,测距精度为±(2+1.5ppm);配备电子水准仪,配置因瓦精密编码尺,仪器精度可达0.3mm/km。
全站仪、电子水准仪和光学水准仪已鉴定合格,并按规范要求每年鉴定一次。
表2-1 测量仪器设备表表2-2 监测仪器设备3、隧道监控监测施工3.1、监测项目本项目基坑监测项目如下:注:可根据施工条件和沉降情况增加或减少观测次数,随时将监测信息报告给施工人员。
3.2监测范围及检测等级基坑本体的监测范围为结构体系的变形情况;基坑周边环境的监测范围除坑外水位外,其它项目的范围为基坑边向外延伸3H(如下表所示),该范围内的地表、建筑物、管线等均应监测。
根据《建筑基坑工程监测技术规范》(GB50497-2009)和《紫薇快速路设计图纸中风险源设计说明》要求,本标段各基坑监测等级如下表所示:表3-3 基坑监测等级一览表3.3、监测重点本标段地质以软土为主,施工过程中需严密监测,保证施工安全。
本工程监测重点如下:1、基坑自身结构变形;2、周边建筑监测;3.4、监测方法一、监测点布设1)围护结构顶水平位移、沉降监测点的布设1、布点要求围护结构水平位移和沉降监测点为共用点,布点间距约20米左右,与测斜孔在同一段面。
点位在基坑四周围护结构顶上布置,布点位置与测斜孔对应;围梁中部、阳角处应布置监测点,并与实际情况结合。
结构顶水平位移点布设应在冠梁完成后进行。
布设应监理旁站签认。
2、埋设方法在支撑混凝土浇筑后初凝时埋入预制的强制对中杆或用电钻在设计位置处钻孔后直接埋入。
3、测点保护钻孔埋设时注意钻孔不能过大,以能嵌入为准,如孔径过大,应以混凝土填实防止晃动或被拔掉。
6基坑监测施工方案
6基坑监测施工方案基坑监测在施工过程中是非常重要的一项工作,可以帮助监测基坑周围的土体变形情况,保障基坑施工的安全和稳定。
为了确保基坑监测的有效性和准确性,需要制定详细的监测施工方案。
一、监测设备的选择1.需要选择高质量的基坑监测设备,如倾斜仪、位移仪、桩身位移仪等,以确保监测数据的准确性和实时性。
2.在选择设备时,需要考虑设备的灵敏度、稳定性和耐用性,以保证设备在基坑施工过程中能够持续稳定运行。
3.可以选择具有实时数据传输功能的监测设备,方便监测人员及时获取监测数据并进行分析。
二、监测方案的编制1.制定详细的监测方案,包括监测人员的职责分工、监测设备的布设位置、监测频率、监测数据的处理方式等内容。
2.在制定监测方案时,需要充分考虑基坑周围环境的影响因素,如地下水位、土体性质、周边建筑物等,以确保监测数据的准确性和可靠性。
3.需要定期对监测方案进行评估和调整,根据实际情况及时调整监测方案,以保证监测工作的顺利进行。
三、监测过程的操作1.在监测过程中,需要确保监测设备的准确性和稳定性,及时维护设备,保证设备正常运行。
2.监测人员需要按照监测方案进行操作,确保监测数据的准确性和一致性。
3.如发现监测数据异常,需要及时进行分析处理,并进行必要的调整和修正。
四、监测数据的处理与分析1.监测数据需要及时传输和存储,确保数据安全和完整性。
2.监测数据的处理需要采用专业的数据处理软件,进行数据分析和比较,得出监测结果。
3.需要定期对监测数据进行分析报告,及时汇总监测结果并向相关部门汇报。
五、监测结果的应用1.监测结果可以为基坑施工提供参考和指导,及时发现基坑变形情况,采取相应的措施保障基坑施工的安全和稳定。
2.监测结果也可以为基坑周边建筑物提供参考,及时发现地基沉降情况,采取相应的补救措施。
3.监测结果可以为基坑施工的后续工程提供参考和指导,保证后续工程的顺利进行。
六、监测工作的总结与改进1.在监测工作结束后,需要对监测工作进行总结和评估,总结经验教训,发现问题并提出改进意见。
基坑监测方案
基坑监测方案一、工程概述本工程位于具体地点,基坑占地面积约为面积数值平方米,开挖深度为深度数值米。
周边环境较为复杂,临近周边建筑物或道路等。
为确保基坑施工过程中的安全稳定,保障周边环境不受影响,特制定本基坑监测方案。
二、监测目的1、及时掌握基坑围护结构和周边环境的变形情况,为施工提供及时、可靠的信息,以便调整施工参数,优化施工方案。
2、预测基坑及周边环境的变形趋势,提前采取防范措施,避免事故的发生。
3、对基坑施工过程进行监控,验证设计方案和施工工艺的合理性,为后续类似工程提供经验参考。
三、监测内容1、围护结构水平位移监测在围护结构顶部设置水平位移监测点,采用全站仪或经纬仪进行观测,监测点间距一般为间距数值米。
2、围护结构竖向位移监测在围护结构顶部设置竖向位移监测点,与水平位移监测点共用,采用水准仪进行观测。
3、深层水平位移监测在围护结构内埋设测斜管,深度达到基坑底部以下深度数值米,采用测斜仪定期测量围护结构的深层水平位移。
4、支撑轴力监测在支撑结构上安装轴力计,监测支撑轴力的变化情况。
5、地下水位监测在基坑周边设置地下水位观测井,采用水位计测量地下水位的变化。
6、周边建筑物沉降和倾斜监测在周边建筑物的角点和重要部位设置沉降和倾斜监测点,采用水准仪和全站仪进行观测。
7、周边道路和管线沉降监测在周边道路和管线上设置沉降监测点,采用水准仪进行观测。
四、监测点布置1、水平位移和竖向位移监测点沿基坑周边每隔间距数值米布置一个监测点,在阳角、阴角等变形较大的部位适当加密。
2、深层水平位移监测点在基坑的长边和短边中部各布置一个测斜管,在地质条件较差或变形较大的部位增设测斜管。
3、支撑轴力监测点选择受力较大的支撑构件进行监测,每个监测断面布置数量个轴力计。
4、地下水位监测点在基坑周边每隔间距数值米布置一个地下水位观测井。
5、周边建筑物沉降和倾斜监测点在建筑物的四角、长边中点和每隔间距数值米的位置设置沉降监测点,在建筑物的两个对角方向设置倾斜监测点。
基坑监测方案
XXXXXXX地块基坑围护监测方案XXXXX勘察院二0一八年一月XXXXXXX地块基坑围护监测方案项目负责:校对:审核:监测单位:XXXXXX勘察院监测资质:工程勘察综合类甲级单位地址:XXXXXXX2018年1月8日目录一、项目概述....................................... 错误!未定义书签。
二、监测目的....................................... 错误!未定义书签。
三、监测执行规范和依据............................. 错误!未定义书签。
四、监测项目及内容................................. 错误!未定义书签。
五、监测点的布设................................... 错误!未定义书签。
1.深层土体水平位移监测........................... 错误!未定义书签。
2.地下水位观观测点............................... 错误!未定义书签。
3.坑顶沉降及水平位移监测点....................... 错误!未定义书签。
4.冠梁水平位移监测点............................. 错误!未定义书签。
5.立柱沉降观测点................................. 错误!未定义书签。
6.支撑轴力监测点................................. 错误!未定义书签。
7.周边管线、桥梁、建筑物沉降观测点............... 错误!未定义书签。
8.坑外地面沉降监测点............................. 错误!未定义书签。
六、监测项目的实施................................. 错误!未定义书签。
基坑监测测点布置方案
基坑监测测点布置方案1.周边道路及地下管线水平位移.垂直位移(沉降)(1)目的:反映周边道路及地下管线水平位移、垂直位移(沉降)变化。
(2)布埋设:视现场情况,在道路边缘敲道钉,也可钻孔放入膨胀螺栓。
(3)布设数量:水平位移、垂直位移(沉降)监测采用共用点,监测点按水平间距15m在周边道路地面上布设共156个监测点A、B、C区),编号G1~G1560因现场环境及政府有关部门规定限制,地下管线监测点的埋设除能利用原有管线设备点外也可采用模拟点法或间接点法。
模拟点法即在地下管线相应上方开挖约40Cm深样洞,将顶面刻划〃+〃的钢筋埋入其中,并用混凝土将其固定;间接点法即在地下管线相应上方将顶面刻划〃+〃的道钉打入道路接缝处。
2、基坑围护体顶水平位移.垂直位移(沉降)监测点(1)目的:反映基坑围护体顶水平位移、垂直位移(沉降)变化。
(2)布埋设:视现场情况,在基坑围护压顶上敲入顶面刻划〃+〃的道钉,也可钻孔放入顶面刻划〃+〃的膨胀螺栓。
(3)布设数量:水平位移、垂直位移(沉降)监测采用共用点,A区:监测点按水平间距15〜20m在基坑围护体顶布设,共35个监测点,编号WH1~WH3503、基坑围护体深层水平位移(测斜)监测孔(1)目的:反映基坑围护体深层的水平位移,对于基坑围护体深层的变形明显。
(2)布埋设:在围护体内用钻机钻孔放入测斜管或者和钢筋笼一起分段放入外径70mm,内径55mm,内壁刻有十字滑槽的的测斜管,测斜管的一对滑槽要垂直指向基坑方向,测斜管深度和围护桩同深。
上下管口用盖子密封,安装完成以后立即灌注清水,防止泥浆渗入管内。
测斜管口设置可靠的保护装置。
(3)布设数量:布设在基坑周边的中部、阳角处及有代表性的部位,A区共布设9个监测孔。
4.基坑外土体深层水平位移(测斜)(1)目的:反映基坑外土体深层的水平位移,对于基坑土体深层的变形明显。
(2)布埋设:应布置在邻近需要重点监护的地下设施或建筑物周围土体中,在周围土体内用钻机钻孔放入外径70mm,内径55mm,内壁刻有十字滑槽的的测斜管,测斜管的一对滑槽要垂直指向基坑方向,测斜管深度大于围护墙埋深的5~IOm o测斜管口设置可靠的保护装置。
深基坑监测专项施工方案
一、工程概况本工程为深基坑施工项目,基坑深度约8米,占地面积约500平方米。
基坑周边环境复杂,包括地下管线、周边建筑物等。
为确保施工安全和工程质量,特制定本深基坑监测专项施工方案。
二、监测目的1. 监测基坑围护结构的变形和稳定性,确保施工安全;2. 监测周边地下管线和建筑物的沉降,防止对周边环境造成影响;3. 为施工提供实时数据,指导施工方案的调整。
三、监测内容1. 基坑围护结构水平位移监测;2. 基坑围护结构竖向位移监测;3. 周边地下管线沉降监测;4. 周边建筑物沉降监测。
四、监测方法1. 水平位移监测:采用测斜仪进行监测,测量基坑围护结构水平位移;2. 竖向位移监测:采用水准仪进行监测,测量基坑围护结构竖向位移;3. 地下管线沉降监测:采用精密水准仪进行监测,测量地下管线沉降;4. 周边建筑物沉降监测:采用精密水准仪进行监测,测量周边建筑物沉降。
五、监测频率1. 基坑围护结构水平位移和竖向位移监测:每日监测一次;2. 地下管线沉降监测:每周监测一次;3. 周边建筑物沉降监测:每周监测一次。
六、监测数据处理1. 对监测数据进行实时记录,确保数据的准确性;2. 对监测数据进行整理和分析,发现异常情况及时报告;3. 对监测数据进行统计和评估,为施工方案的调整提供依据。
七、监测设备配置1. 测斜仪:用于监测基坑围护结构水平位移;2. 水准仪:用于监测基坑围护结构竖向位移、地下管线沉降和周边建筑物沉降;3. 数据采集器:用于实时记录监测数据;4. 软件系统:用于监测数据分析和处理。
八、监测人员要求1. 监测人员应具备相关专业知识和技能,熟悉监测设备的操作和维护;2. 监测人员应严格遵守监测规程,确保监测数据的准确性;3. 监测人员应定期参加培训和考核,提高监测技能。
九、监测安全管理1. 监测现场应设置警示标志,防止人员误入;2. 监测设备应妥善保管,防止损坏和丢失;3. 监测人员应遵守安全操作规程,确保自身安全。
航天星苑深基坑围护监测施工方案
航天星苑深基坑围护监测施工方案航天星苑是一座位于深圳市南山区的高层住宅项目,工程施工中涉及到深基坑的围护及监测。
为确保施工的安全和顺利进行,下面将提出一种深基坑围护监测施工方案,并详细说明其步骤和措施。
一、方案概述本方案旨在通过合理的施工措施和监测手段,对航天星苑深基坑进行稳固的围护并及时监测地下水位和土体位移等变化,确保施工进度和人员安全。
二、施工方案1.基坑围护结构选用支护桩和挡土墙的组合形式,满足工程要求的同时尽量减小基坑对周边环境的影响。
2.基坑周边设有分段支护措施,确保施工过程中的稳定性和安全性。
3.挡土墙采用钢筋混凝土桩墙,桩间距设定合理,并且对地面设有钢筋混凝土挡墙,以提供良好的地下水控制效果。
4.监测井布置在基坑内外,监测井应设有透水管和防渗设施,以便及时监测地下水位变化。
5.在基坑围护完成之前,需要对围护结构进行监测,包括单桩荷载试验和静载试验等,以确保围护结构的稳固性和承载力。
三、监测方案1.地下水位监测:在基坑周边布置一定数量的地下水位监测井,采用自动记录仪进行实时监测,并每日进行数据采集和分析。
2.土体位移监测:在基坑周边设有土体位移监测点,采用测绘仪器进行监测,并每日进行数据采集和分析。
3.监测指标:地下水位监测主要关注地下水位的变化情况,土体位移监测主要关注基坑壁的沉降情况和变形情况。
4.监测报警机制:设置监测数据的阈值,一旦数据超出阈值范围,系统将自动报警并通知相关人员,以便及时采取相应措施。
四、施工安全1.施工过程中,对基坑内外设有明确的施工区域,保持施工区域的整洁和安全。
2.施工区域内应设置专人负责监测和管理,定期检查施工现场,确保施工质量和安全。
3.工人应经过专业培训,具备相关证件和技能,严格遵守施工作业规程和安全操作规范。
五、总结通过合理的施工方案和严密的监测措施,可以确保航天星苑深基坑的围护和施工安全。
同时,监测数据的及时采集和分析可以为施工方提供参考,及时采取相应措施,以保证施工的顺利进行。
如何做建筑施工基坑监测方案设计
建筑施工基坑监测方案设计一、前言在建筑施工过程中,基坑是一个非常关键的环节,其安全性直接影响到建筑物的稳定性和施工工程的顺利进行。
因此,对基坑进行监测是非常重要的。
本文针对建筑施工基坑监测方案进行设计,包括监测的项目、监测仪器的选择、监测方案的制定等内容,以保障基坑施工的安全。
二、监测项目1. 基坑深度:监测基坑的深度,以确保基坑的开挖深度符合设计要求;2. 基坑周边建筑物和路基的变形情况:监测周边建筑物和路基的变形情况,避免基坑施工对周边建筑物和路基造成破坏;3. 基坑土体的围护结构变形情况:监测基坑土体的围护结构的变形情况,避免围护结构发生倒塌导致事故的发生;4. 基坑内部水位变化情况:监测基坑内部的水位变化情况,避免基坑内部积水导致基坑失稳。
三、监测仪器的选择1. 光纤光栅变形监测仪:用于监测基坑周边建筑物和路基的变形情况,具有高精度和长距离监测的优势;2. 岩土变形测量仪:用于监测基坑土体的围护结构的变形情况,可以实时监测土体的变形情况;3. 水位监测仪:用于监测基坑内部水位的变化情况,可以及时发现基坑内部水位的变化。
四、监测方案的制定1. 制定监测方案:根据监测项目和监测仪器的选择,设计监测方案,包括监测的频率、监测点的设置等内容;2. 确定监测点:根据基坑的施工情况和周边环境,确定监测点的位置,确保监测的全面性和有效性;3. 设置监测设备:根据监测方案的要求,设置监测设备,并进行校准和调试,确保监测数据的准确性;4. 定期监测和数据处理:按照监测方案的要求,定期进行监测,并对监测数据进行处理和分析,发现问题及时处理。
五、结论建筑施工基坑监测方案的设计是非常重要的,可以有效保障基坑施工的安全。
通过选择合适的监测项目和监测仪器,制定科学合理的监测方案,可以及时发现基坑施工中的问题,确保施工的顺利进行。
希望本文的内容对基坑监测方案的设计有所帮助,提高建筑施工的安全性。
基坑监测工程施工方案
基坑监测工程施工方案:一、监测目标1、通过对监测数据分析,判断上一步施工工艺和施工参数是否符合或达到预期要求,同时实现对下一步的施工工艺和施工进度控制,从而切实实现信息化施工;2、通过监测,及时掌握和提供基坑、围(支)护系统、地表及周边建(构)筑物的变化信息和工作状态,确保本工程基坑开挖期间周边的建筑物、道路、管线正常运行;3、通过监测及时发现基坑施工过程中的环境变形发展趋势,及时反馈信息,达到有效控制施工对建筑物及管线影响的目的;4、通过监测及时调整支撑系统的受力均衡问题,使得整个基坑开挖过程能始终处于安全、可控的范畴内;5、及时预报险情,以便采取措施,防止事故发生;6、将现场监测结果反馈给建设单位、监理单位、设计单位,使设计能根据现场工况发展,进一步优化方案,达到优质安全、经济合理、施工快捷的目的;7、通过跟踪监测,在换撑和支撑拆除阶段,施工科学有序,保障基坑始终处于安全运行的状态;8、必要时为业主提供法律及公证所需要的证据。
二、监测遵循技术规范(1)《城市轨道交通工程测量规范》GB50308-2008(2)《建筑变形测量规范》JGJ8-2007(3)《建筑基坑工程监测技术规范》GB50497-2009(4)天津地标《岩土工程技术规范》DB29-20-2000(5)《建筑地基基础设计规范》GB50007-2011(6)《工程测量规范》GB50026-2007(7)《城市测量规范》CJJ/T8-2011(8)《建筑基坑支护技术规程》JGJ120-2012(9)《天津市建设工程质量管理条例》(10)《天津市建筑基坑工程技术规程》DB29-202-2010(11)其它有关国家行业和地方技术规程、规范及施工验收规范等三、监测项目本工程的监测项目主要包括:围护结构自身的监测,基坑周边1~3倍坑深范围内的建筑物、地表、地下管线的监测。
1、围护结构监测:(1)水平位移监测(2)垂直位移监测(3)深层水平位移监测(4)支撑梁轴力监测(5)立柱隆沉监测2、相邻环境监测:(1)周边建筑物沉降监测及倾斜观测(2)周边建筑物裂缝监测(3)周边地表沉降监测(4)周边地下管线沉降监测3、地下水监测:(1)地下水水位监测四、监测采用仪器设备及监测方法㈠现场安全巡视1、现场安全巡视对象及范围现场安全巡视的主要对象为本工程围护结构自身、施工工况、周边环境及监测设施,巡视的范围包括所有的现场安全监测对象以及和工程施工有关的被影响对象。
监测点布点示意图
一、水准基准点埋设图二、围护结构顶位移观测墩和测点埋设图图2-1围护结构顶部位移观测墩示意图图2-2位移观测墩顶部构造图图2-3位移观测墩底盘连接大样图图2-4位移观测墩现场图—测量装置;3—连接杆件;4—固定螺栓;图2-5 围护桩(墙)顶位移监测点(装棱镜)埋设示意图123546图2-6 围护桩(墙)顶位移监测点(装棱镜)埋设和保护现场图标记,必要时加盖子保护。
(可以根据现场实际情况,统一采用L型棱镜。
)图2-7 围护桩(墙)顶位移监测点(装反光片)埋设示意图三、围护结构/土体深层水平位移(测斜)测点埋设图图3-1-(1) 围护结构测斜管埋设现场图图3-1-(2) 围护结构测斜管埋设现场图四、支撑轴力监测点埋设图图4-1砼支撑轴力监测点布置示意图图4-2砼支撑轴力监测点现场图图4-3钢支撑轴力计布置示意图图4-4钢支撑轴力计布置现场图图4-5数据传输线保护装置五、地面沉降监测点埋设图六、管线沉降点埋设图管线间接沉降监测点埋设方式同地表沉降点,管线直接点埋设方式如下图所示。
图6-1管线直接点埋设示意图图6-2抱箍示意图图6-3管线直接点埋设现场图图6-4管线直接点埋设标识牌七、建构筑物监测点埋设图锚固剂回填钻孔缝隙图7-1 建构筑物监测点埋设示意图八、地下水位监测点埋设图图8-1地下水位监测点埋设示意图图8-2-(1)水位管显性保护装置图8-2-(2)水位管隐性保护装置图8-3地下水位监测点埋设现场图九、深层土体及土体分层位移监测点埋设图图9-1 深层沉降标监测点埋设示意图图9-2 土体分层沉降监测点埋设示意图十、拱顶沉降及净空收敛监测点埋设图10-1拱顶沉降及净空收敛监测点埋设示意图图10-2拱顶沉降及净空收敛监测点埋设示意图图10-3拱顶沉降及净空收敛监测点埋设示意图图10-4拱顶沉降及净空收敛监测点埋设现场图十一、矿山法1.CD法监测点布点示意图图11-3 CD法监测点布点示意图2.CRD法监测点布点示意图图11-4 CRD法监测点布点示意图3.双侧壁导坑法监测点布点示意图图11-5 双侧壁导坑法监测点布点示意图4.小导洞监测点布点示意图十二、既有线自动化监测点埋设图图12-4既有线隧道自动化道床监测点现场图图12-5既有线隧道自动化静力水准监测点现场图十三、矿山法监测点平面示例图十四、盾构监测平面示例图十五、基坑监测平面示例图。
“基坑”专项监测方案详细
“基坑”专项监测方案详细因挖深基坑工程涉及范围广,其技术复杂,事故也是频繁出现,所以在施工过程中要进行监测。
以便于我们及时制定应急措施,保证基坑开挖及结构施工安全。
其基坑监测方案如下。
一、水平位移监测:1.水平监测点的布设:土建施工基坑形状大多数为长方形和不规则基坑,为确保按照《建筑物变形测量规程》的二级精度进行水平位移观测视线长度≤300m,在基坑周边相对稳定的区域内布设2-4个工作基点,因基坑拐角处变形最小,工作基点墩位置一般布置在基坑拐角处;根据设计确定的支护结构桩(墙)顶水平位移点的位置和数量,在基坑支护结构的冠粱顶上布设观测点,观测点采用埋设观测墩的形式;在建立好工作基点墩后,将仪器架设在工作基点墩上,沿基坑边布设观测墩,观测点位置必须选择在通视处,要避开基坑边的安全栏杆等影响视线的物体。
一般情况下观测点距离基坑300㎜比较合适。
2.水平位移检测方法,主要有以下五点:①基坑水平位移监测可采用小角度法和极坐标法进行水平位移观测。
对工作基点的稳定性宜采用前方交会、导线测量和后方交会法观测。
②在基坑变形监测中,对于基坑的位移变化量,利用极坐标法进行基坑水平位移监测,一般选择基坑长边为X轴,垂直基坑长边为Y轴。
③小角度法主要用于基坑水平位移变形点的观测。
小角度法必须设置观测墩,采用强制对中方式。
④前方交会观测法,尽量选择较远的稳固目标作为定向点,测站点与定向点之间的距离要求一般不小于交会边的长度,观测点应埋设在适合不同方向观测的位置。
⑤导线测量法主要用于基坑周边建筑物、构筑物密集,对工作基点稳定性检查用前方交会法和后方交会法都难以实现的情况下,通过导线测定工作基点的稳定性。
二、沉降监测:1.沉降监测点布设:在基坑外相对稳定且不受施工影响的地点埋设基点3个,利用这3个基点相互检核其稳定性;支撑立柱沉降监测点设置:在支撑立柱的顶部焊接符合要求的钢制加工件;周边建(构)筑物沉降监测点设置:在建筑物或构筑物的拐角处,离地面20㎝,且避开雨水管、窗台线、电路开关等有碍设标与观测的障碍物,并应视立尺需要离开墙(柱)面一定距离;周边土体沉降监测点:沉降观测点应埋设原状土层中,加设保护装置,沉降观测点稳定后,方可进行初始观测和一般观测。
基坑围护结构监测方案
基坑围护结构监测方案一、方案目的二、监测内容1.地表沉降通过设置监测点,在基坑围护结构附近的地表进行测量,了解地表的沉降情况。
可以采用GPS测量、水准测量等方法进行监测。
2.基坑水位设置水位监测点,监测基坑内水位的变化情况,及时掌握基坑排水的效果。
可以采用浮子水位计、压力传感器等设备进行监测。
3.地下水位设置地下水位监测井,在基坑周围进行地下水位的监测,了解地下水位的变化情况。
可以采用测井仪、压力传感器等设备进行监测。
4.基坑围护结构变形通过设置监测点,在基坑围护结构上设置监测托盘,监测基坑围护结构的变形情况。
可以采用全站仪、测斜仪、位移传感器等设备进行监测。
5.基坑周边建筑物变形通过设置监测点,在基坑周边建筑物上设置监测托盘,监测建筑物的变形情况。
可以采用全站仪、测斜仪、位移传感器等设备进行监测。
三、监测频率根据基坑围护结构的重要性和变形情况的变化速度,制定不同的监测频率。
一般来说,刚开始施工时监测频率较高,后期可以适当减少频率。
1.地表沉降刚开始施工时,每天进行一次测量;中期施工时,每周进行一次测量;后期施工时,每月进行一次测量。
2.基坑水位每天进行一次测量,及时掌握基坑的排水情况。
3.地下水位每周进行一次测量,了解地下水位变化的趋势。
4.基坑围护结构变形刚开始施工时,每天进行一次测量;中期施工时,每周进行一次测量;后期施工时,每月进行一次测量。
5.基坑周边建筑物变形刚开始施工时,每天进行一次测量;中期施工时,每周进行一次测量;后期施工时,每月进行一次测量。
四、监测结果处理监测数据的处理需要根据具体的监测指标和标准来进行。
一般情况下,如果监测数据超过规定的标准,需要及时报告给相关负责人,并采取相应的措施。
五、安全措施1.在基坑围护结构上设置安全警示标志,确保施工区域的安全。
2.按照监测方案进行监测,及时掌握变形情况,并采取相应的安全措施。
3.严格执行施工安全操作规程,确保施工过程中的安全。
4.安排专业技术人员负责监测工作,确保监测数据的准确可靠。
基坑监测方案
基坑监测方案一、工程概况基坑总长度约100Om,整个基坑开挖面积约50000m2,基坑大面积开挖深度约12.90m~13.70m。
基坑安全等级为一级。
周边环境较复杂。
二、编制依据1.监测平面布置图及设计图纸2、《建筑基坑工程技术规程》3、《建筑地基基础设计规范》三、监测目的对基坑施工阶段围护结构和周边环境进行监测,全面反映基坑支护结构、基坑边坡以及周边环境的变形情况和趋势,及时预报基坑施工中出现的问题,并提出处理措施,以求事先掌握基坑开挖的影响情况,为连接通道顺利施工提供指导,进行〃信息化〃施工。
四、监测内容及监测点的布设根据业主的委托要求,结合设计文件及相关规范要求,本项目共进行以下监测项目,具体监测数量见表。
(一)深层侧向位移(测斜管)1.采用的仪器项目拟投入CX—901E型活动式垂直测斜仪,由金坛市华兴测试仪器厂生产,仪器是一种可精确测量沿垂直方向土层或围护结构内部水平位移的工程测量仪器。
在监测前先将有四个相互垂直导槽的测斜管埋入被测土体中。
测量时,将活动式测头放入测斜管,使测头上的导向滚轮卡在测斜管内壁的导槽中,沿槽滚动,活动式测头可连续地测定沿测斜管整个深度的水平位移变化。
2、测斜管的埋设测斜管采用江苏金坛土木工程仪器厂生产的CXG-76型ABS高精度测斜管测斜管,规格为①70mm,双向导槽。
安装或埋设过程中注意事项如下:(1)在被测土体内钻孔,然后将测斜管逐节组装井放入钻孔内,测斜管底部装有底盖,管内注满清水,下入钻孔内预定深度后,即向测斜管与孔壁之间的间隙由下而上用瓜子片填实,固定测斜管。
(2)安装或埋设时,应及时检查测斜管内的一对导槽,其指向是否与欲测量的位移方向一致,并应及时修正。
(3)测斜管固定完毕或浇注混凝土后,用清水将测斜管内冲洗干净。
3、测试技术要求测点间距为0.5m,双向观测。
监测一律从孔底开始自下而上逐点完成。
综合测量误差为:±4mm∕15m0(二)地下水位监测测孔用钻机成孔,并用滤水PVC管护壁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章监测点布置和埋设5.1 监测点布设原则1.以设计提供的《主体围护结构监测平面图》为参考。
2. 各监测项目的测点布设位置及密度应与基坑开挖顺序、被保护对象的位置及特性相配套。
同时为综合把握基坑变形状况,提高监测数据的质量,应保证每一开挖区段内有监测点。
遵循规范结合实际,参照围护体布置及开挖分区等参数,进行测点布置。
3. 基坑监测点总体布设原则:1)监测点应充分结合基坑工程监测等级、基坑设计参数特性和基坑施工参数特性进行合理布置。
2)监测点布置应最大限度反映基坑围护结构体系受力和变形的变化趋势。
3)基坑围护结构侧边中部、阳角处、受力(或变形)较大处应布置测点,重点区域应加密监测点。
4)不同监测项目的监测点宜布置在同一断面上,便于数据比对。
5)监测点间距布置应满足规范要求,应满足设计及相关单位的合理要求。
6)各监测项目的测点布置,需兼顾基坑分块施工特点,确保每分块开挖施工中,均有对应测点有效工作,从而为分块施工过程提供数据信息。
4. 区间隧道监测点布置每10 环在管顶和管底各设置一个,盾构始发井和接受井部位各设置一个断面。
收敛监测布置间隔同隧道内管片沉降监测。
5.2 围护结构体系观察基坑工程的现场监测应采用仪器监测与巡视检查相结合的方法。
整个基坑工程施工期内,与仪器监测频率相对应,应进行巡视检查,并形成书面巡视报表。
巡视检查内容主要针对四部分:围护结构、施工工况、周边环境和监测设施。
现场巡视检查以目测为主,可辅以锤、钎、量尺、放大镜等工器具以及摄像、摄影等设备进行。
每日由专人对自然条件、支护结构、施工工况、周边环境、监测设施等的巡视检查情况进行书面记录,及时整理,并与仪器监测数据进行综合分析。
巡视检查如发现异常和危险情况,应及时通知委托方及其他相关单位。
5.4 围护结构顶部水平位移监测基坑开挖期间大面积土方卸载,围护结构将产生一定水平位移,为掌握围护结构顶部位移信息,布设墙顶水平位移监测点,围护结构顶水平位移值亦可作为测斜自管口向下计算时的管口位移修正值。
测点布置与围护结构测斜孔位置一一对应。
围护结构顶部水平位移监测点,一般直接布设在顶圈梁上,依据测点布设时机相对圈梁浇筑混凝土时间,可区分为先埋和后埋两种方式。
“先埋” 即在围护体顶部结构施工过程中,如圈梁钢筋笼绑扎过程中,在方案设计位置,将钢筋标杆预先竖直牢靠绑扎(或焊接)在钢筋笼上,预埋钢筋标杆顶部(带“十”字)应高出设计圈梁顶部1~2cm以上,混凝土浇筑完毕后,钢筋标杆即牢靠固定在圈梁中或在圈梁混凝土浇筑后12h 内,将专用道钉按入测点设计位置,待混凝土完全凝固后,测点亦牢靠固定在圈梁中。
“后埋”即围护结构顶部结构施工完成后,用冲击钻于测点设计位置用膨胀螺栓把强制对中盘固定,监测时放上小棱镜即可。
基坑冠梁水平位移点位埋设示意图5.7 周边地表沉降监测因开挖引起基坑围护结构向坑内的变形及坑底隆起等原因,会导致坑外土体出现一定程度的变形,会对影响范围内道路以及地面造成影响,如道路变形过大,将导致道路不能正常、安全使用,故需对基坑周边地表进行沉降监测。
为了保证监测数据的准确性,道路及沉降测点标志采用窖井测点形式,采用人工开挖或钻具成孔的方式进行埋设。
道路、地表沉降监测测点应埋设平整,防止由于高低不平影响人员及车辆通行,同时,测点埋设稳固,做好清晰标记,方便保存。
地表沉降监测点埋设实样图5.8 周边建(构)筑物沉降监测因开挖引起基坑围护体向坑内的变形及坑底隆起等原因,会导致坑外土体出现一定程度的变形,会对影响范围内建筑物造成影响,如建筑物变形过大,将导致该建筑物不能正常、安全使用,故需对建筑物进行沉降和水平位移监测。
建筑物垂直位移测点可利用射钉枪进行布设或使用冲击钻进行“ L”形测标布设。
需确保测点与建筑物连结紧密,不能有松动。
建筑物沉降监测点埋设示意图基坑施工监测控制标准以上各项监测的报警指标根据设计施工蓝图确定,应在方案评审会上确认施工过程中出现以下情况,应启动应急预案并加强监测和巡视:雨季: 加强围护安全监测和巡视,必要时增设监测点。
小雨时监测工作正常进行,中雨以上雨量时光学监测工作停测,但测斜监测、轴力监测、等科目仍应正常进行,数据异常时需进行加测。
围护渗漏: 渗漏处加强围护安全监测和巡视。
地面裂缝: 加强对裂缝处沉降监测、裂缝附近围护安全监测和巡视监测数据持续报警: 加密监测频率,出现异常时及时通知相关单位巡视预警:施工过程中通过巡视,发现一般安全隐患或不安全状态应予以预警。
若风险点在扩大,则应在报表中注明,并予以巡视预警综合预警:施工过程中根据现场参与各方的监测、巡视信息,并通过核查、综合分析和专家论证等,及时综合判定出工程风险不安全状态而进行的预警。
施工过程中当判断为综合预警状态时,在信息报送的同时,应及时组织分析,加强监测、巡视,进行先期风险处置。
第六章监测仪器和监测方法6.1 沉降测量6.1.1 基准点及工作基点的埋设基准点布设于隧道及基坑开挖影响区外,一般为开挖边界100 米之外不受干扰的地方,在土质地区,应埋设水泥桩, 优先考虑设立在基础好,沉降稳定,便于施测,便于保存,稳固的永久性建筑物上,也可以埋设于在变形影响区域外的原状土层上。
工作点的选取应适观测点与基岩基准点的距离而定,初步确定为每个基准点联测3 个工作点。
基准点埋设方式如下图所示。
墙面05 30 04 06 75请水勿准碰点动12040单位:mm墙角精密水准点埋设示意图基准点与工作基点的埋设要牢固可靠,如采用标准地表桩,必须将其埋入原状土,并做好井圈和井盖。
在坚硬的道面上埋设地表桩,应凿出道面和路基,将地表桩埋入原状土或钻孔打入1 米以上的螺纹钢筋做地表观测桩,并同时打入保护钢管套。
基准点与工作基点可适现场情况使用第三方交桩控制点或其他已有的精密 水准点。
6.1.2 测量方法基准点采用观测采用闭合水准路线时可以只观测单程, 采用附合水准路线形 式必须进行往返观测, 取两次观测高差中数进行平差。
观测顺序: 往测:后、前、 前、后,返测:前、后、后、前。
根据使用仪器徕卡 DNA03电子水准仪的精度是每公里偶然中误差为 0.3mm , 同时考虑本工程监测点是按照三等垂直位移监测精度进行观测,其视线长度≤ 50m ,一般附合路线线路长约 1km 左右,则在该路线上的测站数为:各测站高程中误差为:在本线路中最弱点将是第 5站,即 n=5,其单向观测最高程中误差为: m 最弱点 (单向 ) m 站 5 0.04 2.23 0.09(单向 )mm当采用往返观测时,最弱点高程中误差为:可以看出,采用该仪器按本观测方案可以达到垂直变形监测要求。
S 线 S线10002 5010站m站m偶n0.3100.04 mmm最弱点 ( 往返 )m最弱点(单向)20.0420.06 mm地面基准点埋设示意图观测注意事项如下:①对使用的电子水准仪、条码水准尺应在项目开始前和结束后进行检验,项目进行中也应定期进行检验。
当观测成果异常,经分析与仪器有关时,应及时对仪器进行检验与校正;②观测应做到三固定,即固定人员、固定仪器、固定测站;③观测前应正确设定记录文件的存贮位置、方式,对电子水准仪的各项控制限差参数进行检查设定,确保附合观测要求;④应在标尺分划线成像稳定的条件下进行观测;⑤仪器温度与外界温度一致时才能开始观测;⑥ 数字水准仪应避免望远镜直对太阳,避免视线被遮挡,仪器应在生产厂家规定的范围内工作,震动源造成的震动消失后,才能启动测量键,当地面震动较大时,应随时增加重复测量次数;⑦每测段往测和返测的测站数均应为偶数,否则应加入标尺零点差改正;⑧由往测转向返测时,两标尺应互换位置,并应重新整置仪器;⑨完成闭合或附合路线时,应注意电子记录的闭合或附合差情况,确认合格后方可完成测量工作,否则应查找原因直至返工重测合格。
6.1.3 数据处理及分析(1)数据传输及平差计算观测记录采用电子水准仪自带记录程序进行,观测完成后形成原始电子观测文件,通过数据传输处理软件传输至计算机,检查合格后使用专用水准网平差软件进行严密平差,得出各点高程值。
平差计算要求如下:①应使用稳定的基准点为起算,并检核独立闭合差及与2 个以上的基准点相互附合差满足精度要求条件,确保起算数据的准确;②使用商用华星测量控制网平差软件,平差前应检核观测数据,观测数据准确可靠,检核合格后按严密平差的方法进行计算;③ 平差后数据取位应精确到0.1mm。
通过变形观测点各期高程值计算各期阶段沉降量、阶段变形速率、累计沉降量等数据。
(2)变形数据分析观测点稳定性分析原则如下:①观测点的稳定性分析基于稳定的基准点作为基准点而进行的平差计算成果;②相邻两期观测点的变动分析通过比较相邻两期的最大变形量与最大测量误差(取两倍中误差)来进行,当变形量小于最大误差时,可认为该观测点在这两个周期内没有变动或变动不显著;③对多期变形观测成果,当相邻周期变形量小,但多期呈现出明显的变化趋势时,应视为有变动。
监测点预警判断分析原则如下:①将阶段变形速率及累计变形量与控制标准进行比较,如阶段变形速率或累计变形值小于预警值,则为正常状态,如阶段变形速率或累计变形值大于预警值而小于报警值则为预警状态,如阶段变形速率或累计变形值大于报警值而小于控制值则为报警态,如阶段变形速率或累计变形值大于控制值则为控制状态。
②如数据显示达到警戒标准时,应结合巡视信息,综合分析施工进度、施工措施情况、支护围护结构稳定性、周边环境稳定性状态,进行综合判断;③分析确认有异常情况时,应及时通知有关各方采取措施。
6.2 水平位移测量现场监测基准点采用强制归心的水泥观测墩,顶面长宽各0.4 米,地下部分埋深大于1.2 米,地面部分高1.0 米;监测点埋设时先在圈梁、围护桩或地下连续墙的顶部用冲击钻钻出深约10cm的孔,再把强制归心监测标志放入孔内,缝隙用锚固剂填充。
埋设形式如下图。
测点标志埋设时应注意保证与测点间的通视,保证强制对中标志顶面的水 平,测点埋设完毕后,应进行必要的保护、防锈处理,并作明显标记。
监测点标志使用预制强制归心标志,可与桩顶沉降点制作成同一标识。
5.2.2 观测方法(1)基准点及工作基点观测根据基坑周边环境情况, 水平位移基准点及监测控制点组成附合、 闭合导线 或导线网, 参考下图观测方案。
水平位移基准点及工作基点必须使用强制对中装基准点及工作基点布置示意图基准网测量采用 点的相对点位中误差:2″级全站仪, 测距精度 2mm+2pp 。
m 可按下式估算导线相邻1m tSmm u" S(1-1)1监测基点实景图 5.2.1 埋设技术要求监测点实景图基准点 工作基点 监测点其中S为导线平均边长,m为测角中误差(″),T 为测距相对中误差(mm)。