中考数学24题几何证明

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆中考数学第24题专题训练

【典题1】如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC 交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点,且∠BEH=∠HEG.

(1)若HE=HG,求证:△EBH≌△GFC;

(2)若CD=4,BH=1,求AD的长.

(1)证明:∵HE=HG,

∴∠HEG=∠HGE,

∵∠HGE=∠FGC,∠BEH=∠HEG,

∴∠BEH=∠FGC,

∵G是HC的中点,

∴HG=GC,

∴HE=GC,

∵∠HBE=∠CFG=90°.

∴△EBH≌△GFC;

(2)解:过点H作HI⊥EG于I,

∵G为CH的中点,

∴HG=GC,

∵EF⊥DC,

HI⊥EF,

∴∠HIG=∠GFC=90°,

∠FGC=∠HGI,

∴△GIH≌△GFC,

∵△EBH≌△EIH(AAS),

∴FC=HI=BH=1,

∴AD=4-1=3.

【典题2】已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD和等边△ACE.

(1)如图1,连接线段BE、CD.求证:BE=CD;

(2)如图2,连接DE交AB于点F.求证:F为DE中点.

证明:(1)∵△ABD和△ACE是等边三角形,

∴AB=AD,AC=AE,∠DAB=∠EAC=60°,

∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,

在△DAC和△BAE中,

AC=AE ∠DAC=∠BAE AD=AB ,

∴△DAC≌△BAE(SAS),

∴DC=BE;

(2)如图,作DG∥AE,交AB于点G,

由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°,

∴∠DGF=∠FAE=90°,

又∵∠ACB=90°,∠CAB=30°,

∴∠ABC=60°,

又∵△ABD为等边三角形,∠DBG=60°,DB=AB,

∴∠DBG=∠ABC=60°,

在△DGB和△ACB中,

∠DGB=∠ACB ∠DBG=∠ABC DB=AB ,

∴△DGB≌△ACB(AAS),

∴DG=AC,

又∵△AEC为等边三角形,∴AE=AC,

∴DG=AE,

在△DGF和△EAF中,

∠DGF=∠EAF ∠DFG=∠EFA DG=EA ,

∴△DGF≌△EAF(AAS),

∴DF=EF,即F为DE中点.

【典题3】如图,在梯形ABCD中,AD∥BC,∠C=90°,E为CD的中点,EF∥AB交BC于点F (1)求证:BF=AD+CF;

(2)当AD=1,BC=7,且BE平分∠ABC时,求EF的长.

(1)证明:如图(1),延长AD交FE的延长线于N

∵∠NDE=∠FCE=90°

∠DEN=∠FEC

DE=EC

∴△NDE≌△FCE

∴DN=CF

∵AB∥FN,AN∥BF∴四边形ABFN是平行四边形

∴BF=AD+DN=AD+FC

(2)解:∵AB∥EF,

∴∠ABN=∠EFC,即∠1+∠2=∠3,

又∵∠2+∠BEF=∠3,

∴∠1=∠BEF,∴BF=EF,

∵∠1=∠2,∴∠BEF=∠2,

∴EF=BF,

又∵ BC+AD=7+1

∴ BF+CF+AD=8

而由(1)知CF+AD=BF

∴ BF+BF=8

∴2BF=8,

∴BF=4,∴BF=EF=4

【典题4】在等腰梯形ABCD中,AD∥BC,AB=AD=CD,∠ABC=60°,延长AD到E,使DE=AD,延长DC到F,使DC=CF,连接BE、BF和EF.

⑴求证:△ABE≌△CFB;

⑵如果AD=6,tan∠EBC的值.

解:(1)证明:连结CE,

在△BAE与△FCB中,

∵ BA=FC,∠A=∠BCF,, AE=BC,

∴△BAE≌△FCB;

(2)延长BC交EF于点G,作AH⊥BG于H,作AM⊥BG,∵△BAE≌△FCB,

∴∠AEB=∠FBG,BE=BF,

∴△BEF为等腰三角形,

又∵AE∥BC,

∴∠AEB=∠EBG,

∴∠EBG=∠FBG,

∴BG⊥EF,

∵∠AMG=∠EGM=∠AEG=90°,

∴四边形AMGE为矩形,

∴AM=EG,

在Rt△ABM中,A

B D

E

C

F

AM=AB •sin60°=6× 23 =33 , ∴EG=AM=33,

BG=BM+MG=6×2+6×cos60°=15,

∴tan ∠EBC=531533==BG

EG

【典题5】已知:AC 是矩形ABCD 的对角线,延长CB 至E ,使CE=CA ,F 是AE 的中点,连接DF 、CF 分别交AB 于G 、H 点(1)求证:FG=FH ;(2)若∠E=60°,且AE=8时,求梯形AECD 的面积.

(1)证明:连接BF

∵ABCD 为矩形

∴AB ⊥BC AB ⊥AD AD=BC

∴△ABE 为直角三角形

∵F 是AE 的中点

∴AF=BF=BE

∴∠FAB=∠FBA

∴∠DAF=∠CBF

∵ AD=BC, ∠DAF=∠CBF ,AF=BF ,

∴△DAF ≌△CBF

∴∠ADF=∠BCF

∴∠FDC=∠FCD

∴∠FGH=∠FHG

∴FG=FH ;

(2)解:∵AC=CE ∠E=60°

∴△ACE 为等边三角形

∴CE=AE=8

∵AB ⊥BC

∴BC=BE=CE

21=4

∴根据勾股定理AB=34

∴梯形AECD 的面积=21×(AD+CE)×CD=21

×(4+8)×34=324

【典题6】如图,直角梯形ABCD 中,AD ∥BC ,∠BCD=90°,且CD=2AD ,tan ∠ABC=2,过点D 作DE ∥

相关文档
最新文档