江苏高考附加题概率
江苏高考数学附加题卷例题及答案
B .附加题部分三、附加题部分(本大题共6小题,其中第21~24题为选做题,请考生在第21~24题中任选2个小题作答,如果多做,则按所选做的前两题记分。
第25和第26题为必做题.解答应写出文字说明,证明过程或演算步骤.)21.(本小题为选做题,满分10分) 如图,AB 是O 的直径,M 为圆上一点,ME AB ⊥,垂足为E ,点C 为O 上任一点,,AC EM 交于点D ,BC 交DE 于点F . 求证:(1)AE ED FE EB =::;(2)2EM ED EF =⋅.22.(本小题为选做题,满分10分)已知点(,)P x y 是圆222x y y +=上的动点. (1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围.23.(本小题为选做题,满分10分)求使等式 2 4 2 0 1 03 50 10 -1M ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦成立的矩阵M .24.(本小题为选做题,满分10分)已知(0,)2x π∈,求函数2sin y x =+的最小值以及取最小值时所对应的x 值.25.(本小题为必做题,满分10分) 如图,直三棱柱111A B C ABC -中,12C C CB CA ===,AC CB ⊥. D E 、分别为棱111C C B C 、的中点.(1)求点E 到平面ADB 的距离; (2)求二面角1E A D B --的平面角的余弦值;(3)在线段AC 上是否存在一点F ,使得EF ⊥平面1A DB ?若存在,确定其位置;若不存在,说明理由.26.(本小题为必做题,满分10分)1,2,3,,9这9个自然数中,任取3个不同的在数.(1)求这3个数中至少有1个是偶数的概率; (2)求这3个数和为18的概率;(3)设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望E ξ.B .附加题部分 三、附加题部分:21.(选做题)(本小题满分10分) 证明:(1)∵MN AB ⊥,∴90B BFE D ∠=-∠=∠, ∴AED ∆∽FEB ∆,∴EB FE ED AE ::=;(5分)(2)延长ME 与⊙O 交于点N ,由相交弦定理,得EM EN EA EB ⋅=⋅,且EM EN =, ∴2EM EA EB =⋅,由(1) ∴2EM ED EF =⋅。
江苏高考附加题数学知识点
江苏高考附加题数学知识点作为中国国内各省份高考中的一颗明珠,江苏高考备受广大考生和家长的关注。
江苏省高考数学试卷中附加题是考察学生对于数学知识理解的一个重要环节。
本文将对江苏高考附加题中涉及的数学知识点进行分析和解读,以帮助广大考生更好地备考。
一、初等数论初等数论是江苏高考附加题中经常出现的考察点之一。
其中包括整数的性质、整数的因数分解、最大公约数和最小公倍数等。
考生首先需要掌握素数与合数、奇数与偶数的特点,并能够灵活运用整数的有序性和整除性进行解题。
此外,还需要熟悉最大公约数和最小公倍数的计算方法以及相关的性质,例如辗转相除法和质数分解法等。
对于初等数论的掌握,既可以通过多做题来提高技巧,也可以通过深入理解数学原理来应对更复杂的情况。
二、坐标系与函数附加题中经常涉及到的另一个数学知识点是坐标系与函数。
考生需要熟悉直角坐标系的构造和基本性质,能够根据给定函数的表达式绘制函数图像,并理解各类函数的特点。
在解题过程中,还需要掌握函数的平移、伸缩和反转等变换方式的特点,以便做出准确的判断。
此外,对于带参数的函数或隐函数的解析,考生需要学会通过图像直观地理解其特点,从而找到解答问题的关键。
三、概率与统计学概率与统计学是江苏高考附加题中的另一个重要知识点。
考生需要掌握随机事件的概念、样本空间的构建以及事件的概率计算等基本内容。
在统计学方面,需要熟悉常用的统计指标如均值、中位数和众数等,以及频率分布图和累积分布图的绘制方法。
在解题过程中,考生还需要灵活运用条件概率、排列组合和概率分布等概念,以解决实际问题。
同时,了解基本的抽样调查和假设检验方法,能够应对更复杂的统计学问题。
四、向量与几何附加题中还经常涉及到向量与几何的知识点。
考生需要理解向量的基本概念和运算规则,能够求解向量的模、夹角和坐标。
在几何学方面,需要熟练掌握平面几何和空间几何中的基本定理和性质,例如三点共线、平行线与垂直线的判定等。
此外,对于曲线的参数方程以及空间曲线的类型和特点,考生也需要进行积极的学习和思考。
2021高考江苏版(理)数学一轮复习讲义: 附加题部分 第1章 第62课 离散型随机变量的均值与方差
第62课离散型随机变量的均值与方差[最新考纲]内容要求A B C离散型随机变量的均值与方差√1.离散型随机变量的均值与方差一般地,假设离散型随机变量X的概率分布为X x1x2…x i…x nP p1p2…p i…p n(1)均值称E(X)=μ=x1p1+x2p2+…+x i p i+…+x n p n为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)方差称V(X)=σ2=∑ni=1(x i-E(X))2p i=∑ni=1x2i p i-μ2为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根σ=V(X)为随机变量X的标准差.2.均值与方差的性质(1)E(aX+b)=aE(X)+b.(2)V(aX+b)=a2V(X).(a,b为常数)3.两点分布与二项分布的均值、方差(1)假设X服从两点分布,那么E(X)=p,V(X)=p(1-p).(2)假设X~B(n,p),那么E(X)=np,V(X)=np(1-p).1.(思考辨析)判断以下结论的正误.(正确的打“√〞,错误的打“×〞) (1)期望是算术平均数概念的推广,与概率无关.( ) (2)随机变量的均值是常数,样本的平均值是随机变量.( )(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,那么偏离均值的平均程度越小. ( )(4)在篮球比赛中,罚球命中1次得1分,不中得0分,如果某运发动罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.( )[答案] (1)× (2)√ (3)√ (4)√ 2.(教材改编)X 的概率分布为设73 [E (X )=-1×12+0×13+1×16=-13, 那么E (Y )=2E (X )+3=3-23=73.]3.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),那么V (ξ)等于________.8 [∵E (ξ)=15(2+4+6+8+10)=6, ∴V (ξ)=15[(-4)2+(-2)2+02+22+42]=8.]4.(2021·四川高考)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,那么在2次试验中成功次数X 的均值是________.32 [同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率P =1-⎝ ⎛⎭⎪⎫122=34. 又X ~B ⎝ ⎛⎭⎪⎫2,34,∴成功次数X 的均值E (X )=2×34=32.]5.假设X ~B (n ,p ),且E (X )=6,V (X )=3,那么P (X =1)=________. 31 024[∵E (X )=np =6, V (X )=np (1-p )=3, ∴p =12,n =12,那么P (X =1)=C 112×12×⎝ ⎛⎭⎪⎫1211=3×2-10=31 024.]离散型随机变量的均值、方差设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的时机均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的概率分布;(2)从该袋子中任取(每球取到的时机均等)1个球,记随机变量η为取出此球所得分数.假设Eη=53,Dη=59,求a ∶b ∶c . 【导学号:62172334】[解] (1)由题意得ξ=2,3,4,5,6. 故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518,P (ξ=5)=2×2×16×6=19, P (ξ=6)=1×16×6=136.所以ξ的概率分布为(2)由题意知η的概率分布为所以E (η)=a a +b +c +2b a +b +c +3c a +b +c=53,D (η)=⎝ ⎛⎭⎪⎫1-532·a a +b +c +⎝ ⎛⎭⎪⎫2-532·b a +b +c +⎝ ⎛⎭⎪⎫3-532·c a +b +c =59,化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0.解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1.[规律方法] 1.求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进展计算.2.注意E (aX +b )=aE (X )+b ,V (aX +b )=a 2V (X )的应用.[变式训练1] (2021·苏北四市摸底)某校有甲、乙两个兴趣小组,其中甲组有2名男生、3名女生,乙组有3名男生、1名女生,学校方案从两兴趣小组中随机各选2名成员参加某项活动.(1)求选出的4名选手中恰好有一名女生的选派方法数;(2)记X 为选出的4名选手中女选手的人数,求X 的概率分布和数学期望.[解] (1)选出的4名选手中恰好有一名女生的选派方法数为C 12·C 13·C 23+C 13=21种.(2)X 的可能取值为0,1,2,3.P(X=0)=C23C25C24=310×6=120,P(X=1)=C12C13C23+C13C25C24=2×3×3+310×6=720,P(X=3)=C23C13C25C24=3×310×6=320,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)=9 20.X的概率分布为X 012 3P 120720920320E(X)=0×120+1×720+2×920+3×320=1710.与二项分布有关的均值、方差某商场举行有奖促销活动,顾客购置一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,假设都是红球,那么获一等奖;假设只有1个红球,那么获二等奖;假设没有红球,那么不获奖.(1)求顾客抽奖1次能获奖的概率;(2)假设某顾客有3次抽奖时机,记该顾客在3次抽奖中获一等奖的次数为X,求X的概率分布和数学期望及方差. 【导学号:62172335】[解](1)记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.由题意知A1与A2相互独立,A1A2与A1A2互斥,B1与B2互斥,且B1=A1A2,B2=A1A2+A1A2,C=B1+B2.因为P (A 1)=410=25,P (A 2)=510=12, 所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15, P (B 2)=P (A 1A 2+A 1A 2)=P (A 1A 2)+P (A 1A 2) =P (A 1)P (A 2)+P (A 1)P (A 2) =P (A 1)(1-P (A 2))+(1-P (A 1))P (A 2) =25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12. 故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15. 于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125, P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125, P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的概率分布为X 的数学期望为E (X )=3×15=35.随机变量X 的方差V (X )=3×15⎝ ⎛⎭⎪⎫1-15=1225.[规律方法]ξ的期望与方差时,可首先分析ξ是否服从二项分布,如果ξ~B (n ,p ),那么用公式E (ξ)=np ,V (ξ)=np (1-p )求解,可大大减少计算量.2.有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,此时,可以综合应用E (aξ+b )=aE (ξ)+b 以及E (ξ)=np 求出E (aξ+b ).同样还可求出V (aξ+b ).[变式训练2] 空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录2021 年某地某月10天的AQI 的茎叶图如图62-1所示.图62-1(1)利用该样本估计该地本月空气质量优良(AQI ≤100)的天数;(按这个月总共30天计算)(2)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列、数学期望和方差.[解] (1)从茎叶图中可发现该样本中空气质量优的天数为2,空气质量良的天数为4,故该样本中空气质量优良的频率为610=35,从而估计该月空气质量优良的天数为30×35=18. (2)由(1)估计某天空气质量优良的概率为35, ξ的所有可能取值为0,1,2,3.P (ξ=0)=⎝ ⎛⎭⎪⎫253=8125,P (ξ=1)=C 1335⎝ ⎛⎭⎪⎫252=36125,P (ξ=2)=C 23⎝ ⎛⎭⎪⎫35225=54125,P (ξ=3)=⎝ ⎛⎭⎪⎫353=27125.故ξ的分布列为ξ 0 1 2 3 P8125361255412527125显然ξ~B ⎝ ⎛⎭⎪⎫3,35,E (ξ)=3×35=1.8,随机变量ξ的方差V (ξ)=3×35⎝ ⎛⎭⎪⎫1-35=1825.均值与方差在决策中的应用有甲、乙两种棉花,从中各抽取等量的样品进展质量检验,结果如下:X 甲 28 29 30 31 32 PX 乙 28 29 30 31 32 P花的质量.[解] 由题意,得E (X 甲)=28×0.1+29×0.15+30×0.5+31×0.15+32×0.1=30,E (X 乙)=28×0.13+29×0.17+30×0.4+31×0.17+32×0.13=30. 又V (X甲)=(28-30)2×0.1+(29-30)2×0.15+(30-30)2×0.5+(31-30)2×0.15+(32-30)2×0.1=1.1,V (X乙)=(28-30)2×0.13+(29-30)2×0.17+(30-30)2×0.4+(31-30)2×0.17+(32-30)2×0.13=1.38,所以E (X 甲)=E (X 乙),V (X 甲)<V (X 乙),故甲种棉花的质量较好. [规律方法] 1.依据均值与方差的定义、公式求出相应的均值与方差. 2.依据均值与方差的意义对实际问题作出决策或给出合理的解释.[变式训练3] (2021·扬州期末)某商场举办“迎新年摸球〞活动,主办方准备了甲、乙两个箱子,其中甲箱中有四个球、乙箱中有三个球(每个球的大小、形状完全一样),每一个箱子中只有一个红球,其余都是黑球.假设摸中甲箱中的红球,那么可获奖金m 元,假设摸中乙箱中的红球,那么可获奖金n 元.活动规定:①参与者每个箱子只能摸一次,一次摸一个球;②可选择先摸甲箱,也可先摸乙箱;③如果在第一个箱子中摸到红球,那么可继续在第二个箱子中摸球,否那么活动终止.(1)如果参与者先在乙箱中摸球,求其恰好获得奖金n 元的概率;(2)假设要使得该参与者获奖金额的期望值较大,请你帮他设计摸箱子的顺序,并说明理由.[解] (1)设参与者先在乙箱中摸球,且恰好获得奖金n 元为事件M . 那么P (M )=13×34=14,即参与者先在乙箱中摸球,且恰好获得奖金n 元的概率为14.(2)参与者摸球的顺序有两种,分别讨论如下:①先在甲箱中摸球,参与者获奖金x 可取0,m ,m +n , 那么P (x =0)=34,P (x =m )=14×23=16,P (x =m +n )=14×13=112; E (X )=0×34+m ×16+(m +n )×112=m 4+n12;②先在乙箱中摸球,参与者获奖金η可取0,n ,m +n , 那么P (η=0)=23,P (η=n )=13 ×34=14,P (η=m +n )=13×14=112, E (η)=0×23+n ×14+(m +n )×112=m 12+n3, E (X )-E (η)=2m -3n12,当m n >32时,先在甲箱中摸球,再在乙箱中摸球,参与者获奖金期望值较大;当m n =32时,两种顺序参与者获奖金期望值相等;当m n <32时,先在乙箱中摸球,再在甲箱中摸球,参与者获奖金期望值较大. 即当m n >32时,先在甲箱中摸球,再在乙箱中摸球,参与者获奖金期望值较大;当m n =32时,两种顺序参与者获奖金期望值相等;当m n <32时,先在乙箱中摸球,再在甲箱中摸球,参与者获奖金期望值较大.[思想与方法] 1.均值与方差的性质(1)E (aX +b )=aE (X )+b ,V (aX +b )=a 2V (X )(a ,b 为常数). (2)假设X 服从两点分布,那么E (X )=p ,V (X )=p (1-p ).(3)假设X 服从二项分布,即X ~B (n ,p ),那么E (X )=np ,V (X )=np (1-p ). 2.求离散型随机变量的均值与方差的根本方法(1)随机变量的概率分布求它的均值、方差,按定义求解.(2)随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差,可直接用ξ的均值、方差的性质求解.(3)如果所给随机变量是服从二项分布,利用均值、方差公式求解.[易错与防范]1.理解均值E(X)易失误,均值E(X)是一个实数,由X的分布列唯一确定,即X作为随机变量是可变的,而E(X)是不变的,它描述X值的取值平均状态.2.注意E(aX+b)=aE(X)+b,V(aX+b)=a2V(X)易错易混.3.对于应用问题,必须对实际问题进展具体分析,一般要将问题中的随机变量设出来,再进展分析,求出随机变量的概率分布,然后按定义计算出随机变量的均值、方差.课时分层训练(六)A组根底达标(建议用时:30分钟)1.某班从4名男生、2名女生中选出3人参加志愿者效劳,假设选出的男生人数为ξ,求ξ的方差.[解]依题意,随机变量ξ服从超几何分布,ξ可能的取值为1,2,3.P(ξ=k)=C k4C3-k2C36,k=1,2,3.ξ的概率分布为E(ξ)=1×15+2×35+3×15=2.V (ξ)=15×(1-2)2+35×(2-2)2+15×(3-2)2=0.4.2.现有一游戏装置如图62-2,小球从最上方入口处投入,每次遇到黑色障碍物等可能地向左、右两边落下.游戏规那么为:假设小球最终落入A 槽,得10张奖票,假设落入B 槽,得5张奖票;假设落入C 槽,得重投一次的时机,但投球的总次数不超过3次.图62-2(1)求投球一次,小球落入B 槽的概率;(2)设玩一次游戏能获得的奖票数为随机变量X ,求X 的概率分布及均值.【导学号:62172336】[解] (1)由题意可知投一次小球,落入B 槽的概率为⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=12.(2)落入A 槽的概率为⎝ ⎛⎭⎪⎫122=14,落入B 槽的概率为12, 落入C 槽的概率为⎝ ⎛⎭⎪⎫122=14.X 的所有可能取值为0,5,10, P (X =0)=⎝ ⎛⎭⎪⎫143=164,P (X =5)=12+14×12+⎝ ⎛⎭⎪⎫142×12=2132.P (X =10)=14+14×14+⎝ ⎛⎭⎪⎫142×14=2164.所以X 的概率分布为X510E (X )=0×164+5×2132+10×2164=10516.3.(2021·南通二调)一个摸球游戏,规那么如下:在一不透明的纸盒中,装有6个大小一样、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,k 倍的奖励(k ∈N +),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为X 元.(1)求概率P (X =0)的值;(2)为使收益X 的数学期望不小于0元,求k 的最小值.(注:概率学源于赌博,请自觉远离不正当的游戏!) 【导学号:62172337】 [解] (1)事件“X =0〞表示“有放回的摸球3回,所指定的玻璃球只出现1次〞,那么P (X =0)=3×16×⎝ ⎛⎭⎪⎫562=2572.(2)依题意,X 的可能值为k ,-1,1,0,且P (X =k )=⎝ ⎛⎭⎪⎫163=1216,P (X =-1)=⎝ ⎛⎭⎪⎫563=125216,P (X =1)=3×⎝ ⎛⎭⎪⎫162×56=572,P (X =0)=2572,结合(1)知,参加游戏者的收益X 的数学期望为 E (X )=k ×1216+(-1)×125216+1×572=k -110216(元).为使收益X 的数学期望不小于0元,所以k ≥110,即k min =110.4.(2021·山东高考)甲、乙两人组成“星队〞参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,那么“星队〞得3分;如果只有一人猜对,那么“星队〞得1分;如果两人都没猜对,那么“星队〞得0分.甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队〞参加两轮活动,求:(1)“星队〞至少猜对3个成语的概率;(2)“星队〞两轮得分之和X 的概率分布和数学期望E (X ). [解] (1)记事件A :“甲第一轮猜对〞, 记事件B :“乙第一轮猜对〞, 记事件C :“甲第二轮猜对〞, 记事件D :“乙第二轮猜对〞,记事件E :“‘星队’至少猜对3个成语〞.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D , 由事件的独立性与互斥性,P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+P (A)P (B )P (C )P (D )+P (A )P (B)P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×⎝ ⎛⎭⎪⎫14×23×34×23+34×13×34×23=23, 所以“星队〞至少猜对3个成语的概率为23. (2)由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝ ⎛⎭⎪⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144, P (X =3)=34×23×14×13+14×13×34×23=12144=112, P (X =4)=2×⎝ ⎛⎭⎪⎫34×23×34×13+34×23×14×23=60144=512,P (X =6)=34×23×34×23=36144=14. 可得随机变量X 的概率分布为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236.B 组 能力提升 (建议用时:15分钟)1.(2021·南京盐城二模)甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛完毕后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛完毕后甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E (ξ).[解] (1)比赛完毕后甲的进球数比乙的进球数多1个有以下几种情况: 甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球. 所以比赛完毕后甲的进球数比乙的进球数多1个的概率 P =C 1323⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫123+C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫13C 13⎝ ⎛⎭⎪⎫123+C 33⎝ ⎛⎭⎪⎫233C 23⎝ ⎛⎭⎪⎫123=1136. (2)ξ的取值为0,1,2,3,所以ξ的概率分布列为所以数学期望E (ξ)=0×724+1×1124+2×524+3×124=1.2.方案在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量....X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,缺乏80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多..有1年的年入流量超过120的概率; (2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:行,那么该台年亏损800万元.欲使水电站年总利润的均值到达最大,应安装发电机多少台?[解] (1)依题意,p 1=P (40<X <80)=1050=0.2,p 2=P (80≤X ≤120)=3550=0.7,p 3=P (X >120)=550=0.1.由二项分布知,在未来4年中至多有1年的年入流量超过120的概率为 p =C 04(1-p 3)4+C 14(1-p 3)3p 3=⎝ ⎛⎭⎪⎫9104+4×⎝ ⎛⎭⎪⎫9103×⎝ ⎛⎭⎪⎫110=0.947 7. (2)记水电站年总利润为Y (单位:万元). ①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y =5 000,E (Y )=5 000×1=5 000.②安装2台发电机的情形.依题意知,当40<X <80时,一台发电机运行,此时Y =5 000-800=4 200,因此P (Y =4 200)=P (40<X <80)=p 1=0.2;当X ≥80时,两台发电机运行,此时Y =5 000×2=10 000,因此P (Y =10 000)=P (X ≥80)=p 2+p 3Y 的分布列如下:所以,E (Y )=4 200×0.2+10 000×0.8=8 840. ③安装3台发电机的情形.依题意,当40<X <80时,一台发电机运行,此时Y =5 000-1 600=3 400,因此P (Y =3 400)=P (40<X <80)=p 1=0.2;当80≤X ≤120时,两台发电机运行,此时Y =5 000×2-800=9 200,因此P (Y =9 200)=P (80≤X ≤120)=p 2=0.7;当X >120时,三台发电机运行,此时Y =5 000×3=15 000,因此P (Y =15 000)=P (X >120)=p 3=0.1,由此得Y 的分布列如下:所以,E (Y )=3 4008 620. 综上,欲使水电站年总利润的均值到达最大,应安装发电机2台. 3.(2021·南通模拟)一位网民在网上光临某网店,经过一番浏览后,对该店铺中的A ,B ,C 三种商品有购置意向.该网民购置A 种商品的概率为34,购置B 种商品的概率为23,购置C 种商品的概率为12.假设该网民是否购置这三种商品相互独立.(1)求该网民至少购置2种商品的概率;(2)用随机变量h 表示该网民购置商品的种数,求h 的概率分布和数学期望. [解] (1)记“该网民购置i 种商品〞为事件A i ,i =2,3,那么:P (A 3)=34×23×12=14,P (A 2)=34×23×⎝ ⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-34×23×12=1124,所以该网民至少购置2种商品的概率为P (A 3)+P (A 2)=14+1124=1724. 该网民至少购置2种商品的概率为1724. (2)随机变量h 的可能取值为0,1,2,3, P (h =0)=⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12=124,又P (h =2)=P (A 2)=1124,P (h =3)=P (A 3)=14,所以P (h =1)=1-124-1124-14=14.所以随机变量h 的概率分布为:故数学期望E (h )=0×124+1×14+2×1124+3×14=2312.4.(2021·苏州市期中)某公司对新招聘的员工张某进展综合能力测式,共设置了A ,B ,C 三个测试工程.假定张某通过工程A 的概率为12,通过工程B ,C 的概率均为a (0<a <1),且这三个测试工程能否通过相互独立.(1)用随机变量X 表示张某在测试中通过的工程个数,求X 的概率分布和数学期望E (X )(用a 表示);(2)假设张某通过一个工程的概率最大,求实数a 的取值范围. [解] (1)随机变量X 的可能取值为0,1,2,3. P (X =0)=⎝ ⎛⎭⎪⎫1-12C 02(1-a )2=12(1-a )2;P (X =1)=12C 02(1-a )2+⎝ ⎛⎭⎪⎫1-12C 12a (1-a )=12(1-a 2);P (X =2)=12C 12a (1-a )+⎝ ⎛⎭⎪⎫1-12C 22a 2=12(2a -a 2); P (X =3)=12C 22a 2=12a 2. 从而X 的概率分布为X 的数学期望为E (X )=0×12(1-a )2+1×12(1-a 2)+2×12(2a -a 2)+3×a 22=4a +12. (2)P (X =1)-P (X =0)=12[(1-a 2)-(1-a )2]=a (1-a ), P (X =1)-P (X =2)=12[(1-a 2)-(2a -a 2)]=1-2a 2, P (X =1)-P (X =3)=12[(1-a 2)-a 2]=1-2a 22.由⎩⎪⎨⎪⎧0<a <1,a (1-a )≥0,1-2a2≥0,1-2a22≥0,得0<a ≤12,即a 的取值范围是⎝ ⎛⎦⎥⎤0,12.。
江苏省南京市金陵中学河西分校2016届高三附加题专项训练(概率分布、空间向量及综合) 含答案
附加题专项训练(二) 2015、10一、随机变量及其概率分布1、在某学校组织的一次蓝球定点投蓝训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投三次。
某同学在A处的命中率1q为0。
25,在B处的命中率为2q。
该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为()I求2q的值;()II求随机变量ξ的数学期量Eξ;()III试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.2、某中学有4位学生申请A,B,C三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1)求恰有2人申请A大学的概率;(2)求被申请大学的个数X的概率分布列与数学期望E(X).ξ02345p0.031p2p3p4p3.一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.(1)设抛掷5次的得分为ξ,求ξ的分布列和数学期望E ξ; (2)求恰好得到n *()n ∈N 分的概率.二、立体几何中的向量方法4、如图,在三棱锥ABC P -中,平面ABC ⊥平面APC ,2====PC AP BC AB ,︒=∠=∠90APC ABC 。
(1)求直线PA 与平面PBC 所成角的正弦值;(2)若动点M 在底面三角形ABC 上,二面角M-PA-C 的余弦值为11113,求BM 的最小值.P5、在三棱锥S ABC-中,ABC∆是边长为4的正三角形,平面SAC⊥平面ABC,SA SC==M 、N分别为AB、SB的中点.(1)求二面角N CM B--的余弦值;(2)求点B 到平面CMN的距离.AMBSCN三、附加压轴题6、已知点(1,2)A 在抛物线L :22ypx=上。
(1)若ABC ∆的三个顶点都在抛物线L 上,记三边AB ,BC ,CA 所在直线的斜率分别为1k ,2k ,3k ,求123111k k k -+的值;(2)若四边形ABCD 的四个顶点都在抛物线L 上,记四边AB ,BC ,CD ,DA 所在直线的斜率分别为1k ,2k ,3k ,4k ,求12341111k k k k -+-的值.7、已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n fx -的导数,n *∈N.(1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()1444n nnff -πππ+=成立.8、设数列{}na 是等比数列,311232CAm m m a+-=⋅,公比q 是4214x x ⎛⎫+ ⎪⎝⎭的展开式中的第二项(按x 的降幂排列).(1)用,n x 表示通项na 与前n 项和nS ;(2)若1212C C C nnn n n nAS S S =+++,用,n x 表示nA .附加题专项训练(二) 2015、10一、随机变量及其概率分布1、在某学校组织的一次蓝球定点投蓝训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投三次。
2008高考江苏数学试卷含附加题详细解答全版080718
2008年普通高等学校招生全国统一考试(江苏卷)数 学一、填空题:本大题共1小题,每小题5分,共70分. 1.若函数cos()(0)6y x πωω=->最小正周期为5π,则ω= ▲ . 解:2105T ππωω==⇒=2.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 ▲ .解:基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故316612P ==⨯ 3.若将复数11ii+-表示为(,,a bi a b R i +∈是虚数单位)的形式,则a b += ▲ . 解:∵()21112i i i i ++==- ,∴0,1a b ==,因此1a b += 4.若集合2{|(1)37,}A x x x x R =-<+∈,则A Z I 中有 ▲ 个元素解:由2(1)37x x -<+得2560x x --<,(1,6)A =-∴,因此}{0,1,2,3,4,5A Z =I ,共有6个元素.5.已知向量a r 和b r 的夹角为0120,||1,||3a b ==r r ,则|5|a b -=r r ▲ . 解:()2222552510a b a ba ab b -=-=-+r r r r r r r r g =22125110133492⎛⎫⨯-⨯⨯⨯-+= ⎪⎝⎭,57a b -=r r6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是 ▲ 解:如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位 圆及其内部,因此.214416P ππ⨯==⨯8.设直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b 的值是 ▲ 解: '1y x = ,令112x =得2x =,故切点坐标为(2,ln2),代入直线方程得ln 21ln 21b b =+⇒=-7.某地区为了解7080-岁的老人的日平均睡眠时间(单位:h ), 随机选择了50位老人进行调查,下表是这50位老人睡眠时间的 频率分布表:在上述统计数据的分析中一部分计算见算法流程图,则输出的S 的值为 ▲解:由算法流程图可知S 为5组数据中的组中值(i G )与对应频率(i F )之积的和,1122334455S G F G F G F G F G F =++++4.50.125.50.206.50.407.50.28.50.08=⨯+⨯+⨯+⨯+⨯ 6.42=9.如图,在平面直角坐标系xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO 上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线 CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方 程为01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你完成直线OF 的方程: ( ▲ )011=⎪⎪⎭⎫⎝⎛-+y a p x 。
江苏高考数学附加题必做题考点剖析
龙源期刊网
江苏高考数学附加题必做题考点剖析
作者:蔡敏柱
来源:《高考进行时·高三数学》2013年第01期
近几年江苏高考数学附加题的必做题考点如下:
第22题第23题2008年考查空间向量基础知识,考查运用空间向量解决问题的能力。
考查复合函数导数、二项式定理、组合数性质等基础知识,考查推理论证能力。
2009年考查直线、抛物线及两点间的距离公式等基本知识。
考查运算求解能力。
考查概率的基本知识和计数原理,考查探究能力。
2010年考查概率及分布列的有关知识,考查运算求解能力。
考查余弦
定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力。
2011年
考查空间向量基础知识,考查运用空间向量解决问题的能力。
考查计数原理,考查探究能力。
2012年考查分布列及其数学期望等基础知识,考查运算求解能力考查集合概念和运算,计数
原理问题等基础知识,考查探究能力。
对近几年江苏高考数学附加题的必做题分析,本专题主要针对考点计数原理、复合函数导数、二项式定理、组合数性质、概率、分布列及其数学期望等有关基础知识应用给出一点指导,希望能给同学们一点帮助。
江苏高考近7年试题附加题
2010 数学Ⅱ(附加题)21.[选做题]本题包括 A 、B、C、D 四小题,请.选.定.其.中.两.题.,并.在.相.应.的.答.题.区.域.内.作.答.。
若多做,则按作答的前两题评分。
解答时应写出文字说明、证明过程或演算步骤。
A .选修4-1:几何证明选讲D(本小题满分10 分)AB 是圆O 的直径,D 为圆O 上一点,过 D 作圆O 的切线交 A B COAB 延长线于点C,若DA=DC ,求证:AB=2BC 。
[ 解析] 本题主要考查三角形、圆的有关知识,考查推理论证能力。
选修4-2:矩阵与变换(本小题满分10 分)在平面直角坐标系xOy 中,已知点A(0,0) ,B(-2,0) ,C(-2,1) 。
设k 为非零实数,矩阵k 0 0 M= ,N=0 1 1 1,点A、B、C 在矩阵MN 对应的变换下得到点分别为 A 1、B1、C1,0△A 1B1C1 的面积是△ ABC 面积的 2 倍,求k 的值。
[ 解析] 本题主要考查图形在矩阵对应的变换下的变化特点,考查运算求解能力。
满分10 分。
B.选修4-4:坐标系与参数方程(本小题满分10 分)在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0 相切,求实数 a 的值。
[ 解析] 本题主要考查曲线的极坐标方程等基本知识,考查转化问题的能力。
满分10 分。
[ 必做题]第22 题、第23 题,每题10 分,共计20 分。
请在答.题.卡.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤。
22、(本小题满分10 分)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10% 。
生产 1 件甲产品,若是一等品则获得利润 4 万元,若是二等品则亏损 1 万元;生产 1 件乙产品,若是一等品则获得利润 6 万元,若是二等品则亏损 2 万元。
设生产各种产品相互独立。
2020年江苏高考数学试卷及答案(含附加题)
2020年江苏高考数学试卷及答案(含附加题)一、填空题:本大题共14小题,每题5分,共计70分,请把答案填写在答题卡相应位置上。
1.已知集合{}1,0,1,2A =-,{}0,2,3B =,则A B = __________。
2.已知i 是虚数单位,则复数()()12z i i =+-的实部是__________。
3.已知一组数据4,2a,3-a,5,6的平均数为4,则a 的值是__________。
4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是。
5.右图是一个算法流程图,若输出y的值为-2,则输入x的值为。
6.在平面直角坐标系xOy中22y =,若双曲线()222105x y a a -=>的一条渐近线方程为52y x =,则该双曲线的离心率是。
7.已知()y f x =是奇函数,当0x >时,23()f x x =,则(8)f -的值是。
8.已知22sin +=43πα(),则sin 2α的值是。
9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是3cm 。
10.将函数3sin 24y x π⎛⎫=+ ⎪⎝⎭的图像向右平移6π个单位长度,则平移后的图像与y 轴最近的对称轴方程是。
11.设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列,已知数列{}+n n a b 的前项和()221n n S n n n N *=-+-∈,则d q +的值是。
12.已知22451(,)x y y x y R +=∈,则22x y +的最小值是。
13.在△ABC 中,4AB =,=3AC ,∠=90BAC °,D 在边AC 上,延长AD P 到,使得=9AP ,若32PA mPB m PC ⎛⎫=+- ⎪⎝⎭(m 为常数),则CD 的长度是。
2020届江苏高考数学原卷版含附加题
绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、填空题1.已知集合{1,0,1,2}A =-,{0,2,3}B =,则A B = __________.2.已知i 是虚数单位,则复数(1)(2)z i i =+-的实部是__________.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是__________.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是__________.5.右图是一个算法流程图.若输出y 值为2-,则输入x 的值是__________.6.在平面直角坐标系xOy 中,若双曲线2221(0)5x y a a -=>的一条渐近线方程为y x =则该双曲线的离心率是__________.7.已知()y f x =是奇函数,当0x ≥时,23()f x x =,则(8)f -的值是__________.8.已知22sin 43πα⎛⎫+= ⎪⎝⎭,则sin 2α的值是__________.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半径为0.5cm ,则此六角螺帽毛坯的体积是__________cm 3.10.将函数3sin 24y x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是__________.11.设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列,已知{}n n a b +的前n 项和()2*21n n S n n n =-+-∈ ,则d q +的值是__________.12.已知()22451,x y y x y +=∈ ,则22x y +的最小值是__________.13.在ABC △中,4AB =,3AC =,90BAC ∠= ,D 在边BC 上,延长AD 到P ,使得9AP =.若32PA mPB m PC ⎛⎫=+- ⎪⎝⎭(m 为常数),则CD 的长度是__________.14.在平面直角坐标系xOy 中,已知2P ⎫⎪⎪⎝⎭,A B 、是圆221:362C x y ⎛⎫+-= ⎪⎝⎭上的两个动点,满足PA PB =,则PAB △面积的最大值是__________.二、解答题15.在三棱柱111ABC A B C -中,AB AC ⊥,1B C ⊥平面ABC ,E ,F 分别是AC ,1B C 的中点.(1)求证://EF 平面11AB C ;(2)求证:平面1AB C ⊥平面1ABB .16.在ABC △中,角A B C 、、的对边分别为a b c 、、.已知3a =,c =45B = .(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,'OO 为铅垂线('O 在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到'OO 的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到'OO 的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到'OO 的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于'OO 的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元),桥墩CD 每米造价32k (万元)(0k >),问'O E 为多少米时,桥墩CD 与EF 的总造价最低?18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为1F ,2F 点A 在椭圆E 上且在第一象限内,212AF F F ⊥,直线1AF 与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅ 的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为1S ,2S ,若213S S =,求点M 的坐标.19.已知关于x 的函数(),()y f x y g x ==与()(),h x kx b k b =+∈ 在区间D 上恒有()()()f x h x g x ≥≥.(1)若2()2f x x x =+,2()2g x x x =-+,(),D =-∞+∞,求()h x 的表达式;(2)若2()1f x x x =-+,()ln g x k x =,()h x kx k =-,()0,D =+∞,求k 的取值范围;(3)42()2f x x x =-,2()48g x x =-,()(342()4320||h x t t x t t t =--+<≤,[,][D m n =⊆,求证:n m -≤20.已知数列{}n a 的首项11a =,前n 项和为n S ,设λ与k 是常数,若对一切正整数n ,均有11111k k k n n n S S a λ++-=成立,则称此数列为"~"k λ数列.(1)若等差数列{}n a 是"~1"λ数列,求λ的值;(2)若数列{}n a 是~2"数列,且0n a >,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为"~3"λ数列,且0n a ≥?若存在,求λ的取值范围;若不存在,说明理由绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.【选做题】A.[选修4-2:矩阵与变换]平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1-M .B.[选修4-4:坐标系与参数方程]在极坐标系中,已知点1,3A πρ⎛⎫ ⎪⎝⎭在直线:cos 2l ρθ=上,点2,6B πρ⎛⎫ ⎪⎝⎭在圆:4sin C ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值;(2)求出直线l 与圆C 的公共点的极坐标.C.[选修4-5:不等式选讲]设x ∈R ,解不等式2|1|||4x x ++<.22.在三棱锥A BCD -中,已知CB CD ==,2BD =,O 为BD 的中点,AO ⊥平面BCD ,2AO =,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足14BF BC =,设二面角F DE C --的大小为θ,求sin θ的值.23.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为n X ,恰有2个黑球的概率为n p ,恰有1个黑球的概率为n q .(1)求1p ,1q 和2p ,2q ;(2)求2n n p q +与112n n p q --+的递推关系式和n X 的数学期望()n E X (用n 表示).。
2020届江苏高考数学附加题专题复习
高三数学附加题专题(含解析)-----概率
1. (本小题满分10分)
甲,乙两人玩摸球游戏,每两局为一轮,每局游戏的规则如下:甲,乙两人均从装有4只红球、1只黑球的袋中轮流不放回摸取1只球,摸到黑球的人获胜,并结束该局.
(1)若在一局中甲先摸,求甲在该局获胜的概率;
(2)若在一轮游戏中约定:第一局甲先摸,第二局乙先摸,每一局先摸并获胜的人得1分,后摸井获胜的人得2分,未获胜的人得0分,求此轮游戏中甲得分X 的概率分布及数学期望.
2.
为了丰富学生的课余生活,某校决定在每周的同一时间开设舞蹈、美术、声乐、棋类四门校本活动课程,甲、乙、丙三位同学每人均在四门校本活动课程中随机选一门进行学习,假设三人选择课程时互不影响,且每人选择每一课程都是等可能的.
(1)求甲、乙、丙三人均不选择舞蹈课程的概率;
(2)设X为甲、乙、丙三人中选择舞蹈课程的人数,求X的概率分布和数学期望E(X).
3. 已知知正四棱锥S-ABCD的底面边长和高均为2,从其五个顶点中任取三个,记这三个顶点围成的三角形的面积为ξ。
(1)求概率P(ξ=2);
(2)求ξ的分布列和数学期望。
4. 在某次活动中,有5名幸运之星.这5名幸运之星可获得A、B两种奖品
中的一种,并规定:每个人通过抛掷一枚质地均匀的骰子决定自己最终获得哪一种奖品(骰子的六个面上的点数分别为1点、2点、3点、4点、5点、6点),抛掷点数小于3的获得A奖品,抛掷点数不小于3的获得B奖品.
(1)求这5名幸运之星中获得A奖品的人数大于获得B奖品的人数的概率;
ξ=-,求随(2)设X、Y分别为获得A、B两种奖品的人数,并记X Y
机变量ξ的分布列及数学期望.。
211 离散型随机变量及其概率分布、超几何分布
专题二十一概率统计【真题典例】21.1离散型随机变量及其概率分布、超几何分布挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点离散型随机变量及其概率分布,超几何分布1.离散型随机变量及其分布列2.超几何分布2014江苏,22随机事件的概率★★★分析解读随机变量的分布列及期望是江苏高考附加题的热点和重点,试题一般涉及随机事件的概率和随机变量的分布列及期望,难度不大.对于两点分布、超几何分布的分布列和期望要求不高.破考点【考点集训】考点离散型随机变量及其概率分布、超几何分布1.设X是一个离散型随机变量,其分布列为X-101P1-2q q 2求q的值.解析由分布列的性质知∴q=1-.2.已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每个球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.求X的分布列.解析由题意得X取3,4,5,6,且P(X=3)==,P(X=4)==,P(X=5)==,P(X=6)==,所以X的分布列为X3456P3.(2019届江苏前黄中学月考)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数a,b,c满足a≤b≤c,则称b为这三个数的中位数)解析(1)由古典概型的概率计算公式知所求概率为P==.(2)X的所有可能值为1,2,3,且P(X=1)==,P(X=2)==,P(X=3)==,故X的分布列为X123P从而E(X)=1×+2×+3×=.炼技法【方法集训】方法求离散型随机变量分布列的方法1.(2019届江苏盛泽中学月考)一批零件中有9个合格品与3个废品,安装机器时,从这批零件中随机抽取,取出废品不放回,求在第一次取到合格品之前已取出的废品数的概率分布列.解析设在第一次取到合格品之前已取出的废品数为X,则X的可能取值为0,1,2,3.P(X=0)==;P(X=1)=×=;P(X=2)=××=;P(X=3)=××=.所以所求的概率分布列为X0123P2.(2018江苏丹阳中学月考)某品牌汽车4S店经销A,B,C三种排量的汽车,其中A,B,C三种排量的汽车依次有5,4,3款不同车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能.(1)求该单位购买的3辆汽车均为B种排量汽车的概率;(2)记该单位购买的3辆汽车的排量种数为X,求X的分布列.解析(1)设“该单位购买的3辆汽车均为B种排量汽车”为事件M,则P(M)==.所以该单位购买的3辆汽车均为B种排量汽车的概率为.(2)随机变量X的所有可能取值为1,2,3.则P(X=1)==,P(X=3)==,P(X=2)=1-P(X=1)-P(X=3)=.所以X的概率分布为X123P过专题【五年高考】A 组自主命题·江苏卷题组(2014江苏,22,10分)盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数.求X的概率分布和数学期望E(X).解析(1)取到的2个颜色相同的球可能是2个红球、2个黄球或2个绿球,所以P===. (2)随机变量X的所有可能取值为2,3,4.{X=4}表示的随机事件是“取到的4个球是4个红球”,故P(X=4)==;{X=3}表示的随机事件是“取到的4个球是3个红球和1个其他颜色的球或3个黄球和1个其他颜色的球”,故P(X=3)===;于是P(X=2)=1-P(X=3)-P(X=4)=1--=.所以随机变量X的概率分布如下表:X234P因此随机变量X的数学期望E(X)=2×+3×+4×=.思路分析(1)取出两个颜色相同的球:取出两个绿球,有种情况,取出两个黄球,有种情况,取出两个红球,有种情况,任取两个球有种情况,根据古典概型概率公式求概率即可.(2)先确定X的所有可能取值,然后分别求出每个取值情况下的概率,然后可得分布列,进而求得数学期望.B组统一命题、省(区、市)卷题组考点随机变量及其分布、超几何分布1.(2018天津理,16,13分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.解析本小题主要考查随机抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.(1)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(2)(i)随机变量X的所有可能取值为0,1,2,3.P(X=k)=(k=0,1,2,3).所以,随机变量X的分布列为X0123P随机变量X的数学期望E(X)=0×+1×+2×+3×=.(ii)设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥.由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=.所以,事件A发生的概率为.名师点睛超几何分布描述的是不放回抽样问题,随机变量为抽到某类个体的个数.超几何分布的特点:(1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考察某类个体个数X的概率分布.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.2.(2017课标全国Ⅲ理,18,12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?解析本题考查随机变量的分布列,数学期望.(1)由题意知,X所有可能取值为200,300,500,由表格数据知P(X=200)==0.2,P(X=300)==0.4,P(X=500)==0.4.因此X的分布列为X200300500P0.20.40.4(2)由题意知,这种酸奶一天的需求量至多为500瓶,至少为200瓶,因此只需考虑200≤n≤500.当300≤n≤500时,若最高气温不低于25,则Y=6n-4n=2n;若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此EY=2n×0.4+(1200-2n)×0.4+(800-2n)×0.2=640-0.4n.当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此EY=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以n=300时,Y的数学期望达到最大值,最大值为520元.3.(2017山东理,18,12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.解析本题考查离散型随机变量的分布列,期望.(1)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M)==.(2)由题意知X可取的值为0,1,2,3,4,则P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==.因此X的分布列为X01234 PX的数学期望是EX=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0+1×+2×+3×+4×=2.解后反思(1)求离散型随机变量X的分布列的步骤:①理解X的含义,写出X所有可能的取值.②求X取每个值时的概率;③写出X的分布列.(2)求离散型随机变量的分布列的关键是求随机变量取各个值时对应的概率,在求解时,要注意应用计数原理,古典概型概率公式等知识.4.(2016山东理,19,12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X的分布列和数学期望EX.解析(1)记事件A:“甲第一轮猜对”,记事件B:“乙第一轮猜对”,记事件C:“甲第二轮猜对”,记事件D:“乙第二轮猜对”,记事件E:“‘星队’至少猜对3个成语”.由题意,E=ABCD+BCD+A CD+AB D+ABC,由事件的独立性与互斥性,得P(E)=P(ABCD)+P(BCD)+P(A CD)+P(AB D)+P(ABC)=P(A)P(B)P(C)P(D)+P()P(B)P(C)P(D)+P(A)·P()P(C)P(D)+P(A)P(B)P()P(D)+P(A)P(B)P(C)·P() =×××+2×=.所以“星队”至少猜对3个成语的概率为.(2)由题意,随机变量X可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P(X=0)=×××=,P(X=1)=2×==,P(X=2)=×××+×××+×××+×××=,P(X=3)=×××+×××==, P(X=4)=2×==,P(X=6)=×××==.可得随机变量X的分布列为X012346 P所以数学期望EX=0×+1×+2×+3×+4×+6×=.评析本题考查了随机事件发生的概率及离散型随机变量的分布列与数学期望,确定随机变量可能的取值是解题的关键.属于中档题.C组教师专用题组1.(2015重庆,17,13分)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.解析(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)==.(2)X的所有可能值为0,1,2,且P(X=0)==,P(X=1)==,P(X=2)==.综上知,X的分布列为X012P故E(X)=0×+1×+2×=(个).2.(2012江苏,22,10分)设ξ为随机变量.从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).解析(1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8对相交棱,因此P(ξ=0)===.(2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,故P(ξ=)==,于是P(ξ=1)=1-P(ξ=0)-P(ξ=)=1--=,所以随机变量ξ的分布列是ξ01P(ξ)因此E(ξ)=1×+×=.评析本题主要考查概率分布、数学期望等基础知识,考查运算求解能力.3.(2013课标全国Ⅰ理,19,12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为,且各件产品是不是优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.解析(1)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=×+×=.(2)X可能的取值为400,500,800,并且P(X=400)=1--=,P(X=500)=,P(X=800)=.所以X的分布列为X400500800PEX=400×+500×+800×=506.25.4.(2014北京,16,13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数.比较EX与的大小.(只需写出结论)解析(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C=A∪B,A,B独立.根据投篮统计数据,可知P(A)=,P(B)=.P(C)=P(A)+P(B)=×+×=.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为.(3)EX=.【三年模拟】一、填空题(每小题5分,共20分)1.(2019届江苏扬州中学月考)已知随机变量X的分布列为P(X=i)=(i=1,2,3),则P(X=2)等于.答案2.(2019届江苏苏州十中月考)随机变量X的概率分布列如下:X1234P0.20.3p0.3则p的值为.答案0.23.(2019届江苏兴化中学月考)设随机变量X等可能取1,2,3,…,n,如果P(X<4)=0.3,则n的值为.答案104.(2018江苏昆山中学月考)已知随机变量X只能取三个值x1,x2,x3,其概率依次成等差数列,则公差d的取值范围为.答案-≤d≤二、解答题(共50分)5.(2019届江苏南京十三中月考)设袋子中装有3个红球,2个黄球,1个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列.解析由题意得,ξ=2,3,4,5,6.P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,P(ξ=5)==,P(ξ=6)==,所以ξ的分布列为ξ23456P6.(2019届江苏如皋中学月考)在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X元的概率分布列.解析(1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由于是等可能地抽取,所以该顾客中奖的概率P===.(2)依题意可知,X的所有可能取值为0,10,20,50,60(元),且P(X=0)==,P(X=10)==,P(X=20)==,P(X=50)==,P(X=60)==.所以X的分布列为:X010205060P7.(2018江苏常州高三期末,22)已知正四棱锥P-ABCD的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制);若这两条棱所在的直线平行,则ξ=0;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制).(1)求ξ=0的概率;(2)求随机变量ξ的分布列及数学期望E(ξ).解析根据题意知四棱锥的四个侧面均为等边三角形,底面为正方形,容易得到△PAC,△PBD为等腰直角三角形.ξ的可能取值为0,,,共=28种情况,其中:ξ=0时,有2种;ξ=时,有3×4+2×4=20种;ξ=时,有2+4=6种.(1)P(ξ=0)==.(2)P==,P==.随机变量ξ的分布列如下表:ξ0P故E(ξ)=0×+×+×=π.评析理解随机变量ξ的含义,按照变量的取值分类,求出分布列,进而求得期望,难度适中.8.(2017江苏苏州高三调研测试)口袋里装有大小相同的卡片八张,其中三张标有数字1,三张标有数字2,两张标有数字3.第一次从口袋里任意抽取一张,放回口袋后第二次再任意抽取一张,记第一次与第二次取到卡片上数字之和为ξ.(1)ξ为何值时,其发生的概率最大?说明理由;(2)求随机变量ξ的数学期望E(ξ).解析(1)依题意,随机变量ξ的取值是2,3,4,5,6.因为P(ξ=2)==;P(ξ=3)==;P(ξ=4)==;P(ξ=5)==;P(ξ=6)==.所以,当ξ=4时,其发生的概率最大,最大值为P(ξ=4)=.(2)由(1)知E(ξ)=2×+3×+4×+5×+6×=,所以,随机变量ξ的数学期望E(ξ)=.9.(2018江苏南通高三调研,22)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖,由电脑随机生成一张3×3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在表中随机不重复点击3格,记中奖的总金额为X元.(1)求概率P(X=600);(2)求X的概率分布列及数学期望E(X).解析(1)从3×3表格中随机不重复地点击3格,共有种不同情形.则事件:“X=600”包含两类情形:第一类是3格各为200元;第二类是1格为300元,一格为200元,一格为100元,其中第一类包含种情形,第二类包含··种情形.所以P(X=600)==.(2)X的所有可能值为300,400,500,600,700.则P(X=300)===,P(X=400)===,P(X=500)===,P(X=600)=,P(X=700)===.所以X的概率分布列为X300400500600700 P所以E(X)=300×+400×+500×+600×+700×=500(元).。
数学附加必做题题型分类探索
数学附加必做题题型分类探索江苏高考数学试卷附加题部分由解答题组成,共6题,其中必做题2题,考查选修系列2(不含选修系列1)中的内容.本文就这两道必做题做一些探究,首先按照不同的内容分类,结合实例说明常见的题型.最后给老师们提一些自己不成熟的建议,供参考.一.计数原理与概率、统计(Ⅰ)二项式定理的运用1.已知(n x 的展开式中前三项的系数成等差数列. (1)求n 的值;(2)求展开式中系数最大的项.说明:本题考查二项式定理,侧重于展开式的通项以及含有组合数的数列的大小比较.2.已知等式252910012910(22)(1)(1)(1)(1)x x a a x a x a x a x ++=+++++++++L ,其中a i (i =0,1,2,…,10)为实常数.求:(1)101n n a =∑的值;(2)101n n na =∑的值.说明:本题考查二项式定理的运用,侧重于体现二项式定理是一个恒等式,可以通过赋值特殊化,本题借助于导数巧妙地构造出101n n na=∑,挺有创意.(Ⅱ)古典概型基础的离散型随机变量的分布列3.某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.(1)用X 表示抽检的6件产品中二等品的件数,求X 的分布列及X 的数学期望;(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率.说明:本题考查古典概型的概率计算,以及进一步求分布列与期望.古典基础的概率问题应该是考查的重点,而且兼考查了排列组合.4.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为27.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,用X 表示取球终止时所需要的取球次数.(1)求袋中原有白球的个数;(2)求随机变量X 的概率分布及数学期望()E X ;(3)求甲取到白球的概率.说明:第一问中,含有一个待定的参数,可以通过解方程求出.4X =指前三次都是黑球,第4次为白球.这时看作有序地取4个球,3134471(4)35A C P X A ⋅===.本题X 取不同值时,事件的实验是不同的,求概率时一定要看清事件的试验是什么,是否有序,是否可重复等要点.(Ⅲ)独立、独立重复基础上的离散随机变量的分布列关于独立,一般只要求学生掌握两个独立事件的合成,同时通过独立事件来理解独立重复试验.5.某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为23. (1)求恰好比赛三局甲获胜的概率;(2)求甲获胜的概率;(3)设甲比赛的次数为X ,求X 的数学期望.说明:本题简洁明了,考查独立事件的概率与独立重复试验,而且要求对这两种模型深刻理解,如甲4场胜,指的是前三场2胜1负且第4场胜,系数是23C 而不是34C .6.某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为X ,求随机变量X 的期望.说明:本题涉及三个事件的相互独立问题(略有点过,不过对掌握这种类型有利),第二问中因为三个概率相等,巧妙地过渡到了独立重复试验.解这类问题时,要养成用字母表示事件的习惯.注意,不是说独立重复试验中的变量就一定是二项概型.(Ⅳ)离散随机变量综合问题7.已知方程b a b ax x ,,02=++为常数.(1)若{}2,1,0∈a ,{}2,1,0∈b ,求方程的解的个数X 的期望;(2)若[]2,0,在b a 内等可能取值,求此方程有实根的概率.说明:第一问是一古典概型问题,而第二问是一个几何概型问题,问题的背景基本一致,一个是离散的,一个是连续的,通过比较可以帮助学生理解离散与连续既对立又统一的关系,是一道好题,与去年广东题接近.二.空间向量与立体几何(Ⅰ)直接与间接建立坐标系初中时,学生学过数轴知道数轴的三要素是原点、方向、单位长度,作为由三条数轴组成的空间直角坐标系,在建立时也要求说明原点、彼此垂直的三个方向以及单位长度.三条轴的方向必须是两两垂直的,如果两两垂直不直观,则需要说明.直接就能够建系的,参考(Ⅱ)中第1题.不能够直接建系的,参考((Ⅲ))中第3题.(Ⅱ)运用空间向量求空间角(考查的重点方向) 我们常常用直线的方向向量(直线上的任意非零向量)来表现直线的方向,用法向量(任意与平面垂直的非零向量)来表现平面的方向. 1.在正方体ABCD —A 1B 1C 1D 1中,F 是BC 的中点,点E在D 1C 1上,且D 1E=14D 1C 1, 试求直线EF 与平面D 1AC 所成角的正弦值. 说明:因为是正方体,所以建系非常方便.本题求斜线与平面所成的角,一般先求平面的法向量,再求斜线与法向量的夹角的余角,俗称“小角的余角”.求平面的法向量是重要的基本功,有现成垂线的时候一定要利用,一般利用垂直于平面A B C D FA 1B 1C 1 ED 1内的两条互相垂直的直线来求解法向量.2.如图,四棱锥P ABCD -中,底面ABCD 是矩形,PD ⊥平面ABCD ,且1PD AD ==,2AB =,点E 是AB 上一点,AE 等于何值时,二面角P EC D --的平面角为4π. 说明:向量的方法可以通过计算确定点、线的位置,以算代证.本题运用了方程的思想. (Ⅲ)运用空间向量证明(平行与垂直),求距离 注意把空间中的线面之间的关系转化为向量的语言,如线面平行(直线的向量与平面内一条直线的向量共线,或与法向量垂直,且说明线在面外),线面垂直(直线的向量与平面内的两条相交直线的向量垂直,或与法向量平行),面面平行(于同一条直线垂直或法向量平行),面面垂直(法向量垂直)等,注意说清楚一些要点,如线面平行要强调线在面外.3.已知斜三棱柱111ABC A B C -,90BCA ∠=o ,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ;(2)求1CC 到平面1A AB 的距离.(2009年大丰市高三年级调研考试)说明:本题中没有现成的三条两两垂直的直线(“墙角”),需要先构造再建系.在各种距离中最重要的是点面距离,设平面外一点与平面内一点连线(斜线)的向量为m u r ,平面的法向量为n r ,m u r 与n r 所夹的角为θ,m u r 与平面所成的角为α,则sin |cos |αθ=,点到平面的距离||||sin |||cos |||||||||||m n m n d m m m m n n αθ⋅⋅=⋅=⋅=⋅=⋅u r r u r r u r u r u r u r r r .(m u r 在n r 上的投影的绝对值)三.圆锥曲线与方程(Ⅰ)求轨迹方程1.已知动圆Q 与x 轴相切,且过点()0,2A .⑴求动圆圆心Q 的轨迹M 方程;⑵设B 、C 为曲线M 上两点,()2,2P ,PB BC ⊥,求点C 横坐标的取值范围.(Ⅱ)抛物线的几何性质探索2.如图,设PQ 是过抛物线y 2 = 2px (p >0)的焦点F PQ 为直径的圆与抛物线的准线相切.(Ⅲ)点、直线与抛物线3.如图,过抛物线y 2 = 4x 的焦点F 作直线l 与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点(其中y 1<y 2),且满足 2AF BF =-u u u r u u u r ,试求直线l的方程.四.数学归纳法(Ⅰ)数学归纳法证明不等式C D PE A x PQ R y OF M N S 1B 1A l A B O F x y C1.已知m n ,为正整数,用数学归纳法证明:当1x >-时,(1)1m x mx ++≥.说明:这是贝努利不等式,课本上的题.(Ⅱ)数学归纳法与数列数学归纳法常用来证明与自然数有关的问题,而数列实际上就是建立在自然数数集上的特殊函数,通过不完全归纳法作出猜想,再用数学归纳法证明.当然也可以根据猜想,有意识地构造新数列求解.2.已知数列{}n a 满足11a =.且92411=+-++n n n n a a a a ,(1)求234,,a a a 的值;(2)由⑴猜想{}n a 的通项公式,并给出证明.(镇江市2009届高三第三次调研测试)说明:运用数学归纳法证明时,一定要严格按照要求格式书写.而证明的关键是由n k =推证1n k =+.五.导数与积分(Ⅰ)简单复合函数的导数1.已知两曲线x x f cos )(=,x x g 2sin )(=,)2,0(π∈x .(1)求两曲线的交点坐标;(2)设两曲线在交点处的切线分别与x 轴交于,A B 两点,求AB 的长.(Ⅱ)定积分2.求曲线x x x y 223++-=与x 轴所围成的图形的面积.(江苏省沛县2009年高考数学全真模拟试卷)六.给老师们的一些建议,仅供参考,欢迎指正.(Ⅰ)对数学附加题一定要充分重视,估计不同层次的学生附加分的差距会超过语文、外语中的任何一门.(Ⅱ)重点复习概率与空间向量,概率内容在高中数学中占了较多的课时,去年没有考,今年再不考的可能性是非常微小的.相比较而言,空间向量倒不是非考不可(赌不起啊).(Ⅲ)复习附加题可以采取专题与考试、讲评相结合的方法.建议在每一块内容最终要形成整体的知识结构.(Ⅳ)注意把握难度,考虑只有30分钟要做4道大题,除一问有点难度外,其余题应该都是基础题,要比上手快(速度),解法标准(规范),不追求难度.很多学生最后常常是很简单的问题做错了,或者不熟练,来不及做完.不到之处请谅解,欢迎指正.。
【真题】2009年江苏省高考数学试题(含附加题+答案)
绝密★启用前2009年普通高等学校招生全国统一考试(江苏卷)数 学参考公式: 样本数据1x ,2x ,,n x 的标准差()()()222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦其中x 为样本平均数柱体体积公式V Sh =其中S 为底面积,h 为高一、填空题:本大题共1小题,每小题5分,共70分.1. 若复数z 1=4+29i ,z 2=6+9i ,其中i 是虚数单位,则复数(z 1−z 2)i 的实部为▲ .2. 已知向量a 和向量b 的夹角为30︒,|a |=2,|b |=3,则向量a 和向量b 的数量积a ·b = ▲ .3. 函数f (x )=x 3−15x 2−33x +6的单调减区间为 ▲ . 4. 函数y =A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)2π3-在闭区间[−π,0]上的图象如图所示,则ω= ▲ .5. 现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 ▲ .6. 某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1、本试卷共4页,包含填空题(第1题~第14题)、解答题(第15题~第20题)两部分。
本试卷满分160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2、答题前,请您务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米签字笔填写在试卷及答题卡上。
3、请认真核对监考员所粘贴的条形码上的姓名、考试证号是否与您本人的相符。
4、作答非选择题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置作答一律无效。
江苏高考数学附加知识点
江苏高考数学附加知识点江苏高考数学是一门重要的科目,学生们在备考期间需要掌握一些附加知识点,以提高他们的数学水平。
这些附加知识点不仅可以帮助学生更好地理解数学概念和解题技巧,还可以培养他们的数学思维和问题解决能力。
一、数列的应用在江苏高考数学试题中,经常会有与数列相关的题目。
学生们需要掌握数列的定义和性质,以及数列的应用。
比如,他们需要了解等差数列和等比数列的概念,可以通过求和公式计算数列的前n项和,还可以应用数列的特点解决实际问题。
这些知识点在江苏高考数学试卷中经常出现,学生们需要熟练掌握。
二、统计与概率统计与概率也是江苏高考数学试题中的一个重要部分。
学生们需要了解基本概率的定义和性质,掌握条件概率和事件独立性的计算方法,以及概率统计的基本原理。
例如,学生们需要学会计算两个事件同时发生、或者至少一个事件发生的概率,还需要掌握抽样调查和统计分析的方法。
这些知识点在江苏高考数学试卷中都有所涉及,学生们需要认真学习和理解。
三、三角函数应用三角函数在江苏高考数学试题中也是一个重点内容。
学生们需要了解正弦、余弦和正切等三角函数的定义和性质,掌握它们之间的关系,以及三角函数的和差化积、倍角公式等重要公式。
此外,学生们还需要熟悉三角函数的应用,如解三角方程、计算三角函数的值等。
这些知识点在江苏高考数学试卷中屡见不鲜,学生们需要多加练习,提高应用能力。
四、向量的应用在江苏高考数学试题中,向量也是一个经常出现的知识点。
学生们需要了解向量的定义和性质,掌握向量的加法、减法和数量积的计算方法,还需要熟悉向量的应用。
例如,学生们需要了解向量的共线、垂直以及平行关系,还需要应用向量解决几何中的问题。
这些知识点在江苏高考数学试卷中有一定的难度,学生们需要仔细学习和思考。
总之,江苏高考数学附加知识点对于学生们的高考备考非常重要。
掌握这些知识点不仅可以提高他们的数学成绩,还可以培养他们的数学思维和问题解决能力。
因此,学生们在备考期间应该注重对这些附加知识点的学习和应用,为高考取得好成绩做好准备。
2008高考江苏数学试卷含附加题详细解答
【答案】6
5.已知向量 和 的夹角为 , ,则 ▲.
【解析】本小题考查向量的线性运算.
= , 7
【答案】7
6.在平面直角坐标系 中,设 是横坐标与纵坐标的绝对值均不大于2的点构成的区域, 是到原点的距离不大于1的点构成的区域,向 中随机投一点,则所投点在 中的概率是▲
【解析】本小题考查古典概型.如图:区域D表示边长为4的正方形的内部(含边界),区域E表示单位圆及其内部,因此.
(1)求 的值;
(2)求 的值.
【试题解析】先由已知条件得 ,第(1)问求 的值,运用正切的和角公式;第(2)问求 的值,先求出 的值,再根据范围确定角的值。
【标准答案】
(1)由已知条件即三角函数的定义可知 ,
因 故 ,从而同理可得 ,因此.所以 = ;(2) ,
从而由 得 .
16.如图,在四面体 中, ,点 分别是 的中点.求证:
,又OP= ,
所以 ,
所求函数关系式为
②若OP= (km),则OQ=10- ,所以OA =OB=
所求函数关系式为
(Ⅱ)选择函数模型①,
令 0得sin ,因为 ,所以 = ,
当 时, , 是 的减函数;当 时, , 是 的增函数,所以当 = 时, 。这时点P位于线段AB的中垂线上,在矩形区域内且距离AB边 km处。
综上可知,在区间 上, (参见示意图2)
故由函数 及 的单调性可知, 在区间 上的单调增区间的长度之和为 ,由于 ,即 ,得
⑵
故由⑴、⑵得
综合(i)(ii)可知, 在区间 上的单调增区间的长度和为 。
2008年普通高等学校招生全国统一考试(江苏卷)
数学附加题参考答案
21:从A,B,C,D四个中选做2个,每题10分,共20分
历届高考数学附加题(江苏卷)及答案解析
历届高考数学附加题(江苏卷)(2018.江苏)21.【选做题】本题包括A ,B ,C ,D 四小题,请选定其中两小题并作答...........,若多做,则按作答的前两小题评分、解答时应写出文字说明、证明过程或演算步骤。
A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过点P 作圆O 的切线,切点为C ,若PC =,求BC 的长.B .[选修4—2:矩阵与变换](本小题满分10分) 已知矩阵2312A ⎡⎤=⎢⎥⎦⎣(I)求A 的逆矩阵1A -;(Ⅱ)若点P 在矩阵A 对应的变换作用下得到点'31P (,),求点P 的坐标。
C .[选修4—4:坐标系与参数方程](本小题满分10分) 在极坐标系中,直线l 的方程为26psin πθ-=(),曲线C 的方程为4p cos θ=,求直线被曲线C 截得的弦长.D .[选修4-5:不等式选讲](本小题满分10分)若x y z ,,为实数,且226x y z ++=,求222x y z ++的最小值.(2018.江苏)【必做题】第22题、第23题,每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在正三棱柱111ABC A B C -中,12AB AA ==,点P Q ,分别为11,A B BC 的中点.(I)求异面直线BP 与1AC 所成角的余弦值; (Ⅱ)求直线1CC ,与平面1AQC 所成角的正弦值.(2018.江苏)23.(本小题满分10分) 设*N n ∈,对1,2,…,n 的一个排列12n i i i ,如果当s t <时,有s t i i >,则称s t i i (,)是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序()()2,13,1,,则排列231的逆序数为2.记n f k ()为1,2,n ,的所有排列中逆序数为k 的全部排列的个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏高考附加题---概率
标注★重点做。
1.在1,2,3,,9
L这9个自然数中,任取3个不同的数.
(1)求这3个数中至少有1个是偶数的概率;
(2)求这3个数和为18的概率;
★(3)设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.
2.一个暗箱中有形状和大小完全相同的3只白球与2只黑球,每次从中取出一只球,取到
白球得2分,取到黑球得3分.甲从暗箱中有放回地依次取出3只球.
(1)写出甲总得分ξ的分布列;
(2)求甲总得分ξ的期望E(ξ).
3.一个袋中装有黑球,白球和红球共n(*
n∈N)个,这些球除颜色外完全相同.已知从袋中
任意摸出1个球,得到黑球的概率是2
5
.现从袋中任意摸出2个球.
(1)若n=15,且摸出的2个球中至少有1个白球的概率是4
7
,设ξ表示摸出的2个球中红球的个数,求随机变量ξ的概率分布及数学期望ξ
E;
(2)当n取何值时,摸出的2个球中至少有1个黑球的概率最大,最大概率为多少? 4.某电视台综艺频道组织的闯关游戏,游戏规定前两关至少过一关才有资格闯第三关,闯
关者闯第一关成功得3分,闯第二关成功得3分,闯第三关成功得4分.现有一位参加
游戏者单独面第一关、第二关、第三关成功的概率分别为21,31,4
1
,记该参加者闯三关所得总分为ζ.
(1)求该参加者有资格闯第三关的概率; (2)求ζ的分布列和数学期望.
5.从符合条件的6名男生和2名女生中任选3人作为2008年北京奥运会志愿者,设随机变量??表示所选3人中女生的人数.
(1)写出??的分布列,并求出??的数学期望;(6分) (2)求事件“??≥l”发生的概率.(4分)
★6. 盒子中装着有标数字1,2,3,4,5的上卡片各2张,从盒子中任取3张卡片,按3张卡片上最大数字的8倍计分,每张卡片被取出的可能性都相等,用ξ表示取出的3张卡片上的最大数字,求:
(1)取出的3张卡片上的数字互不相同的概率; (2)随机变量ξ的概率分布和数学期望;
(3)计分不小于20分的概率.
7.旅游公司为3个旅游团提供甲、乙、丙、丁4条旅游线路, 每个旅游团任选其中一条。
(1)求3个旅游团选择3条不同线路的概率1P ; (2)求恰有2条线路没有被选择的概率2P ;
(3)求选择甲线路的旅游团数ξ的分布列与数学期望。
概率--参考答案:
1.解:(1)记“这3个数至少有一个是偶数”为事件A ,
则122130
4545453
937
()42
C C C C C C P A C ++==;.(3分) (2)记“这3个数之和为18”为事件B ,考虑三数由大到小排列后的中间数只有可能为5、6、7、8,分别为459,567,468,369,279,378,189七种情况,
所以3
971()12
P B C =
=;(7分) (3)随机变量ξ的取值为0,1,2,ξ的分布列为
0 1 2
P
∴ξ的数学期望为012122123
E ξ=⨯
+⨯+⨯=。
(10分) 2. 解:(1)甲总得分情况有6分,7分,8分,9分四种可能,记ξ为甲总得分.
12527533)
6(=⎪⎭⎫ ⎝⎛==ξP ,1255453522
13)7(=
⎪⎭
⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C P ξ, 125365352223)8(=
⎪⎭⎫ ⎝⎛⎪⎭⎫
⎝⎛=
=C P ξ,1258523
)9(=⎪⎭
⎫ ⎝⎛==ξP .………………………4分
(7)
分
(2)甲总得分ξ的期望
E (ξ)=+⨯125
276+⨯125
547+⨯125
368125
89⨯
=5
36
.……………………10分 3. 解:(1)设袋中黑球的个数为x (个),记“从袋中任意摸出一个球,得到黑球”为
事件A ,则2
()155
x P A =
=. ∴6x =. …………………………………………………1分
设袋中白球的个数为y (个),记“从袋中任意摸出两个球,至少得到一个白球”为事件B ,则215215
4
()17
y C P B C -=-
=
, ∴2291200y y -+=,∴5y =或24y =(舍).
∴红球的个数为15654--=(
个). …………………………………3分
∴随机变量ξ的取值为0,1,2,分布列是
ξ的数学期望1144256
0122110535105
E ξ=
⨯+⨯+⨯=
.…………6分
(2)设袋中有黑球z 个,则2
(5,10,15,5
z n n ==…).
设“从袋中任意摸出两个球,至少得到一个黑球”为事件C ,
则23
521661()125251
n n
C P C C
n =-
=
+⨯-,…………………………………8分 当5n =时,()P C 最大,最大值为
7
10
.…………………………………10分 4. ⑴设该参加者单独闯第一关、第二关、第三关成功的概率分别为211=
p ,3
12=p ,31
4
p =
,该参加者有资格闯第三关为事件A . 则1212122()(1)(1)3
=-+-+=P A p p p p p p .
(2)由题意可知,ξ的可能取值为0,3,6,7,10,
3
1)1)(1()0(21=
--==p p P ξ, 123123113
(3)(1)(1)(1)(1)488P p p p p p p ξ==--+--=+=,
1231
(6)(1)8P p p p ξ==-=,
123123111(7)(1)(1)12248P p p p p p p ξ==-+-=
+=,1231
(10)24
P p p p ξ===
, 所以ξ的分布列为
所以ξ的数学期望
13111
036710388824
E ξ=⨯+⨯+⨯+⨯+⨯
.
6. 解:(1)记"一次取出的3张卡片上的数字互不相同的事件"为A,
则.32
)(3
10
12121235==C C C C C A P (2)由题意ξ有可能的取值为:2,3,4,5
所以随机变量ξ的概率分布为:
所以ξ的数学期望为Eξ=⨯
230+⨯315+⨯410+⨯515=3
(3)"一次取出的3张卡片所得分不低于20分"为事件C。