【常考题】七年级数学上期中试题及答案

合集下载

【常考题】七年级数学上期中试题(含答案)

【常考题】七年级数学上期中试题(含答案)
解:设第一个数为x,则第二个数为x+7,第三个数为x+14
故三个数的和为x+x+7+x+14=3x+21
当x=16时,3x+21=69;
当x=10时,3x+21=51;
当x=2时,3x+21=27.
故任意圈出一竖列上相邻的三个数的和不可能是72.
故选D.
“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
【常考题】七年级数学上期中试题(含答案)
一、选择题
1.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2015,则m的值是()
A.43B.44C.45D.46
2.绝对值不大于4的整数的积是()
A.16B.0C.576D.﹣1
A.45°B.30 °C.15°D.60°
9.若关于x的方程3x+2a=12和方程2x-4=12的解相同,则a的值为( )
A.6B.8C.-6D.4
10.2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为384 000km,把384 000km用科学记数法可以表示为()
6.按如图所示的运算程序,能使输出结果为10的是( )
A.x=7,y=2B.x=﹣4,y=﹣2C.x=﹣3,y=4D.x= ,y=3
7.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为

部编人教版七年级数学上册期中考试卷及答案【必考题】

部编人教版七年级数学上册期中考试卷及答案【必考题】

专业课原理概述部分一、选择题(每题1分,共5分)1.下列哪个数是质数?A.21B.23C.27D.302.如果一个三角形的两边分别是8厘米和15厘米,那么第三边的长度可能是多少?A.3厘米B.17厘米C.23厘米D.30厘米3.下列哪个图形是平行四边形?A.矩形B.梯形C.正方形D.圆形4.下列哪个数是偶数?A.101B.102C.103D.1045.下列哪个分数是最简分数?A.2/4B.3/6C.4/8D.5/10二、判断题(每题1分,共5分)1.0是最小的自然数。

()2.任何两个奇数相加的和都是偶数。

()3.一个正方形的四条边都相等。

()4.两个负数相乘的结果是正数。

()5.任何数乘以0都等于0。

()三、填空题(每题1分,共5分)1.5的倍数有:____、____、____、____、____。

2.1千米等于____米,1米等于____厘米。

3.一个等腰三角形的底边长为10厘米,腰长为12厘米,那么这个三角形的周长为____厘米。

4.如果一个数的因数只有1和它本身,那么这个数是____。

5.1/3+1/4=____。

四、简答题(每题2分,共10分)1.请简述平行线的定义。

2.请简述概率的意义。

3.请简述比例尺的作用。

4.请简述负数的概念。

5.请简述因数分解的意义。

五、应用题(每题2分,共10分)1.小明有10个苹果,他吃掉了3个,还剩下多少个?2.一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。

3.一个等腰三角形的底边长为10厘米,腰长为12厘米,求这个三角形的面积。

4.一个数的因数有1、2、4,那么这个数是多少?5.1/3+1/4=____,请将结果化成最简分数。

六、分析题(每题5分,共10分)1.请分析并解答:一个正方形的边长为6厘米,求这个正方形的周长和面积。

2.请分析并解答:一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。

七、实践操作题(每题5分,共10分)1.请用直尺和圆规画一个边长为5厘米的正方形。

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.-12的绝对值是()A .-12B .2C .-2D .122.下列说法正确的是()A .-2不是单项式B .单项式223x y-的系数是2,次数是3C .1x +是整式D .多项式22345x x +-的常数项是53.下列各组中的两项是同类项的是()A .0.5a 和0.5bB .2x -和3xC .2m n -和2mn D .3xy 和yx-4.数轴上点A 表示-2,将点A 在数轴上移动5个单位得到点B ,则点B 表示的数是()A .3B .-7C .7或-3D .-7或35.下列去括号正确的是:()A .(2)2a b c a b c -+-=+-B .2(3)226a b c a b c -+-=--+C .()a b c a b c ---+=-++D .()a b c a b c---=-+-6.计算:()3232-+-的值是()A .0B .-17C .1D .-17.下列运算中,正确的是()A .235a b ab +=B .223a a a +=C .235a a a +=D .2222x y x y x y-=-8.已知8x =,6y =,且x y >,则x y -的值为()A .2B .14C .2或14D .-2或-149.a 、b 两数在数轴上的位置如图所示,则下列各式正确的有()个.①0ab >②0a b +>③0a b ->④220a b ->⑤11b b-=-A .2B .3C .4D .510.根据流程图中的程序,当输入数值为-6时,输出数值y 为()A .2B .8C .-8D .-2二、填空题11.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示67500,其结果应是___________.12.用四舍五入法将数51804精确到千位的近似数为______.13.若a ,b 互为倒数,m ,n 互为相反数,则()232m n ab ++=______.14.已知01x <<,试比较大小:x _____1x.15.若关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,则m =_____,n =____.16.小明家的住房结构如图所示,爸妈在装修房子时欲将地面铺上瓷砖,试计算他家需要铺设___平方米的瓷砖.17.若规定2*1a b a b =-,则()2*3-的值为________________.三、解答题18.将以下各数填在相应的集合内:-15,6,227,-3.25,0,π,0.01,132-.整数集合:(,……)负分数集合:(,……)19.请在数轴上表示下列各数.并用“<”连接起来2-,()3--,1.5,132-20.计算:()()22228623a b aba b ab ---21.计算:(1)()()1512187-+--+-(2)511.5244⎛⎫⨯÷- ⎪⎝⎭.22.计算:()()2320214220.2541013⎡⎤⎛⎫-⨯-÷-+-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦23.已知()2221mx ym xy --+是关于x ,y 的四次三项式,求2325m m -+的值.24.阅读理解,并解决问题:“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,比如整体代入,整体换元,整体约减,整体求和,整体构造,…,有些问题若从局部求解,采取各个击破的方式,很难解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,复杂问题也能迎刃而解.因而“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛尝试应用.例:当代数式235x x ++的值为7时,求代数式2392x x +-的值.解:因为2357x x ++=,所以232x x +=.所以()223923323224x x x x +-=+-=⨯-=.请根据阅读材料,解决下列问题:(1)把()2x y -看成一个整体,计算()()()222364x y x y x y ---+-的结果是;(2)设22xx y -=,则()2362x x y --+=.(用含y 的代数式表示);(3)已知2320x x +-=,求()22515302021x x x x +⋅++的值.25.我们知道,4a ﹣3a+a =(4﹣3+1)a =2a ,类似地,我们把(x+y )看成一个整体,则4(x+y )﹣3(x+y )+(x+y )=(4﹣3+1)(x+y )=2(x+y ).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请尝试:(1)把(m ﹣n )2看成一个整体,合并2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2的结果是;(2)已知x 2﹣4x =2,求3x 2﹣12x ﹣152的值;(3)已知a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,求(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )的值.26.某超市在国庆期间对顾客实行优惠,规定如表所示:一次性购物金额优惠办法少于200元不予优惠低于500元但不低于200元九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)如果王叔叔一次性购物700元.那么他实际付款多少元;(2)若顾客在该超市一次性购物x 元,当x 小于500但不小于200时,他实际付款元,当x 大于或等于500时,他实际付款元(用含x 的代数式表示);(3)如果王叔叔两次购物货款合计840元,第一次购物的货款为a 元()0300a <<,用含a 的式子表示两次购物王叔叔实际付款多少元?参考答案1.D 2.C 3.D 4.D 5.B 6.B 7.D 8.C 9.A 10.B 11.6.75×104【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:67500=6.75×104.故答案为:6.75×104.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.45.210⨯【分析】根据近似数和有效数字计算即可;【详解】∵451804 5.180410=⨯,∴51804精确到千位的近似数为45.210⨯;故答案是:45.210⨯.【点睛】本题主要考查了近似数和有效数字,准确计算是解题的关键.13.2【解析】【分析】利用倒数,相反数的定义确定出m+n 与ab 的值,代入计算即可求出值.【详解】解:∵a ,b 互为倒数,m ,n 互为相反数,∴1+0ab m n ==,,∴()232m n ab ++==3×20212+⨯=,故答案为:2.【点睛】此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.14.<【解析】【分析】根据倒数的性质,求得1x的范围,即可求解.【详解】解:∵01x <<∴11x>∴11x x<<,即1x x <故答案为<【点睛】此题考查了倒数的性质,根据题意求得1x的范围是解题的关键.15.1212-【解析】【分析】根据题意可得:(21)0m --=,0m n +=,求解即可.【详解】解:∵关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,∴(21)0m --=,0m n +=,解得:12m =,12n =-,故答案为:12;12-.【点睛】本题考查了多项式,熟知不含哪一项,则哪一项的系数为0是解题的关键.16.15xy 【解析】【分析】分别求出卫生间面积、卧室面积、厨房面积以及客厅面积,相加即可.【详解】解:卫生间面积=xy ,卧室面积=224y x xy ⋅=,厨房面积=22x y xy ⋅=,客厅面积=248x y xy ⋅=,∴铺地砖的面积=42815xy xy xy xy xy +++=,故答案为:15xy .【点睛】本题考查了列代数式,理解题意,能够根据图形列出正确的代数式是解本题的关键.17.11【解析】【分析】先根据规定的新运算列出运算式子,再计算有理数的乘方、乘法与减法即可得.【详解】解:由规定的新运算得:()2*3-()2231=-⨯-431=⨯-121=-11=故答案为:11.【点睛】本题考查了含乘方的有理数混合运算,理解新运算的定义是解题关键.18.15,6,0-;13.25,32--.【解析】【分析】根据整数(正整数、负整数和0统称为整数)和负分数的定义(小于0的分数即为负分数,或是可以化成分数的负有限小数和负无限循环小数)即可得.【详解】解:整数集合:(15,6,0-,……),负分数集合:(13.25,32--,……),故答案为:15,6,0-;13.25,32--.【点睛】本题考查了整数和负分数的概念,熟记定义是解题关键.19.见解析,()13 1.5232-<<-<--【解析】【分析】先计算,再将各数表示在数轴上,然后根据数轴上右边的数总比左边的数大解答即可.【详解】解:2-=2,()3--=3,数轴如图所示:由图知:()13 1.5232-<<-<--.【点睛】本题考查数轴、绝对值、相反数,会用数轴上的点表示有理数以及利用数轴比较有理数的大小是解答的关键.20.2224a b ab -【解析】【分析】先去括号,然后合并同类项即可.【详解】解:原式()22228662ab ab a b ab =---22228662a b ab a b ab =--+()()228662a b ab =-+-+2224a b ab =-.【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解本题的关键.21.(1)8;(2)56-【解析】【分析】(1)根据有理数加减法法则计算即可得答案;(2)根据有理数乘法及除法法则计算即可得答案.【详解】(1)()()1512187-+--+-1512187=-++-2230=-+8=.(2)511.5244⎛⎫⨯÷- ⎪⎝⎭359244=-⨯÷354249=-⨯⨯56=-.【点睛】本题考查有理数加减法法则及乘除法法则,同号两数相加,取与加数相同的符号,并把绝对值相加;异号相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;减去一个数,等于加上这个数的相反数;两数相乘,同号得正,异号得负,并把绝对值相乘;除以一个不为0的数,等于乘这个数的倒数;熟练掌握运算法则是解题关键.22.986【解析】【分析】根据有理数混合运算法则计算即可.【详解】解:原式()()141641000149⎡⎤=-⨯-÷+-+-⎢⎥⎣⎦944100014⎡⎤=--⨯--⎢⎥⎣⎦[]4910001=----()49911=----49911=-+-986=.【点睛】本题考查了有理数的混合运算,熟练掌握相关运算法则以及运算顺序是解本题的关键.23.21【解析】【分析】首先根据题意列出m 所满足的条件,然后求解m 的值,最后代入代数式求解即可.【详解】解:∵()2221m x y m xy --+是关于x ,y 的四次三项式,∴m 应满足:()2420m m ⎧+=⎪⎨--≠⎪⎩①②,由①解得:2m =±,由②解得:2m ≠,∴2m =-,∴()()22325322253445124521m m -+=⨯--⨯-+=⨯++=++=.【点睛】本题考查多项式的定义,以及代数式求值问题,理解“几次几项式”的定义,准确求出参数的值是解题关键.24.(1)()2x y -;(2)22y -;(3)2041【解析】【分析】(1)把()2x y -看成一个整体,合并同类项即可求解;(2)设22x x y -=,逆用分配律将236x x -化为()232x x -,代入化简即可求解;(3)根据2320x x +-=得到232x x +=,再逆用分配律即可求解.【详解】解:(1)()()()222364x y x y x y ---+-()()2=364x y -+-()2=x y -,故答案为:()2x y -;(2)设22x x y -=,则()()()223623223222x x y x x y y y y --+=--+=--=-,故答案为:22y -;(3)解:∵2320x x +-=,∴232x x +=,∴251510x x +=,原式()2210302021103202110220212020212041x x x x =++=++=⨯+=+=.【点睛】本题考查了整体思想的应用,理解题意,灵活运用整体思想,能正确逆用分配律是解题关键.25.(1)﹣(m ﹣n )2;(2)32-;(3)-4【解析】【分析】(1)把(m ﹣n )2看成一个整体,合并同类项即可;(2)将3x 2﹣12x ﹣152的前两项运用乘法分配律可化为x 2﹣4x 的3倍,再将x 2﹣4x =2整体代入计算即可;(3)对(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )去括号,再合并同类项,将a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10三个式子相加,即可得到a ﹣d 的值,则问题得解.【详解】(1)2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2=﹣(m ﹣n )2,故答案为:﹣(m ﹣n )2;(2)3x 2﹣12x ﹣152=3(x 2﹣4x )﹣152,∵x 2﹣4x =2,(3)(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=2b ﹣d ﹣2b+c+a ﹣c=a ﹣d ,∵a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,∴a ﹣2b+c ﹣d+2b ﹣c =3+3﹣10,∴a ﹣d =﹣4,∴(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=﹣4.【点睛】本题考查了合并同类项,整式的化简求值,关键是运用整体思想来解决.26.(1)610元;(2)0.9x ,0.850x +;(3)当0200a <<时,0.2722a +;当200300a ≤<时,0.1722a +【解析】【分析】(1)让500元部分按9折付款,剩下的200元按8折付款即可;(2)等量关系为:当x 小于500元但不小于200元时,实际付款=购物款×9折;当x 大于或等于500元时,实际付款=500×9折+超过500的购物款×8折;(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款−第一次购物款−第二次购物款500)×8折,把相关数值代入即可求解.【详解】解:(1)()5000.97005000.8450160610⨯+-⨯=+=∴他实际付款610元.(2)解:当x 小于500但不小于200时,打九折优惠,故需付款0.9x ;当x 大于或等于500时,其中500元部分给予九折优惠,超过500元部分给予八折优惠,故需付款()5000.90.854500.84004504000.8500.8x x x x ⨯+-=+-=-+=+故答案为:0.9x ;0.850x +;(3)①当0200a <<时,()5000.98405000.80.2722a a a +⨯+--⨯=+⎡⎤⎣⎦.②当200300a ≤<时()0.95000.98405000.80.1722a a a +⨯+--⨯=+⎡⎤⎣⎦.。

(必考题)初中数学七年级上期中经典题(含答案解析)

(必考题)初中数学七年级上期中经典题(含答案解析)

一、选择题1.绝对值不大于4的整数的积是()A.16B.0C.576D.﹣1 2.﹣3的绝对值是()A.﹣3B.3C.-13D.133.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°4.下列各数中,比-4小的数是()A. 2.5-B.5-C.0D.25.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab26.如图,从左面看该几何体得到的形状是()A.B.C.D.7.点M、N都在线段AB上, 且M分AB为2:3两部分, N分AB为3:4两部分, 若MN=2cm, 则AB的长为( )A.60cm B.70cm C.75cm D.80cm8.一个多项式加上3y2-2y-5得到多项式5y3-4y-6,则原来的多项式为().A.5y3+3y2+2y-1B.5y3-3y2-2y-6C.5y3+3y2-2y-1D.5y3-3y2-2y-1 9.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A .①B .②C .③D .④ 10.已知,OA ⊥OC ,且∠AOB :∠AOC =2:3,则∠BOC 的度数为( ) A .30°B .150°C .30°或150°D .90°11.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我 12.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( ) A .6B .﹣6C .9D .﹣913.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++14.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( ) A .8374x x +=+ B .8374x x -=+ C .8374x x +=- D .8374x x -=- 15.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯二、填空题16.一个角与它的补角之差是20°,则这个角的大小是____. 17.已知3x -8与2互为相反数,则x = ________.18.观察以下一列数:3,54,79,916,1125,…则第20个数是_____. 19.在下列方程中 ①x+2y=3,②139x x -=,③2133y y -=+,④2102x =,是一元一次方程的有_______(填序号).20.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是_____.21.2018年2月3日崂山天气预报:多云,-1°C~-9°C ,西北风3级,则当天最高气温比最低气温高_______℃22.在数轴上,若点A 表示2-,则到点A 距离等于2的点所表示的数为______. 23.如图,依次用火柴棒拼三角形:照这样的规律拼下去,拼n 个这样的三角形需要火柴棒______________根.24.有理数a 、b 、c 在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|= ________.25.近似数2.30万精确到________位,用科学记数法表示为__________.三、解答题26.某班原分成两个小组进行课外体育活动,第一组28人,第二组20人,根据学校活动器材的数量,要将第一组的人数调整为第二组的一半,应从第一组调多少人到第二组去? 27.已知关于x 的方程(m+3)x |m+4|+18=0是一元一次方程,试求: (1)m 的值;(2)2(3m+2)-3(4m-1)的值.28.某市电力公司对全市用户采用分段计费的方式计算电费,收费标准如下表所示: 月用电量 不超过180度的部分 超过180度但不超过280度的部分 超过280度的部分 收费标准0.5元/度0.6元/度0.9元/度若某用户7月份的电费是139.2元,则该用户7月份用电为多少度? 29.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值. 30.某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A 景区,继续向东走2.5千米到达B 景区,然后又回头向西走8.5千米到达C 景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A 、B 、C 三个景区的位置.(2)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充好电而途中不充电的情况下完成此次任务?请计算说明.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题二、填空题16.100°【解析】【分析】设这个角为α根据互为补角的两个角的和等于180°表示出它的补角然后列出方程求出α即可【详解】设这个角为α则它的补角180°-α根据题意得α-(180°-α)=20°解得:α=17.2【解析】根据互为相反数的两个数的和为0可得3x-8+2=0解得x=2点睛:根据互为相反数的和为零可得关于x的一元一次方程解方程即可得答案18.【解析】【分析】观察已知数列得到一般性规律写出第20个数即可【详解】解:观察数列得:第n个数为则第20个数是故答案为【点睛】本题考查了规律型:数字的变化类弄清题中的规律是解答本题的关键19.③【解析】【分析】一元一次方程指只含有一个未知数未知数的最高次数为1且两边都为整式的方程据此进一步逐一判断即可【详解】①中方程有两个未知数不符合题意错误;②中方程有分式不符合题意错误;③中方程符合题20.0【解析】【分析】由70=171=772=4973=34374=240175=16807…得出规律个位数4个数一循环由1+7+9+3=20(2019+1)÷4=505即可得出结果【详解】解:∵70=21.8【解析】【分析】根据有理数的减法解答即可【详解】-1-(-9)=8所以当天最高气温是比最低气温高8℃故答案为:8【点睛】此题考查有理数的减法关键是根据有理数的减法解答22.0或【解析】【分析】此题借助数轴用数形结合的方法求解还要注意该点可以在A点的左边或右边【详解】数轴上有一点A表示的数是则在数轴上到点A距离为2的点所表示的数有两个:;故答案为0或【点睛】此题综合考查23.【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴第三个三角形是7根火柴依次多2个可推出第n个这样的三角形需要多少根火柴【详解】∵第一个三角形是324.b+2c【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=25.百【解析】三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.100°【解析】【分析】设这个角为α根据互为补角的两个角的和等于180°表示出它的补角然后列出方程求出α即可【详解】设这个角为α则它的补角180°-α根据题意得α-(180°-α)=20°解得:α=解析:100°【解析】【分析】设这个角为α,根据互为补角的两个角的和等于180°表示出它的补角,然后列出方程求出α即可.【详解】设这个角为α,则它的补角180°-α,根据题意得,α-(180°-α)=20°,解得:α=100°,故答案为100°.【点睛】本题考查了余角和补角的概念,是基础题,设出这个角并表示出它的补角是解题的关键.17.2【解析】根据互为相反数的两个数的和为0可得3x-8+2=0解得x=2点睛:根据互为相反数的和为零可得关于x的一元一次方程解方程即可得答案解析:2【解析】根据互为相反数的两个数的和为0可得,3x-8+2=0,解得x=2.点睛:根据互为相反数的和为零,可得关于x的一元一次方程,解方程即可得答案.18.【解析】【分析】观察已知数列得到一般性规律写出第20个数即可【详解】解:观察数列得:第n个数为则第20个数是故答案为【点睛】本题考查了规律型:数字的变化类弄清题中的规律是解答本题的关键解析:41 400【解析】【分析】观察已知数列得到一般性规律,写出第20个数即可.【详解】解:观察数列得:第n 个数为221n n ,则第20个数是41400.故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.19.③【解析】【分析】一元一次方程指只含有一个未知数未知数的最高次数为1且两边都为整式的方程据此进一步逐一判断即可【详解】①中方程有两个未知数不符合题意错误;②中方程有分式不符合题意错误;③中方程符合题解析:③ 【解析】 【分析】一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的方程,据此进一步逐一判断即可. 【详解】①中方程有两个未知数,不符合题意,错误;②中方程有分式,不符合题意,错误;③中方程符合题意,是一元一次方程,正确;④中方程未知数最高次数为2,不符合题意,错误; 故答案为:③. 【点睛】本题主要考查了一元一次方程的判断,熟练掌握相关概念是解题关键.20.0【解析】【分析】由70=171=772=4973=34374=240175=16807…得出规律个位数4个数一循环由1+7+9+3=20(2019+1)÷4=505即可得出结果【详解】解:∵70=解析:0 【解析】 【分析】由70=1,71=7,72=49,73=343,74=2401,75=16807,…,得出规律个位数4个数一循环,由1+7+9+3=20,(2019+1)÷4=505,即可得出结果. 【详解】解:∵70=1,71=7,72=49,73=343,74=2401,75=16807,…, ∴个位数4个数一循环,4个数一循环的个位数的和:1+7+9+3=20, ∵(2019+1)÷4=505, ∴70+71+72+…+72019的结果的个位数字是0, 故答案为:0 【点睛】本题考查了尾数特征,仔细观察数据的个位数字,得到每4个个位数字为一个循环组依次循环是解题的关键.21.8【解析】【分析】根据有理数的减法解答即可【详解】-1-(-9)=8所以当天最高气温是比最低气温高8℃故答案为:8【点睛】此题考查有理数的减法关键是根据有理数的减法解答解析:8【解析】【分析】根据有理数的减法解答即可.【详解】-1-(-9)=8,所以当天最高气温是比最低气温高8℃,故答案为:8【点睛】此题考查有理数的减法,关键是根据有理数的减法解答.22.0或【解析】【分析】此题借助数轴用数形结合的方法求解还要注意该点可以在A点的左边或右边【详解】数轴上有一点A表示的数是则在数轴上到点A距离为2的点所表示的数有两个:;故答案为0或【点睛】此题综合考查-解析:0或4【解析】【分析】此题借助数轴用数形结合的方法求解,还要注意该点可以在A点的左边或右边.【详解】-,则在数轴上到点A距离为2的点所表示的数有两个:数轴上有一点A表示的数是2220-+=;224--=-.-.故答案为0或4【点睛】.借助数轴来求解,非常直观,且不容易遗漏,体此题综合考查了数轴、绝对值的有关内容.注意此类题要考虑两种情况.现了数形结合的优点23.【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴第三个三角形是7根火柴依次多2个可推出第n个这样的三角形需要多少根火柴【详解】∵第一个三角形是3 n解析:21【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴,依次多2个,可推出第n个这样的三角形需要多少根火柴.【详解】∵第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴,发现依次多2个,即可推出第n个这样的三角形需要2n+1根火柴. 【点睛】本题考查图形的变换规律,得到每个图形中火柴的根数与图形的个数的关系式解决本题的关键.24.b+2c 【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a <b 则c-a<0原式=解析:b+2c 【解析】 【分析】由图可知, c-a<0,根据正数的绝对值等于它本身,负数的绝对值等于它的相反数,分别求出绝对值,再根据整式的加减运算,去括号,合并同类项即可. 【详解】由图可知c<0,0<a <b ,则c-a<0, 原式=(c-a )+b+a-(-c) =c-a+b+a+c =b+2c . 【点睛】本题考查的知识点是整式的加减和绝对值,解题关键是熟记整式的加减运算实际上就是去括号、合并同类项.25.百【解析】解析:百 42.3010⨯ 【解析】三、解答题 26.应从第一组调12人到第二组去 【解析】 【分析】设应从第一组调x 人到第二组去,根据第一组28人,第二组20人打扫包干区,要使第一组人数是第二组人数的一半,从而可列方程求解. 【详解】解:设应从第一组调x 人到第二组去,根据题意,得()12820.2x x -=+ 解得:12.x = 经检验,符合题意答:应从第一组调12人到第二组去,【点睛】本题考查的是调配问题,关键知道调配后的数量关系从而可列方程求解.27.(1)m=-5 (2)37 【解析】(1)依题意有|m+4|=1,解之得m=-3(舍去),m=-5, 故m=-5,(2)()()232341m m +--= 6m+4-12m+3=-6m+7 当m=-5时,原式= 37.28.262度 【解析】 【分析】先判断出是否超过120度,然后列方程计算即可. 【详解】解:因为180×0.5=90,(280﹣180)×0.6=60,90+60=150,而150>139.2, 所以7月份用电是“超过180度但不超过280度”. 故设7月份用电x 度,由题意,得180×0.5+(x ﹣180)×0.6=139.2 解得x =262答:该用户7月份用电为262度. 【点睛】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,根据等量关系得出方程,难度一般.29.35【解析】 解方程1322x x +=-,可得x=1,由于解互为倒数,把x=1代入23x m mx -=+可得23x m m x -=+,可得1123m m -=+,解得m=-35. 故答案为-35. 点睛:此题主要考查了一元一次方程的解,利用同解方程,可先求出一个方程的解,再代入第二个含有m 的方程,从而求出m 即可.30.(1)见解析;(2)电瓶车不能在一开始充好电而途中不充电的情况下完成此次任务.【解析】【分析】(1) 根据数轴的三要素画出数轴, 并根据题意在数轴上表示出A B, C的位置;(2) 计算出电瓶车一共走的路程,即可解答.【详解】解:(1)如图,(2)电瓶车一共走的路程为:|+2|+|2.5|+|﹣8.5|+|+4|=17(千米),∵17>15,∴该电瓶车不能在一开始充好电而途中不充电的情况下完成此次任务.【点睛】本题考查的是数轴,注意注意根据题意画数轴.。

2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期中试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列哪个数是整数?A. 1.5B. 2/3C. 3/4D. 53. 下列哪个数是无理数?A. 2/3B. 3.25C. √3D. 1/24. 下列哪个式子是正确的?A. √9 = 3B. √9 = 3C. √9 = 2D. √9 = 45. 下列哪个式子是错误的?A. 2^3 = 8B. 3^2 = 9C. 4^2 = 16D. 5^2 = 20二、判断题5道(每题1分,共5分)1. 任何两个有理数的和都是有理数。

()2. 任何两个整数的积都是整数。

()3. 任何两个无理数的积都是无理数。

()4. 任何两个实数的和都是实数。

()5. 任何两个实数的积都是实数。

()三、填空题5道(每题1分,共5分)1. 两个有理数的和是______数。

2. 两个整数的积是______数。

3. 两个无理数的积是______数。

4. 两个实数的和是______数。

5. 两个实数的积是______数。

四、简答题5道(每题2分,共10分)1. 请简要说明有理数的定义。

2. 请简要说明整数的定义。

3. 请简要说明无理数的定义。

4. 请简要说明实数的定义。

5. 请简要说明有理数和无理数的区别。

五、应用题:5道(每题2分,共10分)1. 计算下列式子的值:2^3 + 3^2 4^22. 计算下列式子的值:√9 + √16 √253. 计算下列式子的值:3/4 + 2/3 1/24. 计算下列式子的值:2/3 3/4 4/55. 计算下列式子的值:√2 √3 √6六、分析题:2道(每题5分,共10分)1. 请分析并解释为什么√1是无理数。

2. 请分析并解释为什么π是无理数。

七、实践操作题:2道(每题5分,共10分)1. 请用计算器计算下列式子的值:2^10 + 3^5 4^32. 请用计算器计算下列式子的值:√9.6 + √36.9 √81.25八、专业设计题:5道(每题2分,共10分)1. 设计一个函数,使其输入一个正整数n,输出n的所有正因数。

【必考题】七年级数学上期中试题及答案

【必考题】七年级数学上期中试题及答案

【必考题】七年级数学上期中试题及答案一、选择题1.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是2015,则m 的值是( ) A .43B .44C .45D .46 2.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯ 3.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 2 4.按如图所示的运算程序,能使输出结果为10的是( )A .x =7,y =2B .x =﹣4,y =﹣2C .x =﹣3,y =4D .x =12,y =3 5.将如图所示的Rt △ACB 绕直角边AC 旋转一周,所得几何体的主视图(正视图)是( )A .B .C .D .6.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF=600,那么∠DAE 等于( )A .45°B .30 °C .15°D .60°7.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( )A .66.6×107B .0.666×108C .6.66×108D .6.66×107 8.如图,线段AB=8cm ,M 为线段AB 的中点,C 为线段MB 上一点,且MC=2cm ,N 为线段AC 的中点,则线段MN 的长为( )A .1B .2C .3D .49.如图,用火柴棒摆出一列正方形图案,第①个图案用了 4 根,第②个图案用了 12 根,第③个图案用了 24 根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是( )A .84B .81C .78D .76 10.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .72 11.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4 12.下列等式变形错误的是( )A .若x =y ,则x -5=y -5B .若-3x =-3y ,则x =yC .若x a =y a,则x =y D .若mx =my ,则x =y 二、填空题13.在-2,0,1,−1这四个数中,最大的有理数是________.14.一个角与它的补角之差是20°,则这个角的大小是____. 15.数轴上点A 、B 的位置如下图所示,若点B 关于点A 的对称点为C ,则点C 表示的数为___16.某商店一套夏装进价为200元,按标价8折出售可获利72元,则该套夏装标价为______________元.17.把六张形状大小完全相同的小长方形卡片(如图 1)不重叠地放在一个底面为长方形(长为 20cm ,宽为 16cm )的盒子底部(如图 2),盒子底面未被卡片覆盖的部分用阴影表示.则图 2 中两块阴影部分周长的和是_________ .18.小华在计算14a -时,误把“-”看成“+”,求得结果为5-,则14a -=____________.19.若233mx y -与42n x y 是同类项,则n m =__________.20.已知3x =是关于x 方程810mx -=的解,则m =__________. 三、解答题21.如图,已知A 、B 、C 是数轴上的三点,点C 表示的数是6,点B 与点C 之间的距离是4,点B 与点A 的距离是12,点P 为数轴上一动点.(1)数轴上点A 表示的数为 .点B 表示的数为 ;(2)数轴上是否存在一点P ,使点P 到点A 、点B 的距离和为16,若存在,请求出此时点P 所表示的数;若不存在,请说明理由;(3)点P 以每秒1个单位长度的速度从C 点向左运动,点Q 以每秒2个单位长度从点B 出发向左运动,点R 从点A 以每秒5个单位长度的速度向右运动,它们同时出发,运动的时间为t 秒,请求点P 与点Q ,点R 的距离相等时t 的值.22.如图,点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点.()1若8,6AC cm CB cm ==,求线段MN 的长;()2若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能猜想MN 的长度吗?并说明理由,你能用一句简洁的话描述你发现的结论吗?()3若C在线段AB的延长线上,且满足AC BC b-=cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.23.已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.24.已知y1=6﹣x,y2=2+7x,解答下列问题:(1)当y1=2y2时,求x的值;(2)当x取何值时,y1比y2小﹣3.25.解下列方程:(1)x-7=10 - 4(x+0.5) ;(2)1321 23x x-+-=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数2015的是从3开始的第1007个数,然后确定出1007所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=()()221m m+-,∵2n+1=2015,n=1007,∴奇数2015是从3开始的第1007个奇数,∵()()4424412+-=989,()()4524512+-=1034,∴第1007个奇数是底数为45的数的立方分裂的奇数的其中一个,故选C .【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.2.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.3.C解析:C【解析】试题解析:A.a 2与a 3不是同类项,故A 错误;B.原式=a 5,故B 错误;D.原式=a 2b 2,故D 错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.4.D解析:D【解析】【分析】根据运算程序,结合输出结果确定的值即可.【详解】解:A 、x =7、y =2时,输出结果为2×7+22=18,不符合题意;B 、x =﹣4、y =﹣2时,输出结果为2×(﹣4)﹣(﹣2)2=﹣12,不符合题意;C 、x =﹣3、y =4时,输出结果为2×(﹣3)﹣42=﹣22,不符合题意;D 、x =12、y =3时,输出结果为2×12+32=10,符合题意;【点睛】此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.5.D解析:D【解析】解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选D.首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.6.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.7.C解析:C【解析】665 575 306≈6.66×108.故选C.8.A解析:A【解析】∵线段AB=8cm,M为线段AB的中点,∴AM=MB=12AB=4cm;∵C为线段MB上的一点,且MC=2cm,∴AC=AM+MC=6cm;∵点N为线段AC的中点,∴AN=12AC=3cm,∴MN=AM-AN=4-3=1cm.故选A.9.A解析:A【解析】【分析】图形从上到下可以分成几行,第n个图形中,竖放的火柴有n(n+1)根,横放的有n(n+1)根,因而第n个图案中火柴的根数是:n(n+1)+n(n+1)=2n(n+1).把n=6代入就可以求出.【详解】解:设摆出第n个图案用火柴棍为S n.①图,S1=1×(1+1)+1×(1+1);②图,S2=2×(2+1)+2×(2+1);③图,S3=3×(3+1)+3×(3+1);…;第n个图案,S n=n(n+1)+n(n+1)=2n(n+1).则第⑥个图案为:2×6×(6+1)=84.故选A.【点睛】本题考查了规律型:图形的变化,此题注意第n个图案用火柴棍为2n(n+1).10.D解析:D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.11.D解析:D【解析】【分析】根据同类项的概念求解.【详解】 解:单项式2m 13a b -与7a b n -互为同类项,n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.12.D解析:D【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时乘以或除以同一个不为0的数,等式依然成立;据此对各选项进行分析判断即可.【详解】A :等式两边同时减去了5,等式依然成立;B :等式两边同时除以3-,等式依然成立;C :等式两边同时乘以a ,等式依然成立;D :当0m =时,x 不一定等于y ,等式不成立;故选:D .【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.二、填空题13.1【解析】解:∵-2<−1<0<1∴最大的有理数是1故答案为:1 解析:1【解析】解:∵-2<−1<0<1,∴最大的有理数是1.故答案为:1.14.100°【解析】【分析】设这个角为α根据互为补角的两个角的和等于180°表示出它的补角然后列出方程求出α即可【详解】设这个角为α则它的补角180°-α根据题意得α-(180°-α)=20°解得:α=解析:100°【解析】【分析】设这个角为α,根据互为补角的两个角的和等于180°表示出它的补角,然后列出方程求出α即可.【详解】设这个角为α,则它的补角180°-α,根据题意得,α-(180°-α)=20°,解得:α=100°,故答案为100°.【点睛】本题考查了余角和补角的概念,是基础题,设出这个角并表示出它的补角是解题的关键.15.-5【解析】分析:点A表示的数是-1点B表示的数是3所以|AB|=4;点B 关于点A的对称点为C所以点C到点A的距离|AC|=4即设点C表示的数为x则-1-x=4解出即可解答;解答:解:如图点A表示的解析:-5【解析】分析:点A表示的数是-1,点B表示的数是3,所以,|AB|=4;点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,即,设点C表示的数为x,则,-1-x=4,解出即可解答;解答:解:如图,点A表示的数是-1,点B表示的数是3,所以,|AB|=4;又点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,设点C表示的数为x,则,-1-x=4,x=-5;故答案为-5.16.340【解析】【分析】设该服装标签价格为x元根据售价-进价=利润即可得出关于x的一元一次方程解之即可得出结论【详解】解:设该服装标签价格为x元根据题意得:x-200=72解得:x=340答:该服装标解析:340【解析】【分析】设该服装标签价格为x元,根据售价-进价=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设该服装标签价格为x元,根据题意得:810x-200=72,解得:x=340.答:该服装标签价格为340元.故答案为:340.【点睛】本题考查了一元一次方程的应用,根据售价-进价=利润,列出关于x的一元一次方程是解题的关键.17.64【解析】试题分析:设小长方形的长为xcm 宽为ycm 根据题意得:20=x+3y 则图②中两块阴影部分周长和是:40+2(16-3y )+2(16-x )=40+64-6y-2x=40+64-2(x+3y解析:64【解析】试题分析:设小长方形的长为xcm ,宽为ycm , 根据题意得:20=x+3y ,则图②中两块阴影部分周长和是:40+2(16-3y )+2(16-x )=40+64-6y-2x=40+64-2(x+3y )=40+64-40=64(cm )考点:代数式的应用.18.33【解析】【分析】先根据错解求出a 的值再进行计算即可得解【详解】解:根据题意得14+a=-5a=-14-5=-19∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法解析:33【解析】【分析】先根据错解求出a 的值,再进行计算即可得解.【详解】解:根据题意得,14+a=-5,a=-14-5=-19, ∴14-a=14-(-19)=33故答案为:33【点睛】本题考查有理数的加法和减法,正确理解题意是解题的关键.19.8【解析】【分析】利用同类项的定义得出mn 的值进而得出答案【详解】∵与是同类项∴∴∴故答案为:8【点睛】此题主要考查了同类项正确得出mn 的值是解题关键解析:8【解析】【分析】利用同类项的定义得出m ,n 的值进而得出答案.【详解】∵233m x y -与42n x y 是同类项∴24m =,3n =∴2m =∴328n m ==.故答案为:8.【点睛】此题主要考查了同类项,正确得出m ,n 的值是解题关键.20.6【解析】【分析】将x =3代入原方程即可求出答案【详解】将x =3代入mx−8=10∴3m=18∴m=6故答案为:6【点睛】本题考查一元一次方程解题的关键是熟练运用一元一次方程的解的定义本题属于基础题解析:6【解析】【分析】将x=3代入原方程即可求出答案.【详解】将x=3代入mx−8=10,∴3m=18,∴m=6,故答案为:6【点睛】本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.三、解答题21.(1)-10;2 (2)存在;﹣12或4 (3)127或4【解析】【分析】(1)结合数轴可知点A和点B都在点C的左边,且点A小于0,在根据题意列式计算即可得到答案;(2)因为AB=12,则P不可能在线段AB上,所以分两种情况:①当点P在BA的延长线上时,②当点P在AB的延长线上时,进行讨论,即可得到答案;(3)根据题意“t秒P点到点Q,点R的距离相等”,则此时点P、Q、R所表示的数分别是6﹣t,2﹣2t,﹣10+5t,分①6﹣t﹣(2﹣2t)=6﹣t﹣(﹣10+5t),②6﹣t﹣(2﹣2t)=(﹣10+5t)﹣(6﹣t)两种情况,计算即可得到答案.【详解】解:(1)由题意可知点A和点B都在点C的左边,且点A小于0,则由题意可得数轴上点B表示的数为6-4=2,点A表示的数为2-10=﹣10,故答案为:﹣10,2;(2)∵AB=12,∴P不可能在线段AB上,所以分两种情况:①如图1,当点P在BA的延长线上时,PA+PB=16,∴PA+PA+AB=16,2PA=16﹣12=4,PA=2,则点P表示的数为﹣12;②如图2,当点P在AB的延长线上时,同理得PB=2,则点P表示的数为4;综上,点P表示的数为﹣12或4;(3)由题意得:t秒P点到点Q,点R的距离相等,则此时点P、Q、R所表示的数分别是6﹣t,2﹣2t,﹣10+5t,①6﹣t﹣(2﹣2t)=6﹣t﹣(﹣10+5t),解得t=127;②6﹣t﹣(2﹣2t)=(﹣10+5t)﹣(6﹣t),解得t=4;答:点P与点Q,点R的距离相等时t的值是127或4秒.【点睛】本题考查数轴和动点问题,解题的关键是掌握数轴上的有理数的性质,注意分类讨论.22.(1)MN=7cm;(2)MN=12a;结论:当C为线段AB上一点,且M,N分别是AC,BC的中点,则有MN=12AB;(3)MN=12b.【解析】【分析】(1)由中点的定义可得MC、CN长,根据线段的和差关系即可得答案;(2)根据中点定义可得MC=12AC,CN=12BC,利用MN=MC+CN,AC CB acm+=,即可得结论,总结描述即可;(3)点在AB的延长线上时,根据M、N分别为AC、BC的中点,即可求出MN的长度.【详解】(1)∵点M、N分别是AC、BC的中点,AC=8,CB=6,∴MC=12AC=4,CN=12BC=3,∴MN=MC+CN=7cm.(2)∵点M、N分别是AC、BC的中点,∴MC=12AC,CN=12BC,∵AC+BC=AB=a,∴MN=MC+CN=12(AC+BC)=12a.综上可得结论:当C为线段AB上一点,且M,N分别是AC,BC的中点,则有MN=12 AB.(3)如图:当点C在线段AB的延长线时,则AC>BC,∵M是AC的中点,∴CM=12 AC,∵点N是BC的中点,∴CN=12 BC,∴MN=CM-CN=12(AC-BC)=12b.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.23.∠BHF=115° .【解析】【分析】由AB∥CD得到∠AGE=∠CFG,由此根据邻补角定义可得∠GFD的度数,又FH平分∠EFD,由此可以先后求出∠GFD,∠HFD,继而可求得∠BHF的度数.【详解】∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH平分∠EFD,∴∠HFD=12∠EFD=65°;∵AB∥CD,∴∠BHF=180°-∠HFD=115°.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角等知识,两直线平行时,应该想到它们的性质;由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的.24.(1)x=215;(2)x=18【解析】【分析】(1)根据y1=6﹣x,y2=2+7x,若y1=2y2,列出关于x的方程,解方程即可;(2)根据y1比y2小﹣3,列出关于x的方程,解方程即可.【详解】(1)由题意得:6﹣x =2(2+7x )6﹣x =4+14x15x=2x =215故答案为:215(2)由题意得 2+7x ﹣(6﹣x )=﹣38x=1x =18故答案为:18【点睛】 本题考查了一元一次方程的解法,根据题中已知列出一元一次方程,再解方程.25.(1)3;(2)15-【解析】【分析】(1)首先将原方程去掉括号,然后进一步移项化简,最后通过系数化1即可求出解; (2)首先将原方程去掉分母,再去掉括号,然后进一步移项化简,最后通过系数化1即可求出解.【详解】(1)去括号可得:71042x x -=--,移项可得:41072x x +=+-,化简可得:515x =,解得:3x =;(2)去分母可得:()()312326x x --+=,去括号可得:33646x x ---=,移项可得:34636x x -=++,化简可得:15x -=,解得:15x =-.【点睛】本题主要考查了解一元一次方程,熟练掌握相关方法是解题关键.。

初一数学上册期中考试试卷及答案

初一数学上册期中考试试卷及答案

初一数学上册期中考试试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 5D. -1答案:C2. 以下哪个表达式的结果为负数?A. 2 + 3B. -2 - 3C. 2 × 3D. -2 × 3答案:B3. 哪个分数等于1/2?A. 2/4B. 3/6C. 4/8D. 5/10答案:A4. 如果a = 5,b = 3,那么a + b的值是多少?A. 2B. 8C. 10D. 15答案:B5. 哪个图形不是轴对称图形?A. 圆形B. 正方形C. 等边三角形D. 不规则四边形答案:D6. 下列哪个选项是质数?A. 4B. 6C. 7D. 8答案:C7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 哪个选项表示的是不等式?A. 3 + 4 = 7B. 2 × 5 = 10C. 9 > 3D. 6 = 6答案:C10. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。

答案:4或-412. 如果一个数除以3余1,这个数可能是______。

答案:413. 一个数的立方是-8,这个数是______。

答案:-214. 一个数的倒数是1/3,这个数是______。

答案:315. 一个数的绝对值是它本身,这个数是非负数,包括______。

答案:0和正数16. 如果一个三角形的两边长分别是3和4,那么第三边的长度应该在______范围内。

答案:1和7之间17. 一个数的平方根是2,这个数是______。

答案:418. 如果一个数的相反数是它本身,这个数是______。

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试题一、单选题1.一天早晨的气温是-3°C,中午上升到15°C,则这天中午比早晨的气温上升了()A .15℃B .18°C C .-3℃D .-18°C2.下列各个运算中,结果为负数的是()A .2-B .()2--C .2(2)-D .22-3.下列说法正确的是()A .一个数的绝对值一定比0大B .最小的正整数是1C .绝对值等于它本身的数一定是正数D .一个数的相反数一定比它本身小4.下列各式12mn -,8,1a ,226x x ++,25x y-,1y ,a -中,整式有()A .4个B .5个C .6个D .7个5.对于多项式2235x x -+,下列说法错误的是()A .它是二次三项式B .最高次项的系数是2C .它的常数项是5D .它的项分别是22x ,3x ,56.若-2a 2b m+2与﹣a n -1b 4的和是单项式,则m ﹣n 的值为()A .0B .-1C .1D .-27.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是()A .28131x x +-B .2251x x -++C .2851x x -+D .2251x x --8.若|2|2a a -=,则下列结论正确的是()A .0a >B .0a <C .0a ≥D .0a ≤9.a,b,c 在数轴上的对应点的位置如图所示,化简|b-c|+|a+b|-|a|的结果是()A .cB .c-2bC .2a+cD .-c10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为()A .135B .170C .209D .252二、填空题11.﹣13的相反数是_____.12.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为_____.13.(用“>”,“<”或“=”填空):13-________25-.14.绝对值大于1.1而小于3.9的所有整数有________.15.已知233m m --的值为2,那么代数式2202126m m -+的值是________.16.数轴上有一动点A ,从原点出发沿着数轴移动,第一次点A 向左移动1个单位长度到达点1A ,第二次将点A 向右移动2个单位长度到达点2A ,第三次将点A 向左移动3个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,当2022n =时,点A 与原点的距离是________个单位.三、解答题17.计算:(1)()()()()10125+-++---;(2)()()3432⎛⎫+⨯+÷- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭;(4)()()()24083218÷-+-⨯-+;(5)()()()20213116822⎛⎫-+-⨯--÷- ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦.18.化简:(1)232322343a a a a a --++;(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭.19.先化简,后求值:()()32323224a ab b a ab b -+---+,其中1a =-,17b =.20.已知多项式2512A x my =+-与多项式21B nx y =++(m 、n 为常数),如果23A B +中不含x 和y ,求mn 的值.21.某同学绘制了如图所示的火箭模型截面图,图的下面是梯形,中间是长方形,上面是三角形.(1)用含有a 、b 的代数式表示该截面的面积S ;(2)当 2.8a cm =, 2.2b cm =时,求这个截面的面积.22.某登山队5名队员以大本营为基地,向海拔距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下(单位:米)+120,-30,-45,+205,-30,+25,-20,-5,+30,+105,-25,+90.(1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在进行中全程均使用了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?23.观察下面三行数:2-,4,8-,16,32-,64,…;①0,6,6-,18,30-,66,…;②1-,2,4-,8,16-,32,…;③(1)第一行的第8个数是________,第二行的第8个数是________,第三行的第n 个数是________;(2)在第三行中,某三个连续数的和为96,求这三个数.24.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________,表示3-和2两点之间的距离是________.(2)一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -.如果表示数a 和1-的两点之间的距离是3,那么=a ________.(3)若数轴上表示数a 的点位于4-与2之间,则42a a ++-的值为________;(4)利用数轴找出所有符合条件的整数点x ,使得|x +2|+|x -5|=7,这些点表示的数的和是.(5)当=a ________时,314a a a ++-+-的值最小,最小值是________.25.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足2|1|(2)0a b -++=.(1)求线段AB 的长.(2)点C 在数轴上对应的数是c ,且c 是方程1232x x -=的解,在数轴上是否存在点P ,使得PA +PB =PC ?若存在,求出点P 对应的数;若不存在,请说明理由.(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 以每秒1个单位长度的速度向左运动,同时点A 和点C 分别以每秒4个单位长度和9个单位长度的速度向右运动,t 秒钟后,若点A 和点C 之间的距离表示为AC ,点A 和点B 之间的距离表示为AB ,那么AB -AC 的值是否随着时间的变化而变化?若变化,请说明理由;若不变,请求出AB -AC 的值.参考答案1.B【解析】【分析】利用有理数的减法运算,即可.【详解】--=,故选B.15(3)18【点睛】本题主要考查有理数的减法运算的实际运用,对题意的准确理解,列出算式,是解题的关键. 2.D【解析】【分析】先把各项分别化简,再根据负数的定义,即可解答.【详解】A、|-2|=2,不是负数;B、-(-2)=2,不是负数;C、(-2)2=4,不是负数;D、-22=-4,是负数.故选D.【点睛】本题考查了正数和负数,解决本题的关键是先进行化简.3.B【解析】【分析】根据绝对值的定义即可判断A和C,根据正整数的定义即可判断B,根据相反数的定义即可判断D.【详解】解:∵0的绝对值是0,∴A选项不合题意,∵由正整数的定义知最小的正整数是1,∴B选项符合题意,∵0的绝对值是0,但0不是正数,∴C选项不合题意,∵负数的相反数是正数,而正数大于负数,∴D选项不合题意,故选B.【点睛】本题主要考查了绝对值的定义,相反数的定义,整数的定义,解题的关键在于能够熟知定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;如果两个数只有符号不同,数字相同,那么这两个数就叫做相反数,0的相反数是0.4.B【解析】【分析】根据整式的定义,结合题意即可得出答案.单项式和多项式都统称为整式.【详解】解:1a和1y的分母含有字母,是分式,不是整式;整式有12mn-,8,226x x++,25x y-,a-,共有5个,故选:B.【点睛】本题考查了整式的判断,理解整式的定义是解题的关键.5.D【解析】【分析】根据多项式的项以及单项式的次数、系数的定义即可作出判断.【详解】多项式2x2−3x+5是二次三项式,它的项分别是2x2,-3x,5;最高次项的系数是2,它的常数项是5,故A、B、C、正确,只有D 错误.故选D.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.6.B【解析】【分析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义可知n-1=2,m+2=4,从而求出m 、n ,继而求出m-n 的值.【详解】解:由题意可知:n-1=2,m+2=4,解得:n=3,m=2,∴m-n=2-3=-1.故选B.【点睛】本题考查了同类项的定义.7.D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.C【解析】根据非正数的绝对值是它的相反数即可求解.【详解】∵|-2a|=2a,∴-2a≤0,解得a≥0.故选:C.【点睛】此题考查绝对值,解题关键在于掌握如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a 的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.9.B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:a<b<0<c,∴b-c<0,a+b<0,则原式=c-b-a-b+a=c-2b.故选B.【点睛】此题考查整式的加减,熟练掌握运算法则是解本题的关键.10.C【解析】【分析】观察数字的变化设表格中左上角的数字为a,则左下角的数字为a+1,右上角的数字为2a+2,右下角的数字为(a+1)(2a+2)+a,进而可得结论.【详解】解:∵a+(a+2)=20,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209故选C.【点睛】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律,运用规律.11.1 3【解析】【详解】解:根据相反数的定义可知1-3的相反数是13.故答案为:1 3.12.6.75×104【解析】【详解】解:67500=6.75×104.故答案为:6.75×104.13.>【解析】【分析】根据两个负数绝对值大的反而小进行比较即可.【详解】解:1153315-==,2265515-==,∵56 1515<,∴1235->-.故答案为:>.【点睛】本题考查了有理数大小比较,要熟练掌握并正确运用有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.14.2±,3±【解析】【分析】根据绝对值意义以及有理数的大小比较即可求得答案.【详解】解:绝对值大于1.1而小于3.9的所有整数有2±,3±.故答案为:2±,3±.【点睛】本题考查了绝对值的意义,有理数的大小比较,理解绝对值的意义是解题的关键.15.2011【解析】【分析】将所求代数式适当变形,利用整体代入的思想方法解答即可得出结论.【详解】解:∵233m m --的值为2,∴2332m m --=,∴235m m -=.∴()222021262021232021252021102011m m m m -+=--=-⨯=-=.故答案为:2011.【点睛】此题考查了代数式求值,解题的关键是掌握整体代入的求解方法.16.1011【解析】【分析】由点的运动方式,可得到规律运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,…运动次数是偶数时,A 点在数轴上表示的数为1,2,3,…,由于2022n =是偶数,则可求解.【详解】解:第一次A 点在数轴上表示的数为1-,第二次A 在数轴上表示的数为1,第三次A 在数轴上表示的数为到2-,第四次A 在数轴上表示的数为2,第五次A 在数轴上表示的数为3-,第六次A 在数轴上表示的数为3,⋯由此发现,运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,⋯运动次数是偶数时,A 点在数轴上表示的数为1,2,3,⋯当2022n =时,A 点在数轴上表示的数为1011,∴点A 与原点的距离是1011个单位,故答案为:1011.【点睛】本题考查数字的变化规律;能够理解题意,并能由点运动后在数轴上表示的数总结出规律是解题的关键.17.(1)12;(2)-8;(3)-13;(4)1;(5)3;(6)-68【解析】【分析】(1)先把减法转化为加法,然后根据有理数加法的计算方法计算即可;(2)根据有理数的乘除法计算即可;(3)根据乘法分配律计算即可;(4)(5)先算乘方、再算乘除法、最后算加减法即可;(6)先算乘方和括号内的式子,然后算括号外的加法即可.【详解】解:(1)()()()()()()101251012512+-++---=+-+-+=;(2)()()324343823⎛⎫+⨯+÷-=-⨯⨯=- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭()()()251242424382=-⨯--⨯-⨯()()161512=-++-13=-;(4)()()()()()()()2408321853418512181÷-+-⨯-+=-+-⨯+=-+-+=;(5)()()()()()()2021311682138813132⎛⎫-+-⨯--÷-=-+-÷-=-++= ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦()10016192=-+--⨯⎡⎤⎣⎦()1001682=-+--⨯⎡⎤⎣⎦()1001616=-++10032=-+68=-.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.18.(1)2a -;(2)2734a a +-【解析】【分析】(1)根据合并同类项法则求解即可求出答案.(2)先去括号,然后合并同类项即可求出答案.【详解】解:(1)232322343a a a a a --++222332433a a a a a =-++-2a =-.(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭2235285522a a a a =-+-+-2235258522a a a a =++---2734a a =+-【点睛】本题考查整式的加减,熟练运用整式的加减运算法则是解题的关键.19.3257a b -,157-【解析】【分析】去括号,合并同类项,再把1a =-,17b =,代入化简后的多项式计算.【详解】解:()()32323224a ab b a ab b -+---+323232228a ab b a ab b ++=-+-3257a b =-,当1a =-,17b =,原式()2311517577⎛⎫=⨯--⨯=- ⎪⎝⎭.【点睛】本题考查了整式的加减—化简求值,熟练掌握整式的加减—化简求值的步骤:先化简,再把给定字母的值代入计算,得出整式的值,合并同类项是解题关键.20.5【解析】【分析】先根据整式的加减计算法则求出()()2231032321A B n x m y +=+++-,然后;令含x 和含y的项的系数为0,即可得到m 、n 的值,然后代值计算即可【详解】解:∵2512A x my =+-,21B nx y =++,∴()()2223251231A B x my nx y +=+-+++2210224333x my nx y =+-+++()()21032321n x m y =+++-,∵23A B +中不含x 和y ,∴1030 230nm+=⎧⎨+=⎩,∴32103 mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴310523mn⎛⎫=-⨯-=⎪⎝⎭.【点睛】本题主要考查了整式的加减计算,代数式求值,解题的关键在于熟知如果一个多项式中不含某个字母,则含有这个字母的项的系数为0.21.(1)S=2a2+2ab;(2)28cm2.【解析】【分析】(1)根据题意和图形中的数据可以用代数式表示出截面的面积S;(2)将a、b的值代入(1)中的代数式即可解答本题.【详解】解:(1)由题意可得,该截面的面积S=12ab+a•2a+12(a+2a)•b=12ab+2a2+12ab+ab=2a2+2ab,即该截面的面积S是2a2+2ab;(2)当a=2.8cm,b=2.2cm时,S=2×2.82+2×2.8×2.2=15.68+12.32=28cm2,答:这个截面的面积是28cm2.【点睛】本题考查代数式求值、列代数式,解答本题的关键是明确题意,列出相应的代数式,求出代数式的值,利用数形结合的思想解答.22.(1)他们没有登上顶峰,他们距离顶峰80米;(2)18.25【解析】【分析】(1)将行程的数据相加,与500比较,进而判断是否登上顶峰,再计算距离顶峰多少米;(2)将行程的数据的绝对值相加,根据每人每100米消耗氧气0.5升,计算即可【详解】(1)12030452053025205301052590--+-+--++-+420=(米).50042080-=(米),答:他们没有登上顶峰,他们距离顶峰80米.(2)12030452053025205301052590730+++++++++++=(米),每人每100米消耗氧气0.5升,∴73051000.518.25⨯÷⨯=(升),答:他们共消耗18.25升氧气.【点睛】本题考查了有理数加减法的应用,有理数的混合运算,理解题意正确的计算是解题的关键.23.(1)256,258,()22n-÷;(2)32,64-,128【解析】【分析】(1)观察每一行数的规律即可写出每一行的第n 个数;(2)根据(1)中得到的规律得第三行的第n 个数为()12n --,根据条件建立方程,就可解决问题.【详解】解:(1)观察三行数的规律可知:第1行第1个数为:()122-=-,第1行第2个数为:()224-=,第1行第3个数为:()328-=-,第1行第4个数为:()4216-=,∴第1行数的第n 个数为:()2n-;第2行数的第1个数为:()122220-+=-+=,第2行数的第2个数为:()222426-+=+=,第2行数的第3个数为:()322826-+=-+=-,第2行数的第4个数为:()42216218-+=+=,∴第2行数的第n 个数为:()22n -+;第3行数的第1个数为:()122221-÷=-÷=-,第3行数的第2个数为:()222422-÷=÷=,第3行数的第3个数为:()322824-÷=-÷=-,第3行数的第4个数为:()4221628-÷=÷=,∴第3行数的第n 个数为:()22n -÷.∴第一行的第8个数是()82256-=,第二行的第8个数是()8222562258-+=+=,第三行的第n 个数是()22n -÷,故答案为:256,258,()22n-÷;(2)第三行的第n 个数为()22n -÷,若第三行的第n 个数、第()1n +个数、第()1n -个数的和为96,则有()()()1122222296n n n -+-÷+-÷+-÷=,∴()()()11222192n n n -+-+-+-=,∴()()()()()()111222222192n n n ----+-⨯-+-⨯-⨯-=∴()()12124192n --⨯-+=,∴()162642n --==,∴16n -=,∴7n =,∴()712232--÷=,()72264-÷=-,()7122128+-÷=,∴这三个数为32,64-,128.【点睛】本题主要考查了含乘方的有理数混合计算,数字类的规律问题,解题的关键在于能够根据题意准确得到规律.24.(1)3,5;(2)2或-4;(3)6;(4)12;(5)1;7【解析】【分析】(1)根据数轴上两点之间的距离等于两点所表示数的绝对值进行解答即可;(2)根据数轴上两点之间的距离等于两点所表示数的绝对值得到13a +=,解得即可;(3)先根据表示数a 的点位于5-与2之间可知52a -<<,再根据绝对值的性质把原式去掉绝对值符号求出a 的值即可;(4)根据线段上的点到线段两端点的距离的和最小,可得答案.(5)根据分类讨论的数学思想可以解答本题.【详解】解:(1)由数轴上两点之间的距离公式可知:数轴上表示4和1的两点之间的距离是413-=;表示3-和2两点之间的距离是325--=;故答案为:3,5;(2)若表示数a 和1-的两点之间的距离是3,则13a +=,解得2a =或4a =-,故答案为:2或4-;(3)∵42a -<<,∴42426a a a a ++-=++-=;故答案为:6;(4)当5x >时,7252523x x x x x ++-=++=->-,当25x -≤≤时,25257x x x x ++-=++-=,当2x <-时,2525237x x x x x ++-=--+-=-+>,∴使得257x x ++-=的所有整数为:2-,1-,0,1,2,3,4,5,∵()2101234512-+-++++++=,故答案为:12;(5)当4a >时,3143143210a a a a a a a ++-+-=++-+-=->,当14a <≤时,3143146a a a a a a a ++-+-=++-+-=+,则7610a <+≤,当31a -<≤时,3143148a a a a a a a ++-+-=++-+-=-,则7181a ≤-<,当3x ≤-时,3143143211a a a a a a a ++-+-=--+-+-=-+≥,由上可得,当1a =时,314a a a ++-+-的值最小,最小值是7,故答案为:1,7.【点睛】本题考查数轴、绝对值等知识点,明确题意,利用数轴的特点和分类讨论的数学思想解答是解答本题的关键.25.(1)3;(2)存在,3-或1-;(3)2,理由见解析【解析】【分析】(1)根据非负数的性质可确定,a b 的值,进而求得AB 的长度;(2)先解方程求得x 的值,再根据PA PB PC +=,求得点P 对应的数;(3)根据,,A B C 的运动情况,即可确定,AB AC 的变化情况,进而确定AB BC -的值.【详解】(1) 2|1|(2)0a b -++=,10,20a b ∴-=+=,解得1,2a b ==-,∴线段AB 的长为:1(2)3--=;(2)解1232x x -=,解得2x =,C ∴点对应的数是2,如图,设P 对应的数为y , PA PB PC +=,由图可知P 在A 的右侧时不存在,①当P 在B 点的左侧时,122y y y ---=-,解得3y =-,②当P 点在A ,B 之间时,32y =-,解得1y =-,∴存在点P 使得PA PB PC +=,P 对应的数是3-或1-;(3)AB AC -的值不随着时间t 的变化而变化,理由如下:t 秒钟后,A 点的位置为:14t +,B 点的位置为2t --,C点的位置为29t+,=+---=+,14(2)53AB t t t=+-+=+,AC t t t29(14)51-=+-+=,AB AC t t53(51)2∴AB AC-的值不随着时间t的变化而变化,值为2.。

【常考题】七年级数学上期中试卷含答案

【常考题】七年级数学上期中试卷含答案

【常考题】七年级数学上期中试卷含答案一、选择题1.下列各数中,比-4小的数是( )A . 2.5-B .5-C .0D .22.生物学家发现一种病毒的长度约为0.000043mm ,用科学记数法表示这个数的结果为(单位:mm )( )A .4.3×10﹣5B .4.3×10﹣4C .4.3×10﹣6D .43×10﹣53.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( )A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=- 4.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 2 5.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km .用科学记数法表示1.496亿是( )A .71.49610⨯B .714.9610⨯C .80.149610⨯D .81.49610⨯ 6.如图,O 是直线AB 上一点,OD 平分∠BOC ,OE 平分∠AOC ,则下列说法错误的是( )A .∠DOE 为直角B .∠DOC 和∠AOE 互余 C .∠AOD 和∠DOC 互补D .∠AOE 和∠BOC 互补 7.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( ) A .1B .2C .3D .4 8.代数式:216x y x +,25xy x +,215y xy -+,2y ,-3中,不是整式的有( ) A .4个 B .3个 C .2个 D .1个9.下列等式变形错误的是( )A .若x =y ,则x -5=y -5B .若-3x =-3y ,则x =yC .若x a =y a,则x =y D .若mx =my ,则x =y 10.将方程247236x x ---= 去分母得 ( ) A .2﹣2(2x-4)= - (x-7) B .12﹣2(2x ﹣4)=﹣x ﹣7C .12﹣4x ﹣8= - (x-7)D .12﹣2(2x ﹣4)= x ﹣711.下列各图经过折叠后不能围成一个正方体的是( )A .B .C .D .12.我县人口约为530060人,用科学记数法可表示为( )A .53006×10人B .5.3006×105人C .53×104人D .0.53×106人 二、填空题13.如图,用代数式表示图中阴影部分的面积为___________________.14.一个圆柱的底面半径为R cm ,高为8cm ,若它的高不变,将底面半径增加了2cm ,体积相应增加了192πcm.则R=________.15.若关于x 的方程2ax =(a+1)x+6的解为正整数,求整数a 的值_____.16.把六张形状大小完全相同的小长方形卡片(如图 1)不重叠地放在一个底面为长方形(长为 20cm ,宽为 16cm )的盒子底部(如图 2),盒子底面未被卡片覆盖的部分用阴影表示.则图 2 中两块阴影部分周长的和是_________ .17.已知x=3是方程ax ﹣6=a+10的解,则a= .18.在数轴上与2-所对应的点相距4个单位长度的点表示的数是______.19.如右图是正方体的一个平面展开图,如果原正方体前面的字为“友”,则后面的字为____________.20.一副三角板按如下图方式摆放,若2136'α∠=︒,则β∠的度数为__________.只用度表示α∠的补角为__________.三、解答题21.已知:有理数a,b,c在数轴上的位置如图,化简:a cb a bc a a+---+-+.|||||||3|22.先化简,再求值 [(xy+2)(xy-2)-2x2y2+4]÷xy,其中x=10,y=-1.23.某公园门票价格规定如下表:购票张数1—50张51—100张100张以上单张票价13元11元9元某校七年级(一)(二)班共104人去游园,其中(一)班有40多人,不足50人.经估算,如果两个班以班为单位购票,则一共应付1240元.(1)问两个班各有多少名学生?(2)如果两个班联合起来作为一个团体购票,可省多少钱?(3)如果七年级(一)班单独组织去游园,作为组织者的你应如何购票?24.如图,已知A,B两点在数轴上,点A表示的数为-10,点B到点O的距离是点A 到点O距离的3倍,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、N同时出发)(1)数轴上点B对应的数是______.(2)经过几秒,点M、点N分别到原点O的距离相等.25.用四个长为m,宽为n的相同长方形按如图方式拼成一个正方形.(1).请用两种不同的方法表示图中阴影部分的面积.方法①: ;方法②: .(2).由 (1)可得出()m n +2,2()m n - ,4mn 这三个代数式之间的一个等量关系为: .(3)利用(2)中得到的公式解决问题:已知2a+b=6,ab =4,试求2(2)a b -的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据有理数的大小比较法则比较即可.【详解】∵0>−4,2>−4,−5<−4,−2.5>−4,∴比−4小的数是−5,故答案选B.【点睛】本题考查了有理数大小比较,解题的关键是熟练的掌握有理数的大小比较法则.2.A解析:A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】3.B解析:B【解析】【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【详解】解:设共有x 人,可列方程为:8x-3=7x+4.故选:B本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.4.C解析:C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.5.D解析:D【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.详解:数据1.496亿用科学记数法表示为1.496×108.故选D.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.D解析:D【解析】【分析】根据角平分线的性质,可得∠BOD=∠COD,∠COE=∠AOE,再根据余角和补角的定义求解即可.【详解】解:∵OD平分∠BOC,OE平分∠AOC,∴∠BOD=∠COD=12∠BOC,∠AOE=∠COE=12∠AOC,∵∠AOC+∠COB=180°,∴∠COE+∠COD=90°,A、∠DOE为直角,说法正确;B、∠DOC和∠AOE互余,说法正确;C、∠AOD和∠DOC互补,说法正确;D、∠AOE和∠BOC互补,说法错误;故选D.【点睛】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线7.D解析:D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项,n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.C解析:C【解析】【分析】根据整式的概念,进行判断即可.【详解】216x y x+分母中含有未知数,是分式,不是整式, 25xy x +是多项式,是整式,215y xy -+是多项式,是整式, 2y分母中含有未知数,是分式,不是整式, -3是单项式,是整式, ∴不是整式的有216x y x +、2y,共2个, 故选C.【点睛】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数. 9.D解析:D【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时乘以或除以同一个不为0的数,等式依然成立;据此对各选项进行分析判断即可.【详解】A :等式两边同时减去了5,等式依然成立;B :等式两边同时除以3-,等式依然成立;C :等式两边同时乘以a ,等式依然成立;D :当0m =时,x 不一定等于y ,等式不成立;故选:D .【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.10.D解析:D【解析】【分析】根据原方程可知将其两边同时乘以各分母的最小公倍数6即可求得相应的答案.【详解】∵原方程分母的最小公倍数为6,∴原方程两边同时乘以6可得:()122247x x --=-,故选:D .【点睛】本题主要考查了一元一次方程中去分母的运算,熟练掌握相关方法是解题关键11.D解析:D【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【详解】解:A 、是正方体的展开图,不符合题意;B 、是正方体的展开图,不符合题意;C 、是正方体的展开图,不符合题意;D 、不是正方体的展开图,缺少一个底面,符合题意.故选:D .【点睛】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.12.B解析:B【解析】根据科学记数法的定义及表示方法进行解答即可.【详解】解:∵530060是6位数,∴10的指数应是5,故选B .【点睛】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.二、填空题13.【解析】阴影部分的面积等于长方形的面积减去两个小扇形的面积差长方形的面积是ab 两个扇形的圆心角是90∘∴这两个扇形是分别是半径为b 的圆面积的四分之一∴【点睛】本题考查了列代数式由数和表示数的字母经有 解析:212ab b π- 【解析】阴影部分的面积等于长方形的面积减去两个小扇形的面积差.长方形的面积是ab ,两个扇形的圆心角是90∘,∴这两个扇形是分别是半径为b 的圆面积的四分之一. ∴2211242ab b ab b ππ-⨯=- . 【点睛】 本题考查了列代数式, 由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.理解图意得到阴影部分的面积长方形的面积-2个14圆的面积是解题的关键. 14.5cm 【解析】【分析】分析:表示出增加后的半径算出体积后相减即可得到相应增加的体积据此列出方程并解答详解:依题意得:8π(R+2)2-8πR2=192π解得R=5故R 的值为5cm 点睛:本题考查了一元解析:5cm【解析】【分析】分析:表示出增加后的半径算出体积后相减即可得到相应增加的体积,据此列出方程并解答.详解:依题意得:8π(R+2)2-8πR 2=192π,解得R=5.故R 的值为5cm .点睛:本题考查了一元一次方程的应用.解题的关键是了解圆柱的体积的计算方法,难度【详解】请在此输入详解!15.2347【解析】【分析】把a看做已知数表示出方程的解由方程的解为正整数确定出整数a的值即可【详解】方程整理得:(a﹣1)x=6解得:x=由方程的解为正整数即为正整数得到整数a=2347故答案为:23解析:2,3,4,7【解析】【分析】把a看做已知数表示出方程的解,由方程的解为正整数,确定出整数a的值即可.【详解】方程整理得:(a﹣1)x=6,解得:x=61 a-,由方程的解为正整数,即61a-为正整数,得到整数a=2,3,4,7,故答案为:2,3,4,7【点睛】本题考查了求解一元一次方程的解法,解题的关键是得出关于a的等式.16.64【解析】试题分析:设小长方形的长为xcm宽为ycm根据题意得:20=x+3y则图②中两块阴影部分周长和是:40+2(16-3y)+2(16-x)=40+64-6y-2x=40+64-2(x+3y解析:64【解析】试题分析:设小长方形的长为xcm,宽为ycm,根据题意得:20=x+3y,则图②中两块阴影部分周长和是:40+2(16-3y)+2(16-x)=40+64-6y-2x=40+64-2(x+3y)=40+64-40=64(cm)考点:代数式的应用.17.8【解析】【分析】将x=3代入方程ax﹣6=a+10然后解关于a的一元一次方程即可【详解】∵x=3是方程ax﹣6=a+10的解∴x=3满足方程ax﹣6=a+10∴3a﹣6=a+10解得a=8故答案为解析:8【解析】【分析】将x=3代入方程ax﹣6=a+10,然后解关于a的一元一次方程即可.【详解】∵x=3是方程ax﹣6=a+10的解,∴x=3满足方程ax﹣6=a+10,∴3a ﹣6=a+10,解得a=8.故答案为8.18.2或﹣6【解析】解:当该点在﹣2的右边时由题意可知:该点所表示的数为2当该点在﹣2的左边时由题意可知:该点所表示的数为﹣6故答案为2或﹣6点睛:本题考查数轴涉及有理数的加减运算分类讨论的思想解析:2或﹣6【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6.故答案为2或﹣6.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.19.诚【解析】【分析】正方体的平面展开图中相对的两个面中间必须隔着一个小正方形根据这一特点结合题意可正确解答【详解】如果原正方体上友所在的面为前面则信所在的面为左面所以相对的正方体的右面是国后面是诚故答 解析:诚【解析】【分析】正方体的平面展开图中,相对的两个面中间必须隔着一个小正方形,根据这一特点,结合题意可正确解答.【详解】如果原正方体上“友”所在的面为前面,则“信”所在的面为左面,所以相对的正方体的右面是“国”,后面是“诚”故答案为:诚【点睛】本题考查正方体相对两个面上的文字,立意新颖,是一道不错的题.关键是分清每一个面的位置.20.【解析】【分析】根据平角的定义可得++90°=180°然后进一步计算即可得出的度数然后再根据补角性质用180°减去度数即可得出其补角【详解】由题意得:++90°=180°∴=90°−=;的补角=18解析:6824'o 158.4o【解析】【分析】根据平角的定义可得α∠+β∠+90°=180°,然后进一步计算即可得出β∠的度数,然后再根据补角性质用180°减去α∠度数即可得出其补角.【详解】由题意得:α∠+β∠+90°=180°,2136'α∠=︒∴β∠=90°−α∠=6824'o ;α∠的补角=180°−α∠=158.4o ,故答案为:6824'o ,158.4o .【点睛】本题主要考查了角的性质,熟练掌握相关概念是解题关键.三、解答题21.2b .【解析】【分析】先由a 、b 、c 在数轴上的位置可确定a >0,c <b <0,b a c <<,进而可确定,,,3a c b a b c a a +-+-的符号,再根据绝对值的性质去掉绝对值符号,然后根据整式的加减运算法则计算即可.【详解】解:由题意得:a >0,c <b <0,b a c <<,所以0,0,0,30a c b a b c a a +<-<+-<>,所以原式=()()()3a c b a b c a a -+-----+-+⎡⎤⎡⎤⎣⎦⎣⎦=3a c b a b c a a --+-++-+=2b .【点睛】本题主要考查了数轴、有理数的绝对值和整式的加减运算等知识,属于常考题型,根据点在数轴上的位置确定相关式子的符号、熟练进行绝对值的化简和整式的加减运算是解题的关键.22.xy -,10.【解析】【分析】利用去括号、合并同类项和整式的除法运算法则进行化简,然后将x 、y 的值代入即可解答.【详解】解:[(xy+2)(xy-2)-2x 2y 2+4]÷xy , = [x 2y 2-4-2x 2y 2+4] ÷xy =- x 2y 2 ÷xy=- xy当x=10,y=-1时,- xy=-10×(-1)=10.【点睛】本题主要考查了整式的混合运算,正确掌握相关运算法则是解答本题的关键.23.(1)七年级(一班)有48名学生,(二)班有56名学生;(2)节省304元;(3)应购51张票.【解析】【分析】(1)设(1)班有x 个学生,则(2)班有(104-x )个学生,根据购票总费用=(1)班购票费用+(2)班购票费用即可得出关于x 的一元一次方程,解之即可得出结论; (2)求出购买104张票的总钱数,将其与1240做差即可得出结论;(3)分别求出购买48张门票以及购买51张门票的总钱数,比较后即可得出结论.【详解】解解:(1)设(1)班有x 个学生,则(2)班有(104-x )个学生,根据题意得:13x+11(104-x )=1240,解得:x=48,∴104-x=56.答:七年级(1)班有48个学生,七年级(2)班有56个学生.(2)1240-9×104=304(元).答:如果两班联合起来,作为一个团体购票,可省304元钱.(3)51×11=561(元),48×13=624(元),∴561<624,∴如果七年级(1)班单独组织去游园,购买51张门票最省钱.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据购票总费用=(1)班购票费用+(2)班购票费用列出关于x 的一元一次方程;(2)根据总价=单价×数量求出购买104张门票的总钱数;(3)根据总价=单价×数量分别求出购买48张门票以及购买51张门票的总钱数.24.(1)30(2)2秒或10秒【解析】【分析】(1)根据点A 表示的数为-10,OB=3OA ,可得点B 对应的数;(2)分①点M 、点N 在点O 两侧;②点M 、点N 重合两种情况讨论求解;【详解】(1)∵OB=3OA=30.故B 对应的数是30;(2)设经过x 秒,点M 、点N 分别到原点O 的距离相等;①点M 、点N 在点O 两侧,则10-3x=2x ,解得x=2;②点M 、点N 重合,则3x-10=2x ,解得x=10.所以经过2秒或10秒,点M 、点N 分别到原点O 的距离相等.【点睛】此题主要考查了一元一方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.(1) 2()m n -;2()4m n mn +-;(2)2()m n -=2()4m n mn +-;(3)4.【解析】【分析】(1)直接利用正方形的面积公式得到图中阴影部分的面积为(m-n )2;也可以用大正方形的面积减去4个长方形的面积得到图中阴影部分的面积为(m+n )2-4mn ;(2)根据图中阴影部分的面积是定值得到等量关系式;(3)利用(2)中的公式得到(2a-b )2=(2a+b )2-4×2ab . 【详解】方法①:()2m n -;方法②:()24m n mn +-(2)()2m n -=()24m n mn +-(3) (2a-b)2=(2a+b)2-8ab=36-32=4【点睛】考查了列代数式:根据题中的已知数量利用代数式表示其他相关的量.。

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试题2022年一、单选题1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,2021-的相反数是()A.2021-B.2021C.12021D.12021-2.下列运算正确的是()A.4m-m=3B.2a2-3a2=-a2C.a2b-ab2=0D.x-(y-x)=-y3.下列各数中最大的是()A.3-B.2-C.0D.14.12-的倒数是()A.﹣2B.12C.12-D.12±5.与a﹣b﹣c 的值不相等的是()A.a﹣(b﹣c)B.a﹣(b+c)C.(a﹣b)+(﹣c)D.(﹣b)+(a﹣c)6.将这个数285000000用科学记数法表示为()A.628510⨯B.728.510⨯C.82.8510⨯D.90.28510⨯7.一个多项式与5a 2+2a﹣1的和是6a 2﹣5a+3,则这个多项式是()A.a 2﹣7a+4B.a 2﹣3a+2C.a 2﹣7a+2D.a 2﹣3a+48.用四舍五入法,0.00356精确到万分位的近似数是()A.0.003B.0.004C.0.0035D.0.00369.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为()A.12B.24C.27D.3010.已知a 、b 是不为0的有理数,且a a =-,b b =,a b >,那么用数轴上的点来表示a 、b ,正确的是()A.B.C.D.二、填空题11.如果把“增加16%”记作“16%”,那么“______”表示“减少8%”.12.已知飞机的飞行高度为10000m ,上升5000m -后,飞机的飞行高度是____m .13.多项式232xy x y -+的次数是_____.14.如果223m n xy -与35m x y -是同类项,则n m 的值为______.15.若代数式5x-5与2x-9的值互为相反数,则x=________.16.已知a、b、c 三个数在数轴上对应点的位置如图所示,下列几个判断:①a<c<b;②﹣a<b;③a+b>0;④c﹣a<0中,错误的是_____(写序号)17.当2x =时,代数式31ax bx -+的值等于-17,那么当1x =-时,代数式33125bx ax -+-的值____.18.若单项式﹣23ax y与﹣2513b x y +是同类项,则a+b=___.三、解答题19.计算:()2411236⎡⎤--⨯--⎣⎦20.计算:22711150(6)(7)9126⎡⎤⎛⎫--+⨯-÷- ⎪⎢⎥⎝⎭⎣⎦.21.先化简,再求值:()223233()a ab a b ab b ⎡⎤---++⎣⎦,其中3a =-,13b =.22.已知多项式22622452x mxy y xy x --+-+化简后的结果中不含xy 项.(1)求m 的值;(2)求代数式32322125m m m m m m ---+--++的值.23.若a、b 互为相反数,c、d 互为倒数,m 的绝对值为2.(1)直接写出:a+b=,cd=,m=;(2)求a bm cd m+++的值.24.某公司5天内货品进出仓库的吨数如下:(“+”表示进库,“一”表示出库)+23,﹣30,﹣16,+35,﹣33(1)经过这5天,仓库里的货品是(填“增多了”还是“减少了”).(2)经过这5天,仓库管理员结算发现仓库里还有货品508吨,那么5天前仓库里存有货品多少吨?(3)如果进出货的装卸费都是每吨4元,那么这5天一共要付多少元装卸费?25.已知多项式2244A x xy y =-+,225Bx xy y =--.(1)求23A B -;(2)若0A B C ++=,求多项式C .26.某人去水果批发市场采购猕猴桃,他看中了A、B 两家猕猴桃.这两家猕猴桃品质一样,零售价都为6元/千克,批发价各不相同,A 家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B 家的规定如下表:数量范围(千克)0~500500以上~15001500以上~25002500以上价格(元)零售价的95%零售价的85%零售价的75%零售价的70%(1)如果他批发600千克猕猴桃,则他在A 、B 两家批发分别需要多少元?(2)如果他批发x 千克猕猴桃(1500<x<2000),请你分别用含x 的代数式表示他在A、B 两家批发所需的费用;(3)现在他要批发1800千克猕猴桃,你能帮助他选择在哪家批发更优惠吗?请说明理由.27.小明妈妈在某玩具厂工作,厂里规定每个工人生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈十天内的生产情况记录表(超过记为正、不足记为负):天数12214增、减产值+6﹣7﹣4+5﹣1(1)与原计划相比,小明妈妈十天生产玩具总计超过或不足多少个?(2)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元,求小明妈妈这十天的工资总额是多少元?参考答案1.B【解析】【分析】根据相反数的定义求解即可.【详解】解:根据相反数的定义:−2021的相反数是2021,【点睛】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.B 【解析】【分析】根据整式加减法的运算法则“如果遇到括号.按去括号法则先去括号:括号前是“+”号,把括号和它前面的“+”号去掉.括号里各项都不变符号,括号前是“-”号,把括号和它前面的“-”号去掉.括号里各项都改变符号.合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.”进行逐项判断即可.【详解】解:A.43m m -=,故A 选项错误;B.22223a a a -=-,故B 选项正确;C.不是同类项,无法进行减法运算,故C 选项错误;D.()2x y x x y --=+,故D 选项错误;故答案为:B.【点睛】本题考查整式加减运算.合并同类项关键把握字母相同,并且各字母的指数也分别对应相同.需要注意,所有的常数项也都是同类项.去括号时,括号前是负号,去括号后括号里各项都变号.3.D 【解析】把选项中的4个数按从小到大排列,即可得出最大的数.【详解】由于-3<-2<0<1,则最大的数是1故选:D.【点睛】本题考查了有理数的大小比较,一般地,正数大于零,零大于负数,两个负数,绝对值大的反而小.4.A【解析】【分析】直接利用倒数的定义得出答案.【详解】解:12的倒数是:-2.故选:A.【点睛】本题主要考查了倒数,正确掌握相关定义是解题关键.5.A【解析】【分析】根据去括号方法逐一计算即可【详解】A、a﹣(b﹣c)=a﹣b+c.故本选项正确;B、a﹣(b+c)=a﹣b﹣c,故本选项错误;C、(a﹣b)+(﹣c)=a﹣b﹣c,故本选项错误;D、(﹣b)+(a﹣c)=﹣c﹣b+a,故本选项错误.故选A 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号6.C 【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中1||10a ≤<,n 为整数,据此分析即可.【详解】解:8285000000 2.8510=⨯故选:C 【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.7.A【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:根据题意得:(6a2﹣5a+3)﹣(5a2+2a﹣1)=6a2﹣5a+3﹣5a2﹣2a+1=a2﹣7a+4,故选A.【点睛】此题考查整式的加减,解题关键是熟练掌握运算法则.8.D【解析】【分析】把万分位后的数字6进行四舍五入即可.【详解】解:精确到万分位,0.003560.0036故选:D【点睛】此题考查了近似数和有效数字,解题关键在于掌握近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.9.C【解析】【分析】根据新定义的公式代入计算即可.【详解】∵()*23m n m n =+⨯-,∴()6*3-=()623(3)27+⨯--=,故选C.【点睛】本题考查了新定义下的实数计算,准确理解新定义公式是解题的关键.10.C 【解析】【分析】根据绝对值的含义和数轴的性质判断即可.【详解】解:由a a =-,b b =,a b>可得:0a ≤,0b ≥,a 到原点的距离大于b 到原点的距离,观察各选项,可得C 选项符合题意,故选C 【点睛】本题考查了绝对值的意义和数轴的性质,解题的关键是熟练掌握绝对值和数轴的基础性质.11.﹣8%【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】如果把“增加16%”记作“16%”,那么“﹣8%”表示“减少8%”.故答案为:﹣8%.12.5000【解析】【分析】根据题意列式10000+(-5000)计算即可.【详解】根据题意,得飞机的飞行高度是10000+(-5000)=5000(m),故答案为:5000.【点睛】本题考查了有理数的加法,熟练掌握有理数加法的运算法则是解题的关键.13.4##四【解析】【分析】根据多项式次数的定义求解即可,多项式的次数是指多项式中次数最高的项的次数.【详解】解:多项式232xy x y -+含有两个单项式2xy -,32x y ,它们的次数分别为34,所以,多项式232xy x y -+的次数为4故答案为4此题考查了多项式次数的定义,掌握多项式次数的定义是解题的关键.14.8【解析】【分析】根据同类项的定义,列式计算即可.【详解】∵223m n x y -与35m x y -是同类项,∴2m-2=m,n=3,∴n m =32=8,故答案为:8.【点睛】本题考查了同类项即含有的字母相同且相同字母的指数也相同,熟练掌握定义并灵活计算是解题的关键.15.2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0,解此方程即可求得答案.【详解】解:由题意可得:5x-5+2x-9=0,移项,得7x=14,系数化为1,得x=2.故答案为:2【点睛】本题考查了相反数的性质以及一元一次方程的解法.16.②③④.【解析】【分析】由数轴分别得出a、b、c三个数的范围,再根据有理数的运算法则对四个结论一一判断即可.【详解】由数轴可得:﹣3<a<﹣2,0<b<1,﹣1<c<0,①数轴上右边的点表示的数总比左边的点表示的数大,所以a<c<b,此结论正确;②由数轴图不难得出2<﹣a<3,所以﹣a>b,此结论错误;③异号两数相加,取绝对值大的加数的符号,很明显,|a|>|b|,所以a+b<0,此结论错误;④正数减去负数所得差必为正数,所以c﹣a>0,此结论错误.故答案为②③④.【点睛】本题主要考查数轴、有理数的加减运算法则.17.22【解析】【分析】先对已知条件进行代入变形,可得代数式4a-b的值,再把所求代数式化成已知的形式,然后利用整体代入法求解即可.解:当x=2时,代数式3182117ax bx a b +=+=---,∴8218a b -=-,∴()2418a b -=-,∴49a b -=-,当1x =-时,代入33125bx ax -+-,原式3125b a =--,()345a b =---,()395=-⨯--,275=-,22=,∴代数式33125bx ax -+-的值等于22,故答案为:22.【点睛】题目主要考查利用“整体代入法”求解代数式的值,从题设中获取条件,对代数式化简代入求值是解题关键.18.0【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可求得a,b 的值,继而可求得a+b.解:∵单项式﹣23a x y 与﹣2513b x y +是同类项,∴a=2,b+5=3,解得a=2,b=﹣2,∴a+b=2﹣2=0.故答案为:0.【点睛】本题考查了同类项即所含字母相同,并且相同字母的指数也相同,准确理解定义满足的条件是解题的关键.19.16【解析】【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号先算括号里面的;【详解】解:原式()11711291716666=--⨯-=-+⨯=-+=.【点睛】此题要注意正确掌握运算顺序以及符号的处理.20.1【解析】【分析】先算乘方,再算利用乘法分配律将小括号展开,再计算加减法,最后算除法.【详解】解:()()22711150679126⎡⎤⎛⎫--+⨯-÷- ⎪⎢⎥⎝⎭⎣⎦71115036499126⎡⎤⎛⎫=--+⨯÷ ⎪⎢⎥⎝⎭⎣⎦711150363636499126⎡⎤⎛⎫=-⨯-⨯+⨯÷ ⎪⎢⎥⎝⎭⎣⎦[]502833649=-+-÷4949=÷1=【点睛】本题主要考查了有理数的乘方、乘除以及加减,熟练掌握有理数的乘方、乘除以及加减法则是解答此题的关键.21.229a ab -;27【解析】【分析】先去括号,再合并同类项,然后将值代入计算即可.【详解】解:原式2236333a ab a b ab b=--+--229a ab=-当3a =-,13b =时,原式212(3)9(3)3=⨯--⨯-⨯27=.【点睛】本题考查整式的加减.去括号时,注意要正确运用去括号法则考虑括号内的符号是否变号.22.(1)2m =;(2)14-.【解析】【分析】(1)先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值;(2)由(1)得m=2,先化简合并同类项,然后代入m 的值计算即可.【详解】解:(1)22622452x mxy y xy x --+-+,()22=6+42252x m xy y x ---+由题意中不含xy 项,可得4-2m=0,∴m=2;(2)32322125m m m m m m ---+--++=3226m m --+.23.(1)a+b=0,cd=1,m=±2;(2)3或-1【解析】【分析】(1)根据相反数的性质,倒数的性质,绝对值的性质计算即可;(2)根据(1)中的计算结果整体代入计算即可.【详解】解:(1)因为a、b 互为相反数,c、d 互为倒数,m 的绝对值为2;所以a+b=0,cd=1,2m =±.故答案为:0,1,2±.(2)当m=2时,原式02132=++=;当2m =-时,原式02112=-++=--.所以原式的值为3或1-.【点睛】本题考查相反数的性质,倒数的性质和绝对值的性质,熟练掌握以上知识点是解题关键,同时注意分类讨论思想的应用.24.(1)减少了;(2)5天前仓库里存有货品529吨;(3)这5天一共要付548元装卸费.【解析】【分析】(1)求出这5天的进出货的总和,根据总和的结果,判断货品的增多或减少.(2)根据现在的货品的吨数,逆推出5天前的货品的吨数.(3)计算进出货的绝对值的和,再乘以单价即可.【详解】(1)23﹣30﹣16+35﹣33=﹣21吨,答:仓库的货品减少了,故答案为:减少了;(2)508﹣(﹣21)=529吨,答:5天前仓库里存有货品529吨;(3)4×(|+23|+|﹣30|+|﹣16|+|+35|+|﹣33|)=4×137=548元,答:这5天一共要付548元装卸费.【点睛】本题考查了正数和负数在实际生活中的应用,掌握有理数的加法法则,正数和负数的意义是解题的关键.25.(1)225517xxy y -+;(2)22545x xy y -++【解析】【分析】(1)用多项式替换,适当添加括号,去括号后,合并同类项即可;(2)先计算A+B,根据已知C=-(A+B)即可得到结果.【详解】(1)∵2244A x xy y =-+,225B x xy y =--,∴23A B -=222(44)x xy y -+-223(5)xxy y --=22882x xy y -+-223315x xy y ++=225517x xy y -+;(2)∵2244A x xy y =-+,225B x xy y =--,∴A+B=22(4)4xxy y -++22(5)x xy y --=2244x xy y -++225x xy y --=22554x xy y --,∵0A B C ++=,∴C=-(A+B)=-(22554xxy y --)=22545x xy y -++.【点睛】本题考查了整式的加减中的化简,去括号,合并同类项,熟练掌握去括号,添括号的法则,灵活进行合并同类项是解题的关键.26.(1)A家:3312元,B家:3360元;(2)A家:275x;B家:912002x+;(3)选择B家更优惠,理由见解析【解析】【分析】(1)根据题意和表格可以得到他批发600千克猕猴桃时,在A、B两家批发各需要花费多少钱,从而本题得以解决;(2)根据题意和表格可以得到他批发x千克猕猴桃时(1500<x<2000),在A、B两家批发分别需要花费多少钱,从而本题得以解决;(3)将x=1800分别代入(2)求得的两个式子,计算出结果,然后进行比较,即可解答本题.【详解】解:(1)由题意可得,当批发600千克猕猴桃时,在A家批发需要:6×600×92%=3312(元),当批发600千克猕猴桃时,在B家批发需要:6×500×95%+6×(600-500)×85%=2850+510=3360(元);(2)由题意可得,当他批发x千克猕猴桃(1500<x<2000),他在A家批发需要:6×x×90%=275x(元),当他批发x千克猕猴桃(1500<x<2000),他在B家批发需要:6×500×95%+6×(1500-500)×85%+6×(x-1500)×75%=2850+5100+4.5x-6750=912002x+(元);(3)现在他要批发1800千克猕猴桃,他选择在B家批发更优惠.理由:当他要批发1800千克猕猴桃时,他在A家批发需要:5.4×1800=9720(元),当他要批发1800千克猕猴桃时,他在B家批发需要:4.5×1800+1200=9300(元),∵9720>9300,∴现在他要批发1800千克猕猴桃,他选择在B家批发更优惠.【点睛】本题考查列代数式和代数式求值,解题的关键是明确题意,列出相应的代数式,求相应的代数式的值.27.(1)司机最后在原地的东边,离原地3千米(2)925元【解析】【分析】(1)根据有理数的加法运算法则和乘法运算法则列式计算即可;(2)用小明妈妈十天生产玩具的总数乘5即可.【详解】解:(1)(+6)×1+(﹣7)×2+(﹣4)×2+(+5)×1+(﹣1)×4=﹣15(个),故与原计划相比,小明妈妈十天生产玩具总计不足15个;(2)5×(20×10﹣15)=925(元).故小明妈妈这一周的工资总额是925元.21。

《常考题》初中数学七年级上期中经典练习(含答案解析)

《常考题》初中数学七年级上期中经典练习(含答案解析)

一、选择题1.一个数的绝对值是3,则这个数可以是( ) A .3B .3-C .3或者3-D .132.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( ) A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a3.计算3x 2﹣x 2的结果是( ) A .2 B .2x 2 C .2x D .4x 24.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .5.下列各个运算中,结果为负数的是( ) A .2-B .()2--C .2(2)-D .22-6.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④7.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A.a+b=0 B.b<a C.ab>0 D.|b|<|a|8.有理数a、b在数轴上对应的位置如图所示:则下列关系成立的是()A.a-b>0B.a+b>0C.a-b=0D.a+b<09.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017B.2016C.191D.19010.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次收费(元)A类1500100B类300060C类400040+⨯=元,若一年内例如,购买A类会员年卡,一年内健身20次,消费1500100203500在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡11.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330B.(1﹣10%)x=330C.(1﹣10%)2x=330D.(1+10%)x=33012.下列各图经过折叠后不能围成一个正方体的是()A.B.C.D.13.有理数a 、b 、c 在数轴上的对应点如图,下列结论中,正确的是( )A .a >c >bB .a >b >cC .a <c <bD .a <b <c14.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0 15.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯二、填空题16.在-2,0,1,−1这四个数中,最大的有理数是________. 17.一个角与它的补角之差是20°,则这个角的大小是____. 18.一个圆柱的底面半径为R cm ,高为8cm ,若它的高不变,将底面半径增加了2cm ,体积相应增加了192πcm.则R=________.19.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=则20192的个位数字是________.20.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.21.观察以下一列数:3,54,79,916,1125,…则第20个数是_____. 22.30万=42.3010⨯ ,则2.30中“0”在原数中的百位,故近似数2.30万精确到百位.23.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是_____. 24.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为_______.25.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.三、解答题26.如图,直线AB 、CD 相交于O 点,AOC ∠与AOD ∠的度数比为4:5,OE AB ⊥,OF 平分DOB ∠,求EOF ∠的度数.27.读句画图:如图所示,A ,B ,C ,D 在同一平面内. (1)过点A 和点D 画直线; (2)画射线CD ; (3)连接AB ; (4)连接BC ,并反向延长BC .(5)已知AB=9,直线AB 上有一点F ,并且BF=3,则AF=_________28.已知22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+.()1化简:2B A -; ()2已知x 22a b --与y1ab 3的同类项,求2B A -的值. 29.工厂某车间有48名工人,平均每人每天加工大齿轮10个或小齿轮15个,已知1个大齿轮与3个小齿轮配成一套,那么怎么安排工人,才能使每天加工的大小齿轮刚好配套? 30.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。

七年级数学上学期期中考试卷(含答案)

七年级数学上学期期中考试卷(含答案)

七年级数学上学期期中考试卷(含答案)(考试时间: 120分钟, 本卷满分: 150分)一、选择题(每题3分, 共24分)1.中国古代数学著作《九章算术》的“方程”一章, 在世界数学史上首次正式引入负数.如果支出100元记作﹣100元, 那么+80元表示()A. 支出80元B. 收入80元C. 支出20元D. 收入20元2.在下列数1, 6.7, ﹣14, 0, ﹣/, 中, 属于整数的有()A. 2个B. 3个C. 4个D. 5个3. 下列各式的计算结果正确的是()A. B.C. D.4. 下列各对数中互为相反数的是( )A.和B.和C.和D.和5.若是方程的解, 则a的值为()A. 1B. ﹣1C. ﹣3D. 36.一个长方形的长是a+b, 宽是a, 其周长是()A. 2a+bB. 4a+bC. 4a+2bD. 2a+2b7.如图所示的程序计算, 若开始输入的值为, 则输出的结果y是()A. 25B. 30C. 45D. 408.有理数a、b、c在数轴上的位置如图所示,化简:|b-c|-|b-a|+|a+c|结果....)A. B. C. D.二、填空题(每题3分, 共30分)9.武汉火神山医院建筑面积339000000平方厘米, 拥有1000张床位, 将339000000平方厘米用科学记数法表示应为平方厘米.10. 比较大小: .11. 已知和是同类项, 则a ﹣b 的值是 . 12.若关于的方程是一元一次方程, 则__________.13. 下数轴上到-3的距离是5个单位长度的点表示的数是 . 14. 已知是关于a 、b 的五次单项式, 则 . 15. 若关于x 、y 的多项式的值与y 无关, 则____________. 16. 已知的值为10, 则代数式的值为 .17.如图, 用若干相同的小棒拼成含正五边形的图形, 拼第1个图形需要5根小棒;拼第2个图形需要9根小棒;拼第3个图形需要13根小棒……按此规律, 拼第个图形需要 根小棒.18. 已知有理数满足, , 且, 则 . 三、解答题(共96分) 19.计算:(1)20(15)(14)18-+----; (2)3428122022⨯-÷+ 20. 化简:(1)25(1)3(1)a a a ++--; (2)22(24)4(31)x xy x xy -+-- 21.解方程:(1)43(20)3x x --= (2)3157146x x ---= 22. 先化简, 再求值: , 其中.23. “⊗”表示一种新运算, 它的意义是(1)求(﹣2)⊗(﹣3); (2)已知(3⊗4)⊗=, 求值.国庆期间, 特技飞行队进行特技表演, 其中一架飞机起飞后的高度变化如右表: (1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油, 那么这架飞机在这4个动作表演过程中, 一共消耗了多少升燃油?25. 下面是小明同学解方程的过程, 请认真阅读并完成相应任务. 解方程:解: ____, 得 第一步 去括号, 得 第二步 移项, 得 第三步合并同类项, 得 第四步 方程两边同除以-1, 得 第五步 方程两边同除以-1,得13-=x 第五步 任务:①以上求解步骤中, 第一步进行的是______, 这一步的依据是__________; ②以上求解步骤中, 第________步开始出现错误, 具体的错误是_____________﹔ ③请直接写出该方程正确的解为____________________.26. 周末, 小明陪爸爸去陶瓷商城购买一些茶壶和茶杯, 甲、乙两家商店出售他们看中的同样品牌的茶壶和茶杯, 茶壶每把定价都为30元, 茶杯每只定价都为5元. 这两家商店都有优惠, 甲店买一把茶壶赠送茶杯一只;乙店全场九折优惠. 小明爸爸需买茶壶5把, 茶杯若干只(不少于5只).(1)设购买茶杯只, 如果在甲店购买, 需付款多少元? 如果在乙店购买, 需付款多少元? (用含的代数式表示并化简).(2)当购买15只茶杯时, 应在哪家商店购买合算?为什么?27. 定义: 求若干个相同的有理数(均不等于0)的除法运算叫做除方, 如2÷2÷2等. 类比有理数的乘方, 我们把2÷2÷2记作23, 读作“2的下3次方”, 一般地, 把n个a(a≠0)相除记作an, 读作“a的下n次方”.理解:(1)直接写出计算结果: 23=.(2)关于除方, 下列说法正确的有(把正确的序号都填上);①a2=1(a≠0);②对于任何正整数n, 1n=1;③34=43;④负数的下奇数次方结果是负数, 负数的下偶数次方结果是正数.应用:(3)我们知道, 有理数的减法运算可以转化为加法运算, 除法运算可以转化为乘法运算, 有理数的除方运算如何转化为乘方运算呢?例如:/(幂的形式).试一试: 将下列除方运算直接写成幂的形式: =;=;(4)计算:28. 如图, 已知数轴上有A.B.C三点, 点O为原点, 点A.点B在原点的右侧, 点C在原点左侧, 点A 表示的数为a, 点B表示的数为b, 且a与b满足, .(1)直接写出a、b的值, a=, b=;(2)动点P从点C出发, 以每秒4个单位的速度向右运动, 同时动点Q从点B出发, 以每秒2个单位的速度向右运动, 设运动时间为秒, 请用含的式子表示点P , 点Q 以及线段PQ长度;(PQ就是点P与点Q之间的距离)(3)在(2)的条件下, 若点M在A点以每秒6个单位向左与P、Q同时运动, 当M点与P点或者Q点相遇时, 则立即改变运动方向, 以原速度向相反方向运动。

【常考题】七年级数学上期中试题带答案

【常考题】七年级数学上期中试题带答案

【常考题】七年级数学上期中试题带答案一、选择题1.计算:1252-50×125+252=( ) A .100 B .150 C .10000 D .225002.如图,直线AB ,CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM ,若∠AOM =35°,则∠CON 的度数为( )A .35°B .45°C .55°D .65° 3.000043的小数点向右移动5位得到4.3, 所以0.000043用科学记数法表示为4.3×10﹣5, 故选A .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.7-的绝对值是 ( )A .17-B .17C .7D .7-5.按如图所示的运算程序,能使输出结果为10的是( )A .x =7,y =2B .x =﹣4,y =﹣2C .x =﹣3,y =4D .x =12,y =3 6.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为( )A .84.610⨯B .84610⨯C .94.6D .94.610⨯ 7.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF=600,那么∠DAE 等于( )A .45°B .30 °C .15°D .60°8.如图,用火柴棒摆出一列正方形图案,第①个图案用了 4 根,第②个图案用了 12 根,第③个图案用了 24 根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是( )A .84B .81C .78D .76 9.如图,O 是直线AB 上一点,OD 平分∠BOC ,OE 平分∠AOC ,则下列说法错误的是( )A .∠DOE 为直角B .∠DOC 和∠AOE 互余 C .∠AOD 和∠DOC 互补 D .∠AOE 和∠BOC 互补10.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b11.如图所示几何体的左视图是( )A .B .C .D . 12.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40二、填空题13.两根木条,一根长60cm ,另一根长80cm ,将它们的一端重合,放在同一直线上,此时两根木条的中点间的距离是 cm .14.一个角与它的补角之差是20°,则这个角的大小是____. 15.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰6”中C 的位置是有理数______,-2017应排在A 、B 、C 、D 、E 中_______的位置.16.已知方程﹣2x 2﹣5m +4m=5是关于x 的一元一次方程,那么x=_____.17.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1=________度.18.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.19.单项式234x y -的系数是__________,次数是__________.20.如右图是正方体的一个平面展开图,如果原正方体前面的字为“友”,则后面的字为____________.三、解答题21.已知关于x 的方程(m+3)x |m+4|+18=0是一元一次方程,试求:(1)m 的值;(2)2(3m+2)-3(4m-1)的值.22.计算:(1)−4÷23−(−23)×(−30) (2)(-1)4-(1-0.5)÷3×22(3)⎡⎤--⎣⎦(3)19×(34)−(−19)×32+19×14(4)−24÷[1−(−3)2]+(23−35)×(−15).23.邮递员骑摩托车从邮局出发,先向南骑行2km到达A村,继续向南骑行3km到达B 村,然后向北骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每100km耗油3升,这趟路共耗油多少升?24.有一种“24点”游戏,其游戏规则是这样的,将4个1~13之间的数进行加减乘除运算(每个数只能用一次),使其结果为24.例如,1,2,3,4可做如下运算:(1+2+3)×4=24,1×2×3×4=24,等等.(1)现有四个有理数3,4,﹣6,+10,你能运用上述规则,写出两种运算方法不同的算式,使其结果等于24;(2)对于4个有理数﹣2,3,4,+8,再多给你一种乘方运算,请你写出一个含乘方的算式,使其结果为24.25.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。

【常考题】七年级数学上期中试卷附答案

【常考题】七年级数学上期中试卷附答案

【常考题】七年级数学上期中试卷附答案一、选择题1.为庆祝“六·一”儿童节,綦江区某中学初一年级学生举行火柴棒摆“金鱼”比赛.如图所示:……按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .+26n B .+86n C .44n + D .8n 2.绝对值不大于4的整数的积是( )A .16B .0C .576D .﹣13.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( ) A .24里 B .12里 C .6里 D .3里 4.下列各数中,比-4小的数是( )A . 2.5-B .5-C .0D .2 5.若一个角的两边与另一个角的两边分别平行,则这两个角( )A .相等B .互补C .相等或互补D .不能确定6.如图,O 是直线AB 上一点,OD 平分∠BOC ,OE 平分∠AOC ,则下列说法错误的是( )A .∠DOE 为直角B .∠DOC 和∠AOE 互余 C .∠AOD 和∠DOC 互补D .∠AOE 和∠BOC 互补7.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .8.某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是( ) A .90元B .72元C .120元D .80元9.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我10.将方程247236x x ---=去分母得 ( ) A .2﹣2(2x-4)= - (x-7) B .12﹣2(2x ﹣4)=﹣x ﹣7 C .12﹣4x ﹣8= - (x-7)D .12﹣2(2x ﹣4)= x ﹣711.下列各图经过折叠后不能围成一个正方体的是( )A .B .C .D .12.如果||a a =-,下列成立的是( ) A .0a >B .0a <C .0a ≥D .0a ≤二、填空题13.如图,观察所给算式,找出规律: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25, ……根据规律计算1+2+3+…+99+100+99+…+3+2+1=____________14.若方程423x m x +=-与方程1(16)62x -=-的解相同,则m 的值为______.15.用科学记数法表示:-206亿=______.16.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是_____. 17.观察下列运算并填空. 1×2×3×4+1=24+1=25=52; 2×3×4×5+1=120+1=121=112; 3×4×5×6+1=360+1=361=192; 4×5×6×7+1=840+1=841=292; 7×8×9×10+1=5040+1=5041=712; ……试猜想:(n +1)(n +2)(n +3)(n +4)+1=________2.18.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.19.在数轴上,若点A 表示2-,则到点A 距离等于2的点所表示的数为______. 20.某公园划船项目收费标准如下: 船型 两人船 (限乘两人) 四人船 (限乘四人) 六人船 (限乘六人) 八人船 (限乘八人) 每船租金 (元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.三、解答题21.先化简再求值:a 2﹣(5a 2﹣3b )﹣2(2b ﹣a 2),其中a =﹣1,b =12. 22.如图,在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足|a+2|+(c ﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB= ,AC= ,BC= .(用含t 的代数式表示) (4)请问:3BC ﹣2AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.23.在数轴上有点A ,B ,C ,它们表示的数分别为a ,b ,c ,且满足:()24980a b c -+-++=;A ,B ,C 三点同时出发沿数轴向右运动,它们的速度分别为:1A V =(单位/秒),2B V =(单位/秒),3C V =(单位/秒). (1)求a ,b ,c 的值;(2)运动时间t 等于多少时,B 点与A 点、C 点的距离相等? 24.学校餐厅中,一张桌子可坐6人,现有以下两种摆放方式: (1)当有5张桌子时,第一种方式能坐 人,第二种方式能坐 人. (2)当有n 张桌子时,第一种方式能坐 人,第二种方式能坐 人.(3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,若你是老师,你打算选择以下哪种方式来摆放餐桌?为什么?25.有个填写运算符号的游戏:在“1269WWW ”中的每个□内,填入+⨯÷,﹣,,中的某一个(可重复使用),然后计算结果. (1)计算:1269+﹣﹣;(2)若请推算12696÷⨯W =﹣,□内的符号;(3)在“1269WW ﹣”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】观察给出的3个例图,注意火柴棒根数的变化是图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,而图①的火柴棒的根数为2+6. 【详解】解:图①中有8根,即2+6=8 图②中有14根,即2+62⨯ 图③中有20根,即263+⨯ ……∴第n 个图有:26n +; 故选:A. 【点睛】本题考查列代数式,本题的解答体现了由特殊到一般的数学方法(归纳法),先观察特例,找到火柴棒根数的变化规律,然后猜想第n 条小鱼所需要的火柴棒的根数.2.B解析:B 【解析】 【分析】先找出绝对值不大于4的整数,再求它们的乘积.【详解】解:绝对值不大于4的整数有,0、1、2、3、4、﹣1、﹣2、﹣3、﹣4,所以它们的乘积为0. 故选B . 【点睛】绝对值的不大于4的整数,除正数外,还有负数.掌握0与任何数相乘的积都是0.3.C解析:C 【解析】 【分析】 【详解】试题分析:设第一天走了x 里,则根据题意知234511111137822222x ⎛⎫+++++= ⎪⎝⎭,解得x=192,故最后一天的路程为5119262⨯=里. 故选C4.B解析:B 【解析】 【分析】根据有理数的大小比较法则比较即可. 【详解】∵0>−4,2>−4,−5<−4,−2.5>−4, ∴比−4小的数是−5, 故答案选B. 【点睛】本题考查了有理数大小比较,解题的关键是熟练的掌握有理数的大小比较法则.5.C解析:C 【解析】 【分析】分两种情况,作出图形,然后解答即可. 【详解】如图1,两个角相等,如图2,两个角互补,所以,一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

初一上册数学期中试题及答案【四篇】

初一上册数学期中试题及答案【四篇】

【导语】上学期期中考试马上到了,想要测试⼀下⾃⼰数学半个学期的学习⽔平吗?下⾯是为您整理的初⼀上册数学期中试题及答案【四篇】,仅供⼤家参考。

【篇⼀】初⼀上册数学期中试题及答案 ⼀、精⼼选⼀选(每题3分,共计24分) 1.在2、0、﹣3、﹣2四个数中,最⼩的是()A.2B.0C.﹣3D.﹣2 【考点】有理数⼤⼩⽐较. 【分析】在数轴上表⽰出各数,利⽤数轴的特点即可得出结论. 【解答】解:如图所⽰, , 由图可知,最⼩的数是﹣3. 故选C. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知数轴上右边的数总⽐左边的⼤是解答此题的关键. 2.下列式⼦,符合代数式书写格式的是()A.a÷3B.2xC.a×3D. 【考点】代数式. 【分析】利⽤代数式书写格式判定即可 【解答】解: A、a÷3应写为, B、2a应写为a, C、a×3应写为3a, D、正确, 故选:D. 【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式. 3.在﹣,3.1415,0,﹣0.333…,﹣,﹣0.,2.010010001…中,⽆理数有()A.1个B.2个C.3个D.4个 【考点】⽆理数. 【分析】⽆理数是指⽆限不循环⼩数,根据定义逐个判断即可. 【解答】解:⽆理数有﹣,2.010010001…,共2个, 故选B. 【点评】本题考查了对⽆理数定义的应⽤,能理解⽆理数的定义是解此题的关键,注意:⽆理数包括三⽅⾯的数:①含π的,②开⽅开不尽的根式,③⼀些有规律的数. 4.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣1B.1C.4D.7 【考点】⾮负数的性质:偶次⽅;⾮负数的性质:绝对值. 【分析】先根据⾮负数的性质求出m、n的值,再代⼊代数式进⾏计算即可. 【解答】解:∵|m﹣3|+(n+2)2=0, ∴m﹣3=0,n+2=0,解得m=3,n=﹣2, ∴m+2n=3﹣4=﹣1. 故选A. 【点评】本题考查的是⾮负数的性质,熟知⼏个⾮负数的和为0时,其中每⼀项必为0是解答此题的关键. 5.下列计算的结果正确的是()A.a+a=2a2B.a5﹣a2=a3C.3a+b=3abD.a2﹣3a2=﹣2a2 【考点】合并同类项. 【专题】常规题型. 【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断各选项即可. 【解答】解:A、a+a=2a,故本选项错误; B、a5与a2不是同类项,⽆法合并,故本选项错误; C、3a与b不是同类项,⽆法合并,故本选项错误; D、a2﹣3a2=﹣2a2,本选项正确. 故选D. 【点评】本题考查合并同类项的知识,要求掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数. 6.⽤代数式表⽰“m的3倍与n的差的平⽅”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2 【考点】列代数式. 【分析】认真读题,表⽰出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平⽅,于是答案可得. 【解答】解:∵m的3倍与n的差为3m﹣n, ∴m的3倍与n的差的平⽅为(3m﹣n)2. 故选A. 【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平⽅与平⽅差的区别,做题时注意体会. 7.下列各对数中,数值相等的是()A.(2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)3 【考点】有理数的乘⽅. 【分析】分别利⽤有理数的乘⽅运算法则化简各数,进⽽判断得出答案. 【解答】解:A、∵(﹣3)2=9,23=8, ∴(﹣3)2和23,不相等,故此选项错误; B、∵﹣32=﹣9,(﹣3)2=9, ∴﹣23和(﹣2)3,不相等,故此选项错误; C、∵﹣33=﹣27,(﹣33)=﹣27, ∴﹣33和(﹣3)3,相等,故此选项正确; D、∵﹣3×23=﹣24,(﹣3×2)3=,﹣216, ∴﹣3×23和(﹣3×2)3不相等,故此选项错误. 故选:C. 【点评】此题主要考查了有理数的乘⽅运算,正确掌握运算法则是解题关键. 8.等边△ABC在数轴上的位置如图所⽰,点A、C对应的数分别为0和﹣1.若△ABC绕顶点沿顺时针⽅向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2015次后,点B()A.不对应任何数B.对应的数是2013C.对应的数是2014D.对应的数是2015 【考点】数轴. 【专题】规律型. 【分析】结合数轴根据翻折的次数,发现对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第⼆次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这⼀规律:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数2014. 【解答】解:因为2015=671×3+2=2013+2, 所以翻转2015次后,点B所对应的数是2014. 故选:C. 【点评】考查了数轴,本题是⼀道找规律的题⽬,要求学⽣通过观察,分析、归纳发现其中的规律,并应⽤发现的规律解决问题.注意翻折的时候,点B对应的数字的规律:只要是3n+1和3n+2次翻折的对应的数字是3n+1. ⼆、细⼼填⼀填(每空2分,共计30分) 9.﹣5的相反数是5,的倒数为﹣. 【考点】倒数;相反数. 【分析】根据相反数及倒数的定义,即可得出答案. 【解答】解:﹣5的相反数是5,﹣的倒数是﹣. 故答案为:5,﹣. 【点评】本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键. 10.⽕星和地球的距离约为34000000千⽶,这个数⽤科学记数法可表⽰为3.4×107千⽶. 【考点】科学记数法—表⽰较⼤的数. 【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:34000000=3.4×107, 故答案为:3.4×107. 【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值. 11.⽐较⼤⼩:﹣(+9)=﹣|﹣9|;﹣>﹣(填“>”、“ 【考点】有理数⼤⼩⽐较. 【分析】先去括号及绝对值符号,再根据负数⽐较⼤⼩的法则进⾏⽐较即可. 【解答】解:∵﹣(+9)=﹣9,﹣|﹣9|=﹣9, ∴﹣(+9)=﹣|﹣9|; ∵|﹣|==,|﹣|==, ∴﹣>﹣. 故答案为:=,>. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知负数⽐较⼤⼩的法则是解答此题的关键. 12.单项﹣的系数是﹣,次数是4次;多项式xy2﹣xy+24是三次三项式. 【考点】多项式;单项式. 【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答. 【解答】解:单项﹣的系数是﹣,次数是4次,多项式xy2﹣xy+24是三次三项式. 【点评】根据单项式的单项式的系数是单项式前⾯的数字因数,次数是单项式所有字母指数的和; 多项式是由单项式组成的,常数项也是⼀项,多项式的次数是“多项式中次数的项的次数”. 13.若﹣7xyn+1与3xmy4是同类项,则m+n=4. 【考点】同类项. 【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出⽅程,求出n,m的值,再代⼊代数式计算即可. 【解答】解:根据题意,得:m=1,n+1=4, 解得:n=3, 则m+n=1+3=4. 故答案是:4. 【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点. 14.⼀个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2. 【考点】整式的加减. 【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可. 【解答】解:设这个整式为M, 则M=x2﹣1﹣(﹣3+x﹣2x2), =x2﹣1+3﹣x+2x2, =(1+2)x2﹣x+(﹣1+3), =3x2﹣x+2. 故答案为:3x2﹣x+2. 【点评】解决此类题⽬的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简. 15.按照如图所⽰的操作步骤,若输⼊x的值为﹣3,则输出的值为22. 【考点】有理数的混合运算. 【专题】图表型. 【分析】根据程序框图列出代数式,把x=﹣3代⼊计算即可求出值. 【解答】解:根据题意得:3x2﹣5=3×(﹣3)2﹣5=27﹣5=22, 故答案为:22 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.⼀只蚂蚁从数轴上⼀点A出发,沿着同⼀⽅向在数轴上爬了7个单位长度到了B点,若B点表⽰的数为﹣3,则点A所表⽰的数是4或﹣10. 【考点】数轴. 【分析】“从数轴上A点出发爬了7个单位长度”,这个⽅向是不确定的,可以是向左爬,也可以是向右爬. 【解答】解:分两种情况: 从数轴上A点出发向左爬了7个单位长度,则A点表⽰的数是4; 从数轴上A点出发向右爬了7个单位长度,则A点表⽰的数是﹣10, 故答案为:4或﹣10. 【点评】考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,在学习中要注意培养数形结合的数学思想以及分类的思想. 17.若3a2﹣a﹣2=0,则5+2a﹣6a2=1. 【考点】代数式求值. 【专题】整体思想. 【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代⼊求值. 【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2, ∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1. 故答案为:1. 【点评】主要考查了代数式求值问题.代数式中的字母表⽰的数没有明确告知,⽽是隐含在题设中,把所求的代数式变形整理出题设中的形式,利⽤“整体代⼊法”求代数式的值. 18.已知f(x)=1+,其中f(a)表⽰当x=a时代数式的值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…•f(100)=101. 【考点】代数式求值. 【专题】新定义. 【分析】把数值代⼊,计算后交错约分得出答案即可. 【解答】解:∵f(1)=1+=2,f(2)=1+=,…f(a)=1+=, ∴f(1)•f(2)•f(3)…•f(100) =2×××…×× =101. 故答案为:101. 【点评】此题考查代数式求值,理解题意,计算出每⼀个式⼦的数值,代⼊求得答案即可. 三、认真答⼀答(共计46分) 19.画⼀条数轴,然后在数轴上表⽰下列各数:﹣(﹣3),﹣|﹣2|,1,并⽤“ 【考点】有理数⼤⼩⽐较;数轴. 【分析】根据数轴是⽤点表⽰数的⼀条直线,可⽤数轴上得点表⽰数,根据数轴上的点表⽰的数右边的总⽐左边的⼤,可得答案. 【解答】解:在数轴上表⽰各数: ⽤“ 【点评】本题考查了有理数⽐较⼤⼩,数轴上的点表⽰的数右边的总⽐左边的⼤. 20.计算: (1)﹣20+(﹣5)﹣(﹣18); (2)(﹣81)÷×÷(﹣16) (3)(﹣+﹣)÷(﹣) (4)(﹣1)100﹣×[3﹣(﹣3)2]. 【考点】有理数的混合运算. 【专题】计算题. 【分析】(1)原式利⽤减法法则变形,计算即可得到结果; (2)原式从左到右依次计算即可得到结果; (3)原式利⽤除法法则变形,再利⽤乘法分配律计算即可得到结果; (4)原式先计算乘⽅运算,再计算乘法运算,最后算加减运算即可得到结果. 【解答】解:(1)原式=﹣20﹣5+18=﹣25+18=﹣7; (2)原式=81×××=1; (3)原式=(﹣+﹣)×(﹣24)=6﹣4+3=5; (4)原式=1﹣×(﹣6)=1+1=2. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 21.化简 (1)3b+5a﹣(2a﹣4b) (2)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b); (3)先化简,再求值:4(x﹣1)﹣2(x2+1)+(4x2﹣2x),其中x=﹣3. 【考点】整式的加减—化简求值;整式的加减. 【专题】计算题. 【分析】(1)原式去括号合并即可得到结果; (2)原式去括号合并即可得到结果; (3)原式去括号合并得到最简结果,把x的值代⼊计算即可求出值. 【解答】解:(1)原式=3b+5a﹣2a+4b=3a+7b; (2)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2; (3)原式=4x﹣4﹣2x2﹣2+2x2﹣x=3x﹣6, 当x=﹣3时,原式=﹣15. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 22.有这样⼀道题⽬:“当a=3,b=﹣4时,求多项式3(2a3b﹣a2b﹣a3)﹣(6a3b﹣3a2b+3)+3a3的值”.⼩敏指出,题中给出的条件a=3,b=﹣4是多余的,她的说法有道理吗?为什么? 【考点】整式的加减—化简求值. 【专题】计算题. 【分析】原式去括号合并得到结果为常数,故⼩敏说法有道理. 【解答】解:原式=6a3b﹣3a2b﹣3a3﹣6a3b+3a2b﹣3+3a3=﹣3, 多项式的值为常数,与a,b的取值⽆关, 则⼩敏说法有道理. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 23.定义⼀种新运算:观察下列式: 1⊙3=1×4+3=7; 3⊙(﹣1)=3×4﹣1=11; 5⊙4=5×4+4=24; 4⊙(﹣3)=4×4﹣3=13;… (1)根据上⾯的规律,请你想⼀想:a⊙b=4a+b; (2)若a⊙(﹣2b)=6,请计算(a﹣b)⊙(2a+b)的值. 【考点】有理数的混合运算. 【专题】新定义. 【分析】(1)利⽤已知新定义化简即可得到结果; (2)已知等式利⽤已知新定义化简求出2a﹣b的值,原式利⽤新定义化简后代⼊计算即可求出值. 【解答】解:(1)根据题中新定义得:a⊙b=4a+b; 故答案为:4a+b; (2)∵a⊙(﹣2b)=4a﹣2b=6,∴2a﹣b=3, 则(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b=3(2a﹣b)=3×3=9. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 24.某⼯艺⼚计划⼀周⽣产⼯艺品2100个,平均每天⽣产300个,但实际每天⽣产量与计划相⽐有出⼊.表是某周的⽣产情况(超产记为正、减产记为负): 星期⼀⼆三四五六⽇ 增减(单位:个)+5﹣2﹣5+15﹣10﹣6﹣9 (1)写出该⼚星期三⽣产⼯艺品的数量; (2)本周产量中最多的⼀天⽐最少的⼀天多⽣产多少个⼯艺品? (3)请求出该⼯艺⼚在本周实际⽣产⼯艺品的数量; (4)已知该⼚实⾏每周计件⼯资制,每⽣产⼀个⼯艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少⽣产⼀个扣80元.试求该⼯艺⼚在这⼀周应付出的⼯资总额. 【考点】正数和负数. 【分析】(1)根据每天平均300辆,超产记为正、减产记为负,即可解题; (2)⽤15﹣(﹣10)即可解答; (3)把正负数相加计算出结果,再与2100相加即可; (3)计算出本周⼀共⽣产电车数量,根据⼀辆车可得60元即可求得该⼚⼯⼈这⼀周的⼯资总额. 【解答】解:(1)300﹣5=295(个). 答:该⼚星期三⽣产⼯艺品的数量是295个; (2)15﹣(﹣10)=25(个). 答:最多⽐最少多25个; (3)5﹣2﹣5+15﹣10﹣6﹣9=﹣12, 2100﹣12=2088(个). 答:该⼯艺⼚在本周实际⽣产⼯艺品的数量为2088个; (4)2088×60﹣12×80=124320(元). 答:该⼯艺⼚在这⼀周应付出的⼯资总额为124320元. 【点评】本题考查了正数和负数的定义,明确超产记为正、减产记为负是解题的关键. 25.先看数列:1,2,4,8,…,263.从第⼆项起,每⼀项与它的前⼀项的⽐都等于2,象这样,⼀个数列:a1,a2,a3,…,an﹣1,an;从它的第⼆项起,每⼀项与它的前⼀项的⽐都等于⼀个常数q,那么这个数列就叫等⽐数列,q 叫做等⽐数列的公⽐. 根据你的阅读,回答下列问题: (1)请你写出⼀个等⽐数列,并说明公⽐是多少? (2)请你判断下列数列是否是等⽐数列,并说明理由;,﹣,,﹣,…; (3)有⼀个等⽐数列a1,a2,a3,…,an﹣1,an;已知a1=5,q=﹣3;请求出它的第25项a25.(结果不需化简,可以保留乘⽅的形式) 【考点】规律型:数字的变化类. 【专题】新定义. 【分析】(1)根据定义举⼀个例⼦即可; (2)根据定义,即每⼀项与它的前⼀项的⽐都等于⼀个常数q(q≠0),那么这个数列就叫做等⽐数列,进⾏分析判断; (3)根据定义,知a25=5×224. 【解答】解:(1)1,3,9,27,81.公⽐为3; (2)等⽐数列的公⽐q为恒值, ﹣÷=﹣,÷(﹣)=﹣,﹣÷=﹣, 该数列的⽐数不是恒定的,所以不是等⽐数例; (3)由等⽐数列公式得an=a1qn﹣1=5×(﹣3)24, 它的第25项a25=5×(﹣3)24. 【点评】此题考查数字的变化规律,理解等⽐数列的意义,抓住计算的⽅法是解决问题的关键. 【篇⼆】初⼀上册数学期中试题及答案 ⼀、选择题(每题3分,共30分) 1-的相反数是().A.-2016B.2016C.D.- 2.甲⼄两地的海拔⾼度分别为300⽶,-50⽶,那么甲地⽐⼄地⾼出().A.350⽶B.50⽶C.300⽶D.200⽶ 3.下⾯计算正确的是()A.5x2-x2=5B.4a2+3a2=7a2C.5+y=5yD.-0.25mn+mn=0 4.学校、家、书店依次坐落在⼀条南北⾛向的⼤街上,学校在家的南边20⽶,书店在家北边100⽶,李明同学从家⾥出发,向北⾛了50⽶,接着⼜向北⾛了-70⽶,此时李明的位置()A.在家B.在书店C.在学校D.不在上述地⽅ 5.下列去括号正确的是()A.-(3x+7)=-3x+7B.-(6x-3)=-2x+3C.(3m-5n)=m+nD.-(m-2a)=-m+2a 6.下列⽅程中,是⼀元⼀次⽅程的为()A.5x-y=3B.C.D. 7.已知代数式x+2y+1的值是5,则代数式2x+4y+1的值是()A.1B.5C.9D.不能确定 8.已知有理数,所对应的点在数轴上如图所⽰,化简得()A.a+bB.b-aC.a-bD.-a-b 9.列说法错误的是().A.若,则x=y;B.若x2=y2,则-4x2=-4y2;C.若-x=6,则x=-;D.若6=-x,则x=-6. 10.某区中学⽣⾜球赛共赛8轮(即每队均参赛8场),胜⼀场得3分,平⼀场得1分,输 ⼀场得0分,在这次⾜球联赛中,猛虎⾜球队踢平的场数是所负场数的2倍,共得17 分,则该队胜了()场.A.6B.5C.4D.3 ⼆、填空题(每题3分,共24分) 11.地球绕太阳每⼩时转动经过的路程约为110000千⽶,⽤科学记数法记为⽶ 12.若,,且,则的值可能是:. 13.当时,代数式的值为2015.则当时,代数式的 值为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【常考题】七年级数学上期中试题及答案一、选择题1.计算:1252-50×125+252=( ) A .100B .150C .10000D .225002.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为( )A .58°B .59°C .60°D .61°3.如图,直线AB ,CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM ,若∠AOM =35°,则∠CON 的度数为( )A .35°B .45°C .55°D .65° 4.若一个角的两边与另一个角的两边分别平行,则这两个角( )A .相等B .互补C .相等或互补D .不能确定5.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0 6.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯7.点M 、N 都在线段AB 上, 且M 分AB 为2:3两部分, N 分AB 为3:4两部分, 若MN=2cm,则AB 的长为( ) A .60cmB .70cmC .75cmD .80cm8.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④9.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( ) A .70.2110⨯B .62.110⨯C .52110⨯D .72.110⨯10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017B.2016C.191D.19011.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330B.(1﹣10%)x=330C.(1﹣10%)2x=330D.(1+10%)x=33012.将方程247236x x---=去分母得 ( )A.2﹣2(2x-4)= - (x-7)B.12﹣2(2x﹣4)=﹣x﹣7C.12﹣4x﹣8= - (x-7)D.12﹣2(2x﹣4)= x﹣7二、填空题13.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1=________度.14.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.15.某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x人,则列方程为_____16.观察一列数:12,25-,310,417-526,637-…根据规律,请你写出第10个数是______.17.下列哪个图形是正方体的展开图()A.B.C.D.18.已知12,2x y =-=,化简 2(2)()()x y x y x y +-+- = _______. 19.若x 、y 互为相反数,a 、b 互为倒数,c 的绝对值等于2,则201820182()()2x y ab c +--+=_____. 20.一只蚂蚁从数轴上一点 A 出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_____三、解答题21.请仔细阅读下列材料: 计算:(-130)÷(23-110+16-25). 解:先求原式的倒数,即 (23-110+16-25)÷(-130) =(23-110+16-25)×(-30) =-20+3-5+12=-10, 所以原式=-110. 请根据以上材料计算: (-142)÷(16-314+23-27). 22.春天到了,为了试验某种杀菌剂的效果,实验室进行了实验,研究发现房间空气中每立方米含6310⨯个病菌,已知1毫升杀菌剂可以杀死5210⨯个这种病菌,问要将长5米、宽4米、高3米的房间内的病菌全部杀死,需多少毫升杀菌剂?23.股民王先生上周星期五买进某公司股票1000股,每股18元,本周该股票的涨跌情况如表(正数表示价格比前一天上涨,负数表示价格比前一天下跌,单位:元)(1)星期三结束时,该股票每股多少元?(2)该股票本周内每股的最高价和最低价分别是多少元? 24.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值. 25.某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库):+26,﹣32,﹣15,+34,﹣38,﹣20(1)经过这3天,仓库里的粮食是增加了还是减少了?(2)经过这3天,仓库管理员结算时发现库里还存300吨粮,那么3天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨6元,那么这3天要付多少装卸费?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:原式=1252﹣2×25×125+252=(125-25)2=1002=10000.故选C.点睛:本题考查了完全平方公式的应用,熟记完全平方公式的特点是解决此题的关键.2.C解析:C【解析】【分析】根据特殊直角三角形的角度即可解题.【详解】解:由特殊直角三角形可知,∠1=90°-30°=60°,故选C.【点睛】本题考查了特殊直角三角形的认识,属于简单题,熟悉特殊三角形的角度是解题关键. 3.C解析:C【解析】【分析】根据角平分线的定义,可得∠COM,根据余角的定义,可得答案.【详解】解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选C.【点睛】本题考查角平分线,熟练掌握角平分线的定义是解题关键.4.C解析:C 【解析】 【分析】分两种情况,作出图形,然后解答即可. 【详解】如图1,两个角相等,如图2,两个角互补,所以,一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

故选C. 【点睛】此题考查平行线的性质,解题关键在于分情况讨论5.B解析:B 【解析】 【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得. 【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1; A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确. 故选B. 【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.6.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 7.B解析:B 【解析】 【分析】由题意可知,M 分AB 为2:3两部分,则AM 为25AB ,N 分AB 为3:4两部分,则AN 为37AB ,MN=2cm ,故MN=AN-AM ,从而求得AB 的值. 【详解】如图所示,假设AB=a , 则AM=25a ,AN=37a ,∵MN=37a-25a=2, ∴a=70. 故选B . 【点睛】在未画图类问题中,正确画图很重要.所以能画图的一定要画图这样才直观形象,便于思维.8.B解析:B 【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b <0<a ,故①正确,因为b 点到原点的距离远,所以|b |>|a |,故②错误,因为b <0<a ,所以ab <0,故③错误,由①知a -b >a +b ,所以④正确. 故选B.9.B解析:B 【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】210万=2100000, 2100000=2.1×106, 故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.D解析:D 【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2; (a+b )4的第三项系数为6=1+2+3; (a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1), ∴(a+b )20第三项系数为1+2+3+…+20=190, 故选 D .考点:完全平方公式.11.D解析:D 【解析】解:设上个月卖出x 双,根据题意得:(1+10%)x =330.故选D .12.D解析:D 【解析】 【分析】根据原方程可知将其两边同时乘以各分母的最小公倍数6即可求得相应的答案. 【详解】∵原方程分母的最小公倍数为6,∴原方程两边同时乘以6可得:()122247x x --=-, 故选:D . 【点睛】本题主要考查了一元一次方程中去分母的运算,熟练掌握相关方法是解题关键二、填空题13.30【解析】【分析】根据和为90度的两个角互为余角和为180度的两个角互为补角列出算式计算即可【详解】解:∵∠3与30°互余∴∠3=90°-30°=60°∵∠2+∠3=210°∴∠2=150°∵∠1解析:30【解析】【分析】根据和为90度的两个角互为余角,和为180度的两个角互为补角列出算式,计算即可.【详解】解:∵∠3与30°互余,∴∠3=90°-30°=60°,∵∠2+∠3=210°,∴∠2=150°,∵∠1与∠2互补,∴∠1+∠2=180°,∴∠1=30°.故答案为30.【点睛】本题考查的余角和补角的概念,掌握和为90度的两个角互为余角,和为180度的两个角互为补角是解题的关键.14.【解析】寻找规律:不难发现第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星∴第10个图形有112解析:【解析】寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星.∴第10个图形有112-1=120个小五角星.15.x-1413=x+2614【解析】【分析】设春游的总人数是x人由包租相同的大巴13辆有14人没有座位可得一辆大巴所坐的人数为x-1413人;由多包租1辆就多了26个空位可得一辆大巴所坐的人数为x+2解析:.【解析】【分析】设春游的总人数是x人,由包租相同的大巴13辆,有14人没有座位可得一辆大巴所坐的人数为人;由多包租1辆,就多了26个空位可得一辆大巴所坐的人数为人,由此即可得方程.【详解】设春游的总人数是x人.根据题意可列方程为:,故答案为:.【点睛】本题考查了一元一次方程的应用,根据题意表示出一辆大巴所坐的人数是解决问题的关键. 16.【解析】【分析】仔细观察给出的一列数字从而可发现分子等于其项数分母为其所处的项数的平方加1根据规律解题即可【详解】…根据规律可得第n 个数是第10个数是故答案为;【点睛】本题是一道找规律的题目要求学生解析:10 101 -【解析】【分析】仔细观察给出的一列数字,从而可发现,分子等于其项数,分母为其所处的项数的平方加1,根据规律解题即可.【详解】1 2,25-,310,417-,526,637-…..根据规律可得第n个数是()1211n n n+-+,∴第10个数是10 101 -,故答案为;10 101 -.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.17.B【解析】【分析】根据正方体展开图的11种特征选项ACD不是正方体展开图;选项B是正方体展开图的1-4-1型【详解】根据正方体展开图的特征选项ACD不是正方体展开图;选项B是正方体展开图故选B【点睛解析:B【解析】【分析】根据正方体展开图的11种特征,选项A、C、D不是正方体展开图;选项B是正方体展开图的“1-4-1”型.【详解】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.18.-【解析】【分析】先根据完全平方公式和平方差公式去括号再合并同类项最后把xy 的值代入计算即可【详解】∵把代入得:原式故答案为:﹣【点睛】本题考查代数式的化简求值快速解题的关键是先利用完全平方公式和平解析:-114【解析】 【分析】先根据完全平方公式和平方差公式去括号,再合并同类项,最后把x ,y 的值代入计算即可. 【详解】∵2(2)()()x y x y x y +-+-222244x xy y x y =++-+245xy y =+把12,2x y =-=代入得: 原式()21142522⎛⎫=⨯-⨯+⨯ ⎪⎝⎭544=-+114=-故答案为:﹣114【点睛】本题考查代数式的化简求值,快速解题的关键是先利用完全平方公式和平方差公式化简原式.19.3【解析】【分析】根据xy 互为相反数ab 互为倒数c 的绝对值等于2得出x+y=0ab=1c=±2代入计算即可【详解】由题意知或则所以原式=0﹣1+4=3故答案为:3【点睛】本题主要考查相反数倒数及绝对解析:3 【解析】 【分析】根据x 、y 互为相反数,a 、b 互为倒数,c 的绝对值等于2得出x+y=0、ab=1,c=±2,代入计算即可.【详解】由题意知x y 0+=,ab 1=,c 2=或c 2=-,则2c 4=,所以原式()20182018014--+=0﹣1+4=3,故答案为:3.【点睛】本题主要考查相反数、倒数及绝对值的计算,掌握互为相反数的两数和为0、互为倒数的两数积为1是解题的关键. 20.﹣6或8【解析】试题解析:当往右移动时此时点A 表示的点为﹣6当往左移动时此时点A 表示的点为8解析:﹣6 或 8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8.三、解答题21.-114【解析】【分析】 根据题目提供的方法计算即可.【详解】∵(16-314+23-27)÷(-142) =(16-314+23-27)×(-42) =16×(-42)-314×(-42)+23×(-42)-27×(-42) =-7+9-28+12=-7-28+9+12=-35+21=-14,∴(-142)÷(16-314+23-27)=-114. 【点睛】本题考查了有理数的混合运算,熟练掌握有理数的运算法则并读懂题目所提供的的运算方法是解答本题的关键.22.需900毫升杀菌剂【解析】【分析】根据题意首先求出该房间的体积,由此即可得出该房间内的细菌数,最后进一步计算出需要多少杀菌剂即可.【详解】由题意可知该房间体积为:354360m ⨯⨯=,∴该房间中所含细菌数为:6860310 1.810⨯⨯=⨯(个),∴所需杀菌剂为:()851.810210900⨯÷⨯=(毫升), 答:需900毫升杀菌剂.【点睛】本题主要考查了有理数混合运算的实际应用,熟练掌握相关方法是解题关键.23.(1)19.5元;(2)该股票本周内每股的最高价和最低价分别是23.5元和19.5元.【解析】【分析】(1)根据题,先求出每天的股价即可;(2)求出每天的股价,再进行比较即可.【详解】解:(1)由已知可得每天的股价如下:星期一:18+3=21(元)星期二:21+2.5=23.5(元)星期三:23.5-4=19.5(元)答:星期三结束时,价格是19.5元.(2)星期四:19.5+2=21.5(元)星期五:21.5-1.5=20(元)结合(1)可得该股票本周内每股的最高价和最低价分别是23.5元和19.5元. 答:该股票本周内每股的最高价和最低价分别是23.5元和19.5元.【点睛】考核知识点:有理数加减应用.理解股价的意义是关键.24.35【解析】 解方程1322x x +=-,可得x=1,由于解互为倒数,把x=1代入23x m m x -=+可得23x m m x -=+,可得1123m m -=+,解得m=-35. 故答案为-35. 点睛:此题主要考查了一元一次方程的解,利用同解方程,可先求出一个方程的解,再代入第二个含有m的方程,从而求出m即可.25.(1)库里的粮食是减少了45吨;(2)3天前库里有粮345吨;(3)这3天要付990元装卸费.【解析】【分析】(1)根据有理数的加法进行计算即可;(2)根据剩余的加上减少的45吨,可得答案;(3)根据单位费用乘以数量,可得答案.【详解】(1)26+(﹣32)+(﹣15)+34+(﹣38)+(﹣20)=﹣45(吨),答:库里的粮食是减少了45吨;(2)300+45=345(吨),答:3天前库里有粮345吨;(3)(26+|﹣32|+|﹣15|+34+|﹣38|+|﹣20|)×6=165×6=990(元),答:这3天要付990元装卸费.【点睛】本题考查了正数和负数,读懂题意,根据有理数的运算法则进行计算是解题关键.。

相关文档
最新文档