2013年哈尔滨市中考数学试题及答案(Word版)

合集下载

139[一键打印]【解析版】2013年黑龙江省齐齐哈尔、黑河、大兴安岭中考数学试卷及答案

139[一键打印]【解析版】2013年黑龙江省齐齐哈尔、黑河、大兴安岭中考数学试卷及答案

黑龙江省齐齐哈尔、黑河、大兴安岭2013年中考数学试卷一、单项选择题(每题3分,满分30分)1.(3分)(2013•齐齐哈尔)下列数字中既是轴对称图形又是中心对称图形的有几个()=±3 ﹣=3(﹣3.(3分)(2013•齐齐哈尔)如图,是一种古代计时器﹣﹣“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间若用x 表示时间,y表示壶底到水面的高度,下面的图象适合表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)()BAB,使AB⊥CD,垂足为E,若4.(3分)(2013•齐齐哈尔)CD是⊙O的一条弦,作直径CD=OC=5.(3分)(2013•齐齐哈尔)甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S甲2=1.4,S乙2=18.8,S丙2=25,导游6.(3分)(2013•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间7.(3分)(2013•齐齐哈尔)已知二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),且﹣2<x1<﹣1,与y轴正半轴的交点在(0,2)的下方,则下列结论:①abc<0;②b22a+b+=0=,所以﹣<﹣>=0,即=<﹣﹣9.(3分)(2013•齐齐哈尔)数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x2+1与y=的交点的横坐标x0的取值范围是()y=的交点在第一象限,10.(3分)(2013•齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线④∠EAM=∠ABC,其中正确结论的个数是(),二、填空题(每题3分,满分30分)11.(3分)(2013•齐齐哈尔)某种病毒近似于球体,它的半径约为0.00000000495米,用科学记数法表示为 4.95×10﹣9米.12.(3分)(2013•齐齐哈尔)小明“六•一”去公园玩儿投掷飞镖的游戏,投中图中阴影部分有奖(飞镖盘被平均分成8分),小明能获得奖品的概率是.小明能获得奖品的概率是故答案为:.13.(3分)(2013•齐齐哈尔)函数y=﹣(x﹣2)0中,自变量x的取值范围是x≥0且x≠3且x≠2.14.(3分)(2013•齐齐哈尔)圆锥的母线长为6cm,底面周长为5πcm,则圆锥的侧面积为15πcm2.•=15.(3分)(2013•齐齐哈尔)如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是∠C=∠BAD(填一个即可)16.(3分)(2013•齐齐哈尔)若关于x的分式方程=﹣2有非负数解,则a的取值范围是a且a.x=∴﹣且.a且a17.(3分)(2013•齐齐哈尔)如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图.则这个几何体可能是由6或7或8个正方体搭成的.18.(3分)(2013•齐齐哈尔)请运用你喜欢的方法求tan75°=2+.CD=2+CD=2+19.(3分)(2013•齐齐哈尔)正方形ABCD中,AC、BD相交于点O,点E是射线AB上一点,点F是直线AD上一点,BE=DF,连接EF交线段BD于点G,交AO于点H.若AB=3,AG=,则线段EH的长为或..)F=F=,DK=,∴AC=AH+CH=3AH=AC=AN=AH=,∴,即或故答案为:.20.(3分)(2013•齐齐哈尔)如图,蜂巢的横截面由正六边形组成,且能无限无缝隙拼接,称横截面图形由全等正多边形组成,且能无限无缝隙拼接的多边形具有同形结构.若已知具有同形结构的正n边形的每个内角度数为α,满足:360=kα(k为正整数),多边形外角和为360°,则k关于边数n的函数是k=(n=3,4,6)或k=2+(n=3,4,6)(写出n的取值范围),再代入=360.==2+((三、解答题(满分60分)21.(5分)(2013•齐齐哈尔)先化简,再求值:÷(a﹣),其中a、b满足式子|a﹣2|+(b﹣)2=0.÷﹣÷•,﹣=0,=2+22.(6分)(2013•齐齐哈尔)如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)=,=23.(6分)(2013•齐齐哈尔)如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣4,0),B(﹣1,3),C(﹣3,3)(1)求此二次函数的解析式;(2)设此二次函数的对称轴为直线l,该图象上的点P(m,n)在第三象限,其关于直线l 的对称点为M,点M关于y轴的对称点为N,若四边形OAPN的面积为20,求m、n的值.得:24.(7分)(2013•齐齐哈尔)齐齐哈尔市教育局非常重视学生的身体健康状况,为此在体育考试中对部分学生的立定跳远成绩进行了调查(分数为整数,满分100分),根据测试成)被抽查的学生为45人.(2)请补全频数分布直方图.(3)若全市参加考试的学生大约有4500人,请估计成绩优秀的学生约有多少人?(80分及80分以上为优秀)(4)若此次测试成绩的中位数为78分,请直接写出78.5~89.5分之间的人数最多有多少人?.25.(8分)(2013•齐齐哈尔)甲乙两车分别从A、B两地相向而行,甲车出发1小时后乙车出发,并以各自速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的距离S(千米)与甲车出发时间t(小时)之间的函数图象,其中D点表示甲车到达B地,停止行驶.(1 )A、B两地的距离560千米;乙车速度是100km/h;a表示.(2)乙出发多长时间后两车相距330千米?120=×=,+3=,()代入得,26.(8分)(2013•齐齐哈尔)已知等腰三角形ABC中,∠ACB=90°,点E在AC边的延长线上,且∠DEC=45°,点M、N分别是DE、AE的中点,连接MN交直线BE于点F.当点D在CB边上时,如图1所示,易证MF+FN=BE(1)当点D在CB边上时,如图2所示,上述结论是否成立?若成立,请给与证明;若不成立,请写出你的猜想,并说明理由.(2)当点D在BC边的延长线上时,如图3所示,请直接写出你的结论.(不需要证明)MF=MN=ADMN=FN=BE MF=BEADBEBEADBEBE27.(10分)(2013•齐齐哈尔)在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队1天、乙工程队2天共修路200米;甲工程队2天,乙工程队3天共修路350米.(1)试问甲乙两个工程队每天分别修路多少米?(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队需各做多少天?最低费用为多少?依题意得,,×,,28.(10分)(2013•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B 两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.﹣(+1x+)=OB=,.S=2﹣t2。

2013年黑龙江中考题

2013年黑龙江中考题

2013-2014学年度黑龙江试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)1.下列运算结果正确的是A a =B .236a a a ⋅=C .235a a a ⋅=D .236a a a += 2.若实数a 满足a ﹣|a|=2a ,则A .a >0B .a <0C .a≥0D .a≤03.已知两圆的半径分别是3和6,若两圆相交,则两圆的圆心距可以是 A .2 B .5 C .9 D .10 4.对于函数y=﹣3x+1,下列结论正确的是A .它的图象必经过点(﹣1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大5.若不等式组2x a 1>02x a 1<0+-⎧⎨--⎩的解集为0<x <1,则a 的值为A .1B .2C .3D .46.已知梯形的面积一定,它的高为h ,中位线的长为x ,则h 与x 的函数关系大致是A .B .C .D .7.已知函数y=x 2+2x ﹣3,当x=m 时,y <0,则m 的值可能是 A .4- B .0 C .2 D .38.图1所示的几何体,它的俯视图为图2,则这个几何体的左视图是A .B .C .D .9.正三角形△ABC 的边长为3,依次在边AB 、BC 、CA 上取点A 1、B 1、C 1,使AA 1=BB 1=CC 1=1,则△A 1B 1C 1的面积是A B .94D 10.已知四边形ABCD 的两条对角线AC 与BD 互相垂直,则下列结论正确的是 A .当AC=BD 时,四边形ABCD 是矩形B .当AB=AD ,CB=CD 时,四边形ABCD 是菱形C .当AB=AD=BC 时,四边形ABCD 是菱形D .当AC=BD ,AD=AB 时,四边形ABCD 是正方形第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)11.计算:sin 60°+cos60°﹣tan45°= .12.在函数y =x 的取值范围是 .13.地球的赤道半径约为6 370 000米,用科学记数法记为 米.14.圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图的圆心角为 . 15.某品牌手机降价20%后,又降低了100元,此时售价为1100元,则该手机的原价为 元.16.袋中装有4个完全相同的球,分别标有数字1、2、3、4,从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余3个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于30的概率为 . 17.已知11111323⎛⎫=⨯- ⎪⨯⎝⎭,111135235⎛⎫=⨯- ⎪⨯⎝⎭,111157257⎛⎫=⨯- ⎪⨯⎝⎭,… 依据上述规律,计算11111335571113+++⋅⋅⋅+⨯⨯⨯⨯的结果为 (写成一个分数的形式)18.如图,三角形ABC 是边长为1的正三角形, AB与 AC 所对的圆心角均为120°,则图中阴影部分的面积为 .三、计算题(题型注释)19()10132π-⎛⎫+- ⎪⎝⎭.四、解答题(题型注释)20.已知ab=﹣3,a+b=2.求代数式a 3b+ab 3的值.21.如图,已知一次函数y=k 1x+b (k 1≠0)的图象分别与x 轴,y 轴交于A ,B 两点,且与反比例函数2k y x(k 2≠0)的图象在第一象限的交点为C ,过点C 作x 轴的垂线,垂足为D ,若OA=OB=OD=2.(1)求一次函数的解析式; (2)求反比例函数的解析式.22.某班同学在一次综合实践活动中,对本县居民参加“全民医保”情况进行了调查,同学们利用节假日随机调查了3000人,对调查结果进行了统计分析,绘制出两幅不完整的统计图:[注:图中A 表示城镇职工基本医疗保险;B 表示城镇居民基本医疗保险;C 表示“新型农村合作医疗”;D 表示其他情况] (1)补全条形统计图;(2)在本次调查中,B 类人数占被调查人数的百分比为 ;扇形统计图中D 区域所对应的圆心角的大小为 .(3)据了解,国家对B 类人员每人每年补助210元.已知该县人口数约为100万,请估计该县B 类人员每年享受国家补助共多少元?23.如图,把一个直角三角形ACB (∠ACB=90°)绕着顶点B 顺时针旋转60°,使得点C 旋转到AB 边上的一点D ,点A 旋转到点E 的位置.F ,G 分别是BD ,BE 上的点,BF=BG ,延长CF 与DG 交于点H .(1)求证:CF=DG ;(2)求出∠FHG 的度数.24.如图,平面直角坐标系中,以点C (22为半径的圆与x 轴交于A ,B 两点.(1)求A ,B 两点的坐标;(2)若二次函数y=x 2+bx+c 的图象经过点A ,B ,试确定此二次函数的解析式.25.如图所示,AB 是半圆O 的直径,AB=8,以AB 为一直角边的直角三角形ABC 中,∠CAB=30°,AC 与半圆交于点D ,过点D 作BC 的垂线DE ,垂足为E .(1)求DE 的长;(2)过点C 作AB 的平行线l ,l 与BD 的延长线交于点F ,求FD DB的值.26.随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程2bax 3x 04++=有实数根的概率. 27.对于钝角α,定义它的三角函数值如下:sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)(1)求sin120°,cos120°,sin150°的值;(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.28.如图所示,在直角梯形ABCD中,AB为垂直于底边的腰,AD=1,BC=2,AB=3,点E 为CD上异于C,D的一个动点,过点E作AB的垂线,垂足为F,△ADE,△AEB,△BCE 的面积分别为S1,S2,S3.(1)设AF=x,试用x表示S1与S3的乘积S1S3,并求S1S3的最大值;(2)设AFFB=t,试用t表示EF的长;(3)在(2)的条件下,当t为何值时,S22=4S1S3.五、判断题(题型注释)参考答案1.C 【解析】试题分析:根据二次根式的性质与化简,同底数幂的乘法,合并同类项运算法则逐一计算作出判断:Aa =,故本选项错误;B 、23235a a a a +⋅==,故本选项错误;C 、23235a a a a +⋅==,故本选项错误;D 、a 2和a 3不是同类项,不能合并,故本选项错误。

黑龙江省哈尔滨南岗区2013年中考数学第二次调研测试

黑龙江省哈尔滨南岗区2013年中考数学第二次调研测试

2013年哈尔滨南岗去第二次调研测试数学试卷一。

选择题(每小题3分,共计30分)1.在2,-3,4,12四个数中,无理数是( ) A .拉 B .-3 C .4 D.122.下列计算正确的是( )A .a 2+a 3=a 5B .a 6÷a 2=a 3C .(a 2)3=a6 D .2a×3a=6a3.下列图形中,既是轴对称图形。

又是中心对称图形的是( )4.已知反比例函数ky x=的图象经过点P(-1,2),则这个函数的图象在( ) A .第二、三象限 B .第一、三象限 C .第三、四象限D .第二、四象限 5.下图中所示的几何体的主视图是( )6.不等式组21x + >0, 351x -≤的解集在数轴上表示正确的是( )7.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6,8,AE ⊥BC 于点E ,则AE 的长是( ) A .3 B .5.485D .2458.某多边形的内角和是l4400,则此多边形的边数是( ) A .11 B .10 C .9 D .89.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( ) 7 A .12 B .14 C .13 D .3410.某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 关系的是( )二、填空题(每小题3分,共计30分)11.已知一粒大米的质量约为0.000 021千克,这个数0.000 021用科学记 数法表示为 12.函数21y x =-1中自变量x 的取值范围是13.计算:2723- =14.把多项式3654a -分解因式的结果是15.如图,⊙D 的直径AB 垂直弦CD 于点P ,且P 是半径OB 的中点,若 CD=6cm ,则直径AB 的长为 cm .16.如图,Rt △ABC 中,∠ACB=900,∠A=500,将其折叠,使点A 落在边 CB 上的点A’处,折痕为CD ,则∠A’DB 的度数为 .17.在平面直角坐标系中,将抛物线22y x x =+-关于x 轴作轴对称变换, 那么经过变换后所得的新抛物线的解析式为18.如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点, EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,则AE的长为 cm.19.已知矩形ABCD中,AB=3,对角线AC的垂直平分线与∠ABC外角的平分线交于N,若BN=2,则BC的长为20.如图,四边形ABCD中,∠BAD=1200,∠B=∠D=900,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为.三、解答题(21—24题各6分,25—26题各8分,27—28题各l0分,共计60分) 21.(本题6分)化简求值:2222(2)a b a bab a b+-+÷-,其中a =2tan450,b=一sin300.22(本题6分)利用对称性可设计出美丽的图案.在边长为的方格纸中,有如图所示的四边形(顶点都在格点上).(1)作出该四边形关于直线l成轴对称的图形;(2)完成上述设计后,整个图案的两个四边形面积的和等于23.(本题6分)某市提出城市核心价值观:“包容、尚德、守法、诚信、卓越”.某校德育处为了了解学生对城市核心价值观中哪一项内容最感兴趣,随机抽取了部分学生进行调查,并将测查结果绘成如图统计图.请你结合图中信息鳃答下列问题:(1)该校共调查了多少名学生;(2)请你计算调查对“尚德”最感兴趣的人数. 24.(本题6分)某拱桥横截面为抛物线形,将抛物线放置在平面直角坐标系中如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,且抛物线的解析式为223y x x =-++.(1)求△ABC 的面积;(2)若第一象限内的点D 在抛物线上,且C 点与D 点到x 轴的距离相等,求D 点的坐标.25.(本题8分)如图,AB 是⊙O 的直径,BC 与⊙O )相切,AC 交⊙O 于点E ,D 为AC 上一点,∠AOD=∠C .(1)求证:OD ⊥AC ; (2)若AE=8,tanA=34,求DD 的长.26.(本题8分)某工厂有甲、乙、丙三个污水处理池,甲池有污水l20吨,乙池有污水40吨,在处理污水时要将甲池中的水全部注入乙池后,再将乙池中的水全部注人丙池,若甲池向乙池注水的速度是乙池向丙池注水速度的l .5倍,甲池向乙池注水和乙池向丙池注水的时问共用4小时.(1)求甲池向乙池注水的速度;(2)若乙池向丙池注水2小时时丙池中的污水不少于200吨,那么丙池中原有的污水至 少多少吨? 27.(本题l0分)如图,直线3y x m =-+与x 轴交于点B ,与y 轴交于点A ,点C 的坐标为(0,3), ∠OAB=∠OBC ,P 点为x 轴上一点,P 点的横坐标为t ,连接AP ,过P 点作PM ⊥AP 交直线BC 于M ,过M 点作MN ⊥x 轴交x 轴子N , (1)求直线BC 的解析式; (2)求PN 的长;(3)连接0M ,t 为何值时,△PM0是以PM 为腰的等腰三角形.28.(本题l0分)如图l,已知△ABC与△ECD,AC=BC,∠ACB=∠OCE=900,连接BE、AD,若BE=AD.(1)求证:BE⊥AD;(2)如图2,当E点在AB上时,连接BD,过E点作EH⊥BD于H,延长EH与∠ACB外角的平分线交于F,请你探究线段EF与BD的数量关系,并证明你的结论.2013年中考调研测试(二)数学试卷参考答案及评分标准一、选择题(每小题3分,共计30分)题号 1 2 3 4 5 6 7 8 9 10 选项 A C C D D C D B A B二、填空题(每小题3分,共计30分)题号11 12 13 14 15三、解答题21.解:原式= ba ba b a b a b a ab b a -+=-+-•-))((2)( …………………3分 当21,212-==⨯=b a 时,原式=23221212-=⨯--…………………3分 22(1)略(2)10 …………………6分23. (1)150÷30﹪=500 答;该校共调查了500名学生; ………………3分(2)500-150-50-125-75=100答;估计对尚德最感兴趣的人数为100人。

2013年哈尔滨市中考数学市模后最新27、28题(9)

2013年哈尔滨市中考数学市模后最新27、28题(9)

2013年哈尔滨市中考数学市模后最新27、28题(9)
28.Rt△ABC 中,∠ACB=90°,tan ∠BAC=2时,CD 为高线,点E 在边BC 上,且BE=2EC ,连接AE ,作EF ⊥AE ,
与边AB 相交于点F .
(1)如图1,求证:EF=EG;
(2)在(1)的条件下,连结GF,将△EFG 沿GF 折叠,得△FGH(H 对应E),连结HD 并延长交AC 于点P,试判定
PA 与PC 的数量关系并证明.
27.直线y =-kx+6k(k>0)与x 轴、y 轴分别相交于点A 、B ,.且△AOB 的面积是24.
(1)求直线AB 的解析式;
(2)点P 从点B 出发,以每秒1个单位的速度沿线段BA 运动;同时点Q 从点0出发,以每秒l 个单位的速
度沿线段OB 向终点B 运动,P 、Q 运动的时间为t 秒,过P 作∠ABO 的外角平分线的垂线并延长交y 轴于点M ,求QM 的长;
(3)在(2)的条件下,AC 平分∠BAO 交y 轴于点C,交∠ABO 的外角平分线于点D,将∠ADB 沿直线BD 折叠,DA
的对应边交直线AB 于点E ,当PQ=ME 时,求t 值。

2013年哈尔滨市中考数学市模后最新27、28题(4)

2013年哈尔滨市中考数学市模后最新27、28题(4)

27.一次函数 y=kx-1 交 x 轴于点 A,交 y 轴于点 B,点 C 在 y 轴正半轴,OC=4OB,tan∠ABC-tan∠ ACB= 3 3 ,点 P 从点 A 出发沿线段 AC 向终点 C 运动,同时点 Q 从点 C 出发沿射线 CB 运动,P、Q 两点运 动的速度均为 1 个单位长度/秒,设 P、Q 运动的时间为 t,作 AP 的垂直平分线交 x 轴于点 D,连结 DP 幵 延长交 y 轴于点 E,作 QG⊥DP 于点 G. (1)求直线 AC 的解析式; (2)在 P、Q 运动的过程中求 QG 的长; (3)以 AB 为直径作⊙O′,当⊙O′经过点 G 时,求 t 的值.
2013 年哈尔滨市中考数学市模后最新 27、28 题(4)
28.△ABC 中,CA=CB,E 是 AC 上任意一点,CF⊥BE 于 F,D 为 AB 的中点,连结 DF. (1)如图 1,求如图 2,若∠ACB=90°,AF⊥DF,试判定 EF、DF 的数量关系幵证明.

2013年哈尔滨市中考数学市模后最新27、28题(14)

2013年哈尔滨市中考数学市模后最新27、28题(14)

2013年哈尔滨市中考数学市模后最新27、28题(14)27.已知:如图,直线y =2x+6与x轴、y轴分别相交于点B、A,过A的直线AC交x轴正半轴于点C,且S△AB C=24.
(1)求直线AC的解析式;
(2)过C点作射线CM⊥BC(点M在第一象限),点E从点C出发,以每秒1个单位的速度沿射线CM运动,连结
AE,将射线AE绕点A顺时针旋转45°,得到射线AE′,射线AE′交线段OC轴于点F,过E作AE的垂线交射线AE′于点D,交AC于H,连结CD,求CD的长d与点E的运动时间t的函数关系式(直接写出自变量t的取值范围);
(3)在(2)的条件下,连结OD、EF、FH,当t为何值时, △AOD与△EHF相似?
28.在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.
(1)如图1,求证:∠BAD=1
2
∠C;
(2)在(1)的条件下,连结ED,若∠C=60º,AB=AD,如图2,试判定EC与AE+ED的数量关系并证明。

2013年哈尔滨市中考数学市模后最新27、28题(2)

2013年哈尔滨市中考数学市模后最新27、28题(2)

2013年哈尔滨市中考数学市模后最新27、28题(2)
27.如图,直线l 1与x 轴、y 轴分别交于A 、B 两点,直线l 2与直线l 1关于x 轴对称,已知直线l 1的解析式为y=x+3,
(1)求直线l 2的解析式;
(2)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交
与点M ,且BP =CQ ,在△ABC 平移的过程中,求OM 的值;
(3)在(2)的条件下,连结AM,以AM 为一边作等腰Rt △AME,∠AME=90°,当
,求QE 的长.
27.在平面直角坐标系中,
直线y=kx-2k(k ≠0)与x 轴交于点A,与y 轴交于点B,S △ABO =4,动点P 从点A 出发沿
BA /秒的速度匀速地运动,同时动点Q 从点A 出发沿AO 方向以相同的速度匀速地运动;P 、Q 运动的时间为t(t >0).
(1)求直线AB 的解析式;
(2)过P 作PC ⊥PA 交x 轴于点C,∠ACP 的平分线CD 交PQ 于点D 求∠PDC 的度数;
(3)连结BD,当BD ⊥CD 时,求t 的值.。

2013中考数学试题及答案(word完整版)(1)

2013中考数学试题及答案(word完整版)(1)

二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5. 保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。

哈尔滨市2013年初中升学考试数学试卷(word版含答案)

哈尔滨市2013年初中升学考试数学试卷(word版含答案)

哈尔滨市2013年初中升学考试数学试卷考生须知:1. 本试卷满分为120分,考试时间为120分钟.2. 答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3. 请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效.4. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5. 保持卡面整洁,不要折叠,不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷 选择题(共30分)一、选择题(每小题3分,共30分) 1.31-的倒数是( ) A.3 B .-3 C. 31-D. 31 2.下列计算正确的是( )A.523a aa=+ B. 623a aa =⋅ C. ()632a a= D. 2222a a =⎪⎪⎭⎫⎝⎛3.下列图形中,既是轴对称图形又是中心对称图形的是( )4.如图所示的几何体是由一些正方体组成的立体图形,则这个几何体的俯视图是( )等边三角形平行四边形正五边形正六边形A B CD A B C D(第4题图)5.把抛物线()21+=x y 向下平移2个单位,再向右平移1个单位,所得到的抛物线是( )A.()222++=x y B. ()222-+=x y C. 22+=x y D. 22-=x y6.反比例函数xky 21-=的力偶经过点(-2,3),则k 的值为( )A.6 B .-6 C.27D. 27-7.如图,在□ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E ,且AE=3,则AB 的长为( ) A.4 B.3 C.25D. 2 8.在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为( ) A.161 B. 81 C. 41 D. 219.如图,在⊿ABC 中,M 、N 分别是边AB 、AC 的中点,则⊿AMN 的面积与四边形MBCN 的面积比为( ) A.21 B. 31C. 41 D. 32 10.梅凯种子公司以一定价格销售“黄金1号”,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y (单位:元)与一次购买种子数量x (单位:千克)之间的函数关系如图所示,下列四种说法:①一次购买种子数量不超过10千克时,销售价格为5元/千克; ②一个次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折; ④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱. 其中正确的个数是( )A.1个B.2个C.3个D.4个EDCBA(第7题图)NMCBA(第9题图)x /千克4010(第10题图)第Ⅱ卷 非选择题(共90分)二、填空题(每小题3分,共计30分)11.把98000用科学记数法表示为 . 12.在函数3+=x x y 中,自变量x 的取值范围是 .13.计算:2327-= . 14.不等式组⎩⎨⎧≥+-13213x x 的解集是 .15.把多项式224ay ax -分解因式的结果是 .16.一个圆锥的侧面积是36π㎝2,母线长是12㎝,则这个圆锥的底面直径是 ㎝. 17.如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为2.5,CD=4,则弦AC 的长为 .18.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 . 19.在⊿ABC 中,AB=22,BC=1,∠ABC=45°,以AB 为一边作等腰直角三角形ABD ,使∠ABD=90°,连接CD ,则线段CD 的长为 .20.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点O 作OE ⊥AC 交AB 于点E ,若BC=4,⊿AOE 的面积为5,则sin ∠BOE 的值为 .三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共计60分) 21.(本题6分) 先化简,再求代数式1221122+-+÷--+a a a a a a 的值,其中a=6tan30°-2.B (第17题图) O ED CB A (第20题图)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN ,点A 、B 、M 、N 均在小正方形的顶点上.(1)在方格纸中画四边形ABCD (四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN 为对称轴的轴对称图形,点A 的对称点为点D ,点B 的对称点为点C (2)请直接写出四边形ABCD 的周长.23.(本题6分)春雷中学要了解全校学生对不同类别电视节目的喜爱情况,围绕“在体育、新闻、动画、娱乐四类电视节目中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理生绘制成如图所示的不完整的条形统计图,其中最喜欢新闻类电视节目的人数占被抽取人数的10%,请你根据以上信息回答下列问题:(1) 在这次调查中,最喜欢新闻类电视节目的学生有多少名?并补全条形统计图;(2) 如果全校共有1200名学生,请你估计全校学生中最喜欢体育类电视节目的学生有多少名?NMB A(第22题图)(第23题图)某水渠的横截面呈抛物线形,水面的宽为AB (单位:米),现以AB 所在直线为x 轴,以抛物线的对称轴为y 轴建立如图所示的平面直角坐标系,设坐标原点为O.已知AB=8米,设抛物线的解析式为42-=ax y .(1) 求a 的值;(2) 点C (-1,m )是抛物线上一点,点C 关于原点O 的对称点为点D ,连接CD 、CB 、BD ,求⊿BCD 的面积.25.(本题8分)如图,在⊿ABC 中,以BC 为直径作半圆O ,交AB 于点D ,交AC 于点E ,AD=AE. (1) 求证:AB=AC ;(2) 若BD=4,BO=52,求AD 的长.(第24题图) OA(第25题图)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同. (1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙的工作量的2倍,那么甲队至少再单独施工多少天?27.(本题10分)如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为(3,0),以OA 为边作等边三角形OAB ,点B 在第一象限,过点B 作AB 的垂线交x 轴于点C ,动点P 从O 点出发沿OC 向C 点运动,动点Q 从B 点出发沿BA 向A 点运动,P 、Q 两点同时出发,速度均为1个单位/秒,设运动时间为t 秒. (1) 求线段BC 的长;(2) 连接PQ 交线段OB 于点E ,过点E 作x 轴的平行线交线段BC 于点F ,设线段EF 的长m ,求m与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3) 在(2)的条件下,将⊿BEF 绕点B 逆时针旋转得到⊿BE ′F ′,使点E 的对应点E ′落在线段AB上,点F 的对应点是F ′,E ′F ′交x 轴于点G ,连接PF 、QG ,当t 为何值是,2B Q -PF=33QG ?(第27题图) (第27题备用图)已知:⊿ABD 和⊿CBD 关于直线BD 对称(点A 的对称点是点C ),点E 、F 分别是线段BC 和线段BD 上的点,且点F 在线段EC 的垂直平分线上,连接AF 、AE ,AE 交BD 于点G. (1) 如图1,求证:∠EAF=∠ABD ;(2) 如图2,当AB=AD 时,M 是线段AG 上一点,连接BM 、ED 、MF ,MF 的延长线交ED 于点N ,∠MBF=21∠BAF ,AF=32AD ,试探究线段FM 和FN 之间的数量关系,并证明你的结论.FEDCB A(第28题图)图1G FNMEDCBA图2。

2013年黑龙江哈尔滨中考数学试题及答案(解析版)

2013年黑龙江哈尔滨中考数学试题及答案(解析版)

哈尔滨市2013年初中升学考试数学试卷一、选择题(每小题3分,共计30分)1.(2013哈尔滨,1,3分)-13的倒数是( ).A .3B .-3C .-13D .13【答案】B . 2.(2013哈尔滨,2,3分)下列计算正确的是( ).A .a 3+a 2=a 3B .a 3·a 2=a 6C .(a 2)3=a 6D .(a2)2=a 22【答案】 C . 3.(2013哈尔滨,3,3分)下列图形中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D . 【答案】 D . 4.(2013哈尔滨,4,3分)如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的).【答案】 A .5.(2013哈尔滨,5,3分)把抛物线y =(x +1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).A .y =(x +2)2+2B .y =(x +2)2-2C .y =x 2+2D .y =x 2-2 【答案】 D .6.(2013哈尔滨,6,3分)反比例函数y =1-2kx的图象经过点(-2,3),则k 的值为( ).A .6B .-6C .72D .-72【答案】 C . 7.(2013哈尔滨,7,3分)如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =3,则AB 的长为( ).A .4B .3C .52D .2(第7题图) 【答案】 B . 8.(2013哈尔滨,8,3分)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ).A .116B .18C .14D .12【答案】 C . 9.(2013哈尔滨,9,3分)如图,在△ABC 中,M 、N 分别是边AB 、AC 的中点,则△AMN 的面积与四边形MBCN 的面积比为( ). A .12 B .13 C .14 D .23【答案】 B . 10.(2013哈尔滨,10,3分)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y (单位:元)与一次购买种子数量x (单位:千克)之间的函数关系如图所示.下列四种说法: ①一次购买种子数量不超过10千克时,销售价格为5元/千克; ②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折; ④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱. 其中正确的个数是( ).A .1个B .2个C .3个D .4个【答案】 D .二、填空题(每小题3分,共计30分) 11.(2013哈尔滨,11,3分)把98000用科学记数法表示为_______________.【答案】9.8×104.12.(2013哈尔滨,12,3分)在函数y =xx +3中,自变量x 的取值范围是_______________. 【答案】x ≠3.13.(2013哈尔滨,13,3分)计算:27-32=__________________. 【答案】523.14.(2013哈尔滨,14,3分)不等式组⎩⎨⎧3x -1<2,x +3≥1的解集是______________.【答案】-2≤x <1.15.(2013哈尔滨,15,3分)把多项式4ax 2-ay 2分解因式的结果是_________________. 【答案】a (2x +y )(2x -y );16.(2013哈尔滨,16,3分)一个圆锥的侧面积是36πcm 2,母线长是12cm ,则这个圆锥的底面直径是___________cm . 【答案】6. 17.(2013哈尔滨,17,3分)如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52,CD =4,则弦AC 的长为__________.【答案】25. 18.(2013哈尔滨,18,3分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为___________. 【答案】20%. 19.(2013哈尔滨,19,3分)在△ABC 中,AB =22,BC =1,∠ABC =45º,以AB 为一边作等腰直角三角形ABD ,使∠ABD =90º,连接CD ,则线段CD 的长为__________. 【答案】5或13. 20.(2013哈尔滨,20,3分)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过O 作OE ⊥AC 交AB 于E ,若BC =4,△AOE 的面积为5,则sin∠BOE 的值为________.EODC B A(第20题图)【答案】35.三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共计60分)21.(2013哈尔滨,21,6分)先化简,再求代数式a a +2-1a -1÷a +2a 2-2a +1的值,其中a =6tan30º-2.【答案】解:原式=a a +2-1a -1·(a -1)2a +2=a a +2-a -1a +2=1a +2,∵a =6tan30º-2=3×33-2=23-2, ∴原式=1a +2=1 23-2+2=1 23=36. 22.(2013哈尔滨,22,6分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN ,点A 、B 、M 、N 均在小正方形的顶点上.(1)在方格纸中画四边形ABCD (四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN 为的轴对称图形,点A 的对称点为点D ,点B 的对称点为点C ; (2)请直接写出四边形ABCD 的周长.【答案】:(1)如图:(2)25+5 2 23.(2013哈尔滨,23,6分)春雷中学要了解全校学生对不同类别电视节目的喜爱情况,围绕“在体育、新闻、动画、娱乐四类电视节目中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机制取部分学生进行问卷调查,将调查结果整理后绘成如图所示的不完整的条形统计图,其中最喜欢新闻类电视节目的人数占被抽取人数的10%,请你根据以上信息回答下列问题:(1)在这次调查中,最喜欢新闻类电视节目的学生有多少名?并补全条形统计图;(2)如果全校共有1200名学生,请你估计全校学生中最喜欢体育类电视节目的学生有多少名?【答案】解:(1)(11+18+16)÷(1-10%)=50(名),50-11-18-16=5(名),∴在这次调查中,最喜欢新闻类电视节目的学生有5名,补全条形图如图所示:(2)1200×1150=264(名)∴估计全校学生中最喜欢体育类电视节目的学生有264名. 24.(2013哈尔滨,24,6分)某水渠的横截面呈抛物线形,水面的宽为AB (单位:米),现以AB 所在直线为x 轴,以抛物线的对称轴为y 轴建立如图所示的平面直角坐标系,设坐标原点为O ,已知AB =8米,设抛物线解析式为y =ax 2-4. (1)求a 的值;(2)点C (-1,m )是抛物线上一点,点C 关于原点O 的对称点为点D ,连接CD 、BC 、BD ,求△BCD 的面积.【答案】解:(1)∵AB =8,由抛物线的对称性可知OB =4,∴B (4,0),0=16a -4,∴a =14.(2)过点C 作CE ⊥AB 于E ,过点D 作DF ⊥AB 于F ,∵a =14,∴y =14x 2-4.令x =-1,∴m =14×(-1)2-4=-154,∴C (-1, -154).∵点C 关于原点对称点为D ,∴D (1,154),∴CE =DF =154,S △BCD =S △BOD +S △BOC =12OB ·DF +12OB ·CE =12×4×154+12×4×154=15.∴△BCD 的面积为15平方米.25.(2013哈尔滨,25,8分)如图,在△ABC 中,以BC 为直径作半圆O ,交AB 于点D ,交AC 于点E ,AD =AE .(1)求证:AB =AC ;(2)若BD =4,BO =25,求AD 的长.【答案】解:(1)证明:连接CD 、BE ,∵BC 为半圆O 的直径,∴∠BDC =∠ECB =90º,∴∠ADC =∠AEB =90º,又∵AD =AE ,∠A =∠A ,∴△ADC ≌△AEB ,∴AB =A C .(2)方法一、连接OD ,∵OD =OB ,∴∠OBD =∠ODB ,∵AB =AC ,∴∠OBD =∠ACB ,∴∠ODB =∠ACB ,又∵∠OBD =∠ABC ,∴△OBD ∽△ABC ,∴BD BC =BO AB ,,∵OB =25,∴BC =25,又BD =4,∴445=25AB ,AB =10,∴AD =AB -BD =6.方法二、由(1)知AB =AC ,∵AD =AE ,∴CD =BD =4,∵OB =25,∴BC =45,在Rt △BCE 中,BE =(45)2-42=8.在Rt △ABE 中,(AD +4)2-AE 2=BE 2,∴(AD +4)2-AD 2=64,解得AD =6. 26.(2013哈尔滨,26,8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同. (1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【答案】(1)解:设乙队单独完成此项任务需x 天,则甲队单独完成此项任务需(x +10)天,根据题意得 45x +10=30x,解得x =20, 经检验得x =20是原方程的解,∴x +10=30(天).∴队单独完成此项任务需30天,则甲队单独完成此项任务需20天.(2)设甲队再单独完成此项任务需a 天,330+2a 30≥2×320,a ≥3,∴甲队至少再单独施工3天. 27.(2013哈尔滨,27,10分)如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为(3,0),以OA 为边作等边三角形)AB ,点B 在第一象限,过点B 作AB 的垂线交x 轴于点C .动点P 从O 点出发沿OC 向C 点运动,动点Q 从B 点出发沿BA 向A 点运动,P 、Q 两点同时出发,速度均为1个单位/秒,设运动时间为t 秒. (1)求线段BC 的长;(2)连接PQ 交线段OB 于点E ,过点E 作x 轴的平行线交线段BC 于点F ,设线段EF 的长为m ,求m 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,将△BEF 绕点B 逆时针旋转得到△BE ′F ′,使点E 的对应点E ′落在线段AB 上,点F 的对应点F ′,E ′F ′交x 轴于点G ,连接PF 、QG ,当t 为何值时,2BQ -PF =33QG ?【答案】(1)解:如图1,∵△AOB 为等边三角形,∴∠BAC =∠AOB =60º,∵BC ⊥AB ,∴∠ABC =90º,∴∠ACB =30º,∠OBC =30º,∴∠ACB =∠OBC ,∴OC =OB =AB =OA =3,∴AC =6,∴BC =32AC =33.(2)解:如图1,过点Q 作QN ∥OB 交x 轴于点N ,∴∠QNA =∠BOA =60º=∠QAN ,∴QN =QA ,∴△AQN 为等边三角形,∴NQ =NA =AQ =3-t ,∴ON =3-(3-t )=t ,∴PN =t +t =2t ,∵OE ∥QN ,∴△POE ∽△PNQ ,∴OE QN =OP PN ,∴OE3-t=12,OE =32-12t ,∵EF ∥x 轴,∴∠BFE =∠BCO =∠FBE =30º,∴EF =BE ,∴m =BE =OB -OE =12t +32(0<t <3).(3)如图2,∵∠BE ′F ′=∠BEF =180º-∠EBF -∠EFB =120º,∴∠AE ′G =60º=∠E ′AG ,∴GE ′=GA ,∴△AE ′G 为等边三角形.∵QE ′=BE ′-BQ =m -t =12t +32-t =32-12t ,∴GE ′=GA =AE ′=AB -BE ′=32-12t =QE ′.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180º,∴∠2+∠3=90º,即∠QGA =90º,∴QG =3AG =323-123t ,∵EF ∥OC ,∴BF BC =BE OB ,∴BF 33=m 3,∴BF =3m =323+123t ,∵CF =BC -BF =323-123t ,CP =CO -OP =3-t ,∴CF CB =323-123t 33=3-t 6=CP AC .∵∠FCP =∠BCA ,∴△FCP ∽△BCA ,∴PF AB =CP AC ,∴PF =3-t 2,∵2BQ -BF =33QG ,∴2t -3-t 2=33×(323-123t ),∴t =1.∴当t =1时,2BQ -PF =33QG .28.(2013哈尔滨,28,10分) 已知:△ABD 和△CBD 关于直线BD 对称(点A 的对称点是点C ),点E 、F 分别是线段BC 和线段BD 上的点,且点F 在线段EC 的垂直平分线上,连接AF 、AE ,AE 交BD 点点G . (1)如图1,求证:∠EAF =∠ABD ;(2)如图2,当AB =AD 时,M 是线段AG 上一点,连接BM 、ED 、MF ,MF 的延长线交ED 于点N ,∠MBF =12∠BAF ,AF =23AD ,试探究线段FM 和FN 之间的数量关系,并证明你的结论.【答案】(1)证明:如图1,连接FE 、FC ,∵点F 在线段EC 的垂直平分线上,∴EF =FC ,∴∠1=∠2.∵△ABD 和△CBD 关于直线BD 对称,∴AB =CB ,∠4=∠3,BF =BF ,∴ABF ≌△CBF ,∴∠BAF =∠2,FA =FC ,∴FE =FA ,∠1=∠BAF ,∴∠5=∠6.∵∠1+∠BEF =180º,∴∠BAF +BEF =180º,∵∠BAF +∠BEF +∠AFE +∠ABE =360º,∴∠AFE +∠ABE =180º,又∵∠AFE +∠5+∠6=180º,∴∠5+∠6=∠3+∠4,∴∠5=∠4,即∠EAF =∠AB D .(2)FM =72FN .证明:如图2,由(1)可知∠EAF =∠ABD ,又∵∠AFB =∠GFA ,∴△AFG ∽△BFA ,∴∠AGF =∠BAF .又∵∠MBF =12∠BAF ,∴∠MBF =12∠AGF .又∵∠AGF =∠MBG +∠BMG ,∴∠MBG =∠BMG ,∴BG =MG .∵AB =AD ,∴∠ADB =∠ABD =∠EAF ,又∵∠FGA =∠AGD ,∴△AGF ∽△DGA ,∴GF AG =AG GD =AF AD ,∵AF =23AD ,∴GF AG =AG GD =23,设GF =2a ,AG =3a ,∴CD =92a ,∴FD =52a ,∵∠CBD =∠ABD ,∠ABD =∠ADB ,∴∠CBD =∠ADB ,∴BE ∥AD ,∴BG DG =EGAG,∴EG BG =AG DG =23,设EG =2k ,∴BG =MG =3k ,过点F 作FQ ∥ED 交AE 于Q ,∴GQ QE =FG FD =2a 52-a =45,∴GQ =45QE ,∴GQ =49EG =89k ,∴QE =109k ,MQ =3k +89k =359k ,∵FQ ∥ED ,∴MF FN =MQ QE =72,∴FM =72FN .。

2013年哈尔滨市中考数学市模后最新27、28题(1)

2013年哈尔滨市中考数学市模后最新27、28题(1)

2013年哈尔滨市中考数学市模后最新27、28题(1) 27.如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A的坐标为(0,8),点C的坐标为(10,0),OB=OC.
(1)求直线BC的解析式;
(2)点P从C点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点P作PH⊥OB,垂足为H,
同时点Q从B出发沿线段BA以5个单位/秒的速度向终点A匀速运动,过点Q作QR⊥OC,垂足为R,线段QR交直线PH于点E,求PE的长;
(3)在(2)的条件下,线段QR交线段OB于点G,点F为线段PM的中点,连接EF,当△EFG是等腰三角形时
求t的值.
28.已知:在等边△ABC中,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,
∠BAE=∠BDF,点M在线段DF上,∠A BE=∠DBM.
(1)如图1,求证:AE=2MD;
(2)在(1)的条件下延长BM到P,使MP=BM,连接CP、AP,若,试判定∠APB与∠APC
的数量关系度证明.。

2013年黑龙江哈尔滨中考数学试卷及答案(word解析版)

2013年黑龙江哈尔滨中考数学试卷及答案(word解析版)

哈尔滨市初中升学考试数学试卷友情提示:一、认真对待每一次复习及考试。

.二、遇到不懂的题目或者知识点就是并解决它就是进步的机会。

三、试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效.四、请仔细审题,细心答题,相信你一定会有出色的表现!一、选择题(每小题3分,共计30分)1.(2013哈尔滨,1, 3分)W的倒数是().A. 3B. -3C. 4D. |【答案】B.2.(2013哈尔滨,2, 3分)下列计算正确的是()・A. a5+a2=a5B. <z3-tr=t/6C. U2)3=a bD. (^)2=y【答案】C.3.(2013哈尔滨,3, 3分)下列图形中,既是轴对称图形又是中心对称图形的是().等边三角形平行四边形正五边形正六边形A. B. C. D.【答案】D.4.(2013哈尔滨,4, 3分)如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是().佬+由田土第4题 A. B・ C.D・【答案】A.5.(2013哈尔滨,5, 3分)把抛物线尸(好1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是().A. y=(x+2)2+2 B・y=(x+2)2-2 C. )=^+2 D・ vK-2【答案】D.1 Dk6.(2013哈尔滨,6, 3分)反比例函数一的图象经过点(23),则&的值为()・7 7A. 6B. -6C. 5D. »2【答案】C.7. (2013哈尔滨. 7, 3分)如图,在DABCD中,AD=2AB, CE平分ZBCD交A。

边于点E,且AE=3,则A8的长为().(第7题图)【答案】B.8.(2013哈尔滨,8, 3分)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为().A.金B. |C. |D. \【答案】C.9.(2013哈尔滨,9, 3分)如图,在中,M、N分别是边AB、AC的中点,则△ AMN的面积与四边形A4BCN的而积比为().(第9题图)【答案】B.10. (2013哈尔滨,10, 3分)梅凯种子公司以一定价格销售''黄金1号''玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额),(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过10千克时,销售价格为5元/千克:②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折:④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是().A・1个B・2个C. 3个D. 4个(第10题图)【答案】D.二、填空题(每小题3分,共计30分)11.(2013哈尔滨,11, 3分)把98000用科学记数法表示为.【答案】9.8X104.12.(2013哈尔滨,12, 3分)在函数尸击中,自变量x的取值范围是_________________ .入I J【答案】X松.13.(2013哈尔滨,13, 3分)计算:罚华.【答案】巫14.(2013哈尔滨,14, 3分)不等式组的解集是_______________________ .【答案】-2<xVl.15.(2013哈尔滨,15, 3分)把多项式分解因式的结果是_________________________ .[答案]ci(2v+y)(2x-y):16.(2013哈尔滨,16, 3分)一个圆锥的侧而积是36冗函2,母线长是12两,则这个圆锥的底而直径是__________ cm.【答案】6.17.(2013哈尔滨,17, 3分)如图,直线AB与。

2013年历年哈尔滨市南岗区初三数学中考二模试卷及答案

2013年历年哈尔滨市南岗区初三数学中考二模试卷及答案

2013哈尔滨南岗区中考二模数学试题2013年中考调研测试 数学试卷参考答案及评分标准二、填空题(每小题3分,共计30分)三、解答题21.解:原式= ba ba b a b a b a ab b a -+=-+-•-))((2)( …………………3分 当21,212-==⨯=b a 时,原式=23221212-=⨯--…………………3分 22(1)略(2)10 …………………6分23. (1)150÷30﹪=500 答;该校共调查了500名学生; ………………3分(2)500-150-50-125-75=100答;估计对尚德最感兴趣的人数为100人。

………………3分 24.解(1) 令y=0,则- x 2+2x+3=0 解x 1=-1 x 2=3 ∴AB=3-(-1)=4 令x=0 y=3 ∴OC =3∴S=21AB ·OC =21×4×3=6 ………………3分(2) 3=- x 2+2x+3 x 1=0 (舍 ) x 2=2∴ D(2,3) ………………3分25. 证明(1)∵ BC 为⊙O 的切线,AB 为直径 ∴AB ⊥BC ∴∠ABC=900又∵∠AOD=∠C ∠A=∠A∴∠ADO=∠ABC=900∴OD ⊥AC (4)分(2)∵OD ⊥AE ∴AD=21AE=4又∵tan A=AD OD43=4OD∴ OD=3 ………………4分 26.解(1)设甲池向乙池注水的速度为xx 5.1120+x160=4解得x=60 经检验x=60是原分式方程的解答:甲池向乙池注水的速度60; ………………4分 (2)设丙池中原有的水为m 吨。

则 2×60+m ≥200 , m ≥80∴丙池中原有的水量至少80吨。

………………4分27.解(1) ∵y=-3x+m ∴A(0,m) B(33,0)∴tan ∠DAB=AO BO=33, ∴∠BAO=300又∵∠OAB=∠OBC=300 OC=3 ∴OB=3 AO=33 设BC 的解为y=kx+b解设⎩⎨⎧-==+33b b k 解得⎪⎩⎪⎨⎧-=333b k∴y=33x -3………………3分(2) 过P 作x 轴的垂线交AB 于K∵AP ⊥PM ∴∠APM=∠KPB=900∴∠APK=∠BPM 又∵∠AKP=∠PBM=1500∴△AKP ∽△MPB ∴PM AP =PBPK =3又∵∠AOP=∠MNP=900,∠PAO=∠MPN∴△AOP ∽△PMN ∴PM AP =PN AO =MNOP=3PN33=3 ∴PN=3 ………………3分(3)①当OP=PM 时,MN=33t PN=3 PM=OP=t在Rt △PMN 中 PM 2=PN 2+MN 2t 2=9+(33t )2 t=263 ………………2分Y XN M O C A B P。

2013年黑龙江省哈尔滨市中考数学试卷-答案

2013年黑龙江省哈尔滨市中考数学试卷-答案

2.【答案】C【解析】解答:A .2a 和3a 不是同类项,不能合并,故此选项错误;B .32325a a a a +==,故此选项错误;C .236()a a =,故此选项正确;D .224a a ⎛⎫ ⎪⎝⎭=故此选项错误;故选:C . 【提示】分别根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方法则对各选项进行逐一计算即可 【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法3.【答案】D【解析】解答:A .是轴对称图形,不是中心对称图形;B .是中心对称图形,不是轴对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,又是中心对称图形;故选D .【提示】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合【考点】轴对称图形与中心对称图形4.【答案】A【解析】解:从上面看,下面一行左面是横放2个正方体,上面一行右面是一个正方体,故选A【提示】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可【考点】简单组合体的三视图5.【答案】D【解析】解:抛物线2(1)y x =+的顶点坐标为(1,0)-,∵向下平移2个单位,∴纵坐标变为2-,∵向右平移1个单位,∴横坐标变为110-+=,∴平移后的抛物线顶点坐标为(0,2)-,∴所得到的抛物线是22y x =-.故选D .【提示】先写出平移前的抛物线的顶点坐标,然后根据向下平移纵坐标减,向右平移横坐标加求出平移后的抛物线的顶点坐标,再利用顶点式解析式写出即可【考点】二次函数图象,几何变换【提示】点在曲线上,则点的坐标满足曲线解析式,反之亦然【考点】反比例函数的图象上的点的坐标特征7.【答案】B【解析】∵四边形ABCD 是平行四边形,∴AB DC =,AD C B ∥,∴DEC BCE ∠=∠,∵CE 平分DCB ∠,∴DCE BCE ∠=∠,∴DEC BCE ∠=∠,∴DE DC AB ==,∵22AD AB CD ==,CD DE =,∴2AD DE =,∴3AE DE ==,∴3DC AB DE ===,故选B .【提示】平边四边形的对边平行且相等,等腰三角形判定,两直线平行内错角相等,综合运用这三个性质是解题的关键【考点】平行四边形的性质及等腰三角形判定与性质【提示】概率的计算一般是利用树状图或列表把所有等可能性的情况列出,然后再计算某一事件的概率,其关键是找出所有的等可能性的结果【考点】求概率,列表法与树状图法故选B .【提示】利用相似三角形的判定和性质是解题的关键【考点】相似三角形的判定与性质;三角形中位线定理10.【答案】D【解析】解答:由010x ≤≤时,付款5y x =相应千克数,得数量不超过10千克时,销售价格为5元/千克①是正确;当30x =代入 2.525y x =+,100y =,故②是正确;由(2)10x >时,付款 2.525y x =+相应千克数,得每千克2.5元,故③是正确;当40x =代入 2.525y x =+,125y =,当20x =代入 2.52575y x =+=,两次共150元,两种相差25元,故④是正确;四个选项都正确,故选D .【提示】得到超过10千克的费用的计算方式是解决本题的关键点,010x ≤≤时,付款5y x =相应千克数;数量不超过10千克时,销售价格为5元/千克;(2)10x >时,付款 2.525y x =+相应千克数,超过10千克的那部分种子的价格 【考点】一次函数的应用第Ⅱ卷二、填空题11.【答案】49.810⨯【解析】将98000用科学记数法表示为49.810⨯故答案为:49.810⨯【提示】科学记数法的表示形式为10n a ⨯的形式,其中1|10|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数【考点】科学记数法——表示较大的数12.【答案】3x ≠-【解析】式子3x y x =+在实数范围内有意义,∴30x +≠,解得3x ≠- 【提示】根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可【考点】分式意义的条件13.【解析】原式==【提示】先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变【考点】二次根式的运算 14.【答案】21x -≤<【解析】解:312x -<①由①得,1x <,31x +≥②得2x ≥-故此不等式组的解集为:21x -≤<.故答案为:21x -≤< 【提示】熟知同大取大,同小取小,大小小大中间找,大大小小找不到的原则是解答此题的关键,分别求出各不等式的解集,再求出其公共解集.【考点】解一元一次不等式组15.【答案】(2)(2)a x y x y +-【解析】22224(4)(2)(2)ax ay a x y a x y x y -=-=+-【提示】先提取公因式法然后考虑应用公式法来因式分解【考点】提取公因式法和应用公式法因式分解16.【答案】6【解析】设底面半径为cm r ,36ππ12r =⨯,解得3cm r =底面圆的直径为2236cm r =⨯=,故答案为:6.【提示】根据题意作出辅助线,构造出直角三角形是解答此题的关键【考点】垂径定理,勾股定理,切线的性质18.【答案】20%【解析】设平均每次降价的百分率为x ,根据题意得:2125(1)80x -=,解得10.120%x ==,2 1.8x =-(不合题意,舍去).故答案为:20%【提示】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系求解.【考点】一元二次方程的应用19.【解析】当点D 与C 在AB 同侧,BD AB ==,作CE BD ⊥于E ,CD BD ==,ED由勾股定理CD =D 与C 在AB 异侧,BD AB ==135∠=︒BDC ,作DE BC ⊥于E ,2BE ED ==,3EC =,由勾股定理CD 【提示】双解问题,画等腰直角三角形ABD ,使90∠︒=ABD ,分两种情况,点D 与C 在AB 同侧,点D 与C 在AB 异侧,考虑要全面【考点】解直角三角形,钝角三角形的高20.【答案】3【提示】本题利用三角形的面积计算此题考查了矩形的性质、垂直平分线的性质以及勾股定理及解直角三角形,注意数形结合思想的应用,此题综合性较强,难度较大.2(1)12a a -+=223-=∴原式12a + 【提示】利用除式的分子利用完全平方公式分解因式,除法变乘法的法则,同分母分式的减法法则计算,再利用特殊角的三角函数值求出a 的值代入进行计算即可,考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键【考点】①分式的通分,分式的约分,除法变乘法的法则,完全平方公式,特殊角22.【答案】(1)【解析】(1)正确画图【提示】根据轴对称图形的性质,利用轴对称的作图方法来作图,利用勾股定理求出AB 、BC 、CD 、AD 四条线段的长度,然后求和即可最【考点】轴对称图形,勾股定理,网格作图23.【答案】(1)5名(2)264名【解析】(1)解:()11(18161%5)100++÷-=(名).501118165---=(名)∴在这次调查中,最喜欢新闻类电视节目的学生有5名补全条形图如图所示11【考点】条形统计图,用样本估计总体24.【答案】(1)14a = 21511154224OB DF OB CE +=⨯⨯【提示】首先得出B 点的坐标,进而利用待定系数法求出a 继而得二次函数解析式,首先得出C 点的坐标,再由对称性得D 点的坐标,由 BCD BOD BOC S S S =+△△△求出【考点】二次函数综合题25.【答案】(1)证明:连接CD 、BE ∵BC 为半圆O 的直径.∴10AB =∴6AD AB BD =-=【提示】连接CD 、BE ,利用直径所对圆周角90︒、证明ADC AEB △≌△得AB AC =,利用OBD ABC △∽△得BD BO BC AB=得4BC =再求10AB =从而6AD AB BD =-=此题利用相似三角形的判定与性质、全等三角形的判定与性质以及直角三角形的性质等知识.此题综合性较强,难度适中,注意数形结合思想的应用【考点】圆周角定理,全等三角形的性质,相似三角形的判定26.【答案】(1)甲队单独完成此项任务需30天,乙队单独完成此项任务需20天【考点】分式方程的应用,一元一次不等式的应用.27.【答案】(1)BC=(2)13m t=+,(03)t<<''∠BE F ∴GE GA '=QE BE '=QE GA '=∴12∠=∠∵EF OC ∥BF BE BC BO =,333BF m =,3332BF m ==+,313322BC CF -=-,CP 3133322633t CF t CP CB CA --=== ∵FCP BCA ∠=∠∴FCP BCA △∽△PF CP AB CA =,32t PF -=∵2BQ PF QG -= ∴33312332322t t t -⎛⎫-=⨯- ⎪⎝⎭∴t ∴当1t =时,332BQ PF QG -= 30=∠=︒OBC 由此CO OB AB ===【考点】等边三角形判定与性质,相似三角形判定与性质,直角三角形的判定,三角形内角和,等腰三角形判定,一元一次方程28.【答案】(1)证明:如图1连接FE、FC∵点F在线段EC的垂直平分线上【考点】三角形全等的判断和性质,相似三角形的判断和性质,平行线分线段成比例定理,轴对称性质,三角形四边形内角和,线段的垂直平分线性质。

2013年哈尔滨市中考数学市模后最新27、28题(5)

2013年哈尔滨市中考数学市模后最新27、28题(5)

2013年哈尔滨市中考数学市模后最新27、28题(5)
27.如图,直线AB :y=-x-b 分别与x 、y 轴交于A (6,0)、B 两点,过点B 的直线交x 轴负半轴于C ,且OB :OC=3:1
(1)求直线BC 的解析式:
(2)点P 从点A 出发沿x 轴正方向以1个单位长度/秒运动,以P 为直角顶点,BP 为腰在第一象限内作等腰
直角△BPD ,连接DA ,同时点Q 从A 出发沿线段AD
/秒向点D 方向运动,求DQ 的长;
(3)在(2)的条件下,延长DA 交y轴于点K ,连结PK,设P 、Q 运动时间为t,当PK 2=PO ·PC 时,求t 的值。

27.在平面直角坐标系中,直线y=-x+b 与x 轴交于点A ,与y 轴交于点B ,且
OA+OB=、F 是线段AB
上的两个动点,且∠EOF =45°,过点E 、F 分别作x 轴和y 轴的垂线CE 、DF 相交于点P ,垂足分别为
C 、
D .
(1)求直线AB 的解析式;
(2)设P 点的坐标为(x ,y ),令xy =k .在点E 、F 运动过程中,求k 的值;
(3)在(2)的条件下,点,E 从点A 出发沿线段AB
/秒向点B 运动,运动时间为t,当OP=5
时,求t 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈尔滨市2013年初中升学考试
数学试卷
一、选择题(每小题3分.共计30分)
1.13-的倒数是( ).
(A)3 (B)一3 (C) 13- (D)
13
2.下列计算正确的是( ). .
(A)a 3+a 2=a 5 (B)a 3·a 2=a 6 (C)(a 2)3=a 6 (D) 22()22a a = 3.下列图形中,既是轴对称图形又是中心对称图形的是( ).
4.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是( ).
5.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).
(A)y=(x+2)2+2 (B)y=(x+2)2-2 (C)y=x 2+2 (D)y=x 2-2
6.反比例函数12k y x
-=
的图象经过点(-2,3),则k 的值为( ). (A)6 (B)-6 (C) 72 (D) 72-
7.如图,在ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为( ).
(A)4 (B)3 (C)5
2
(D)2
8.在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ).
(A)1
16 (B)1
8
(C)1
4
(D)1
2
9.如图,在△ABC中,M、N分别是边AB、AC的中点,则△AMN的面积与四边形MBCN的面积比为( ).
(A)1
2 (B)1
3
(C)1
4
(D)2
3
10.梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:
①一次购买种子数量不超过l0千克时,销售价格为5元/千克;
②一次购买30千克种子时,付款金额为100元;
③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:
④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.
其中正确的个数是( ).
(A)1个 (B)2个 (C)3个 (D) 4个
二、填空题(每小题3分.共计30分)
1 1.把98 000用科学记数法表示为 . 1 2.在函数3x y x =+中,自变量x 的取值范围是 . 13.计算:3272-
= . 14.不等式组3x-1<2,x+3≥1的解集是 .
15.把多项式224ax ay -分解因式的结果是 .
16.一个圆锥的侧面积是36π cm 2,母线长是12cm ,则这个圆锥的底面直径是 cm .
17.如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52
,CD=4,则弦AC 的长为 .
18.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 .
19.在△ABC 中,AB=22,BC=1,∠ABC=450,以AB 为一边作等腰直角三角形ABD ,使∠ABD=900,连接CD ,则线段CD 的长为 .
20.如图。

矩形ABCD 的对角线AC 、BD 相交于点0,过点O 作OE ⊥AC
交AB 于E,若BC=4,△AOE 的面积为5,则sin ∠BOE 的值为 .
三、解答题(其中21-24题各6分.25-26题各8分.27-28题各l0分.共计60分)
21.(本题6分)
先化简,再求代数式
2122121
a a a a a a +-÷+--+的值,其中6tan 602a =-
22.(本题6分)
如图。

在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A、B、M、N均在小正方形的顶点上.
(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD是以直线MN为对称轴的轴对称图形,点A 的对称点为点D,点B的对称点为点C;
(2)请直接写出四边形ABCD的周长.
23.(本题6分)
春雷中学要了解全校学生对不同类别电视节目的喜爱情况,围绕“在体育、新闻、动画、娱乐四类电视节目中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查.将调查结果整理后绘制成如图所示的不完整的条形统计图.其中最喜欢新闻类电视节目的人数占被抽取人数的l0%.请你根据以上信息回答下列问题:
(1)在这次调查中,最喜欢新闻类电视节目的学生有多少名?并补
全条形统计图:
(2)如果全校共有l 200名学生,请你估计全校学生中
最喜欢体育类电视节目的学生有多少名?
24.(本题6分)
某水渠的横截面呈抛物线形,水面的宽为AB(单位:米)。

现以AB 所在直线为x轴.以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O.已知AB=8米。

设抛物线解析式为y=ax2-4.
(1)求a的值;
(2)点C(一1,m)是抛物线上一点,点C关于原点0的对称点为
点D,连接CD、BC、BD,求ABCD的面积.
25.(本题8分)
如图,在△ABC中,以BC为直径作半圆0,交AB于点D,交AC 于点E.AD=AE
(1)求证:AB=AC;
(2)若BD=4,BO=25,求AD的长.
26.(本题8分)
甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用l0天。

且甲队单独施工45天和乙队单独施工30天的工作量相同.
(1)甲、乙两队单独完成此项任务各需多少天? 、
(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度。

甲队的工作效率提高到原来的2倍。

要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?
27.(本题l0分)
如图,在平面直角坐标系中,点0为坐标原点,A点的坐标为(3,0),以0A为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从0点出发沿0C向C点运动,动点Q从B 点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。

设运动时间为t秒.
(1)求线段BC的长;
(2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC 于点F。

设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围:
(3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE1F1,使点E的对应点E1落在线段AB上,点F的对应点是F1,E1F1交x轴于
QG?
点G,连接PF、QG,当t为何值时,2BQ-PF=3
3
28.(本题l0分)
已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E、F分别是线段BC
和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF、AE,AE交BD于点G.
(1)如图l,求证:∠EAF=∠ABD;
(2)如图2,当AB=AD时,M是线段AG上一点,连接BM、ED、MF,
MF的延长线交ED于点N,∠MBF=1
2∠BAF,AF=2
3
AD,试探究线段FM
和FN之间的数量关系,并证明你的结论.。

相关文档
最新文档