二元一次方程公式法

合集下载

二元一次方程解法大全--精选

二元一次方程解法大全--精选

二元一次方程解法大全二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n ≥0) 的方程,其解为 x=±根号下n+m.例1.解方程( 1)(3x+1)2=7 (2)9x2-24x+16=11剖析:(1)此方程明显用直接开平方法好做,(2)方程左侧是完整平方式(3x-4)2 ,右侧=11>0,因此此方程也可用直接开平方法解。

(1)解: (3x+1)2=7×∴(3x+1)2=5∴3x+1=±( 注意不要丢解 )∴x=∴原方程的解为x1=,x2=(2)解: 9x2-24x+16=11∴(3x-4)2=11∴3x-4= ±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a ≠0)先将常数 c 移到方程右侧: ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加前一次项系数的一半的平方: x2+x+()2=-+()2方程左侧成为一个完整平方式:(x+)2=当b^2-4ac ≥0 时, x+=±∴x=( 这就是求根公式 )例2.用配方法解方程 3x^2-4x-2=0( 注:X^2是X 的平方)解:将常数项移到方程右侧3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加前一次项系数一半的平方:x2-x+()2=+()2配方: (x-)2=直接开平方得: x-= ±∴x=∴原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,而后计算鉴别式△=b2-4ac 的值,当b2-4ac ≥0 时,把各项系数 a,b,c 的值代入求根公式 x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac ≥0) 便可获得方程的根。

例3.用公式法解方程 2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0∴a=2,b=-8,c=5b^2-4ac=(-8)2-4×2×5=64-40=24>0∴x=[(-b ±(b^2-4ac)^(1/2)]/(2a)∴原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,获得两个一元一次方程,解这两个一元一次方程所获得的根,就是原方程的两个根。

二元一次方程的解法公式法

二元一次方程的解法公式法
消元法需要先将方程变形,消去一个未知数,而公式法不需要变形,直 接代入公式计算。
消元法在解方程时可能需要进行多次运算,而公式法只需要一次代入计 算。
与代入法比较
代入法是将一个方程变形,表示出一个未知 数,然后代入另一个方程求解。而公式法则 是直接利用二元一次方程的解公式求解。
代入法在解方程时可能需要进行多次 运算,而公式法只需要一次代入计算。
简单实例计算过程展示
1 2
步骤3
将x的值代入任一方程求y,y = 5 - x = 5 - 2 = 3
解得
{x=2, y=3}
3
实例2
解方程组 {2x + y = 6, x - y = 2}
简单实例计算过程展示
步骤1
识别方程系数,a1=2, b1=1, a2=1, b2=-1, c1=6, c2=2
二元一次方程的解法公式法
目录
• 引入与概念 • 公式法求解步骤 • 实例分析与计算过程展示 • 公式法与其他解法比较 • 拓展应用与实际问题解决 • 总结回顾与课后作业
01
引入与概念
二元一次方程定义
01
含有两个未知数,且未知数的次 数都是1的方程称为二元一次方程 。
02
一般形式为:ax + by = c(其中a、 b、c为常数,且a、b不同时为0)。
可直接得出解,无需进行多次运算。 计算过程简洁明了,易于掌握;
优势 通用性强,无需考虑系数关系;
02
公式法求解步骤
列出方程组并整理为标准形式
对于二元一次方程组,首先需要将其 整理为标准形式,即形如 $ax + by = c$ 和 $dx + ey = f$ 的形式。
确保方程组中每个方程的未知数的系 数不为零,否则该方程无法单独求解 。

二元一次方程解法大全

二元一次方程解法大全

二元一次方程解法大全 小编寄语:同学们对于二元一次方程的解法了解多少呢,自己又掌握了几种?下面小编为大家精心整理了二元一次方程的解法,供大家参考。

1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n0)的方程,其解为x=根号下n+m.例1.解方程〔1〕(3x+1)2=7〔2〕9x2-24x+16=11分析:〔1〕此方程显然用直接开平方法好做,〔2〕方程左边是完全平方式(3x-4)2,右边=110,所以此方程也可用直接开平方法解。

〔1〕解:(3x+1)2=7(3x+1)2=53x+1=(注意不要丢解)x=原方程的解为x1=,x2=〔2〕解:9x2-24x+16=11(3x-4)2=113x-4=x=原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b^2-4ac0时,x+=x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方〕解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=x=原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac0时,把各项系数a,b,c的值代入求根公式x=[-b(b^2-4ac)^(1/2)]/(2a),(b^2-4ac0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0a=2,b=-8,c=5b^2-4ac=(-8)2-425=64-40=240x=[(-b(b^2-4ac)^(1/2)]/(2a)原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

二元一次方程解法大全

二元一次方程解法大全

二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m.例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b^2-4ac≥0时,x+=±∴x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0∴a=2,b=-8,c=5b^2-4ac=(-8)2-4×2×5=64-40=24>0∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)∴原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

二元一次方程解法大全【范本模板】

二元一次方程解法大全【范本模板】

二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x —m)2=n(n≥0)的方程,其解为x=±根号下n+m。

例1.解方程(1)(3x+1)2=7(2)9x2—24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x—4)2,右边=11>0,所以此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边:ax2+bx=—c将二次项系数化为1:x2+x=—方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b^2-4ac≥0时,x+=±∴x=(这就是求根公式)例2.用配方法解方程3x^2—4x—2=0(注:X^2是X的平方)解:将常数项移到方程右边3x^2—4x=2将二次项系数化为1:x2—x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x—=±∴x=∴原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2—4ac≥0时,把各项系数a,b,c的值代入求根公式x=[—b±(b^2—4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根.例3.用公式法解方程2x2-8x=—5解:将方程化为一般形式:2x2-8x+5=0∴a=2,b=—8,c=5b^2—4ac=(—8)2—4×2×5=64—40=24〉0∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)∴原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根.这种解一元二次方程的方法叫做因式分解法。

解二元一次方程的万能公式法

解二元一次方程的万能公式法

解二元一次方程的万能公式法含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。

使方程左右两边相等的未知数的值叫做方程的解。

接下来分享二元一次方程的万能公式,供参考。

二元一次方程万能公式b^2-4ac>=0,方程有实数根,否则是虚数根。

实数解是:[-b+sqrt(b^2-4ac)]/2a[-b-sqrt(b^2-4ac)]/2a二元一次方程的解法代入消元法(1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成y=ax+b的形式;(2)代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程;(3)解这个一元一次方程,求出x的值;(4)回代:把求得的x的值代入y=ax+b中求出y的值,从而得出方程组的解;(5)把这个方程组的解写成x=c y=d的形式。

换元法解一些复杂的问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化。

该方法在减少多项式项数,降低多项式结构复杂程度等方面能起到独到作用。

加减消元法(1)变换系数:利用等式的基本性质,把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等。

(2)加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程。

(3)解这个一元一次方程,求得一个未知数的值。

(4)回代:将求出的未知数的值代入原方程组的任何一个方程中,求出另一个未知数的值。

二元一次方程解法大全

二元一次方程解法大全

二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下 n+m.例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2 ,右边=11>0,所以此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为 x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为 x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边: ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b^2-4ac≥0时,x+=±∴x=(这就是求根公式 )例2.用配方法解方程3x^2-4x-2=0( 注:X^2是X的平方)解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为 x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△ =b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c 的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac ≥0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式: 2x2-8x+5=0∴a=2,b=-8,c=5b^2-4ac=(-8)2-4 ×2×5=64-40=24>0∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)∴原方程的解为 x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

二元一次方程解法大全

二元一次方程解法大全

二元一次方程解法大全小编寄语:同学们对于二元一次方程的解法了解多少呢,自己又掌握了几种?下面小编为大家精心整理了二元一次方程的解法,供大家参考。

1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n0)的方程,其解为x=根号下n+m. 例1.解方程〔1〕(3x+1)2=7〔2〕9x2-24x+16=11分析:〔1〕此方程显然用直接开平方法好做,〔2〕方程左边是完全平方式(3x-4)2,右边=110,所以此方程也可用直接开平方法解。

〔1〕解:(3x+1)2=7(3x+1)2=53x+1=(注意不要丢解)x=原方程的解为x1=,x2=〔2〕解:9x2-24x+16=11(3x-4)2=113x-4=x=原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=当b^2-4ac0时,x+=x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方〕解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=x=原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac0时,把各项系数a,b,c的值代入求根公式x=[-b(b^2-4ac)^(1/2)]/(2a),(b^2-4ac0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0a=2,b=-8,c=5b^2-4ac=(-8)2-425=64-40=240x=[(-b(b^2-4ac)^(1/2)]/(2a)原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

公式法解二元一次方程教案六篇

公式法解二元一次方程教案六篇

公式法解二元一次方程教案六篇教案一:用公式法解简单的二元一次方程一、教学目标1、理解并掌握二元一次方程的求根公式。

2、能够熟练运用公式法解二元一次方程。

二、教学重难点1、重点(1)求根公式的推导过程。

(2)运用求根公式解二元一次方程。

2、难点求根公式的推导。

三、教学方法讲授法、练习法四、教学过程1、复习导入(1)回顾一元二次方程的一般形式:$ax^2 + bx + c =0$($a≠0$)。

(2)提问一元二次方程的配方法。

2、公式推导(1)将一元二次方程$ax^2 + bx + c = 0$($a≠0$)进行配方:\\begin{align}ax^2 + bx + c &= 0\\ax^2 + bx &= c\\x^2 +\frac{b}{a}x &=\frac{c}{a}\\x^2 +\frac{b}{a}x +(\frac{b}{2a})^2 &=(\frac{b}{2a})^2 \frac{c}{a}\\(x +\frac{b}{2a})^2 &=\frac{b^2 4ac}{4a^2}\end{align}\(2)当$b^2 4ac≥0$时,开方得到求根公式:$x =\frac{b ±\sqrt{b^2 4ac}}{2a}$3、公式讲解(1)强调公式中$a$、$b$、$c$的含义。

(2)说明判别式$b^2 4ac$的作用:判断方程根的情况。

4、例题讲解例 1:用公式法解方程$x^2 4x 5 = 0$(1)分析:$a = 1$,$b =-4$,$c =-5$(2)计算判别式:$b^2 4ac =(-4)^2 4×1×(-5) = 36 > 0$,方程有两个不相等的实数根。

(3)代入求根公式:$x =\frac{4 ±\sqrt{36}}{2×1} =\frac{4 ± 6}{2}$,解得$x_1 = 5$,$x_2 =-1$5、课堂练习让学生练习用公式法解下列方程:(1)$x^2 + 2x 3 = 0$(2)$2x^2 5x + 1 = 0$6、课堂小结(1)总结公式法解二元一次方程的步骤。

二元一次方程解法大全.

二元一次方程解法大全.

二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m.例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=2.配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=当b^2-4ac≥0时,x+=±∴x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±∴x=3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0∴a=2,b=-8,c=5b^2-4ac=(-8)2-4×2×5=64-40=24>0∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)∴原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

公式法解二元一次方程教案

公式法解二元一次方程教案

公式法解二元一次方程教案公式法解二元一次方程教案1一、教学目标(一)教学知识点1、代入消元法解二元一次方程组。

2、解二元一次方程组时的消元思想,化未知为已知的化归思想。

(二)能力训练要求1、会用代入消元法解二元一次方程组。

2、了解解二元一次方程组的消元思想,初步体会数学研究中化未知为已知的化归思想。

(三)情感与价值观要求1、在学生了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心。

2、培养学生合作交流,自主探索的良好习惯。

二、教学重点1、会用代入消元法解二元一次方程组。

2、了解解二元一次方程组的消元思想,初步体现数学研究中化未知为已知的化归思想。

三、教学难点1、消元的思想。

2、化未知为已知的化归思想。

四、教学方法启发自主探索相结合。

教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程。

二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤。

五、教具准备投影片两张:第一张:例题(记作7。

2A);第二张:问题串(记作7。

2B)。

六、教学过程Ⅰ、提出疑问,引入新课[师生共忆]上节课我们讨论过一个希望工程义演的问题;没去观看义演的成人有x个,儿童有y个,我们得到了方程组成人和儿童到底去了多少人呢? [生]在上一节课的做一做中,我们通过检验是不是方程x+y=8和方程5x+3y=34,得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组解的定义得出是方程组的解。

所以成人和儿童分别去了5个人和3个人。

[师]但是,这个解是试出来的。

我们知道二元一次方程的解有无数个。

难道我们每个方程组的解都去这样试?[生]太麻烦啦。

[生]不可能。

[师]这就需要我们学习二元一次方程组的解法。

Ⅱ、讲授新课[师]在七年级第一学期我们学过一元一次方程,也曾碰到过希望工程义演问题,当时是如何解的.呢?[生]解:设成人去了x个,儿童去了(8-x)个,根据题意,得:5x+3(8-x)=解得x=将x=5代入8-x=8-5=答:成人去了5个,儿童去了3个。

二元一次方程解法大全

二元一次方程解法大全

二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m.例1.解方程〔1〕(3x+1)2=7〔2〕9x2-24x+16=11分析:〔1〕此方程显然用直接开平方法好做,〔2〕方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。

〔1〕解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=〔2〕解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b^2-4ac≥0时,x+=±∴x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方〕解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0∴a=2,b=-8,c=5b^2-4ac=(-8)2-4×2×5=64-40=24>0∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)∴原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

初二数学知识点:二元一次方程解法大全

初二数学知识点:二元一次方程解法大全

初二数学知识点:二元一次方程解法大全成功不是将来才有的,而是从决定去做的那一刻起,持续累积而成。

小编给大家准备了初二数学知识点:二元一次方程,欢迎参考!1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n0)的方程,其解为x=根号下n+m.例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=110,所以此方程也可用直接开平方法解。

(1)解:(3x+1)2=7(3x+1)2=53x+1=(注意不要丢解)x=原方程的解为x1=,x2=(2)解:9x2-24x+16=11(3x-4)2=113x-4=x=原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=当b^2-4ac0时,x+=x=(这就是求根公式)例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方) 解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=x=原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac0时,把各项系数a,b,c的值代入求根公式x=[-b(b^2-4ac)^(1/2)]/(2a),(b^2-4ac0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0a=2,b=-8,c=5b^2-4ac=(-8)2-425=64-40=240x=[(-b(b^2-4ac)^(1/2)]/(2a)原方程的解为x1=,x2=.4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

十字相乘公式法

十字相乘公式法

十字相乘公式法
十字相乘公式法又称为交叉乘法,是一种用于求解二元一次方程组的方法。

该方法基于如下定理:在一个二元一次方程组中,如果两个方程的系数之比相等,且两个方程中的常数项之比也相等,那么这个方程组有解。

具体步骤如下:
1. 将给定的二元一次方程组写成标准形式,即将所有项移至等号右边,整理得到$ax + by = c$的形式(其中a, b, c分别为系数)。

2. 设方程组有解,将两个方程的系数与常数项分别设置成比值的形式,即$\frac{a1}{a2}=\frac{b1}{b2}=\frac{c1}{c2}$。

3. 随机选择其中一个比值,将其与另一个方程的系数和常数项的比值相乘,得到一个新的比值。

4. 将此新比值代入到另一个方程中,可以得到一个一元一次方程(以x为变量),求解得到x的值。

5. 将得到的x的值带入到任意一个原方程中,解得y的值。

6. 将求得的x和y的值代入到原方程组中,验证是否满足方程组的条件。

需要注意的是,在使用十字相乘公式法时,要确保方程组满足交叉乘法的条件,即两个方程的系数之比和常数项之比相等。

如果不满足该条件,则无法使用该方法求解方程组。

中考数学知识讲解:二元一次方程的概念及解法

中考数学知识讲解:二元一次方程的概念及解法

中考数学知识讲解:二元一次方程的概念及解法二元一次方程有关概念(1)概念:含有两个未知数,并且未知数的项的次数都是1,这样的方程叫做二元一次程.(2)一般形式:ax+by=c(a≠0,b≠0).(3)使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.(4)解的特点:一般地,二元一次方程有无数个解.二元一次方程的解法1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m.例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解:9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b^2-4ac≥0时,x+=±∴x=(这就是求根公式) 例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)解:将常数项移到方程右边3x^2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=直接开平方得:x-=±∴x=∴原方程的解为x1=,x2=.3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。

二元一次方程公式法

二元一次方程公式法

21.2.2公式法一、读懂文本,捕捉重要的知识信息,为记住知识和应用知识奠定基础。

(30分)。

读懂材料第 页:1.知识点1:一般地,式子ac b 42-叫做方程02=++c bx ax (0≠a ) .通常用希腊字母∆表示它,即2.知识点2:当△≥0时,方程0c b a 2=++x x (a ≠0)的实数根可写为 的形式,这个式子叫作一元二次方程的求根公式。

3.知识点3:[方法归纳] 用公法解下列一元二次方程的步骤:(1)把方程化为一般形式,确定a,b,c,的值。

(2)求出b2-4ac 的值。

(3)若b2-4ac ≥0,则将a,b,c,的值代入求根公式求出方程的根。

4.读完文本后,你有哪些疑惑?5.本文和以前学过的知识有什么联系?二、加强记忆,巩固知识,解决问题,提升能力。

(60分)1.方程0132=+-x x 的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .只有一个实数根解下列一元二次方程(1)x 2-3x-1=0 (2) x 2+x-6=0(3)3x 2-6x-2=0 (4)4x 2-6x=0(5)x 2+4x+8=4x+11 (6)x (2 x-4)=5 -8x三、选做题 (20分)1.用公式法解方程4x 2-12x=3,得到( ).A .x=362-± B .x=362± C .x=3232-± D .x=3232± 2.代数式x 2-8x+12的值是-4,求x 的值四、思想提升(学用结合,让本文与学习者自身的学习、记忆、巩固、再现和应用紧密挂钩,站在学的角度思考文本对于自己有什么用处,达到培养学习者学科思想的目的。

)(10分)1、本节知识的重点内容是什么?学习这些知识后有什么用处?(5分)2、学习本节内容你有什么好的方法,写下来与大家分享。

(5分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

育英学校九年级自学能力测试题
21.2.2公式法
一、读懂文本,捕捉重要的知识信息,为记住知识和应用知识奠定基础。

(30分)。

读懂材料第 页:
1.知识点1:
一般地,式子ac b 42-叫做方程02=++c bx ax (0≠a ) .通常用希腊字母∆表示它,即
2.知识点2:
当△≥0时,方程0c b a 2=++x x (a ≠0)的实数根可写为 的形式,这个式子叫作一元二次方程的求根公式。

3.知识点3:
[方法归纳] 用公法解下列一元二次方程的步骤:
(1)把方程化为一般形式,确定a,b,c,的值。

(2)求出b ²-4ac 的值。

(3)若b ²-4ac ≥0,则将a,b,c,的值代入求根公式求出方程的根。

4.读完文本后,你有哪些疑惑?
5.本文和以前学过的知识有什么联系?
二、加强记忆,巩固知识,解决问题,提升能力。

(60分)
1.方程0132=+-x x 的根的情况是( )
A .有两个不相等的实数根
B .有两个相等的实数根
C .没有实数根
D .只有一个实数根
解下列一元二次方程
(1)x 2-3x-1=0 (2) x 2+x-6=0
(3)3x 2-6x-2=0 (4)4x 2-6x=0
(5)x2+4x+8=4x+11 (6)x(2 x-4)=5 -8x
三、选做题(20分)
1.用公式法解方程4x2-12x=3,得到().
A.x=
36
2

B.x=
36
2
±
C.x=
323
2

D.x=
323
2
±
2.代数式x2-8x+12的值是-4,求x的值
四、思想提升(学用结合,让本文与学习者自身的学习、记忆、巩固、再现和应用紧密挂钩,站在学的角度思考文本对于自己有什么用处,达到培养学习者学科思想的目的。

)(10分)
1、本节知识的重点内容是什么?学习这些知识后有什么用处?(5分)
2、学习本节内容你有什么好的方法,写下来与大家分享。

(5分)。

相关文档
最新文档