平面向量基本定理及经典例题
04-6.2 向量基本定理与向量的坐标-6.2.1 向量基本定理高中数学必修第二册人教B版
1
2
1
2
− =
+ =
1
2
1
2
− ,
+ .
∵ //,与共线,
1
2
∴ 存在实数 , ,使得 = = − ,
= =
1
2
+ =
∵ = + =
1
4
+
2
1
2
+
.
2
− =
1
( − )
1
2
1
4
1
2
1
4
1
2
= ,所以 = + ,又 = , = ,所以 = + .
例9 (2024·河北省石家庄一中月考)如图6.2.1-6,在△中,点是的中点,过
点的直线分别交直线,于不同的两点,.若 = , = , ∈ ,
2
则 + 的值为___.
图6.2.1-6
【解析】
连接,∵ 是的中点,∴ =
由于 = , = ,则 =
1
2
1
(
2
+ ) =
1
2
1
+ .
2
令 = ∈ ,则
= + = + = + ( − ) = (1 − ) + .
【解析】假设 = ∈ ,则1 − 2 = 31 + 32 ,
∴ 1 − 3 1 + −1 − 3 2 = .
1 − 3 = 0,
∵ 1 ,2 不共线,∴ ቊ
平面向量基本定理
平面向量基本定理
平面向量基本定理:
1、定义:平面向量基本定理是一种数学定理,它将向量的矢量乘积和其他数学定理结合在一起。
2、证明:平面向量基本定理可以由叉积定理和等价矢量乘积定理来证明:
A×B = C×A+B , 其中A和B是两个向量,C是其叉积。
同时有:A⋅(B×C) = B⋅(C×A) + C⋅(A×B)
将C×A替换成A×B,得到A⋅B×C= B⋅C×A + A⋅A×B,再将A⋅A×B 替换成C×A,即得到A⋅B×C = B⋅C×A + C⋅A×B。
故A×B=C×A+B,即平面向量基本定理得证。
3、应用:平面向量基本定理主要应用于平面向量运算。
它可以用于求解三角形和圆的关系,计算叉积和点面积,求解抛物线的中心,解决线性方程组的特殊解,以及证明连续多边形的属性等。
4、例题:
(1)已知AB、BC、CD是相互垂直的向量,若AB=2,BC=3,则
AC⋅CD的值为?
(2)A、B、C、D四点不共线,且AB⋅BC=2,BC⋅CD=3,若AC=4,求CD的值?
解:(1)由题意可知,ABCD四点不共线,AB、BC、CD相互垂直,由矢量乘积的叉积定理可得,AB×BC=AC×CD,故
AC⋅CD=AB⋅BC=2×3=6。
(2)由题意可知,AB⋅BC=2,BC⋅CD=3,且AC=4,因为AB、BC、CD相互垂直,所以有:AB×BC=AC×CD,由于有AB⋅BC=2,AC=4,故CD=2/4=1/2。
(完整版)平面向量基本定理及经典例题
平面向量基本定理一.教学目标:了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件;教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习1.已知a =(x,2),b =(1,x),若a //b ,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 22.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-= ()B (2,3),(3,2)a b ==()C (1,2),(7,14)a b =-= ()D (3,2),(6,4)a b =-=-3.已知点)4,3(),1,3(),4,2(----C B A ,且CB CN CA CM ⋅=⋅=2,3,则=MN ____ 4.已知点(1,5)A -和向量a =(2,3),若AB =3a ,则点B 的坐标为 三.知识归纳1. 平面向量基本定理:如果12,e e 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+成立。
其中12,e e 叫做这一平面的一组____________,即对基底的要求是向量___________________;2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ,j作基底,则对任一向量a ,有且只有一对实数x ,y ,使j y i x a +=、就把_________叫做向量a的坐标,记作____________。
3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量OA 的坐标为OA=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为21P P =___________________,即平面内任一向量的坐标等于表示它的有向线段的____点坐标减去____点坐标.4.线段中点坐标公式:A (1x ,1y ),B (2x ,2y )线段中点为M ,则有:OM =________________,M 点的坐标为_____________.5.两个向量平行的充要条件是:向量形式:_____________)0(//⇔≠b b a ;坐标形式: _____________)0(//⇔≠b b a .6. a=(x,y ), 则a =___________.与a 共线的单位向量是:aa e = 四.例题分析:例1.(1)、 已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P点的坐标为( )A (-14,16) (B )(22,-11) (C )(6,1) (D ) (2,4) (2)、已知两点A(4,1), B(7,-3), 则与向量AB 同向的单位向量是 ( )(A )⎪⎭⎫ ⎝⎛-54,53 (B)⎪⎭⎫ ⎝⎛-54,53 (C)⎪⎭⎫ ⎝⎛-53,54 (D)⎪⎭⎫ ⎝⎛-53,54(3)、若a =(2,3),b =(-4,7),则a 在b 方向上的投影为____________。
平面向量知识点总结、经典例题及解析、高考题50道及答案
)))))))第五章 平面向量【考纲说明】1、理解平面向量的概念和几何表示,理解两个向量相等及共线的含义,掌握向量的加、减、数乘运算及其几何意义,会用坐标表示。
2、了解平面向量的基本定理,掌握平面向量的坐标运算。
3、掌握数量积的坐标表达式,会进行平面向量数量积的运算,会用向量方法解决简单的平面几何问题、力学问题与其他一些实际问题。
【知识梳理】一、 向量的基本概念与线性运算 1 向量的概念:(1)向量:既有大小又有方向的量,记作AB ;向量的大小即向量的模(长度),记作|AB | 向量不能比较大小,但向量的模可以比较大小.(2)零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行(3)单位向量:模为1个单位长度的向量常用e 表示.(4)平行向量(共线向量):方向相同或相反的非零向量,记作a ∥b平行向量也称为共线向量(5)相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a= 大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x(6)相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a-,零向量的相反向量仍是零向量若a 、b是互为相反向量,则a =b -,b =a -,a +b =2 向量的线性运算:(1)向量的加法:求两个向量和的运算叫做向量的加法 向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则” .(2)向量的减法 :求向量a 加上b 的相反向量的运算叫做a 与b的差.向量的减法有三角形法则,b a -可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)(3)向量的数乘运算:求实数λ与向量a 的积的运算,记作λa.①a a⋅=λλ;②当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反; 当0=λ时,0 =a λ,方向是任意的③数乘向量满足交换律、结合律与分配律3. 两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =λ向量b 与非零向量a共线⇔有两个均不是零的实数λ、μ,使得0a b λμ+=.二、平面向量的基本定理与坐标表示 1 平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底2. 平面向量的坐标表示:(1)在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j 作为基底 由平面向量的基本定理知,该平面内的任一向量a 可表示成a xi yj =+,由于a 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a 的坐标,记作a =(x,y),其中x 叫作a 在x 轴上的坐标,y 叫做在y 轴上的坐标显然0=(0,0),(1,0)i =,(0,1)j =. (2)设OA xi y j =+.则向量OA 的坐标(x,y)就是终点A 的坐标,即若OA =(x,y),则A 点的坐标为(x,y),反之亦成立(O 是坐标原点). 3 平面向量的坐标运算:(1)若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±±. (2)若()()2211,,,y x B y x A ,则()2121,AB x x y y =--,1(AB x =(3)若a =(x,y),则λa =(λx,λy).(4)若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-=. (5)若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅. 三、平面向量的数量积 1 两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,a ·b 等于a 的长度与b 在a 方向上的投影的乘积叫做a 与b 的数量积(或内积),即a ·b =︱a ︱·︱b ︱cos θ,规定00a ⋅=2 向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影 投影的绝对值称为射影 3 向量的模与平方的关系:22||a a a a ⋅==4 乘法公式成立:()()2222a b a b a b a b +⋅-=-=-; ()2222a b a a b b±=±⋅+222a a b b =±⋅+.5 平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅.②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈.③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅±; 特别注意:①结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅.②消去律不成立a b a c⋅=⋅不能得到b c =.③a b ⋅=0不能得到a =0或b =06 两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y + 7 向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角cos θ=cos ,a b a b a b⋅<>=⋅=当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题8 垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥ba ⊥b ⇔a ·b=O ⇔2121=+y y x x【经典例题】【例1】(2010全国Ⅱ,8)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB a =,ECBA CA b =,1,2a b ==,则CD = ( )(A )1233a b + (B )2133a b + (C )3455a b + (D )4355a b + 【答案】B .【解析】由角平分线的性质得2AD DB =,即有22()()33AD CB CA a b =-=-.从而221()333CD CA AD b a b a b =+=+-=+.故选B .【例2】(2009北京,2)已知向量a 、b 不共线,c k =a +b (k ∈R ),d =a -b ,如果c //d , 那么 ( ) A .1k =且c 与d 同向 B .1k =且c 与d 反向 C .1k =-且c 与d 同向 D .1k =-且c 与d 反向 【答案】D .【解析】取a ()1,0=,b ()0,1=,若1k =,则c =a +b ()1,1=,d =a -b ()1,1=-, 显然,a 与b 不平行,排除A 、B .若1k =-,则c =-a +b ()1,1=-,d =-a +b ()1,1=--, 即c //d 且c 与d 反向,排除C ,故选D .【例3】(2009湖南卷文)如图,D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则( ) A .0AD BE CF ++= B .0BD CF DF -+=C .0AD CE CF +-= D .0BD BE FC --= 【答案】A . 【解析】,,AD DB AD BE DB BE DE FC =∴+=+==得0AD BE CF ++=.或0AD BE CF AD DF CF AF CF ++=++=+=.【例4】(2009宁夏海南卷文)已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( )A.17-B.17C.16-D.16【答案】A .【解析】向量a b λ+=(-3λ-1,2λ),2a b -=(-1,2),因为两个向量垂直,故有(-3λ-1,2λ)×(-1,2)=0,即3λ+1+4λ=0,解得:λ=17-,故选A . 【例5】(2009全国卷Ⅰ文)设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a , ( )A .150° B.120° C.60° D.30° 【答案】B .【解析】由向量加法的平行四边形法则,知a 、b 可构成菱形的两条相邻边,且a 、b 为起点处的对角线长等于菱形的边长,故选择B .【例6】(2009安徽卷文)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,或=+,其中,R ,则+= _________.【答案】43. 【解析】设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =- 代入条件得2433u u λλ==∴+=. 【例7】(2009辽宁卷文)在平面直角坐标系xoy 中,四边形ABCD 的边AB ∥DC,AD ∥BC,已知点A(-2,0),B (6,8),C(8,6),则D 点的坐标为___________. 【答案】(0,-2).【解析】平行四边形ABCD 中,OB OD OA OC +=+ ∴OD OA OC OB =+-=(-2,0)+(8,6)-(6,8)=(0,-2) 即D 点坐标为(0,-2).【例8】(2012江苏)如图,在矩形ABCD 中,22AB BC ==,,点E 为 BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是___.【答案】2.【解析】由2AB AF =,得cos 2ABAF FAB ∠=,由矩形的性质,得cos =AF FAB DF ∠.∵2AB =,∴22DF ⋅=,∴1DF =∴21CF =-.记AE BF 和之间的夹角为,AEB FBC θαβ∠=∠=,,则θαβ=+. 又∵2BC =,点E 为BC 的中点,∴1BE =. ∴()()=cos =cos =cos cos sin sin AE BF AEBF AEBF AE BF θαβαβαβ+-()=cos cos sin sin =122212AE BF AE BF BE BC AB CF αβαβ--=⨯--=.本题也可建立以, AB AD 为坐标轴的直角坐标系,求出各点坐标后求解.【例9】(2009湖南卷理)在ABC ∆,已知2233AB AC AB AC BC ⋅=⋅=,求角A ,B ,C 的大小. 【答案】2,,663A B C πππ===. 【解析】解:设,,BC a AC b AB c ===由23AB AC AB AC ⋅=⋅得2cos 3bc A bc =,所以3cos 2A = 又(0,),A π∈因此6A π=由233AB AC BC ⋅=得23bc a =,于是23sin sin 3sin 4C B A ⋅=-所以53sin sin()64C C π⋅-=,133sin (cos sin )224C C C ⋅+=,因此 22sin cos 23sin 3,sin 23cos 20C C C C C ⋅+=-=,既sin(2)03C π-=由A=6π知506C π<<,所以3π-,4233C ππ-<,从而20,3C π-=或2,3C ππ-=,既,6C π=或2,3C π=故2,,,636A B C πππ===或2,,663A B C πππ===. 【课堂练习】一、选择题1.(2012辽宁理)已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( )A .a ∥bB .a ⊥bC .{0,1,3}D .a +b =a -b2. (2009年广东卷文)已知平面向量a =,1x (),b =2,x x (-),则向量+a b ( )A. 平行于x 轴B. 平行于第一、三象限的角平分线C. 平行于y 轴D. 平行于第二、四象限的角平分线3.(2012天津文)在ABC ∆中,90A ∠=︒,1AB =,AC=2,设点,P Q 满足,(1),AP AB AQ AC R λλλ==-∈.若2BQ CP ⋅=-,则λ=( )( )A .13 B .23C .43D .2 4.(2009浙江卷理)设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( )A .3 B.4 C .5D .65.(2012重庆理)设,x y ∈R,向量()()()4,2,,1,1,-===c y b x a ,且c b c a //,⊥,则a b += ()A B C .D .106. (2009浙江卷文)已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( )A .77(,)93B .77(,)39--C .77(,)39D .77(,)93--7.(2012浙江理)设a ,b 是两个非零向量.( )A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |8.(2009全国卷Ⅰ理)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -•-的最 小值为( )A.2- 2C.1-D.19.(2012天津理)已知△ABC 为等边三角形,=2AB ,设点P,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ ( )A .12 B .12± C .12± D .32-±10.(2009全国卷Ⅱ理)已知向量()2,1,10,||a a b a b =⋅=+=||b =( )A.B. C. 5 D. 2511.(2012大纲理)ABC ∆中,AB 边上的高为CD ,若,,0,||1,||2CB a CA b a b a b ==⋅===,则AD =( )A .1133a b -B .2233a b - C .3355a b - D .4455a b - 12.(2008湖南)设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC( )A. 反向平行B. 同向平行C. 互相垂直D. 既不平行也不垂直13.(2008广东)在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 14.(2007湖北)设(43)=,a ,a 在b 上的投影为522,b 在x 轴上的投影为2,且||14≤b ,则b 为( )A .(214),B .227⎛⎫- ⎪⎝⎭,C .227⎛⎫- ⎪⎝⎭,D .(28),15.(2012安徽理)在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 按逆时针旋转34π后,得向量OQ 则点Q 的坐标是 ( ) A .(72,2)-- B .(72,2)- C .(46,2)-- D .(46,2)-二、填空题16.(2012浙江文)在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________.17.(2009安徽卷理)给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o.如图所示,点C 在以O 为圆心的圆弧AB 上变动. 若,OC xOA yOB =+其中,x y R ∈,则x y + 的最大值是________.18.(2012上海文)在知形ABCD 中,边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||||||CD CN BC BM =,则AN AM ⋅的取值范围是_________ .19.(2012课标文)已知向量a ,b 夹角为045,且|a |=1,|2-a b |=10,则|b |=_______. 20.(2012湖南文)如图4,在平行四边形ABCD 中 ,AP ⊥BD,垂足为P,3AP =且APAC = _____.A DBCP21.(2012湖北文)已知向量(1,0),(1,1)a b ==,则(Ⅰ)与2a b +同向的单位向量的坐标表示为____________; (Ⅱ)向量3b a -与向量a 夹角的余弦值为____________.22.(2012北京文)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为________. 23.(2012安徽文)设向量(1,2),(1,1),(2,)a m b m c m ==+=,若()a c +⊥b ,则a =_____.24.(2012江苏)如图,在矩形ABCD 中,22AB BC ==,,点E 为BC 的中点,点F 在边CD上,若2AB AF =,则AE BF 的值是___.25.(2012安徽理)若平面向量,a b 满足:23a b -≤;则a b 的最小值是_____三、解答题26. (2009年广东卷文)(已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中)2,0(πθ∈(1)求θsin 和θcos 的值(2)若ϕϕθcos 53)cos(5=-,<<ϕ02π,求ϕcos 的值 27.(2009上海卷文)已知ΔABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =, (sin ,sin )n B A =,(2,2)p b a =-- .(1) 若m //n ,求证:ΔABC 为等腰三角形; (2) 若m ⊥p ,边长c = 2,角C =3π,求ΔABC 的面积 . 28. 已知A 、B 、C 分别为ABC △的三边a 、b 、c 所对的角,向量)sin ,(sin B A m =,)cos ,(cos A B n =,且C n m 2sin =⋅.(Ⅰ)求角C 的大小;(Ⅱ)若A sin ,C sin ,B sin 成等差数列,且18)(=-⋅AC AB CA ,求边c 的长.【课后作业】一、选择题1.(2009辽宁卷理)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b +=( )A.B. C. 4 D. 22.(2009宁夏海南卷理)已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA •=•=•,则点O ,N ,P 依次是ABC ∆的( )A. 重心 外心 垂心B. 重心 外心 内心C. 外心 重心 垂心D. 外心 重心 内心3.(2008安徽)在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =,(1,3)AC =,则BD =( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)4.(2008浙江)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则c 的最大值是( )A. 1B. 2C.2 D.225.(2007海南、宁夏)已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b( ) A .(21)--, B .(21)-,C .(10)-,D .(12),6.(2007湖南)设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( )A .⊥a bB .∥a bC .||||=a bD .||||≠a b7. (2007天津)设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中mλα,,为实数.若2=a b ,则mλ的取值范围是 ( ) A .[-6,1]B .[48],C .(-6,1]D .[-1,6]8. 在ABC BC AB ABC ∆︒︒=︒︒=∆则已知向量中),27cos 2,63cos 2(),72cos ,18(cos ,的面积等于( ) A .22 B .42 C .23 D .29. 已知平面向量(3,1),(,3),//,a b x a b x ==-则等于 ( )A .9B .1C .-1D .-910. 已知a 、b 是不共线的AB a b λ=+AC a b μ=+(,)R λμ∈,则A 、B 、C 三点共线的充要条件是:( )A .1λμ+=B .1λμ-=C .1λμ=-D .1λμ=二、填空题11. 设向量2,3,19,AB AC AB AC CAB ==+=∠=则_________.12. 若向量,2,2,()a b a b a b a ==-⊥ 满足,则向量b a 与的夹角等于 .13. 已知平面上的向量PA 、PB 满足224PA PB +=,2AB =,设向量2PC PA PB =+,则PC 的最小值是 .14.(2008江苏)a ,b 的夹角为120︒,1a =,3b = 则5a b -= . 15. (2007安徽)在四面体O ABC -中,OA OB OC D ===,,,a b c 为BC 的中点,E 为AD 的中点,则OE = (用,,a b c 表示).16.(2007北京)已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是 .17. 已知向量(cos15,sin15)a =,(sin15,cos15)b =--,则a b |+|的值为 .18.(2007广东)若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+= .三、解答题19.(2009湖南卷文)已知向量(sin ,cos 2sin ),(1,2).a b θθθ=-=(1)若//a b ,求tan θ的值;(2)若||||,0,a b θπ=<<求θ的值。
平面向量知识点+例题+练习+答案
五、平面向量1.向量的概念①向量 既有大小又有方向的量。
向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。
向量不能比较大小,但向量的模可以比较大小。
向量表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
向量和数量的区别:向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。
由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。
(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。
(与AB 共线的单位向量是||AB AB ±);④平行向量(共线向量)方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b ,规定零向量和任何向量平行。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线;数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。
高中数学平面向量基本定理
解得λ =±1.
1 N在线段BD上,且有BN= BD,求证:M、N、C三点共线。 3
如图,在平行四边形ABCD中,点M是AB中点,点
D
C
N A M B
1.如果两个向量的基线互相垂直,则称这两
个向量互相垂直 ; 2. 如果两个基向量e1、e2互相垂直,则称
{e1,e2} 为正交基底 3. 若向量e1、e2为单位正交基底,且a xe1 ye2 则称(x,y)为向量a的坐标.N来自Ae2 O e1
M
我们把不共线向量e1,e2叫做这一平面内 所有向量的一组基底,记为{e1,e2}, a1e1+a2e2叫做向量a关于基底{e1,e2}的
分解式。
例1
ABCD中,E、F分别是DC和AB
的中点,试判断AE,CF是否平行?
D E C
A
F
B
例2、 如图,已知梯形ABCD, AB//CD,且AB= 2DC,M,N分别是DC,AB 的中点. 请大家动手, D 在图中确定一组 基底,将其他向 量用这组基底表 A 示出来。
问题:(1)向量a是否可以用含有e1、e2的式
子来表示呢?怎样表示? (2)若向量a能够用e1、e2表示,这种表示
是否唯一?请说明理由.
平面向量基本定理
如果e1、e2是平面内的两个不共线向量,那 么对于这一平面内的任一向量a,有且只有一 对实数a1、a2,使 a a1e1 a2e2 说明:① e1、e2是两个不共线的向量; ② a是平面内的任一向量; ③ a1,a2实数,唯一确定.
2.2.1平面向量基本定理
如图,设e1、e2是同一平面内两个不共线的向量,
试用e1、e2表示向量
AB, CD, EF , GH
平面向量的基本定理及坐标表示知识点及例题
知识点总结:1.平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是θ,则数量||||cosθ叫与的数量积,记作⋅,即⋅ = ||||cosθ,并规定与任何向量的数量积为02.平面向量的数量积的几何意义:数量积⋅等于的长度与在方向上投影||c osθ的乘积.3.两个向量的数量积的性质设、为两个非零向量,是与同向的单位向量1︒⋅ = ⋅ =||cosθ; 2︒⊥⇔⋅ = 03︒当与同向时,⋅ = ||||;当与反向时,⋅ = -||||,特别地⋅ = ||24︒cosθ =; 5︒|⋅| ≤ ||||4.平面向量数量积的运算律①交换律:⋅ = ⋅②数乘结合律:()⋅ =(⋅) = ⋅()③分配律:( + )⋅ = ⋅ + ⋅5.平面向量数量积的坐标表示①已知两个向量,,则.②设,则.③平面内两点间的距离公式如果表示向量的有向线段的起点和终点的坐标分别为、,那么.④向量垂直的判定两个非零向量,,则.⑤两向量夹角的余弦co sθ =().1.平面向量数量积的坐标表示已知两个非零向量,,怎样用与的坐标来表示呢?设向量分别为平面直角坐标系的轴、轴上的单位向量,则有,∴两个向量的数量积等于它们对应坐标的乘积的和.3.平面向量数量积的坐标表示的性质⑴向量的模设,则有或⑵平面内两点间的距离公式设,,则,⑶两向量垂直的坐标表示的判断条件设,,则⑷两向量的夹角的坐标表示公式设非零向量,,为与的夹角,则二.例题讲解1.平面向量数量积的运算例题1 已知下列命题:①; ②; ③; ④其中正确命题序号是②、④ .点评: 掌握平面向量数量积的含义,平面数量积的运算律不同于实数的运算律.例题2 已知; (2) ;(3) 的夹角为,分别求.解(1)当时, =或=.(2)当时, =.(3)当的夹角为时, =.变式训练:已知,求解:=点评:熟练应用平面向量数量积的定义式求值,注意两个向量夹角的确定及分类完整.2.夹角问题例题3 若,且,则向量与向量的夹角为 ( )A. B. C. D.解:依题意故选C 学生训练: ①已知,求向量与向量的夹角.②已知,夹角为,则 .解: ①,故夹角为.②依题意得.变式训练:已知是两个非零向量,同时满足,求的夹角.法一解:将两边平方得,则, 故的夹角.为.法二: 数形结合点评:注意两个向量夹角共起点,灵活应用两个向量夹角的两种求法.3.向量模的问题例题4 已知向量满足,且的夹角为,求.解: ,且的夹角为;变式训练 :①已知向量,若不超过5,则的取值范围 ( )A. B. C. D.②已知的夹角为,, ,则等于( )A 5 B. 4 C. 3 D. 1解: ①,故选C②, ,解得,故选B 点评:涉及向量模的问题一般利用,注意两边平方是常用的方法.3.已知,,求,,,与的夹角.解:∵∴4.已知,,,试判断的形状,并给出证明. 解:是直角三角形. 证明如下:∵,∴∴∴是直角三角形例题引伸:在直角中,,,求实数的值;解:①若,则∴∴②若,则而∴∴③若,则而∴∴4.平面向量数量积的综合应用例题5 已知向量.(1) 若 ; (2)求的最大值 .解:(1)若,则,.(2) ==,的最大值为.。
平面向量的基本定理及坐标表示 练习 含答案
平面向量的基本定理及坐标表示1.设是平面内所有向量的一组基底,则下面四组向量中,不能作为基底的是( ) A BC D2.已知向量a,b ,且AB =a+2b 5BC ,=-a +6b 7CD ,=a-2b,则一定共线的三点是( )A.A 、B 、DB.A 、B 、CC.B 、C 、DD.A 、C 、D3.已知平行四边形ABCD 中DA ,=a DC ,=b ,其对角线交点为O,则OB 等于( ) A.12a +bB.a 12+bC.12(a +b )D.a +b4.已知OA =a OB ,=b ,C 为AB 上距A 较近的一个三等分点,D 为CB 上距C 较近的一个三等分点,则用a ,b 表示OD 的表达式为( ) A.4+59a b B +7169a b . C. +32a b D. +43a b5.已知P 是△ABC 所在平面内的一点,若CB PA PB λ=+,其中λ∈R ,则点P 一定在( )A.△ABC 的内部B.AC 边所在的直线上C.AB 边所在的直线上D.BC 边所在的直线上 6.在△ABC 中AB ,=c AC ,=b ,若点D 满足2BD DC =,则AD 等于( ) A.23b 13+ c B.53c 23-b C.23b 13- c D.13b 23+c7.在△ABC 中,设AB =m AC ,=n ,D 、E 是边BC 上的三等分点,即BD=DE=EC,则AD = AE ,= .8.设为内一点,且满足,则为的( )A 外心B 内心C 重心D 垂心9.已知△ABC 中,点D 在BC 边上,且CD =4DB ,CD =r AB +s AC ,则3r+s 的值为 .12,e e 1212e e e e +-和1221326e e e e --和4122122e e e e ++和212e e e +和O ABC ∆0AO BO CO ++=O ABC ∆10.计算下列各题:(1)3(3a -b )+4(b -2a );14(2)[(a +2b )+3a 13(6-a -12b )];(3)()(λμ+a +b )()(λμ--a -b ).11.已知M 是△ABC 的重心,设MA =a MB ,=b ,用a 、b 表示AC 、BC .12.已知a ,b 是两个不共线的非零向量,若a 与b 起点相同,则实数t 为何值时,a ,t b 13(,a +b )三向量的终点共线?13.(1)在△ABC 中,D 为BC 边上的中点. 求证:12()AD AB AC =+. (2)求证:G 为△ABC 重心,O 为平面内不同于G 的任意一点,则13()OG OA OB OC =++.平面向量的基本定理及坐标表示1.B 2. A 3. C 4.A 5.B 6. A 7. 23m n AD += 23n m AE += 8. C 9. 8510. (1) a +b (2)32a b +(3) 22b a λμ+ 11. 2AC a b =-- 82C a b =--12. 解:由已知,存在唯一实数λ,使a -t b [λ=a 13(-a +b )],化简得23(1)λ-a =3()t λ-b .由于a ,b 不共线,故 233100t λλ-=,⎧⎨-=,⎩ 解得 3212t λ=,⎧⎨=,⎩ 即12t =时,三向量的终点共线. 13.(1)证法一:AD AB BD AD AC CD =+,=+, 又D 为中点,∴BD CD +=0.∴2AD AB AC =+,即12()AD AB AC =+. 证法二:延长AD 至E,使DE=AD.∵BD=DC,∴四边形ABEC 为平行四边形.∴AE AB AC =+.又AE AD DE AD DE =+,=, ∴12()AD AB AC =+. (2)证明:∵OG OB BG =+,OG OA AG OG OC CG =+,=+,又∵G为△ABC的重心,∴AG CG++=0.∴OG OG OG OA OB OC ++=++,即13()OG OA OB OC=++.。
平面向量基本定理及经典例题
平面向量基本定理一.教学目标:了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件;教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行.二.课前预习1.已知a =(x,2),b =(1,x),若a //b ,则x 的值为 ( )A 、2B 、 2-C 、 2±D 、 22.下列各组向量,共线的是 ( )()A (2,3),(4,6)a b =-= ()B (2,3),(3,2)a b ==()C (1,2),(7,14)a b =-= ()D (3,2),(6,4)a b =-=-3.已知点)4,3(),1,3(),4,2(----C B A ,且CB CN CA CM ⋅=⋅=2,3,则=MN ____4.已知点(1,5)A -和向量a =(2,3),若AB =3a ,则点B 的坐标为三.知识归纳1. 平面向量基本定理:如果12,e e 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+成立。
其中12,e e 叫做这一平面的一组____________,即对基底的要求是向量___________________;2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ,j 作基底,则对任一向量a ,有且只有一对实数x ,y ,使j y i x a +=、就把_________叫做向量a 的坐标,记作____________。
3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量OA 的坐标为OA=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为21P P =___________________,即平面内任一向量的坐标等于表示它的有向线段的____点坐标减去____点坐标.4.线段中点坐标公式:A (1x ,1y ),B (2x ,2y )线段中点为M ,则有:OM =________________,M 点的坐标为_____________.5.两个向量平行的充要条件是:向量形式:_____________)0(//⇔≠ b b a ;坐标形式: _____________)0(//⇔≠ b b a .6. a =(x,y ), 则a =___________.与a 共线的单位向量是:aa e ±=四.例题分析:例1.(1)、 已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P点的坐标为( )A (-14,16) (B )(22,-11) (C )(6,1) (D ) (2,4)(2)、已知两点A(4,1), B(7,-3), 则与向量AB 同向的单位向量是 ( )(A )⎪⎭⎫ ⎝⎛-54,53 (B)⎪⎭⎫ ⎝⎛-54,53 (C)⎪⎭⎫ ⎝⎛-53,54 (D)⎪⎭⎫ ⎝⎛-53,54(3)、若a =(2,3),b =(-4,7),则a 在b 方向上的投影为____________。
平面向量的基本定理及坐标运算] · [基础] · [知识点+典型例题]
平面向量的基本定理及坐标运算知识讲解一、平面向量的基本定理1.平面向量基本定理:如果1e 和2e 是一平面内的两个不平行的向量,那么该平面内的任一向量a ,存在唯一的一对实数1a ,2a ,使a =1122a e a e +.2.基底:我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记作{}12,e e .1122a e a e+叫做向量a 关于基底{}12,e e 的分解式.注:①定理中1e ,2e 是两个不共线向量;②a 是平面内的任一向量,且实数对1a ,2a 是惟一的; ③平面的任意两个不共线向量都可作为一组基底.3.平面向量基本定理的证明:在平面内任取一点O ,作11OE e =,22OE e =,OA a =. 由于1e 与2e 不平行,可以进行如下作图:过点A 作2OE 的平行(或重合)直线,交直线1OE 于点M , 过点A 作1OE 的平行(或重合)直线,交直线2OE 于点N , 于是依据平行向量基本定理,存在两个唯一的实数1a 和2a 分别有11OM a e =,22ON a e =, 所以1122a OA OM ON a e a e ==+=+证明表示的唯一性:如果存在另对实数x ,y 使12OA xe ye =+,则112212a e a e xe ye +=+, 即1122()()0x a e y a e -+-=,由于1e 与2e 不平行,如果1x a -与2y a -中有一个不等于0, 不妨设20y a -≠,则1212x a e e y a -=--,由平行向量基本定理,得1e 与2e 平行,这与假设矛盾,因此10x a -=,20y a -=,即1x a =,2y a =.4‘证明A ,B ,P 三点共线或点在线上的方法:已知A 、B 是直线l 上的任意两点,O 是l 外一点,则对直线l 上任意一点P ,存在实数t ,使OP 关于基底{},OA OB 的分解式为(1)OP t OA tOB =-+ ……①,并且满足①式的点P 一定在l 上.证明:设点P 在直线l 上,则由平行向量定理知,存在实数t ,使AP t AB=()t OB OA =-,∴(1)OP OA AP OA tOB tOA t OA tOB =+=+-=-+设点P 满足等式(1)OP t OA tOB =-+,则AP t AB =,即P 在l 上. 其中①式可称为直线l 的向量参数方程式5.向量AB 的中点的向量表达式:点M 是AB 的中点,则1()2OM OA OB =+.可推广到OAB ∆中,若M 为边AB 中点,则有1()2OM OA OB =+存在.二、向量的正交分解与向量的直角坐标运算:1.向量的直角坐标:如果基底的两个基向量1e ,2e 互相垂直,则称这个基底为正交基底.在正交基底下分解向量,叫做正交分解.向量的坐标表示:在直角坐标系中,一点A 的位置被点A 的位置向量OA 所唯一确定.设点A 的坐标为(,)x y ,由平面向量基本定理,有12(,)OA xe ye x y =+=,即点A 的位置向量OA 的坐标(,)x y ,也就是点A 的坐标;反之,点A 的坐标也是点A 相对于坐标原点的位置向量OA 的坐标.3.设12(,)a a a =,12(,)b b b =,则①1122(,)a b a b a b +=++;②1122(,)a b a b a b -=--;③1212(,)(,)a a a a a λλλλ== 注:① 两个向量的和与差的坐标等于两个向量相应坐标的和与差;② 数乘向量的积的坐标等于数乘以向量相应坐标的积.4.坐标含义:若11(,)A x y ,22(,)B x y ,则向量2121(,)AB OB OA x x y y =-=--;即:一个向量的坐标等于向量的终点的坐标减去始点的坐标.5.用平面向量坐标表示向量共线条件:设12(,)a a a =,12(,)b b b =,则12210a b a b -=就是两个向量平行的条件.若向量b 不平行于坐标轴,即10b ≠,20b ≠,则两个向量平行的条件是,相应坐标成比例.典型例题一.选择题(共11小题)1.(2018•新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣ B.﹣C.+D.+ 2.(2018•城关区校级模拟)在△ABC中,点D在BC边上,且,,则()A.,B.,C.,D.,3.(2018•资阳模拟)平行四边形ABCD中,M是BC的中点,若,则λ+μ=()A.B.2 C.D.4.(2018•黄浦区一模)已知向量,,则下列能使、成立的一组向量,是()A.,,,B.,,,C.,,,D.,,,5.(2018•吉林三模)下列各组向量中,可以作为基底的是()A.,,,B.,,,C.,,,D.,,,6.(2018春•薛城区校级期末)如图,已知=,=,=3,用、表示,则等于()A.+B.+C.+D.+7.(2018春•尧都区校级期末)如图所示,在△ABC中,BD=2CD,若,,则=()A.B.C.D.8.(2018•三明二模)已知平面向量=(1,2),=(﹣2,m),且∥,则|+|=()A.B.2 C.3 D.49.(2018•梅河口市校级二模)若向量,,,,则=()A. B.5 C.20 D.2510.(2018•咸阳二模)设向量和满足:,,则=()A.B.C.2 D.311.(2018•东莞市模拟)已知,,点B的坐标为(2,3),则点A的坐标为()A.(﹣1,﹣3)B.(﹣3,﹣1)C.(1,3) D.(5,9)二.解答题(共9小题)12.在△ABC中,E为线段AC的中点,试问在线段AC上是否存在一点D.使得=+,若存在,说明D点位置:若不存在,说明理由.13.已知△ABC中,对于任意实数t,=t(+),证明:点P始终在∠ACB的平分线上.14.已知:平行四边形ABCD,对角线AC,BD交于点O,点E为线段OB中点,完成下列各题(用于填空的向量为图中已有有向线段所表示向量).(1)当以{,}为基底时,设=,=,用,表示=;用,表示=;(2)设点MN分别为边DC,BC中点.①当以{,}为基底时,设=,=,用,表示,则=+.②当以{,}为基底时,设=,=,用,表示:=,=,=.15.过△ABC的重心G任作一条直线分别交AB,AC于点D、E,设=,=.(1)用,表示向量;(2)若=x,=y,且xy≠0,求+的值.16.如图,△ABC中,点E、F、G分别在边BC、AC、AB上,且===,设=,=.(1)用、表示向量;(2)证明:++=0.17.若AD与BE分别为△ABC的边,BC与AC上的中线AD交BE于点O,=,=,试用,表示.18.已知A(1,﹣2),B(2,1),C(3,2),D(﹣2,3).(1)求+2﹣3;(2)设=3,=﹣2,求及M、N点的坐标.19.已知向量=(1,﹣3),=(3,0),求下列向量的坐标:(1)+;(2)﹣3.20.已知点O(0,0),A(1,2),B(4,5),=t1+t2.(1)证明:当t1=1时,不论t2为何实数,A、B、P三点共线;(2)试求当t1、t2满足什么条件时,O、A、B、P能组成一个平行四边形.。
平面向量基本定理典例精讲
平面向量基本定理典例精讲1.在△ABC 中,D 为BC 边的中点,H 为AD 的中点,过点H 作一直线MN 分别交AB ,AC 于点M ,N ,若AM =xAB ,AN =yAC ,则x +4y 的最小值是()A.94B.2C.3D.1思路:若要求出x +4y 的最值,则需从条件中得到x ,y 的关系。
由M ,H ,N 共线可想到“爪”字型图,所以AH =mAM +nAN ,其中m +n =1,下面考虑将m ,n 的关系转为x ,y 的关系。
利用条件中的向量关系:AH =12AD 且AD =12AB +AC ,所以AH =14AB +AC ,因为AM =xAB ,AN =yAC ,所以AH =mxAB +nyAC ,由平面向量基本定理可得:mx =14ny =14⇒m =14x n =14y,所以m +n =1⇒14x +14y =1,所以x +4y =x +4y 14x +14y =141+4+4y x +x y ,而4y x +x y ≥24y x ⋅x y =4,所以x +4y ≥94答案:A2.在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =mAB +211AC ,则实数m 的值为()A.911 B.511 C.311D.211思路:观察到B ,P ,N 三点共线,利用“爪”字型图,可得AP =mAB +nAN ,且m +n =1,由AN =13NC 可得AN =14AC ,所以AP =mAB +14nAC ,由已知AP =mAB +211AC 可得:14n =211⇒n =811,所以m =311答案:C3.在平面内,已知OA =1,OB =3,OA ⋅OB =0,∠AOC =30°,设OC =mOA +nOB ,m ,n ∈R ,则m n 等于()A.±3 B.±3 C.±13 D.±33思路:所求为m n ,可以考虑对OC =mOA +nOB ,m ,n ∈R 两边同时对同一向量作数量积,从而得到m ,n 的方程,解出m ,n ,例如两边同对OA 作数量积,可得:OC ⋅OA =mOA 2+nOB ⋅OA ,因为OA =1,OA ⋅OB=0,所以有m =OC ⋅OA cos AOC OA 2=32OC ,同理,两边对OB 作数量积,可得:OC ⋅OB =mOA ⋅OB +nOB 2,即n =OC ⋅OB OB 2=OC cos BOC 3,所以m n =32⋅1cos BOC ,通过作图可得∠BOC =60°或∠BOC =120°,从而cos BOC =±12,代入可得:m n=±3答案:B 4.在正六边形ABCDEF 中,点P 是△CDE 内(包括边界)的一个动点,设AP =λAB +μAF λ,μ∈R ,则λ+μ的取值范围是()A.1,2B.2,3C.2,4D.3,4思路:因为P 为动点,所以不容易利用数量积来得到λ,μ的关系,因为六边形为正六边形,所以建立坐标系各个点的坐标易于确定,可得:B 1,0 ,C 32,32 ,D 1,3 ,F -12,32 ,E 0,3 ,则AB =1,0 ,AF =-12,32,所以设P x ,y ,则由AP =λAB +μAF 可得:P λ-12μ,32μ ,因为P 在△CDE 内,且CE :x +3y =3,CD :3x +y =23,所以P 所满足的可行域为x +3y ≥3y ≤33x +y ≤23,代入可得:λ+μ≥3μ≤2λ≤2,通过线性规划可得:λ+μ∈3,4答案:3,45.已知OA =1,OB =2,∠AOB =2π3,OC =12OA +13OB ,则OA 与OC 的夹角的余弦值为思路:若要求OA 与OC 的夹角,可联想到cos OA ,OC =OA ⋅OC OA OC ,所以只需确定OA ⋅OC 与OC ,由OC =12OA +13OB 一方面可以两边同时对OA 作数量积得到OA ⋅OC ,另一方面等式两边可以同时取模长的平方计算出OC ,进而求出cos OA ,OC 解:OC =12OA +13OB ⇒OC ⋅OA =12OA ⋅OA +13OB ⋅OA =16且OC =12OA +13OB ⇒OC 2=12OA +13OB 2=14OA 2+13OA ⋅OB +19OB 2=1336∴OC =136∴cos OA ,OC =OA⋅OC OA OC =161⋅136=1313答案:13136.平面内有三个向量OA ,OB ,OC ,其中OA 与OB 的夹角为2π3,OA 与OC 的夹角为π6,且OA =OB =2,OC =43,若OC =λOA +μOB λ,μ∈R ,则λ+μ的值为思路一:由图像可得:∠BOC =π2,由此条件中可提供OA ,OB ,OC 的模长及相互的夹角,若要求得λ+μ,可考虑求出λ,μ的值。
6.3.1平面向量基本定理课件(人教版)
学习目标
新课讲授
课堂总结
知识点2:基底
若 e1,e2 不共线,我们把{e1,e2}叫做表示这一平面内所有向量的
一个基底.
问题1:零向量可以作为基底吗?
零向量与任意向量共线,因此零向量不能作为基底.
问题2:一组平面向量的基底有多少对?
ห้องสมุดไป่ตู้
无数多对,只要是同一平面内的两个不共线向量都可以作为基底.
学习目标
新课讲授
课堂总结
问题3:若基底选取不同,则表示同一向量的实数λ1,λ2是否相同?
可以不同,也可以相同
F
以 OM ,ON 为基底
OC OM ON
M
C
以 OF,OE 为基底
OC OF OE
O
N
E
学习目标
新课讲授
课堂总结
练一练
1.若{e1,e2} 是平面内的一个基底,则下列四组向量能作为平面向量的
课堂总结
思考:如果给定的两向量 e1,e2 共线,还能用来表示这一平面内的任何一
个向量吗?
不能,此时1e1 2 e2 与 e1, e2 共线,当向量a
与它们不共线时,则无法表示.
只有 e1,e2 不共线,才可以用来表示平面内的任 一向量.
e1 e2
学习目标
新课讲授
课堂总结
思考:用 a 1e1 2e2 表示平面内任何一个向量 a 时,实数λ1,λ2是唯
①再给出另一个向量a ,还能这样表示吗?
M
C
②与e1 或 e2 共线的向量,a 能这样表示吗?
③零向量,如e1 何表示?
取λ1=λ2=0. 即 0 0e1 e20e2
O
NB
平面上任意一个向量a 都可以表示为:
高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案
1.平面向量基本定理如果e 1、e 2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2) (a ≠0),如果a ∥b ,那么x 1y 2-x 2y 1=0;反过来,如果x 1y 2-x 2y 1=0,那么a ∥b . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么下列说法正确的是________(填序号). ①若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0;②空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数); ③对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内;④对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对. 答案 ①2.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s =________. 答案 0解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝⎛⎭⎫-23=0. 3.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2 θ=0, ∴2sin θcos θ-cos 2 θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 答案 (1)45 (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.(2)设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.(1)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)(2)如图,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为________.答案 (1)-23e 1+512e 2 (2)13解析 (1)如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.(2)易知AG →=13AB →+13AC →,MN →=-xAB →+yAC →,故MG →=⎝⎛⎭⎫13-x AB →+13AC →.由于MG →与MN →共线,所以⎝⎛⎭⎫13-x y =-13x , 即xy =13(x +y ),因此xy x +y =13.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =________. (2)已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为__________. 答案 (1)⎝⎛⎭⎫-133,-43 (2)⎝⎛⎭⎫35,-45 解析 (1)由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝⎛⎭⎫-133,-43. (2)A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B→|A B →|=⎝⎛⎭⎫35,-45. 思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为__________.(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=________.答案 (1)(5,14) (2)(-6,21)解析 (1)设点B 的坐标为(x ,y ),则AB →=(x +1,y -5).由AB →=3a ,得⎩⎪⎨⎪⎧ x +1=6,y -5=9,解得⎩⎪⎨⎪⎧x =5,y =14.(2)BC →=3PC →=3(2PQ →-P A →)=6PQ →-3P A →=(6,30)-(12,9)=(-6,21).题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 答案 (1)(-4,-8) (2)(2,4)解析 (1)由a =(1,2),b =(-2,m ),且a ∥b , 得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8). (2)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 命题点2 利用向量共线求参数例4 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -54解析 AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5, ∴a =-54.命题点3 求交点坐标例5 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ). 又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP→=34OB →=(3,3),所以点P 的坐标为(3,3). 方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________.答案3+222解析 由题意得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (14分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思维点拨 可以建立平面直角坐标系,将向量坐标化,求出点A ,B 的坐标,用三角函数表示出点C 的坐标,最后转化为三角函数求最值. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[11分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[14分]温馨提醒 本题首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x +y 的最大值.引入向量的坐标运算使得本题比较容易解决,体现了解析法(坐标法)解决问题的优势,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.[方法与技巧]1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值. [失误与防范]1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练 (时间:40分钟)1.如图,设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内其他向量的基底的是________. 答案 ①③解析 ①中AD →,AB →不共线;③中CA →,DC →不共线.2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =________.答案 (-1,2)解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2). 3.已知a =(1,1),b =(1,-1),c =(-1,2),则c =________. 答案 12a -32b解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=________. 答案 12解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12.5.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为________.答案 3解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即mn=3. 6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.答案 2解析 设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.7.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.答案 (-2,-4)解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →=(-2,-4).8.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________. 答案 m ≠54解析 由题意得AB →=(-3,1),AC →=(2-m,1-m ),若A ,B ,C 能构成三角形,则AB →,AC →不共线,则-3×(1-m )≠1×(2-m ),解得m ≠54. 9.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).10.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0, 故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴AM →与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.B 组 专项能力提升(时间:15分钟)11.在△ABC 中,点P 是AB 上的一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则t 的值为________.答案 34解析 ∵CP →=23CA →+13CB →, ∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →.∴2AP →=PB →,因此P 为AB 的一个三等分点.∵A ,M ,Q 三点共线,∴CM →=xCQ →+(1-x )CA →=x 2CB →+(x -1)AC → (0<x <1). ∵CB →=AB →-AC →,∴CM →=x 2AB →+⎝⎛⎭⎫x 2-1AC →. ∵CP →=CA →-P A →=-AC →+13AB →, 且CM →=tCP →(0<t <1),∴x 2AB →+⎝⎛⎭⎫x 2-1AC →=t ⎝⎛⎭⎫-AC →+13AB →. ∴x 2=t 3且x 2-1=-t ,解得t =34. 12.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为________.答案 -12解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12. 13.已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________.答案 16解析 由m a +n b =c ,可得⎩⎪⎨⎪⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为OP +1=3+1=4,故(m -3)2+n 2的最大值为42=16.14.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.答案 3解析 ∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.如图所示,连结AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →. 又AD →=12(AB →+AC →), ∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.15.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).。
平面向量的基本定理习题及答案
§5.2 平面向量的基本定理及坐标表示(时间:45分钟 满分:100)一、选择题(每小题7分,共35分)1.已知向量a =(1,-2),b =(1+m,1-m ),若a ∥b ,则实数m 的值为( )A .3B .-3C .2D .-22.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( )A .(-2,-4)B .(-3,-6)C .(-4,-8)D .(-5,-10)3.设向量a =(3,3),b 为单位向量,且a ∥b ,则b 等于( )A.⎝⎛⎭⎫32,-12或⎝⎛⎭⎫-32,12 B.⎝⎛⎭⎫32,12 C.⎝⎛⎭⎫-32,-12 D.⎝⎛⎭⎫32,12或⎝⎛⎭⎫-32,-12 4.已知向量a =(1,-m ),b =(m 2,m ),则向量a +b 所在的直线可能为( )A .x 轴B .第一、三象限的角平分线C .y 轴D .第二、四象限的角平分线5.已知A(7,1)、B(1,4),直线ax y 21=与线段AB 交于C ,且=AC 2CB →,则实数a 等于( ) A .2 B .1 C.45 D.53二、填空题(每小题6分,共24分)6.若三点A (2,2),B (a,0),C (0,b ) (ab ≠0)共线,则1a +1b的值等于________. 7.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.8.若向量a )43,3(2--+=x x x 与相等,其中A (1,2),B (3,2),则x =________.9.若平面向量a ,b 满足|a +b |=1,a +b 平行于y 轴,a =(2,-1),则b =______________.三、解答题(共41分)10.(13分)a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?平行时它们是同向还是反向?11.(14分)三角形的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量m =(3c -b ,a -b ),n =(3a +3b ,c ),m ∥n .(1)求cos A 的值;(2)求sin(A +30°)的值.12.(14分)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知向量m =(a ,b ),向量n =(cos A ,cos B ),向量p =⎝⎛⎭⎫22sin B +C 2,2sin A ,若m ∥n ,p 2=9,求证:△ABC 为等边三角形.答案1.B2.C3.D4.A5.A6. 127. 128.-1 9.(-2,0)或(-2,2) 10.解 方法一 k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4),当k a +b 与a -3b 平行时,存在唯一实数λ使k a +b =λ(a -3b ),由(k -3,2k +2)=λ(10,-4)得,⎩⎪⎨⎪⎧ k -3=10λ,2k +2=-4λ.解得k =λ=-13, ∴当k =-13时,k a +b 与a -3b 平行, 这时k a +b =-13a +b =-13(a -3b ). ∵λ=-13<0,∴k a +b 与a -3b 反向. 方法二 由方法一知k a +b =(k -3,2k +2),a -3b =(10,-4),∵k a +b 与a -3b 平行,∴(k -3)×(-4)-10×(2k +2)=0,解得k =-13, 此时k a +b =⎝ ⎛⎭⎪⎫-13-3,-23+2=-13(a -3b ). ∴当k =-13时,k a +b 与a -3b 平行,并且反向. 11. 解 (1)因为m ∥n ,所以(3c -b )c -(a -b )(3a +3b )=0,即a 2=b 2+c 2-13bc , 又∵在△ABC 中,a 2=b 2+c 2-2b c cos A ,∴cos A =16. (2)由cos A =16得sin A =356, sin(A +30°)=sin A cos 30°+cos A sin 30° =356×32+16×12=1+10512. 12. 证明 ∵m ∥n ,∴a cos B =b cos A .由正弦定理,得sin A cos B =sin B cos A , 即sin(A -B )=0.∵A 、B 为△ABC 的内角,∴-π<A -B <π. ∴A =B .∵p 2=9,∴8sin 2B +C2+4sin 2A =9.∴4[1-cos(B +C )]+4(1-cos 2A )=9.∴4cos 2A -4cos A +1=0,解得cos A =12. 又∵0<A <π,∴A =π3.∴A =B =C . ∴△ABC 为等边三角形.。
平面向量基本定理的经典题目
平面向量基本定理的应用问题一、利用平面向量基本定理表示未知向量平面向量基本定理的内容:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e ,平面内选定两个不共线向量为基底,可以表示平面内的任何一个向量.【例1】如图,平面内有三个向量,,OA OB OC ,其中OA 与OB 的夹角为120︒,OA 与OC 的夹角为30︒,且3||2,||,||232OA OB OC ===,若(,)OC OA OB λμλμ=+∈R ,则( ) A. 4,2λμ== B. 83,32λμ==C. 42,3λμ==D. 34,23λμ== ABCO【分析】平面向量基本定理实质上是“力的分解原理”,过点C 分别作直线,OA OB 的平行线,分别与直线,OB OA 相交,利用向量加法的平行四边形法则和平面向量共线定理将OC 用,OA OB 表示.【解析】设与,OA OB 同方向的单位向量分别为,a b ,依题意有42OC a b =+,又2OA a =,32OB b =,则423OC OA OB =+,所以42,3λμ==.故选C.【点评】利用平面向量基本定理表示未知向量时,向量加法的三角形法则、平行四边形法则以及必要的平面几何知识是必要的.【小试牛刀】【2016届重庆市巴蜀中学高三上学期期中】在ABC ∆中,若点D 满足DC BD 2=,则=AD ( )A .AB AC 3231+ B .AC AB 3235- C .3132- D .3132+二、利用平面向量基本定理确定参数的值、取值范围问题平面向量基本定理是向量坐标的理论基础,通过建立平面直角坐标系,将点用坐标表示,利用坐标相等列方程,寻找变量的等量关系,进而表示目标函数,转化为函数的最值问题.【例2】【2016届浙江省绍兴市一中高三9月回头考】已知向量,OA OB 满足1OA OB ==,,(,,)OA OB OC OA OB R λμλμ⊥=+∈若M 为AB 的中点,并且1MC =,则λμ+的最大值是( )A .13-B .12+C .5D .13+【分析】首先利用已知条件建立适当的直角坐标系,并写出点,A B 的坐标,然后运用向量的坐标运算计算出点C 的坐标,再由1MC =可得,λμ所满足的等式关系即圆的方程,设t λμ=+,将其代入上述圆的方程并消去μ得到关于λ的一元二次方程,最后运用判别式大于等于0即可得出所求的答案.【解析】因为向量,OA OB 满足1OA OB ==,OA OB ⊥,所以将,A B 放入平面直角坐标系中,令(1,0),(0,1)A B ,又因为M 为AB 的中点,所以11(,)22M .因为(,,)OC OA OB R λμλμ=+∈,所以(1,0)(0,1)(,)OC OA OB λμλμλμ=+=+=,即点(,)C λμ.所以11(,)22MC λμ→=--,因为1MC =,所以2211()()122λμ-+-=,即点(,)C λμ在以11(,)22为圆心,1为半径的圆上.令t λμ=+,则t μλ=-,将其代入圆2211()()122λμ-+-=的方程消去μ得到关于λ的一元二次方程:22122()02t t t λλ-+--=,所以221(2)42()02t t t ∆=-⨯--≥,解之得2121t -+≤≤+,即λμ+的最大值是12+.故应选B .【点评】若题中有互相垂直的单位向量,大多可建立坐标系,转化为代数问题.【小试牛刀】如图,在正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心,AB 为半径的圆弧上的任意一点,设向量的最小值为则μλμλ++=,AP DE AC .三、三点共线向量式设,,A B C 是共线三点,O 是平面内任意一点,则(1)OB OA OC λλ=+-,其特征是“起点一致,终点共线,系数和为1”,利用向量式,可以求交点位置向量或者两条线段长度的比值.【例3】如图所示,已知点G 是△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且,AM x AB AN y AC ==,则xyx y+的值为 . NMGCBA【分析】g (x )在区间(-2,-1)内存在单调递减区间可转化为'()0g x ≤在区间(-2,-1)有解,且不是唯一解,参变分离为2a x+x≤,只需求右侧函数的最大值,再检验等号. 【解析】这题应该用到这个结论:O 是直线AB 外一点,OC mOA nOB =+,则,,A B C 三点共线的充要条件是1m n +=.本题中就是设AG mAM nAN =+,则1m n +=,由于G 是ABC ∆的重心,有AG =1()3AB AC +,又AG mxAB ny AC =+,根据平面向量基本定理得13mx ny ==,即13x m =,13y n=,代入得13xy x y =+. 【点评】本题实质是不等式的有解问题,可先参变分离,转化为求函数的最值问题,但是需注意因为函数单调是对于某一区间而言的,故还需检验解不是唯一.【小试牛刀】若点M 是∆ABC 所在平面内一点,且满足:3144AM AB AC =+. (1)求∆ABM 与∆ABC 的面积之比.(2)若N 为AB 中点,AM 与CN 交于点O,设BD xBM yBN =+,求,x y 的值. 四、平面向量基本定理在解析几何中的应用【例4】【2016届安徽省六安一中高三上第五次月考】设双曲线22221x y a b-=(0,0)a b >>的右焦点为F ,过点F 与x 轴垂直的直线l 交两渐近线于A ,B 两点,与双曲线的其中一个交点为P ,设坐标原点为O,若OP mOA nOB =+(,)m n R ∈,且29mn =,则该双曲线的渐近线为( ) A .34y x =±B .24y x =±C .12y x =±D .13y x =±【分析】过双曲线的右焦点(),0F c 并与x 轴垂直的直线:l x c =,与渐近线by x a=±的交点坐标为,,bc A c c ⎛⎫ ⎪⎝⎭ ,,bc B c c ⎛⎫- ⎪⎝⎭代入向量运算得到点P 的坐标,再代入双曲线方程求出离心率,从而渐近线方程可求.【解析】由题意可知,,bc A c c ⎛⎫ ⎪⎝⎭,,bc B c c ⎛⎫- ⎪⎝⎭代入OP mOA nOB =+,得()(),bc P m n c m n a ⎛⎫+- ⎪⎝⎭,代入双曲线方程22221x y a b -=中,整理得241e mn =;又因为29mn =,可得2322,144b e e a =∴=-=,所以该双曲线的渐近线为24y x =±,故B 为正确答案. 【点评】解析几何中基本量的计算要注意方程思想的应用和运算的准确性.【小试牛刀】【2016届河北省邯郸市一中高三一轮收官考试】已知A 是双曲线22221x y a b-=(0a >,0b >)的左顶点,1F 、2F 分别为左、右焦点,P 为双曲线上一点,G 是12FF ∆P 的重心,若1G F λA =P ,则双曲线的离心率为( )A .2B .3C .4D .与λ的取值有关【迁移运用】1.如图,在平行四边形ABCD 中,a AB =,b AD =,NC AN 3=,则BN =( )(用a ,b 表示)A .→→-b a 4341 B .→→-b a 4143C .→→-a b 4341 D .→→-a b 4143 2.设向量)20cos ,20(sin ),25sin ,25(cos oo oo b a ==→→,若→→→+=b t a c (t ∈R),则2()c 的最小值为( ) A .22D.213.【2016届广西武鸣县高中高三8月月考】直线过抛物线的焦点,且交抛物线于两点,交其准线于点,已知,则( )A.2B.C.D.44.已知,OA OB 是两个单位向量,且OA OB ⋅=0.若点C 在∠AOB 内,且∠AOC=30°,则(,),OC mOA nOB m n R =+∈则nm( ) A .13 B .3 C 3 D .3 5.在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN =λAB +μAC ,则λ+μ的值为( ) A.12 B.13 C.14D.16. 已知b a OB b a OA a +=-=-=,),3,1(,若AOB ∆是以O 为直角顶点的等腰直角三角形,则AOB ∆的面积是( )A .3B .2C .22D .4[来源:学#科#网]7.过坐标原点O 作单位圆221x y +=的两条互相垂直的半径OA OB 、,若在该圆上存在一点C ,使得OC aOA bOB =+(a b R ∈、),则以下说法正确的是( )A .点(),P a b 一定在单位圆内B .点(),P a b 一定在单位圆上C .点(),P a b 一定在单位圆外D .当且仅当0ab =时,点(),P a b 在单位圆上8. 在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是( ) A .(0,] B .(,] C .(,] D .(,]9.在平面直角坐标系中,O 为坐标原点,直线:10l x ky -+=与圆22:4C x y +=相交于, A B 两点,OM OA OB =+.若点M 在圆C 上,则实数k =( ) A .2- B .1- C .0 D .110.如图,在扇形OAB 中,60AOB ︒∠=,C 为弧AB 上的一个动点.若OC -→xOA y OB -→-→=+,则y x 4+的取值范围是 .11. 如图,四边形OABC 是边长为1的正方形,3=OD ,点P 为BCD ∆内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于12.(2015北京理13)在ABC △中,点M ,N 满足2AM MC =,BN NC =.若MN x AB y AC =+,则x = ;y = .。
高中数学必修4平面向量基本定理
a 1 e1 2 e2
性 性
( 2 ) 基底:把不共线的向量 e1 , e2 叫做这一平面内 思考: 上述表达式中的 1, 2 是否唯一? 所有向量的一组基底. ( 3 )正交分解: 一个平面向量用一组基底 e1 , e2 , 表示成: a 1 e1 2 e2 称它为向量的分解. 当 e1 ,
平面向量基本定理
问题 1:给定平面内任意两个向量 e1、e2, 请你作出向量 3e1+2e2,e1-2e2。
e2
e1
探究活动:
给定平面内任意两个向量e1、e2,给出四种不同形式 的向量a的位置,探讨三者之间的关系。
a 1e1 2 e2
1 0, 2 0
a 1e1 2 e2
a 1e1 2 e2
a 1e1 2 e2
1 0, 2 0
1 0, 2 0
1 0, 2 0
e2
a
平移 共同起点
a e2 O e1
e1
a OA OB
B
分解
a e2 O e1 A
C
OA 1 e1 OB 2 e2
1 1
a e e
2 2
e1
a
e2
a
若 a 0, 取 1 2 0, 使 0 e e 1 1 2 2
若
a
与 e1 使
(e2 )
共线,则 2 0 (1 0),
a 1 e1 2 e2
(1)平面向量基本定理
唯 如果 e1 , e2 , 是同一平面内两个不共线向量, 存 那么对于这一平面的任意向量 a, 在 一 有且只有 存在 一对实数, 1 , 2 ,
平面向量的基本定理
P B
A
o
例4、已知梯形ABCD中,AB 2 DC
M,N分别是DC,AB的中点, 若AB e1, AD e2 用e1, e2表示DC,BC,MN
DM C
A
N
B
作业 数学之友:T5.5
;云客云控 / 云通天下
;
讶地望向热心人,而对方却给她使了一个“走你”の眼色.“谢谢.”陆羽点点头轻声道声谢,不管对方有没听见,已快步转身拐进人群里.即将走出门口时,她回头看了一眼.那是一名体格健硕の青年男子,浓眉大眼,一件短袖恤衫束在牛仔裤里,寸板头显得他形象粗犷略性感.一身の阳刚之气充 满男人味,看人の时候似笑非笑の,气势内敛却又难掩自身の强悍,吸引了不少目光.把那酒鬼扔地下之后,扫一眼全场没发现异常,他来到吧台敲了敲台面.“你老板呢?”“刚有事出去了,让您等会儿.”问得轻松,酒吧主管答得状似轻松随意.如此淡定肯定有所依仗,要么常客要么是熟人.站 得老远の陆羽放心了,迅速离开这个是非之地.这时,青年男子点点头,回头冷淡地瞟一眼挨了自己教训の酒鬼.对方好不容易爬起来,终于有熟人发现他不见了出来找并扶起他,三人四下张望吆喝:“谁?!刚才谁推我?!妈.の...”吧哩吧啦嚷着要找人报仇.事不关己无人搭理,大家继续各 玩各,灯红酒绿,熙熙攘攘の.一杯色泽炫酷の特饮摆在眼前,青年男子转过头来,粗砺而灵活の手缓缓转着杯子.“刚才那情形往日没人理?”“有,当然有,没你快而已.”酒吧主管轻笑,“管之前一般先看女士の表现,如果她愿意,我们也管不着.”这种场合鱼龙混杂,不缺奇葩,你情我愿の买 卖有の是.青年嘴角扯了下,边喝边继续打量四周,那眼神异常锋锐,“没有未成年吧?”感觉刚才那女生长相青涩稚嫩,像是未成年少女.如果是,哈哈,这店完了.“大门口刷胡集取票,旁边还有四双眼睛盯着,不信可以查监控,发现半个算我输...”酒吧主管戏谑举手比划一下眼睛,以示本店绝 对合理合法,严格执行相关の法律法规,未成年绝对混不进来.青年嗤了声,不再多言,仔细品尝杯中美酒耐心等待...晚上の八九点,大都市精彩の夜生活才刚刚开始.刚从喧嚣中脱身回到家の陆羽,打开自己紧锁の房门,把包包挂好.然后第一时间去洗漱一番,把沾了满身酒气の自己从头洗到脚, 弄得干干净净香喷喷の才肯罢休.拿起搁在枕头边の相册翻了翻,想起那捞不着の家人,心境十分复杂.不过,这儿毕竟是出租屋,使用灵能多有不便.纤细の手指在相册の硬面摩梭几下,最终把它放回行李箱.待找到一个真正属于自己の地方再慢慢探究,人活着就有希望,她总有一天能找出原因 来.放好相册,陆羽来到书桌前打开电脑.作为一名具有预知能力の新人类,趋吉避凶是必然の选择.梦中の她是一名下等人(普通人),一些重要の情报狄家儿女从不与她分享,甚至不想让她知道得太多.幸运の是,人类の是非天性让她从其他普通群体中得知一个重要信息.原来华夏除了军部建 立の安全区,西南部还有一个自始至终很安全の地方...第24部分由于路途远,江湖险恶,狄、陆两家不得已选择另外两个去处.乱世没有国家,只有四大安全区、八大基地,及其他小部落或乌合之众组成の小基地.华夏幸存者比其他地方多些,除了安全区,八大基地の其中两个也位于西南与东部 地区.附近の中小型基地几乎全部被三大区招安了,成为各路人马奔赴大本营の休息补给站点.其余の小基地要么归顺,要么到处流窜,谁撞上谁倒霉,除非能力够强悍.最大の安全区掌握在军方手中,其余两个基地の首领也非等闲之辈.据陆羽所知,东部地区在战乱开始时曾发生几场不大不小の 动乱,是狄家日后要投奔之所,不必考虑.军部安全区人口太多,也是陆家人以后の选择.远离狄家,陆家也不是善茬,能不掺和尽量躲着点儿.所以,西南部最适合她.那地方远是远了些,胜在如今是太平盛世,交通方便,慢慢走着去也是一种颇为享受の生活方式.所谓背靠大树好乘凉.她不知道那 位基地领主是男是女,叫什么名字,什么时候出现,也不知道详细位置,反正西南一带均在对方の管辖之内.能与之做邻居最好,做不了就借贵人の屋檐挡挡风雨.相信二三十年后の她,有能力保护自己.再不济の,她干脆逃进画里,等外面の世界清洗完再出来应该不会挨揍吧?话说,她の能力谈不 上稀罕,在厨房里听到那些妇人说,人家大首领一般稀罕の是能储存物资の私人空间、治愈术和其他具有叩伤力の能耐.而她呢?世上有几个人愿意脱离现实,永远躲在图画世界里?画里の世界跟现在一样,所有物资要用钱买,可新世纪の人类手里没钱,总不能隔几天或者几个月就出来大街上 捡钱吧?还有,如果每个人出入得靠她牵引,她岂不成了人形活电梯?陆羽汗:...算了,那个以后再想.她记得有人说过,那位牛人の基地之前是一个世外桃源,就是一个农家乐旅游区,不知哪处美景吸引了他/她.可是,这些年来各种形形式式の农家乐、世外桃源层出不穷,没有一千,至少也有 几百个点遍布华夏各地.就拿刚刚查过の西南地区,与世外桃源扯上关系の有十几二十间,农家乐约莫数十家.到底是哪里呢?查看了老半天,一点儿头绪都没有.她索性趴在床上冥思苦想,努力搜刮脑海里の存货看有没遗漏什么.那个梦只做了一遍,想找线索,她只能靠回忆.可惜一直到她睡着, 仍是一无所获...第二天の十一点左右,陆羽被一阵敲门声惊醒,她睡眼惺忪地爬起来打开门一看.“陆陆...”见她还没起床,有些疲累の陈悦然愣了下.要知道,睡到自然醒这种事一向是她の专利,陆羽每天准时六点起床.“干嘛?有话快说,我刚起床...”正在洗耳恭听却没下文, 被叫醒の女生一脸不耐.一想到自己现在头未梳牙未刷,心境极差.两人相识四年,陈悦然知道她有起床气,顾不得关心她昨晚干嘛了,忙支支吾吾地,“呃,陆陆,你,你跟狄景涛之间...”又是这个,到底要说几遍才肯信?“最后说一次,我跟他之间没关系,现在没有,以后也没有!”陆羽显得异 常烦躁.说完,她泄气地双手自然垂直,目光呆滞倚在门边,眼前一片白濛濛.“那就好,”陈悦然仿佛松了一口气,“昨晚我们喝多了...不知该怎么办...”语焉不详,颇有深意.喝多了...嚯?!陆羽紧闭の双眼倏地一睁,猛然清醒.那三个字堪称她一生の噩梦,教训太深刻,硬是把她从游魂状态 吓醒过来.“喝多了?那你们...”陆羽下意识地往对方脖子一瞧,哟,原该印在自己脖子上の草莓红点,如今落在她の身上.这,该同情她么?她の出神呆愣,看在别人眼里成了自己男人被抢后の不知所措,因为狄景涛在海山时说陆羽已默认他是男朋友.煮熟の鸭子飞了,不气才怪呢.脑补一番, 陈悦然只觉得扬眉吐气,同时含有几分羞涩.毕竟是第一次,还是她主动の,脸上从今早起一直火辣辣の热.“是,我们已经...”“哦.”表说,她知道了.哦?陈悦然脸上の羞赧之色渐褪,就这样?“还有事吗?我要刷牙.”陆羽打个哈欠,转身回房拿了一个橡筋把头发随意束起,然后去漱口.陈 悦然一路跟着,“陆陆,你生气了?是我们不对,你骂吧!别憋着...”噗,谁憋了?正在刷牙一嘴泡沫の姑娘险喷,不禁冲镜子翻了个白眼...陆羽洗漱完毕,回头发现陈悦然正烦躁地在客厅走来走去.见她出来,陈悦然立即上前问:“陆陆,你辞职了?”“对呀.”“那干嘛推荐谢妙妙顶你の位 置?我不行吗?”刚接到の消息,可把她给气坏了.文教授の工作室福利待遇好,跟在他身边前途无量,这是多少学子梦寐以求の事?难得有机会干嘛不便宜她?不是朋友吗?她の质问让陆羽哭笑不得,“你当然不行,扪心自问,你哪方面能跟谢妙妙比?”以前顾及她自尊心不好直说,一个只懂 抄书の能跟创作型人才比较?不自量力.“你...”真相是残酷の,对方软绵柔和の声线仿佛带着刺,陈悦然被刺得面红耳赤,无言以对.“对了,这房子还有三个月到期,我不租了,而且随时可能退租,你要另找地方住.不搬也行,房租、押金你一个人付,或者另外找人跟你合租.”边说边忙碌着, 她要烧开水泡面吃,只烧自己の.陈悦然听罢神色大变.这房子是两位学姐转租の,押金由陆羽付,房租两人对半分.如果一个人租,陆羽撑得住,她绝对不行.“陆陆,你讨厌我?”静默一会儿,陈悦然缓缓说道.“不,”陆羽转过身来,眼神清冷,“是你讨厌我,陈悦然.”不然回来得瑟什么?幸灾 乐灾の,跟梦里一模一样,看着烦.假面被撕破,陈悦然冷着脸出了门.陆羽没理她,捧着一碗泡面回到电脑前查看世外桃源の图画与资料,仔细判断哪个地方更吸引人.凡是合心意の风景皆收藏路线,列表,待改天打印出来再一路找过去.至于房子,退是退定了の,行李先放这儿,三个月应该足够她 找到目の地.第25部分说做就做,先把西南地区所有跟世外桃源、农家乐有关の资料列表,下午の时候她出去打印,等回来时,意外发现有三个男生在她家搬东西.幸亏是认识の,其中一个是狄景涛,另外两个是陌生人.“小周,先帮忙把柜子搬出来.”狄景涛充当指挥.陆羽拧眉进屋来,“你们干 嘛?”狄景涛出现在这里,九成九是陈悦然招来の.今非昔比,狄景涛只瞥她一眼,懒得跟她说话,径自帮忙搬东西.倒是里边の陈悦然听到动静从房间里出来,淡笑道:“我让景涛帮忙搬东西,你不是让我滚吗?如你所愿.”望过来の眼神充满讽刺.她是负担不起全部房租,更给不起押金,可她有 男人养啊!反观姓陆の,父母死了,狄景涛说她为了钱连兄嫂都不认,哈,毫无倚仗,看她以后怎么死.陆羽眉角轻挑,唉,撕破脸了,光明正大当着男人面给她上眼药.这么幼稚の手段她是不会计较の,更没必要解释,“那你搬仔细了,别落下东西.这房子是我租の,明天我要出远门,所以今晚找人过 来换锁,以后可没人给你开门了.”“陆羽,你能不能要点脸?悦悦以前怎么对你你全忘了?有必要做得那么绝?”以前自己瞎了眼看错人,如今她当面欺负他の女人,狄景涛实在咽不下这口气,冲她横眉冷对.陆羽打开自己の房门,一边回头反驳:“我说の是实话,总不能她想搬多久我就陪着 等多久吧?哦,你们脸大我要迁就?”双贱合璧欺负她是不是?哼,换了以前她会息事宁人,现在难了,意义上她比常人多了一段经历,知道有些人喜欢得寸进尺.以陈悦然の为人,拖得越久,以后越可能出妖蛾子,不得不防.怼完狄景涛,瞟一眼陈悦然,见她满脸委屈地站在他身边,小鸟依人似の. 陆羽心中仅剩の一点同情心烟消云散,当着两人の面给房东打电话要求换锁,所有费用由她付.谈妥之后,她回自己房间也开始收拾东西.“景涛,算了,别跟她计较.”陈悦然见狄被怼得脸色铁青,知道两人再无可能,心喜之余也有点心疼,温声安抚道.“呸,谁跟她计较,见利忘义の东西,早
平面向量基本定理应用
定理推广:平面向量基本定理可以推广到三维空间,成为空间向量基本定理。
定理证明
平面向量基本定理:如果两个向量a和b满足a·b=0,那么向量a和b互相垂 直。 证明过程:假设a和b不互相垂直,那么a·b≠0。
反证法:假设a和b不互相垂直,那么a·b≠0。
平行四边形法则:力的合成 与分解遵循平行四边形法则
应用实例:力的合成与分解 在工程、物理学等领域的应
用
速度和加速度的研究
平面向量基本定理:向量的加法和数乘运算
速度和加速度的定义:速度和加速度是向量,可以用平面向量基本定理进行研究
速度和加速度的关系:速度和加速度是相互垂直的向量,可以用平面向量基本定理进行研究 速度和加速度的应用:速度和加速度是物理学中的重要概念,可以用平面向量基本定理进行研 究
实例二:已知两个 力的大小和方向, 求合力的大小和方 向
实例三:已知一个 力的大小和方向, 求另一个力的大小 和方向
实例四:已知两个 力的大小和方向, 求第三个力的大小 和方向
Байду номын сангаас
速度和加速度实例
速度:物体在单位时间内通过的距离 加速度:物体速度的变化率 实例:汽车行驶过程中,速度随时间变化,加速度表示速度的变化率 应用:通过速度和加速度的测量,可以分析物体的运动状态和运动规律
解决物理问题实例
实例二:利用平面向量基本 定理求解力的平衡问题
实例一:利用平面向量基本 定理求解力的合成与分解
实例三:利用平面向量基本 定理求解力的转动问题
实例四:利用平面向量基本 定理求解力的传递问题
平面向量基本定理的应用前景
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量基本定理一.教学目标:了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 22.下列各组向量,共线的是 ( )()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r3.已知点)4,3(),1,3(),4,2(----C B A ,且⋅=⋅=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳1. 平面向量基本定理:如果12,e e u r u u r是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。
其中12,e e u r u u r叫做这一平面的一组____________,即对基底的要求是向量___________________;2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ϖ,j ϖ作基底,则对任一向量a ϖ,有且只有一对实数x ,y ,使j y i x a ϖϖϖ+=、就把_________叫做向量a ϖ的坐标,记作____________。
3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为21P P =___________________,即平面内任一向量的坐标等于表示它的有向线段的____点坐标减去____点坐标.4.线段中点坐标公式:A (1x ,1y ),B (2x ,2y )线段中点为M ,则有:OM =________________,M 点的坐标为_____________.5.两个向量平行的充要条件是:向量形式:_____________)0(//⇔≠ρρρρb b a ;坐标形式: _____________)0(//⇔≠ρρρρb b a .6. a ϖ=(x,y ),则=___________.与a ϖ共线的单位向量是:= 四.例题分析:例1.(1)、 已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P点的坐标为( )A (-14,16) (B )(22,-11) (C )(6,1) (D ) (2,4) (2)、已知两点A(4,1), B(7,-3), 则与向量同向的单位向量是 ( )(A )⎪⎭⎫ ⎝⎛-54,53 (B)⎪⎭⎫ ⎝⎛-54,53 (C)⎪⎭⎫ ⎝⎛-53,54 (D)⎪⎭⎫ ⎝⎛-53,54(3)、若a r =(2,3),b r =(-4,7),则a r 在b r方向上的投影为____________。
例2.(1)已知向量(1,2),(,1),2a b x u a b ===+r r r r r,2v a b =-r r r ,且//u v r r ,求实数x 的值。
(2) 已知向量a =,1),b =(0,-1),c =(k 。
若a -2b 与c 共线,则k=______例3.已知(1,0),(2,1)a b==vv,(1)求|3|baϖϖ+;(2)当k为何实数时,k-aϖbϖ与baϖϖ3+平行,平行时它们是同向还是反向?例4.如图,平行四边形ABCD中,,E F分别是,BC DC的中点,G为交点,若ABuuu ra=r,= br,(1)试以ar,br为基底表示、BFu u u r;(2)求证:A、G、C三点共线。
例5. 如图,平行四边形ABCD中,BE=41BA,BF=51BD,求证:E,F,C三点共线。
(利用向量证明)五.课后作业:1.31(,sin),(cos,)23a bαα==r r且//a br r,则锐角α为 ( )CE F()A 30o ()B 60o ()C 45o ()D 75o2.平面内有三点(0,3),(3,3),(,1)A B C x --,且∥,则x 的值是 ( )()A 1 ()B 5 ()C 1- ()D 5-3.如果1e ,2e 是平面α内所有向量的一组基底,那么下列命题中正确的是( )()A 若实数12,λλ使11220e e λλ+=u r u u r r,则 120λλ==()B 空间任一向量a 可以表示为1122a e e λλ=+r u r u u r,这里12,λλ是实数 ()C 对实数12,λλ,向量1122e e λλ+u r u u r不一定在平面α内()D 对平面内任一向量,使1122a e e λλ=+r u r u u r 的实数12,λλ有无数对4.下列各组向量中:①)2,1(1-=e )7,5(2=e ②)5,3(1=e )10,6(2=e ③)3,2(1-=e )43,21(2-=e 其中能作为表示它们所在平面内所有向量的基底的是( )A .①B .①③C .②③D .①②③5.若A(-1,-2),B(4,8),且3-=,则C 点坐标为 ;6.已知)2,3(=,)1,2(-=,若b a b a λλ++与平行,则λ= ;7.已知向量(1,2)a =-r ,与方向相反,且||2||b a =r r,那么向量的坐标是_ _ 8.已知(5,4),(3,2)a b ==r r,则与23a b -r r 平行的单位向量的坐标为 。
9.已知(3,1),(1,2),(1,7)a b c =-=-=r r r ,求p a b c =++u r r r r ,并以,a b r r 为基底来表示p u r。
10.向量(,12),(4,5),(10,)OA k OB OC k ===u u u r u u u r u u u r,当k 为何值时,,,A B C 三点共线?平面向量的数量积一、教学目标:掌握平面向量的数量积及其性质,掌握两向量夹角及两向量垂直的充要条件和向量数量积的简单运用.教学重点:平面向量数量积及其应用 二、课前预习:1.已知向量(3,4),(2,1)a b ==-r r,如果向量a xb +r r 与b r 垂直,则x 的值为( )()A 323 ()B 233 ()C 2()D 25-2.下列命题正确的是 ___________①0AB BA +=u u u r u u u r r ; ②00AB ⋅=r u u u r r ; ③AB AC BC -=u u u r u u u r u u u r ; ④00AB ⋅=u u u r3.平面向量,a b r r 中,已知(4,3),||1a b =-=r r,且5a b ⋅=r r ,则向量b =r ___ __ ____. 4.已知向量,a b r r 的方向相同,且||3,||7a b ==r r ,则|2|a b -=r r___ ____。
5.已知向量a ρ和b ρ的夹角是120°,且2||=a ρ,5||=b ρ,则a b a ρρρ⋅-)2(= 。
三、知识归纳 1.平面向量的数量积:(1)定义:a ϖ·0,0__(__________ρρρρρ≠≠=b a b ,θ为a ϖ与b ϖ的夹角,)0πθ≤≤;特例:0ρ·0=a ρ,a ϖ2 =a ϖ·a ϖ=|a ϖ|2;()cos cos a b θθr r 叫做向量()a b b a r r r r在方向上在方向上的________________;注._________cos ==θθ(2).坐标运算:若a ϖ=(1x ,1y ),b ϖ=(2x ,2y )则a ϖ·b ϖ=______________.2.两个向量的夹角与长度已知向量a ϖ=(1x ,1y ),b ϖ=(2x ,2y )(1)两个向量a ϖ与b ϖ的夹角θ:向量形式:θcos =__________________;坐标形式:θcos =__________________.注: 0.0cos ,2,0cos ,2;0cos ,20<⋅<<<=⋅==>⋅><<b a 即即即θπθπθπθθπθ⋅=⋅=⋅=⋅=,,0,即反向时,即同向时πθθ(2)向量a ϖ的长度|a ϖ|2=a ϖ2 =a ϖ·a ϖ=___________。
|a ϖ|=___________其中a ϖ=),(y x ;==+两点间的距离公式:|21P P |=___________________ 其中1P =(1x ,1y ),2P =(2x ,2y ). 3.向量的平行、垂直如果,两个向量a ϖ=(1x ,1y ),b ϖ=(2x ,2y )那么,(1)两个向量平行的充要条件是:向量形式:_____________)0(//⇔≠ρρρρb b a ;坐标形式: _____________)0(//⇔≠ρρρρb b a .(2)两个向量垂直的充要条件是:向量形式:a ϖ⊥b ϖ⇔____________;坐标形式:a ϖ⊥b ϖ⇔____________.四:例题分析:例1.已知平面上三个向量a ρ、b ρ、c ρ的模均为1,它们相互之间的夹角均为120°,(1)求证:)(b a ρρ-⊥c ρ;(2)若1||>+b a k ρρ)(R k ∈,求k 的取值范围.例2.已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) (1)若||52=,且//,求的坐标; (2)若|b |=,25且b a 2+与-2垂直,求a 与b 的夹角θ.例3.1.若向量a,b,c满足a∥b且a⊥c ,则A .4B .3C .2D .02.已知单位向量,的夹角为60°,则__________3.在正三角形中,是上的点,,则 。
4.已知向量满足,且,,则a 与b 的夹角为 .5.在边长为1的正三角形ABC 中, 设则__________________.例4.(1) 已知由向量AB =(3,2),AC =(1,k )确定的△ABC 为直角三角形,求k 的值。
(2) 设OA =(3,1),OB =(-1,2),OC ⊥OB ,BC ∥OA ,试求满足 OD +OA =OC 的OD 的坐标(O 为原点)。