【精选】四川省中考数学试卷,含答案)(20200905165333)
2020年四川省成都市中考数学试卷(后附答案及详尽解析)
2020年四川省成都市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)(2020•成都)﹣2的绝对值是( )A .﹣2B .1C .2D .12 2.(3分)(2020•成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )A .B .C .D .3.(3分)(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A .3.6×103B .3.6×104C .3.6×105D .36×1044.(3分)(2020•成都)在平面直角坐标系中,将点P (3,2)向下平移2个单位长度得到的点的坐标是( )A .(3,0)B .(1,2)C .(5,2)D .(3,4)5.(3分)(2020•成都)下列计算正确的是( )A .3a +2b =5abB .a 3•a 2=a 6C .(﹣a 3b )2=a 6b 2D .a 2b 3÷a =b 36.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )A .5人,7人B .5人,11人C .5人,12人D .7人,11人7.(3分)(2020•成都)如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若AC =6,AD =2,则BD 的长为( )A .2B .3C .4D .6 8.(3分)(2020•成都)已知x =2是分式方程k x +x−3x−1=1的解,那么实数k 的值为( )A .3B .4C .5D .6 9.(3分)(2020•成都)如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE 的长为( )A .2B .3C .4D .10310.(3分)(2020•成都)关于二次函数y =x 2+2x ﹣8,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(﹣2,0)和(4,0)D .y 的最小值为﹣9二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2020•成都)分解因式:x 2+3x = .12.(4分)(2020•成都)一次函数y =(2m ﹣1)x +2的值随x 值的增大而增大,则常数m的取值范围为 .13.(4分)(2020•成都)如图,A ,B ,C 是⊙O 上的三个点,∠AOB =50°,∠B =55°,则∠A 的度数为 .14.(4分)(2020•成都)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为 .三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−√3|−√9; (2)解不等式组:{4(x −1)≥x +2,①2x+13>x −1.②. 16.(6分)(2020•成都)先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2. 17.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有 人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为 ;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.18.(8分)(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)19.(10分)(2020•成都)在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若△AOB的面积为△BOC的面积的2倍,求此直线的函数表达式.20.(10分)(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB =10,tan B =43,求⊙O 的半径;(3)若F 是AB 的中点,试探究BD +CE 与AF 的数量关系并说明理由.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 .22.(4分)(2020•成都)关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根,则实数m 的取值范围是 .23.(4分)(2020•成都)如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,D 1E 1̂,E 1F 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 .24.(4分)(2020•成都)在平面直角坐标系xOy 中,已知直线y =mx (m >0)与双曲线y =4x 交于A ,C 两点(点A 在第一象限),直线y =nx (n <0)与双曲线y =−1x 交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为 .25.(4分)(2020•成都)如图,在矩形ABCD 中,AB =4,BC =3,E ,F 分别为AB ,CD边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为 ,线段DH 长度的最小值为 .五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表: x (元/件)12 13 14 15 16 y (件) 1200 1100 1000 900 800(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27.(10分)(2020•成都)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF •FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的角平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求AB BC 的值.28.(12分)(2020•成都)在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C (0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求S 1S 2的最大值; (3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB .若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.2020年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)(2020•成都)﹣2的绝对值是( )A .﹣2B .1C .2D .12 【解答】解:﹣2的绝对值为2.故选:C .2.(3分)(2020•成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )A .B .C .D .【解答】解:从左面看是一列2个正方形.故选:D .3.(3分)(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A .3.6×103B .3.6×104C .3.6×105D .36×104【解答】解:36000=3.6×104,故选:B .4.(3分)(2020•成都)在平面直角坐标系中,将点P (3,2)向下平移2个单位长度得到的点的坐标是( )A .(3,0)B .(1,2)C .(5,2)D .(3,4)【解答】解:将点P (3,2)向下平移2个单位长度所得到的点坐标为(3,2﹣2),即(3,0),故选:A .5.(3分)(2020•成都)下列计算正确的是( )A .3a +2b =5abB .a 3•a 2=a 6C .(﹣a 3b )2=a 6b 2D .a 2b 3÷a =b 3【解答】解:A 、3a 与2b 不是同类项,不能合并,原计算错误,故此选项不符合题意;B 、a 3•a 2=a 5,原计算错误,故此选项不符合题意;C 、(﹣a 3b )2=a 6b 2,原计算正确,故此选项符合题意;D 、a 2b 3÷a =ab 3,原计算错误,故此选项不符合题意.故选:C .6.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )A .5人,7人B .5人,11人C .5人,12人D .7人,11人【解答】解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人. 故选:A .7.(3分)(2020•成都)如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若AC =6,AD =2,则BD 的长为( )A .2B .3C .4D .6【解答】解:由作图知,MN 是线段BC 的垂直平分线,∴BD =CD ,∵AC =6,AD =2,∴BD =CD =4,故选:C .8.(3分)(2020•成都)已知x =2是分式方程k x +x−3x−1=1的解,那么实数k 的值为( )A .3B .4C .5D .6 【解答】解:把x =2代入分式方程得:k 2−1=1,解得:k =4.故选:B .9.(3分)(2020•成都)如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE 的长为( )A .2B .3C .4D .103【解答】解:∵直线l 1∥l 2∥l 3,∴AB BC =DE EF ,∵AB =5,BC =6,EF =4,∴56=DE 4,∴DE =103,故选:D .10.(3分)(2020•成都)关于二次函数y =x 2+2x ﹣8,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(﹣2,0)和(4,0)D .y 的最小值为﹣9【解答】解:∵二次函数y =x 2+2x ﹣8=(x +1)2﹣9=(x +4)(x ﹣2),∴该函数的对称轴是直线x =﹣1,在y 轴的左侧,故选项A 错误;当x =0时,y =﹣8,即该函数与y 轴交于点(0,﹣8),故选项B 错误;当y=0时,x=2或x=﹣4,即图象与x轴的交点坐标为(2,0)和(﹣4,0),故选项C错误;当x=﹣1时,该函数取得最小值y=﹣9,故选项D正确;故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2020•成都)分解因式:x2+3x=x(x+3).【解答】解:x2+3x=x(x+3).12.(4分)(2020•成都)一次函数y=(2m﹣1)x+2的值随x值的增大而增大,则常数m的取值范围为m>12.【解答】解:∵一次函数y=(2m﹣1)x+2中,函数值y随自变量x的增大而增大,∴2m﹣1>0,解得m>1 2.故答案为:m>1 2.13.(4分)(2020•成都)如图,A,B,C是⊙O上的三个点,∠AOB=50°,∠B=55°,则∠A的度数为30°.【解答】解:∵OB=OC,∠B=55°,∴∠BOC=180°﹣2∠B=70°,∵∠AOB=50°,∴∠AOC=∠AOB+∠BOC=70°+50°=120°,∵OA=OC,∴∠A=∠OCA=180°−120°2=30°,故答案为:30°.14.(4分)(2020•成都)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为 {5x +2y =102x +5y =8 .【解答】解:设1头牛值金x 两,1只羊值金y 两, 由题意可得,{5x +2y =102x +5y =8,故答案为:{5x +2y =102x +5y =8.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15.(12分)(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−√3|−√9;(2)解不等式组:{4(x −1)≥x +2,①2x+13>x −1.②.【解答】解:(1)原式=2×√32+4+2−√3−3 =√3+4+2−√3−3 =3;(2){4(x −1)≥x +2,①2x+13>x −1.②,由①得,x ≥2; 由②得,x <4,故此不等式组的解集为:2≤x <4.16.(6分)(2020•成都)先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2. 【解答】解:原式=x+3−1x+3•(x−3)(x+3)x+2=x ﹣3, 当x =3+√2时, 原式=√2.17.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有180人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为126°;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.【解答】解:(1)根据题意得:54÷30%=180(人),答:这次被调查的学生共有180人;故答案为:180;(2)根据题意得:360°×(1﹣20%﹣15%﹣30%)=126°,答:扇形统计图中“篮球”对应的扇形圆心角的度数为126°,故答案为:126°;(3)列表如下:甲乙丙丁甲一(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)一(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)一(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)一∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)=212=16.18.(8分)(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)【解答】解:过点D作DE⊥AB于点E,根据题意可得四边形DCBE是矩形,∴DE=BC,BE=DC=61,在Rt△ADE中,∵∠ADE=45°,∴AE=DE,∴AE=DE=BC,在Rt △BDE 中,∠BDE =22°, ∴DE =BEtan22°≈610.40≈152.5,∴AB =AE +BE =DE +CD =152.5+61≈214(米). 答:观景台的高AB 的值约为214米.19.(10分)(2020•成都)在平面直角坐标系xOy 中,反比例函数y =mx (x >0)的图象经过点A (3,4),过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点. (1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式.【解答】解:(1)∵反比例函数y =mx(x >0)的图象经过点A (3,4), ∴k =3×4=12,∴反比例函数的表达式为y =12x ; (2)∵直线y =kx +b 过点A , ∴3k +b =4,∵过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点, ∴B (−bk,0),C (0,b ),∵△AOB 的面积为△BOC 的面积的2倍, ∴12×4×|−bk |=2×12×|−bk |×|b |,∴b =±2, 当b =2时,k =23, 当b =﹣2时,k =2,∴直线的函数表达式为:y=23x+2,y=2x﹣2.20.(10分)(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tan B=43,求⊙O的半径;(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.【解答】解:(1)如图,连接OD,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)∵tan B=43=ACBC,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x 2+9x 2=100, ∴x =2, ∴BC =6,∵AC =AD =8,AB =10, ∴BD =2, ∵OB 2=OD 2+BD 2, ∴(6﹣OC )2=OC 2+4, ∴OC =83, 故⊙O 的半径为83;(3)连接OD ,DE ,由(1)可知:△ACO ≌△ADO ,∴∠ACO =∠ADO =90°,∠AOC =∠AOD , 又∵CO =DO ,OE =OE , ∴△COE ≌△DOE (SAS ), ∴∠OCE =∠OED , ∵OC =OE =OD ,∴∠OCE =∠OEC =∠OED =∠ODE ,∴∠DEF =180°﹣∠OEC ﹣∠OED =180°﹣2∠OCE , ∵点F 是AB 中点,∠ACB =90°, ∴CF =BF =AF , ∴∠FCB =∠FBC ,∴∠DFE =180°﹣∠BCF ﹣∠CBF =180°﹣2∠OCE , ∴∠DEF =∠DFE , ∴DE =DF =CE ,∴AF =BF =DF +BD =CE +BD .四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21.(4分)(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 49 . 【解答】解:∵a =7﹣3b , ∴a +3b =7, ∴a 2+6ab +9b 2 =(a +3b )2 =72 =49, 故答案为:49.22.(4分)(2020•成都)关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根,则实数m 的取值范围是 m ≤72.【解答】解:∵关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根, ∴△=(﹣4)2﹣4×2×(m −32)=16﹣8m +12≥0, 解得:m ≤72, 故答案为:m ≤72.23.(4分)(2020•成都)如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,D 1E 1̂,E 1F 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 7π .【解答】解:FA1̂的长=60⋅π⋅1180=π3,A 1B 1̂的长=60⋅π⋅2180=2π3, B 1C 1̂的长=60⋅π⋅3180=3π3, C 1D 1̂的长=60⋅π⋅4180=4π3, D 1E 1̂的长=60⋅π⋅5180=5π3, E 1F 1̂的长=60⋅π⋅6180=6π3,∴曲线F A 1B 1C 1D 1E 1F 1的长度=π3+2π3+⋯+6π3=21π3=7π, 故答案为7π.24.(4分)(2020•成都)在平面直角坐标系xOy 中,已知直线y =mx (m >0)与双曲线y =4x交于A ,C 两点(点A 在第一象限),直线y =nx (n <0)与双曲线y =−1x交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为 (√2,2√2)或(2√2,√2) .【解答】解:联立y =mx (m >0)与y =4x 并解得:{x =2√m y =±2√m,故点A 的坐标为(√m,2√m ),联立y =nx (n <0)与y =−1x 同理可得:点D (√−1n ,−√−n ),∵这两条直线互相垂直,则mn =﹣1,故点D (√m ,1√m ),则点B (−√m ,√m), 则AD 2=(√m−√m )2+(2√m √m )2=5m +5m ,同理可得:AB 2=5m +5m =AD 2,则AB =14×10√2,即AB 2=252=5m +5m , 解得:m =2或12,故点A 的坐标为(√2,2√2)或(2√2,√2), 故答案为:(√2,2√2)或(2√2,√2).25.(4分)(2020•成都)如图,在矩形ABCD 中,AB =4,BC =3,E ,F 分别为AB ,CD 边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为3√2,线段DH长度的最小值为√13−√2.【解答】解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O 作ON⊥CD于N.∵四边形ABCD是矩形,DF=CF,AE=EB,∴四边形ADFE是矩形,∴EF=AD=3,∵FQ∥PE,∴△MFQ∽△MEP,∴MFME =FQPE,∵PE=2FQ,∴EM=2MF,∴EM=2,FM=1,当点P与A重合时,PQ的值最大,此时PM=√AE2+ME2=√22+22=2√2,MQ=√FQ2+MF2=√12+12=√2,∴PQ=3√2,∵MF∥ON∥BC,MO=OB,∴FN=CN=1,DN=DF+FN=3,ON=12(FM+BC)=2,∴OD=√DN2+ON2=√32+22=√13,∵BH⊥PQ,∴∠BHM=90°,∵OM=OB,∴OH=12BM=12×√22+22=√2,∵DH≥OD﹣OH,∴DH ≥√13−√2,∴DH 的最小值为√13−√2, 故答案为3√2,√13−√2.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表: x (元/件) 12 13 14 15 16 y (件)120011001000900800(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润. 【解答】解:(1)∵y 与x 满足一次函数的关系, ∴设y =kx +b ,将x =12,y =1200;x =13,y =1100代入得:{1200=12k +b 1100=13k +b ,解得:{k =−100b =2400,∴y 与x 的函数关系式为:y =﹣100x +2400; (2)设线上和线下月利润总和为m 元,则m =400(x ﹣2﹣10)+y (x ﹣10)=400x ﹣4800+(﹣100x +2400)(x ﹣10)=﹣100(x ﹣19)2+7300,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元. 27.(10分)(2020•成都)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF •FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的角平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求AB BC的值.【解答】解:(1)∵将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处, ∴BC =BF ,∠FBE =∠EBC , ∵BC =2AB , ∴BF =2AB , ∴∠AFB =30°, ∵四边形ABCD 是矩形, ∴AD ∥BC ,∴∠AFB =∠CBF =30°, ∴∠CBE =12∠FBC =15°;(2)∵将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处, ∴∠BFE =∠C =90°,CE =EF , 又∵矩形ABCD 中,∠A =∠D =90°,∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°, ∴∠AFB =∠DEF , ∴△F AB ∽△EDF , ∴AF DE=AB DF,∴AF •DF =AB •DE ,∵AF •DF =10,AB =5, ∴DE =2,∴CE =DC ﹣DE =5﹣2=3, ∴EF =3,∴DF =√EF 2−DE 2=√32−22=√5, ∴AF =10√5=2√5, ∴BC =AD =AF +DF =2√5+√5=3√5. (3)过点N 作NG ⊥BF 于点G ,∵NF =AN +FD , ∴NF =12AD =12BC , ∵BC =BF , ∴NF =12BF ,∵∠NFG =∠AFB ,∠NGF =∠BAF =90°, ∴△NFG ∽△BF A , ∴NG AB=FG FA=NF BF=12,设AN =x ,∵BN 平分∠ABF ,AN ⊥AB ,NG ⊥BF , ∴AN =NG =x , 设FG =y ,则AF =2y , ∵AB 2+AF 2=BF 2,∴(2x )2+(2y )2=(2x +y )2, 解得y =43x .∴BF =BG +GF =2x +43x =103x . ∴AB BC=AB BF=2x103x =35.28.(12分)(2020•成都)在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C (0,﹣2). (1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求S 1S 2的最大值;(3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB .若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y =a (x +1)(x ﹣4). ∵将C (0,﹣2)代入得:4a =2,解得a =12,∴抛物线的解析式为y =12(x +1)(x ﹣4),即y =12x 2−32x ﹣2.(2)过点D 作DG ⊥x 轴于点G ,交BC 于点F ,过点A 作AK ⊥x 轴交BC 的延长线于点K ,∴AK ∥DG , ∴△AKE ∽△DFE , ∴DF AK =DEAE , ∴S 1S 2=S △BDE S △ABE=DE AE=DF AK,设直线BC 的解析式为y =kx +b ,∴{4k +b =0b =−2,解得{k =12b =−2, ∴直线BC 的解析式为y =12x ﹣2, ∵A (﹣1,0), ∴y =−12−2=−52, ∴AK =52,设D (m ,12m 2−32m ﹣2),则F (m ,12m ﹣2),∴DF =12m −2−12m 2+32m +2=−12m 2+2m . ∴S 1S 2=−12m 2+2m52=−15m 2+45m =−15(m −2)2+45.∴当m =2时,S 1S 2有最大值,最大值是45.(3)符合条件的点P 的坐标为(689,349)或(6+2√415,3+√415). ∵l ∥BC ,∴直线l 的解析式为y =12x ,设P (a ,a2),①当点P 在直线BQ 右侧时,如图2,过点P 作PN ⊥x 轴于点N ,过点Q 作QM ⊥直线PN 于点M ,∵A (﹣1,0),C (0,﹣2),B (4,0),∴AC =√5,AB =5,BC =2√5,∵AC 2+BC 2=AB 2,∴∠ACB =90°, ∵△PQB ∽△CAB ,∴PQ PB=AC BC=12,∵∠QMP =∠BNP =90°,∴∠MQP +∠MPQ =90°,∠MPQ +∠PBN =90°, ∴∠MQP =∠PBN ,∴△QPM ∽△PBN , ∴QM PN=PM BN=PQ PB =12,∴QM =a4,PM =12(a ﹣4)=12a ﹣2, ∴MN =a ﹣2,BN ﹣QM =a ﹣4−a4=34a ﹣4, ∴Q (34a ,a ﹣2),将点Q 的坐标代入抛物线的解析式得12×(34a)2−32×34a ﹣2=a ﹣2,解得a =0(舍去)或a =689. ∴P (689,349).②当点P 在直线BQ 左侧时,由①的方法同理可得点Q 的坐标为(54a ,2).此时点P 的坐标为(6+2√415,3+√415).。
2020年四川省内江市中考数学试卷(有详细解析)
2020年四川省内江市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共12小题,共36.0分)1.12的倒数是()A. 2B. 12C. −12D. −22.下列四个数中,最小的数是()A. 0B. −12020C. 5D. −13.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.4.如图,已知直线a//b,∠1=50°,则∠2的度数为()A. 140°B. 130°C. 50°D. 40°5.小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是()A. 80,90B. 90,90C. 90,85D. 90,956.将直线y=−2x−1向上平移两个单位,平移后的直线所对应的函数关系式为()A. y=−2x−5B. y=−2x−3C. y=−2x+1D. y=−2x+37.如图,在△ABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则S△ABC=()A. 30B. 25C. 22.5D. 208.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是AC⏜的中点,则∠D的度数是()A. 30°B. 40°C. 50°D. 60°9.如图,点A是反比例函数y=kx图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为()A. 43B. 83C. 3D. 410.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是()A. 12x=(x−5)−5 B. 12x=(x+5)+5C. 2x=(x−5)−5D. 2x=(x+5)+511.如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知AB=3,BC=4,则EF的长为()A. 3B. 5C. 5√136D. √1312.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是()A. 12≤t<2 B. 12<t≤1C. 1<t≤2D. 12≤t≤2且t≠1二、填空题(本大题共8小题,共44.0分)13.函数y=12x−4中,自变量x的取值范围是______ .14.2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为______.15.已知关于x的一元二次方程(m−1)2x2+3mx+3=0有一实数根为−1,则该方程的另一个实数根为______.16.如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为______.17.分解因式:b4−b2−12=______.18.若数a使关于x的分式方程x+2x−1+a1−x=3的解为非负数,且使关于y的不等式组{y−34−y+13≥−13122(y−a)<0的解集为y≤0,则符合条件的所有整数a的积为______.19.如图,在平面直角坐标系中,点A(−2,0),直线l:y=√33x+√33与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1//x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2//x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,以此类推……,则点A2020的纵坐标是______.20.已知抛物线y1=−x2+4x(如图)和直线y2=2x+b.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2.若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①当x=2时,M的最大值为4;②当b=−3时,使M>y2的x的取值范围是−1<x<3;③当b=−5时,使M=3的x的值是x1=1,x2=3;④当b≥1时,M随x的增大而增大.上述结论正确的是______.(填写所有正确结论的序号)三、解答题(本大题共8小题,共70.0分))−1−|−2|+4sin60°−√12+(π−3)0.21.计算:(−1222.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB//CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.23.我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有______名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为______,图中m的值为______;(3)学校决定从本次比赛获得“A等级”的学生只能怪,选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.24.为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求B处到灯塔P的距离;(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?25.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若DF=2,BC=4√3,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.26.我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)=mn.例如:18可以分解成1×18,2×9或3×6,因为18−1>9−2>6−3,所以3×6是18的最佳分解,所以f(18)=36=12.(1)填空:f(6)=______;f(9)=______;(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求f(t)的最大值;(3)填空:①f(22×3×5×7)=______;②f(23×3×5×7)=______;③f(24×3×5×7)=______;④f(25×3×5×7)=______.27.如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.(1)连结CQ,求证:AP=CQ;AC,求CE:BC的值;(2)若AP=14(3)求证:PF=EQ.28.如图,抛物线y=ax2+bx+c经过A(−1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为3时,求点D的坐标;(3)过点D作DE⊥BC,垂足为点E,是否存在点D,使得△CDE中的某个角等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.答案和解析1.A×2=1,解:∵12∴1的倒数是2,22.D|<|−1|,解:∵|−12020>−1,∴−12020∴5>1>−1>−1,2020因此最小的是−1,3.C解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、既不是轴对称图形,也不是中心对称图形,故本选项不合题意.4.B解:∵直线a//b,∴∠3=∠1=50°.又∵∠2+∠3=180°,∴∠2=130°.5.B解:将数据重新排列为80,85,90,90,95,所以这组数据的中位数是90,众数为90,6.C解:直线y=−2x−1向上平移两个单位,所得的直线是y=−2x+1,7.D解:∵D、E分别是AB、AC边上的中点,∴DE//BC,DE=12BC,∴△ADE∽△ABC,∴S△ADES△ABC =(DEBC)2=14,∴S△ADE:S四边形BCED=1:3,即S△ADE:15=1:3,∴S△ADE=5,∴S△ABC=5+15=20.8.A解:连接OB,如图,∵点B是AC⏜的中点,∴∠AOB=∠COB=12∠AOC=12×120°=60°,∴∠D=12∠AOB=30°.解:∵AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,∴△AOC的面积为2,∵S△AOC=12|k|=2,且反比例函数y=kx图象在第一象限,∴k=4,10.A解:设绳索长x尺,则竿长(x−5)尺,依题意,得:12x=(x−5)−5.11.C解:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠A=∠C=∠EDF=90°,∴BD=√AB2+AD2=√32+42=5,∵将矩形ABCD沿BE所在直线折叠,使点A落在BD上的点M处,∴AE=EM,∠A=∠BME=90°,∴∠EMD=90°,∵∠EDM=∠ADB,∴△EDM∽△BDA,∴EDBD =EMAB,设DE=x,则AE=EM=4−x,∴x5=4−x3,解得x=52,∴DE=52,同理△DNF∽△DCB,∴DF BD =NF BC , 设DF =y ,则CF =NF =3−y ,∴y5=3−y4,解得y =53.∴DF =53. ∴EF =√DE 2+DF 2=√(52)2+(53)2=5√136. 12. D解:∵y =tx +2t +2=t(x +2)+2(t >0),∴直线y =tx +2t +2(t >0)经过点(−2,2),如图,当直线经过(0,3)时,直线y =tx +2t +2(t >0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则3=2t +2,解得t =12;当直线经过(0,6)时,直线y =tx +2t +2(t >0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则6=2t +2,解得t =2;当直线经过(0,4)时,直线y =tx +2t +2(t >0)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,则4=2t +2,解得t =1;∴直线y =tx +2t +2(t >0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是12≤t ≤2且t ≠1,13.x≠2解:根据题意得2x−4≠0,解得x≠2;∴自变量x的取值范围是x≠2.14.7×108解:7亿=700000000=7×108,15.−13解:把x=−1代入原方程得,(m−1)2−3m+3=0,即:m2−5m+4=0,解得,m=4,m=1(不合题意舍去),当m=4时,原方程变为:9x2+12x+3=0,即,3x2+4x+1=0,,解得,x1=−1,x2=−1316.15解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB=ADtan30∘=10√3,∵A′H⊥AB,∴AH=HB=5√3,∴A′H=√3AH=15,∵AM+MN=A′M+MN≤A′H,∴AM+MN≤15,∴AM+MN的最小值为15.17.(b+2)(b−2)(b2+3)解:b4−b2−12=(b2−4)(b2+3)=(b+2)(b−2)(b2+3),故答案为:(b+2)(b−2)(b2+3).18.40解:去分母,得:x+2−a=3(x−1),解得:x=5−a2,∵分式方程的解为非负数,∴5−a2≥0,且5−a2≠1,解得a≤5且a≠3,解不等式y−34−y+13≥−1312,得:y≤0,解不等式2(y−a)<0,得:y<a,∵不等式组的解集为y≤0,∴a>0,∴0<a≤5,则整数a的值为1、2、4、5,∴符合条件的所有整数a的积为1×2×4×5=40,19.22020−12√3解:∵直线l:y=√33x+√33与x轴交于点B,∴B(−1,0),∴OB=1,∵A(−2,0),∴OA=2,∴AB=1,∵△ABA1是等边三角形,∴A1(−32,√32),把y=√32代入y=√33x+√33,求得x=12,∴B1(12,√32),∴A1B1=2,∴A2(−12,√32+√32×2),即A2(−12,3√32),把y=3√32代入y=√33x+√33,求得x=72,∴B2(72,3√32),∴A2B2=4,∴A3(3,3√32+√32×4),即A3(3,7√32),……,A n的纵坐标为2n−12√3,∴点A2020的纵坐标是22020−12√3,20.②③④解:①当x =2时,y 1=4,y 2=4+b ,无法判断4与4+b 的大小,故①错误. ②如图1中,b =−3时,由{y =−x 2+4x y =2x −3,解得{x =−1y =−5或{x =3y =3, ∴两个函数图象的交点坐标为(−1,−5)和(3,3),观察图象可知,使M >y 2的x 的取值范围是−1<x <3,故②正确, ③如图2中,b =−5时,图象如图所示,M =3时,y 1=3,∴−x 2+4x =3,解得x =1或3,故③正确,④当b =1时,由{y =2x +1y =−x 2+4x,消去y 得到,x 2−2x +1=0, ∵△=0,∴此时直线y =2x +1与抛物线只有一个交点,∴b >1时,直线y =2x +b 与抛物线没有交点,∴M 随x 的增大而增大,故④正确.21. 解:原式=−2−2+4×√32−2√3+1 =−2−2+2√3−2√3+1=−3.22. (1)证明:∵AB//CD ,∴∠B =∠C ,在△ABE 和△CDF 中,{∠A =∠D ∠B =∠C AE =DF,∴△ABE≌△CDF(AAS),∴AB =CD ;(2)解:∵△ABE≌△CDF ,∴AB =CD ,BE =CF ,∠B =∠C ,∵∠B =40°,∴∠C =40°∵AB =CF ,∴CF =CD ,∴∠D =∠CFE =12(180°−40 °)=70°.23. 5 72° 40解:(1)3÷15%=20(名),20−3−8−4=5(名),故答案为:5;(2)360°×420=72°,8÷20=40%,即m=40,故答案为:72°,40;(3)“A等级”2男1女,从中选取2人,所有可能出现的结果如下:共有6种可能出现的结果,其中女生被选中的有4种,∴P(女生被选中)=46=23.24.解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°−∠PAB−∠ABP=30°,∴PB=AB=60海里;(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=60,在Rt△PBH中,PH=PB⋅sin60°=60×√32=30√3,∵30√3>50,∴海监船继续向正东方向航行是安全的.25.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂直平分BC,∴EC=EB,在△OCE和△OBE中{OC=OB OE=OE EC=EB,∴△OCE≌△OBE(SSS),∴∠OBE=∠OCE=90°,∴OB⊥BE,∴BE与⊙O相切;(2)解:设⊙O的半径为x,则OD=OF−DF=x−2,OB=x,在Rt△OBD中,BD=12BC=2√3,∵OD2+BD2=OB2,∴(x−2)2+(2√3)2=x2,解得x=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴OE=2OB=8,∴EF=OE−OF=8−4=4.(3)∵∠BOE =60°,∠OBE =90°,∴在Rt △OBE 中,BE =√3OB =4√3,∴S 阴影=S 四边形OBEC −S 扇形OBC=2×12×4×4√3−120⋅π×42360, =16√3−16π3.26. 23 1 2021 2435 3548 2435解:(1)6可分解成1×6,2×3,∵6−1>3−2,∴2×3是6的最佳分解,∴f(6)=23,9可分解成1×9,3×3,∵9−1>3−3,∴3×3是9的最佳分解,∴f(9)=33=1,故答案为:23;1; (2)设交换t 的个位上数与十位上的数得到的新数为t′,则t′=10b +a , 根据题意得,t′−t =(10b +a)−(10a +b)=9(b −a)=54, ∴b =a +6,∵1≤a ≤b ≤9,a ,b 为正整数,∴满足条件的t 为:17,28,39;∵F(17)=117,F(28)=47,F(39)=139,∵47>117>139,∴F(t)的最大值为47; (3)①∵22×3×5×7的是最佳分解为20×21,∴f(22×3×5×7)=2021,故答案为:2021;②∵23×3×5×7的最佳分解为24×35,∴f(23×3×5×7)=2435,故答案为2435;③∵24×3×5×7的最佳分解是35×48,∴f(24×3×5×7)=3548,故答案为:3548;④∵25×3×5×7的最佳分解是48×70,∴f(25×3×5×7)=4870=2435,故答案为:2435.27.(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC−∠PBC=∠PBQ−∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵{BA=BC∠ABP=∠CBQ BP=BQ,∴△BAP≌△BCQ(SAS).∴CQ=AP.(2)解:过点C作CH⊥PQ于H,过点B作BT⊥PQ于T.∵AP=14AC,∴可以假设AP=CQ=a,则PC=3a,∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵△ABP≌△CBQ,∴∠BCQ=∠BAP=45°,∴∠PCQ=90°,∴PQ=√PC2+CQ2=√(3a)2+a2=√10a,∵CH⊥PQ,∴CH=PC⋅CQPQ =3√1010a,∵BP=BQ,BT⊥PQ,∴PT=TQ,∵∠PBQ=90°,∴BT=12PQ=√102a,∵CH//BT , ∴CE EB =CH BT =3√1010a √102a =35, ∴CE CB =38.(3)解:结论:PF =EQ ,理由是:如图2,当F 在边AD 上时,过P 作PG ⊥FQ ,交AB 于G ,则∠GPF =90°,∵∠BPQ =45°,∴∠GPB =45°,∴∠GPB =∠PQB =45°,∵PB =BQ ,∠ABP =∠CBQ ,∴△PGB≌△QEB ,∴EQ =PG ,∵∠BAD =90°,∴F 、A 、G 、P 四点共圆,连接FG ,∴∠FGP =∠FAP =45°,∴△FPG 是等腰直角三角形,∴PF =PG ,∴PF =EQ .28. 解:(1)将A(−1,0)、B(4,0)、C(0,2)代入y =ax 2+bx +c 得:{a −b +c =016a +4b +c =0c =2,解得:{a =−12b =32c =2.故抛物线的解析式为y =−12x 2+32x +2. (2)如图2,设点M 的坐标为(0,m),使得△BCM 的面积为3,3×2÷4=1.5,则m =2+1.5=72, M(0,72) ∵点B(4,0),C(0,2),∴直线BC 的解析式为y =−12x +2,∴DM 的解析式为y =−12x +72,联立抛物线解析式{y =−12x +72y =−12x 2+32x +2, 解得{x 1=3y 1=2,{x 2=1y 2=3. ∴点D 的坐标为(3,2)或(1,3).(3)分两种情况考虑:①当∠DCE =2∠ABC 时,取点F(0,−2),连接BF ,如图3所示.∵OC =OF ,OB ⊥CF ,∴∠ABC =∠ABF ,∴∠CBF =2∠ABC .∵∠DCB =2∠ABC ,∴∠DCB =∠CBF ,∴CD//BF .∵点B(4,0),F(0,−2),∴直线BF 的解析式为y =12x −2, ∴直线CD 的解析式为y =12x +2.联立直线CD 及抛物线的解析式成方程组得:{y =12x +2y =−12x 2+32x +2, 解得:{x 1=0y 1=2(舍去),{x 2=2y 2=3, ∴点D 的坐标为(2,3);②当∠CDE =2∠ABC 时,过点C 作CN ⊥BF 于点N ,交OB 于H.作点N 关于BC 的对称点P ,连接NP 交BC 于点Q ,如图4所示.∵∠OCH =90°−∠OHC ,∠OBF =90°−∠BHN ,∠OHC =∠BHN ,∴∠OCH =∠OBF .在△OCH 与△OBF 中{∠COH =∠BOF =90∘∠OCH =∠OBF, ∴△OCH∽△OBF ,∴OHOF =OC OB ,即OH 2=24,∴OH =1,H(1,0).设直线CN 的解析式为y =kx +n(k ≠0),∵C(0,2),H(1,0),∴{n =2k +n =0,解得{k =−2n =2, ∴直线CN 的解析式为y =−2x +2. 连接直线BF 及直线CN 成方程组得:{y =12x −2y =−2x +2,解得:{x =85y =−65, ∴点N 的坐标为(85,−65).∵点B(4,0),C(0,2),∴直线BC 的解析式为y =−12x +2. ∵NP ⊥BC ,且点N(85,−65),∴直线NP 的解析式为y =2x −225.联立直线BC 及直线NP 成方程组得:{y =−12x +2y =2x −225, 解得:{x =6425y =1825, ∴点Q 的坐标为(6425,1825). ∵点N(85,−65),点N ,P 关于BC 对称,∴点P 的坐标为(8825,6625).∵点C(0,2),P(8825,6625), ∴直线CP 的解析式为y =211x +2. 将y =211x +2代入y =−12x 2+32x +2整理,得:11x 2−29x =0,解得:x 1=0(舍去),x 2=2911,∴点D 的横坐标为2911.综上所述:存在点D ,使得△CDE 的某个角恰好等于∠ABC 的2倍,点D 的横坐标为2或2911.。
2020年四川省中考数学试卷(含答案)
四川省中考数学试卷 A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题 (每小题3分,共30分) 1、4的算术平方根是( )A .4B .2C .2±D .4± 2、下面四个几何体中,俯视图为四边形的是( )3、钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为( ) A .44×105 B .0.44×105 C .4.4×106 D .4.4×1054、下列运算中正确的是( )A .3a -a =3B .a 2 + a 3 = a 5C .(—2a )3 = —6a 3D .ab 2÷a = b 2 5、等腰三角形的一条边长为6,另一边长为13,则它的周长为( ) A .25 B .25或32 C .32 D .19 6、函数1-=x y 自变量x 取值范围是( )A. 1>xB.1x ≥C.1-≥xD.1≤x 7、如图,已知OP 平分∠AOB ,∠AOB=60°,CP=2,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .如果点M 是OP 的中点,则DM 的长是( )A .2B .2C .3 D .328、如图,菱形ABCD 的两条对角线相交于O ,若AC=6,BD=4,则菱形ABCD 的周长是( ) A .24 B .16 C .134 D .329、已知二次函数1)3(2+-=x y .下列说法:①其图象的开口向下;②其图象的对称轴为直线3=x ;③其图象顶点坐标为(3,-1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )A.1个B.2个C.3个D.4个10、如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a )(a >3),半径为3,函数y=x 的图象被⊙PA B C D第7题图 第8题图第10题图截得的弦AB 的长为24,则a 的值是( )A .4B .23+C .23D .33+第Ⅱ卷(非选择题,共70分)二、填空题:(每小题4分,共16分) 11、不等式423>-x 的解集是__________.12、如图,直线l 1∥l 2∥l 3,点A 、B 、C 分别在直线l 1、l 2、l 3上.若∠1=70°,∠2=50°,则∠ABC = 度13、如图,在Rt △ABC 中,∠C =90°,AB =2BC ,则sinB 的值为________ 14、如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 等于_______ 三、解答题:(本大题共6个小题,共54分) 15、(本小题满分12分,每小题6分)(1)计算:1845sin 6)2(2022-+--- (2)解不等式组⎩⎨⎧+<+>-②① . , 7)2(2513x x x16、(本小题满分6分) 先化简,再求值:2)441(2-÷-+a aa ,其中5=a17、(本小题满分8分)如图,山顶有一铁塔AB 的高度为20米,为测量山的高度BC ,在山脚点D 处测得塔顶A 和塔基B 的仰角分别为60º和45º,求山的高度BC.(结果保留根号)第12题图第14题图CB A图2第13题图yxODCBA18、(本小题满分8分)我市某中学艺术节期间,向学校学生征集书画作品。
2020年四川省内江市中考数学试卷和答案解析
2020年四川省内江市中考数学试卷和答案解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)的倒数是()A.2B.C.﹣D.﹣2解析:根据乘积为1的两个数是互为倒数,进行求解即可.参考答案:解:∵×2=1,∴的倒数是2,故选:A.点拨:本题考查倒数的意义,理解和掌握乘积为1的两个数是互为倒数是正确解答的前提.2.(3分)下列四个数中,最小的数是()A.0B.﹣C.5D.﹣1解析:根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小得出答案.参考答案:解:∵|﹣|<|﹣1|,∴﹣>﹣1,∴5>0>﹣>﹣1,因此最小的数是﹣1,故选:D.点拨:本题考查有理数的大小比较,掌握两个负数比较,绝对值大的反而小,是正确判断的前提.3.(3分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.解析:根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.参考答案:解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、既不是轴对称图形,也不是中心对称图形,故本选项不合题意.故选:C.点拨:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)如图,已知直线a∥b,∠1=50°,则∠2的度数为()A.140°B.130°C.50°D.40°解析:由直线a∥b,利用“两直线平行,同位角相等”可求出∠3的度数,再结合∠2和∠3互补,即可求出∠2的度数.参考答案:解:∵直线a∥b,∴∠3=∠1=50°.又∵∠2+∠3=180°,∴∠2=130°.故选:B.点拨:本题考查了平行线的性质以及邻补角,牢记“两直线平行,同位角相等”是解题的关键.5.(3分)小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是()A.80,90B.90,90C.90,85D.90,95解析:先将数据重新排列,再根据中位数和众数的定义求解可得.参考答案:解:将数据重新排列为80,85,90,90,95,所以这组数据的中位数是90,众数为90,故选:B.点拨:本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(3分)将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x+1D.y=﹣2x+3解析:根据函数图象向上平移加,向下平移减,可得答案.参考答案:解:直线y=﹣2x﹣1向上平移两个单位,所得的直线是y=﹣2x+1,故选:C.点拨:本题考查了一次函数图象与几何变换,图象平移的规律是:上加下减,左加右减.7.(3分)如图,在△ABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则S△ABC=()A.30B.25C.22.5D.20解析:先根据三角形中位线的性质,证得:DE∥BC,DE=BC,进而得出△ADE∽△ABC,又由相似三角形面积的比等于相似比的平方即可求得答案.参考答案:解:∵D、E分别是AB、AC边上的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=,∴S△ADE:S四边形BCED=1:3,即S△ADE:15=1:3,∴S△ADE=5,∴S△ABC=5+15=20.故选:D.点拨:此题考查了三角形中位线定理以及相似三角形的判定与性质.注意相似三角形的面积的比等于相似比的平方.8.(3分)如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是的中点,则∠D的度数是()A.30°B.40°C.50°D.60°解析:连接OB,如图,利用圆心角、弧、弦的关系得到∠AOB=∠COB=∠AOC=60°,然后根据圆周角定理得到∠D的度数.参考答案:解:连接OB,如图,∵点B是的中点,∴∠AOB=∠AOC=×120°=60°,∴∠D=∠AOB=30°.故选:A.点拨:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.(3分)如图,点A是反比例函数y=图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为()A.B.C.3D.4解析:根据题意可知△AOC的面积为2,然后根据反比例函数系数k的几何意义即可求得k的值.参考答案:解:∵AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,∴△AOC的面积为2,∵S△AOC=|k|=2,且反比例函数y=图象在第一象限,∴k=4,故选:D.点拨:本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.(3分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是()A.x=(x﹣5)﹣5B.x=(x+5)+5C.2x=(x﹣5)﹣5D.2x=(x+5)+5解析:设绳索长x尺,则竿长(x﹣5)尺,根据“将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x的一元一次方程,此题得解.参考答案:解:设绳索长x尺,则竿长(x﹣5)尺,依题意,得:x=(x﹣5)﹣5.故选:A.点拨:本题考查了由实际问题抽象出一元一次方程以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.11.(3分)如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知AB=3,BC=4,则EF的长为()A.3B.5C.D.解析:求出BD=5,AE=EM,∠A=∠BME=90°,证明△EDM∽△BDA,由相似三角形的性质得出,设DE=x,则AE=EM =4﹣x,得出,解得x=,同理△DNF∽△DCB,得出,设DF=y,则CF=NF=3﹣y,则,解得y=.由勾股定理即可求出EF的长.参考答案:解:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠A=∠C=∠EDF=90°,∴BD===5,∵将矩形ABCD沿BE所在直线折叠,使点A落在BD上的点M 处,∴AE=EM,∠A=∠BME=90°,∴∠EMD=90°,∵∠EDM=∠ADB,∴△EDM∽△BDA,∴,设DE=x,则AE=EM=4﹣x,∴,解得x=,∴DE=,同理△DNF∽△DCB,∴,设DF=y,则CF=NF=3﹣y,∴,解得y=.∴DF=.∴EF===.故选:C.点拨:本题考查了翻折的性质,勾股定理,矩形的性质,相似三角形的判定与性质;熟练掌握翻折变换的性质,证明三角形相似是解题的关键.12.(3分)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是()A.≤t<2B.<t≤1C.1<t≤2D.≤t≤2且t≠1解析:由y=tx+2t+2=t(x+2)+2(t>0),得出直线y=tx+2t+2(t>0)经过点(﹣2,2),如图,当直线经过(0,3)或(0,6)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,当直线经过(0,4)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,分别求得这三种情况下的t的值,结合图象即可得到结论.参考答案:解:∵y=tx+2t+2=t(x+2)+2(t>0),∴直线y=tx+2t+2(t>0)经过点(﹣2,2),如图,当直线经过(0,3)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则3=2t+2,解得t=;当直线经过(0,6)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则6=2t+2,解得t=2;当直线经过(0,4)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,则4=2t+2,解得t=1;∴直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是≤t≤2且t≠1,故选:D.点拨:本题考查一次函数图象和性质,区域整数点;能够根据函数解析式求得直线恒经过的点,并能画出图象,结合图象解题是关键.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)在函数y=中,自变量x的取值范围是x≠2.解析:求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0;参考答案:解:根据题意得2x﹣4≠0,解得x≠2;∴自变量x的取值范围是x≠2.点拨:当函数表达式是分式时,分式要有意义,则考虑分式的分母不能为0.14.(5分)2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为7×108.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:7亿=700000000=7×108,故答案为:7×108.点拨:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(5分)已知关于x的一元二次方程(m﹣1)2x2+3mx+3=0有一实数根为﹣1,则该方程的另一个实数根为﹣.解析:把x=﹣1代入原方程求出m的值,进而确定关于x的一元二次方程,根据根与系数的关系可求出方程的另一个根.参考答案:解:∵方程(m﹣1)2x2+3mx+3=0是关于x的一元二次方程,∴(m﹣1)2≠0即m≠1.把x=﹣1代入原方程得,(m﹣1)2﹣3m+3=0,即:m2﹣5m+4=0,解得,m=4,m=1(不合题意舍去),当m=4时,原方程变为:9x2+12x+3=0,即,3x2+4x+1=0,由根与系数的关系得:x1•x2=,又x1=﹣1,∴x2=﹣故答案为:﹣.点拨:本题考查一元二次方程根的意义和解法,求解一元二次方程是得出正确答案的关键.16.(5分)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为15.解析:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H ⊥AB于H.首先证明△ABA′是等边三角形,求出A′H,根据垂线段最短解决问题即可.参考答案:解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB==10,∵A′H⊥AB,∴AH=HB=5,∴A′H=AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.点拨:本题考查轴对称的性质,等边三角形的判定和性质,矩形的性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推演步骤)17.(7分)计算:(﹣)﹣1﹣|﹣2|+4sin60°﹣+(π﹣3)0.解析:先计算负整数指数幂、去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得.参考答案:解:原式=﹣2﹣2+4×﹣2+1=﹣2﹣2+2﹣2+1=﹣3.点拨:本题主要考查实数的运算,解题的关键是掌握负整数指数幂和零指数幂的规定、熟记三角函数值、绝对值的性质、二次根式的性质.18.(9分)如图,点C、E、F、B在同一直线上,点A、D在BC 异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.解析:(1)根据平行线的性质求出∠B=∠C,根据AAS推出△ABE ≌△DCF,根据全等三角形的性质得出即可;(2)根据全等得出AB=CD,BE=CF,∠B=∠C,求出CF=CD,推出∠D=∠CFD,即可求出答案.参考答案:(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD=(180°﹣40°)=70°.点拨:本题考查了全等三角形的性质和判定,平行线的性质,三角形内角和定理的应用,能根据全等三角形的判定求出△ABE≌△CDF 是解此题的关键.19.(9分)我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有5名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为72°,图中m的值为40;(3)学校决定从本次比赛获得“A等级”的学生中间选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.解析:(1)A等的有3人,占调查人数的15%,可求出调查人数,进而求出B等的人数;(2)D等级占调查人数的,因此相应的圆心角为360°的即可,计算C等级所占的百分比,即可求出m的值;(3)用列表法表示所有可能出现的结果,进而求出相应的概率.参考答案:解:(1)3÷15%=20(名),20﹣3﹣8﹣4=5(名),故答案为:5;(2)360°×=72°,8÷20=40%,即m=40,故答案为:72°,40;(3)“A等级”2男1女,从中选取2人,所有可能出现的结果如下:共有6种可能出现的结果,其中女生被选中的有4种,∴P(女生被选中)==.点拨:本题考查条形统计图、扇形统计图的意义和制作方法,列表法求随机事件发生的概率,列举出所有可能出现的结果是求概率的前提.20.(9分)为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求B处到灯塔P的距离;(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?解析:(1)在△ABP中,求出∠PAB、∠PBA的度数即可解决问题,根据等腰三角形的性质即可得到结论;(2)作PH⊥AB于H.求出PH的值即可判定.参考答案:解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°﹣∠PAB﹣∠ABP=30°,∴PB=AB=60海里;(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=60,在Rt△PBH中,PH=PB•sin60°=60×=30,∵30>50,∴海监船继续向正东方向航行是安全的.点拨:本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.21.(10分)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC 于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若DF=2,BC=4,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.解析:(1)连接OC,如图,根据垂径定理由OD⊥BC得到CD=BD,则OE为BC的垂直平分线,所以EB=EC,证明△OCE≌△OBE(SSS),得出∠OBE=∠OCE=90°,根据切线的判定定理得BE与⊙O相切;(2)设⊙O的半径为x,则OD=x﹣2,OB=x,由勾股定理得出(x﹣2)2+(2)2=x2,解得x=4,求出OE的长,则可求出EF的长;(3)由扇形的面积公式可得出答案.参考答案:(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂直平分BC,∴EC=EB,在△OCE和△OBE中,∴△OCE≌△OBE(SSS),∴∠OBE=∠OCE=90°,∴OB⊥BE,∴BE与⊙O相切;(2)解:设⊙O的半径为x,则OD=OF﹣DF=x﹣2,OB=x,在Rt△OBD中,BD=BC=2,∵OD2+BD2=OB2,∴(x﹣2)2+(2)2=x2,解得x=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴OE=2OB=8,∴EF=OE﹣OF=8﹣4=4.(3)∵∠BOE=60°,∠OBE=90°,∴在Rt△OBE中,BE=OB=4,∴S阴影=S四边形OBEC﹣S扇形OBC=2××4×4﹣,=16﹣.点拨:本题是圆的综合题,考查了切线的判定与性质,垂径定理,勾股定理,全等三角形的判定与性质,直角三角形的性质,扇形面积的计算等知识,熟练掌握切线的判定与性质是解题的关键.四、填空题(本大题共4小题,每小题6分,共24分.)22.(6分)分解因式:b4﹣b2﹣12=(b+2)(b﹣2)(b2+3).解析:先利用十字相乘法,再利用平方差公式进行因式分解即可.参考答案:解:b4﹣b2﹣12=(b2﹣4)(b2+3)=(b+2)(b﹣2)(b2+3),故答案为:(b+2)(b﹣2)(b2+3).点拨:本题考查十字相乘法、公式法分解因式,掌握十字相乘法、公式法的结构特征是正确应用的前提.23.(6分)若数a使关于x的分式方程+=3的解为非负数,且使关于y的不等式组的解集为y≤0,则符合条件的所有整数a的积为40.解析:解分式方程的得出x=,根据解为非负数得出≥0,且≠1,据此求出a≤5且a≠3;解不等式组两个不等式得出y≤0且y<a,根据解集为y≤0得出a>0;综合以上两点得出整数a的值,从而得出答案.参考答案:解:去分母,得:x+2﹣a=3(x﹣1),解得:x=,∵分式方程的解为非负数,∴≥0,且≠1,解得a≤5且a≠3,解不等式﹣≥﹣,得:y≤0,解不等式2(y﹣a)<0,得:y<a,∵不等式组的解集为y≤0,∴a>0,∴0<a≤5,则整数a的值为1、2、4、5,∴符合条件的所有整数a的积为1×2×4×5=40,故答案为:40.点拨:本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a的取值范围.24.(6分)如图,在平面直角坐标系中,点A(﹣2,0),直线l:y =x+与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,以此类推……,则点A2020的纵坐标是.解析:先根据解析式求得B的坐标,即可求得AB=1,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的纵坐标为,A2的纵坐标为,A3的纵坐标为,进而得到A n 的纵坐标为,据此可得点A2020的纵坐标.参考答案:解:∵直线l:y=x+与x轴交于点B,∴B(﹣1,0),∴OB=1,∵A(﹣2,0),∴OA=2,∴AB=1,∵△ABA1是等边三角形,∴A1(﹣,),把y=代入y=x+,求得x=,∴B1(,),∴A1B1=2,∴A2(﹣,+×2),即A2(﹣,),把y=代入y=x+,求得x=,∴B2(,),∴A2B2=4,∴A3(3,+×4),即A3(3,),……,A n的纵坐标为,∴点A 2020的纵坐标是,故答案为.点拨:本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n的纵坐标为,25.(6分)已知抛物线y1=﹣x2+4x(如图)和直线y2=2x+b.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2.若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①当x=2时,M的最大值为4;②当b=﹣3时,使M>y2的x的取值范围是﹣1<x<3;③当b=﹣5时,使M=3的x的值是x1=1,x2=3;④当b≥1时,M随x的增大而增大.上述结论正确的是②④.(填写所有正确结论的序号)解析:①求出y1,y2,求出m的值即可.②求出直线与抛物线的交点坐标,利用图象法解决问题即可.③画出图象,推出M=3时,y1=3,y2=3转化为方程求出x的值即可.④当b=1时,由,消去y得到,x2﹣2x+1=0,因为△=0,推出此时直线y=2x+1与抛物线只有一个交点,推出b>1时,直线y=2x+b与抛物线没有交点,由此即可判断.参考答案:解:①当x=2时,y1=4,y2=4+b,无法判断4与4+b 的大小,故①错误.②如图1中,b=﹣3时,由,解得或,∴两个函数图象的交点坐标为(﹣1,﹣5)和(3,3),观察图象可知,使M>y2的x的取值范围是﹣1<x<3,故②正确,③如图2中,b=﹣5时,图象如图所示,M=3时,y1=3,∴﹣x2+4x=3,解得x=1或3,y2=3时,3=2x﹣5,解得x=4,也符合条件,故③错误,④当b=1时,由,消去y得到,x2﹣2x+1=0,∵△=0,∴此时直线y=2x+1与抛物线只有一个交点,∴b>1时,直线y=2x+b与抛物线没有交点,∴M随x的增大而增大,故④正确.故答案为②④.点拨:本题考查二次函数的性质,一次函数的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.五、解答题(本大题共3小题,每小题12分,共36分)26.(12分)我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)=.例如:18可以分解成1×18,2×9或3×6,因为18﹣1>9﹣2>6﹣3,所以3×6是18的最佳分解,所以f(18)==.(1)填空:f(6)=;f(9)=1;(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求f(t)的最大值;(3)填空:①f(22×3×5×7)=;②f(23×3×5×7)=;③f (24×3×5×7)=;④f(25×3×5×7)=.解析:(1)仿照样例进行计算便可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10b+a,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”确定出x与y的关系式,进而求出所有的两位数,进而确定出F(t)的最大值即可;(3)根据样例计算便可.参考答案:解:(1)6可分解成1×6,2×3,∵6﹣1>3﹣2,∴2×3是6的最佳分解,∴f(6)=,9可分解成1×9,3×3,∵9﹣1>3﹣3,∴3×3是9的最佳分解,∴f(9)==1,故答案为:;1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10b+a,根据题意得,t′﹣t=(10b+a)﹣(10a+b)=9(b﹣a)=54,∴b=a+6,∵1≤a≤b≤9,a,b为正整数,∴满足条件的t为:17,28,39;∵F(17)=,F(28)=,F(39)=,∵,∴F(t)的最大值为;(3)①∵22×3×5×7的是最佳分解为20×21,∴f(22×3×5×7)=,故答案为:;②∵23×3×5×7的最佳分解为28×30,∴f(23×3×5×7)=,故答案为;③∵24×3×5×7的最佳分解是40×42,∴f(24×3×5×7)==,故答案为:;④∵25×3×5×7的最佳分解是56×60,∴f(25×3×5×7)==,故答案为:.点拨:本题主要考查实数的运算,理解最佳分解的定义,并将其转化为实数的运算是解题的关键.27.(12分)如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.(1)连结CQ,求证:AP=CQ;(2)若AP=AC,求CE:BC的值;(3)求证:PF=EQ.解析:(1)证明△BAP≌△BCQ(SAS)可得结论.(2)过点C作CH⊥PQ于H,过点B作BT⊥PQ于T.由AP =AC,可以假设AP=CQ=a,则PC=3a,解直角三角形求出CH.BT,利用平行线分线段成比例定理解决问题即可.(3)证明△PGB≌△QEB,推出EQ=PG,再证明△PFG是等腰直角三角形即可.参考答案:(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵,∴△BAP≌△BCQ(SAS).∴CQ=AP.(2)解:过点C作CH⊥PQ于H,过点B作BT⊥PQ于T.∵AP=AC,∴可以假设AP=CQ=a,则PC=3a,∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵△ABP≌△CBQ,∴∠BCQ=∠BAP=45°,∴∠PCQ=90°,∴PQ===a,∵CH⊥PQ,∴CH==a,∵BP=BQ,BT⊥PQ,∴PT=TQ,∵∠PBQ=90°,∴BT=PQ=a,∵CH∥BT,∴===,∴=.(3)解:结论:PF=EQ,理由是:如图2,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠FAP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.点拨:本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,学会利用参数解决问题,属于中考压轴题.28.(12分)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为3时,求点D的坐标;(3)过点D作DE⊥BC,垂足为点E,是否存在点D,使得△CDE 中的某个角等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.解析:(1)根据点A、B、C的坐标,利用待定系数法即可求出抛物线的解析式;(2)根据三角形面积公式可求与BC平行的经过点D的y轴上点M的坐标,再根据待定系数法可求DM的解析式,再联立抛物线可求点D的坐标;(3)分∠DCE=2∠ABC及∠CDE=2∠ABC两种情况考虑:①当∠DCE=2∠ABC时,取点F(0,﹣2),连接BF,则CD∥BF,由点B,F的坐标,利用待定系数法可求出直线BF,CD的解析式,联立直线CD及抛物线的解析式成方程组,通过解方程组可求出点D的坐标;②当∠CDE=2∠ABC时,过点C作CN⊥BF于点N,交OB于H.作点N关于BC的对称点P,连接NP交BC于点Q,由△OCH∽△OBF求出H点坐标,利用待定系数法求出直线CN的解析式,联立直线BF及直线CN成方程组,通过解方程组可求出点N的坐标,利用对称的性质可求出点P的坐标,由点C、P的坐标,利用待定系数法可求出直线CP的解析式,将直线CP的解析式代入抛物线解析式中可得出关于x的一元二次方程,解之取其非零值可得出点D的横坐标.依此即可得解.参考答案:解:(1)将A(﹣1,0)、B(4,0)、C(0,2)代入y =ax2+bx+c得:,解得:.故抛物线的解析式为y=﹣x2+x+2.(2)法一:如图2,设点M的坐标为(0,m),使得△BCM的面积为3,3×2÷4=1.5,则m=2+1.5=,M(0,)∵点B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2,∴DM的解析式为y=﹣x+,联立抛物线解析式,解得,.∴点D的坐标为(3,2)或(1,3).法二:如下图所示,过D作DG⊥x轴,垂足为G点,与BC交于K点,设D(a,b)(其中a>0,b>0),∴K(a,2﹣),∴,∴S△BCD=S△CDK+S△BDK==2b﹣4+a=3,∴2b+a=7,∵D在抛物线y=﹣x2+x+2上,∴b=,∴a2﹣4a+3=0,∴(a﹣1)(a﹣3)=0,∴a=1或3,∵当a=1时,b=3,当a=3时,b=2,∴点D的坐标为(3,2)或(1,3).(3)分两种情况考虑:①当∠DCE=2∠ABC时,取点F(0,﹣2),连接BF,如图3所示.∵OC=OF,OB⊥CF,∴∠ABC=∠ABF,∴∠CBF=2∠ABC.∵∠DCB=2∠ABC,∴∠DCB=∠CBF,∴CD∥BF.∵点B(4,0),F(0,﹣2),∴直线BF的解析式为y=x﹣2,∴直线CD的解析式为y=x+2.联立直线CD及抛物线的解析式成方程组得:,解得:(舍去),,∴点D的坐标为(2,3);②当∠CDE=2∠ABC时,过点C作CN⊥BF于点N,交OB于H.作点N关于BC的对称点P,连接NP交BC于点Q,如图4所示.∵∠OCH=90°﹣∠OHC,∠OBF=90°﹣∠BHN,∠OHC=∠BHN,∴∠OCH=∠OBF.在△OCH与△OBF中,∴△OCH∽△OBF,∴=,即=,∴OH=1,H(1,0).设直线CN的解析式为y=kx+n(k≠0),∵C(0,2),H(1,0),∴,解得,∴直线CN的解析式为y=﹣2x+2.联立直线BF及直线CN成方程组得:,解得:,∴点N的坐标为(,﹣).∵点B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2.∵NP⊥BC,且点N(,﹣),∴直线NP的解析式为y=2x﹣.联立直线BC及直线NP成方程组得:,解得:,∴点Q的坐标为(,).∵点N(,﹣),点N,P关于BC对称,∴点P的坐标为(,).∵点C(0,2),P(,),∴直线CP的解析式为y=x+2.将y=x+2代入y=﹣x2+x+2整理,得:11x2﹣29x=0,解得:x1=0(舍去),x2=,∴点D的横坐标为.综上所述:存在点D,使得△CDE的某个角恰好等于∠ABC的2倍,点D的横坐标为2或.点拨:本题是二次函数综合题,考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理、等腰三角形的性质、平行线的判定与性质、相似三角形的判定与性质、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线的解析式;(2)作铅垂线,计算三角形面积的方法;(3)分∠DCE=2∠ABC及∠CDE=2∠ABC两种情况求出点D的横坐标.。
2020年四川省绵阳市中考数学试题及参考答案(word解析版)
绵阳市2020年高中阶段学校招生暨初中学业水平考试数学(满分140分,考试时间120分钟)第I卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求. 1. -3的相反数是()A. -3B. - 1C. V3D. 332.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A. 2条B. 4条C. 6条D. 8条3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A. 0.69X107B. 69X105C. 6.9X105D. 6.9X1064.下列四个图形中,不能作为正方体的展开图的是()5.若J/不有意义,则a的取值范围是()A. a21B. aWlC. a'OD. a3-16.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱:若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A. 160 钱B. 155 钱C 150 钱D. 145 钱7.如图,在四边形ABCD 中,ZA=ZC=90° , DF/ZBC, NABC的平分线BE交DF于点G, GH_LDF,点E恰好为DH 的中点,若AE=3, CD = 2,则GH=()A. 1B. 2C. 3D. 48.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()D- 1A- 3 B- 2 C- 39.在螳螂的示意图中,AB〃DE, AABC是等腰三角形,NABC=124° , ZCDE=72° ,则/ACDA. 16°B. 28°C. 44°D. 45°10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说: “我用你所花的时间,可以行驶你0km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A. 1.2小时B. 1.6小时C. 1.8小时D. 2小时11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水而宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水而宽度为4米,若大孔水面宽度为20米,则单个小孔的水而宽度为()A. 4五米B. 5血米C. 2近§米D. 7米12.如图,在四边形ABCD 中,AD〃BC, ZABC=90° , AB =2巾,AD=2,WAABC绕点C顺时针方向旋转后得4A' B' C,当A'B,恰好经过点D时,ZkB' CD为等腰三角形,若BB' =2,则AA'=()A. VT1B. 2^/3C. V13D. V14第n卷(非选择题共104分)二、填空题:本大题共6小题,每小题4分,共24分.13.因式分解:x3y - 4xy3=.14.平面直角坐标系中,将点A ( - 1, 2)先向左平移2个单位,再向上平移1个单位后得到的点Ai的坐标为.15.若多项式xyim %.(「2) x?y2+i是关于x, y的三次多项式,则mn=.16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、L1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是万元.(利润=销售额-种植成本)17.如图,四边形ABCD 中,AB〃CD, ZABC=60° , AD = BC=CD=4,点M是四边形ABCD内的一个动点,满足N AMD = 90 ° ,则点M 到直线BC的距离的最小值为.18 .若不等式纪-x-工的解都能使不等式(m-6) x<2m+l 成立,则实数m 的取值范围是.三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19 . (16 分)(1)计算:I 遥-31+2孤0§60° - 1 X (一V2 2(2)先化简,再求值:(x+2+:二)+ 其中 x=&-l.x-2x-220 . (12分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x (单位:元)表示标价总额,y (单位:元)表示应支付金额,分别就两家书店的优惠 方式,求y 关于x 的函数解析式;(2) “世界读书日”这一天,如何选择这两家书店去购书更省钱?21 . (12分)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A 、B 两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查(2)估计B 加工厂这100个鸡腿中,质量为75克的鸡腿有多少个? (3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?22 . (12 分)如图,4ABC 内接于00,点 D 在。
2020年四川省乐山市中考数学试卷(含解析)
2020年四川省乐山市中考数学试卷(考试时间:120分钟满分:150分)一、选择题(本大题共10个小题,每小题3分,共30分)1.的倒数是()A.﹣B.C.﹣2 D.22.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A.1100 B.1000 C.900 D.1103.如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=()A.10°B.20°C.30°D.40°4.数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4 B.﹣4或10 C.﹣10 D.4或﹣105.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA.则四边形AOED的周长为()A.9+2B.9+C.7+2D.86.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤﹣2 B.x≤﹣4 C.x≥﹣2 D.x≥﹣47.观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是()A.B.C.D.8.已知3m=4,32m﹣4n=2.若9n=x,则x的值为()A.8 B.4 C.2D.9.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分面积为()A.B.C.D.π10.如图,在平面直角坐标系中,直线y=﹣x与双曲线y=交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.﹣B.﹣C.﹣2 D.﹣二、填空题(本大题共6个小题,每小题3分,共18分)11.用“>”或“<”符号填空:﹣7 ﹣9.12.某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.13.如图是某商场营业大厅自动扶梯示意图.自动扶梯AB的倾斜角为30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角为60°,A、C之间的距离为4m.则自动扶梯的垂直高度BD=m.(结果保留根号)14.已知y≠0,且x2﹣3xy﹣4y2=0.则的值是.15.把两个含30°角的直角三角板按如图所示拼接在一起,点E为AD的中点,连结BE交AC于点F.则=.16.我们用符号[x]表示不大于x的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么:(1)当﹣1<[x]≤2时,x的取值范围是;(2)当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方.则实数a的范围是.三、解答题(共102分)17.(9分)计算:|﹣2|﹣2cos60°+(π﹣2020)0.18.(9分)解二元一次方程组:19.(9分)如图,E是矩形ABCD的边CB上的一点,AF⊥DE于点F,AB=3,AD=2,CE=1.求DF的长度.20.(10分)已知y=,且x≠y,求()÷的值.21.(10分)如图,已知点A(﹣2,﹣2)在双曲线y=上,过点A的直线与双曲线的另一支交于点B(1,a).(1)求直线AB的解析式;(2)过点B作BC⊥x轴于点C,连结AC,过点C作CD⊥AB于点D.求线段CD的长.22.(10分)自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为°;(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.23.(10分)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车 6 300轿车 4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?24.(10分)如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC于点F,连结BD交AC于点G,且AF=FG.(1)求证:点D平分;(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.25.(12分)点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.(1)如图1,当点P与点O重合时,线段OE和OF的关系是;(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE之间的关系.26.(13分)已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD=,如图所示.(1)求抛物线的解析式;(2)设P是抛物线的对称轴上的一个动点.①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,求△BCF的面积的最大值;②连结PB,求PC+PB的最小值.参考答案与试题解析一、选择题1.【解答】解:根据倒数的定义,可知的倒数是2.故选:D.2.【解答】解:2000×=1100(人),故选:A.3.【解答】解:∵∠FEA=40°,GE⊥EF,∴∠CEF=180°﹣∠FEA=180°﹣40°=140°,∠CEG=180°﹣∠AEF﹣∠GEF=180°﹣40°﹣90°=50°,∵射线EB平分∠CEF,∴,∴∠GEB=∠CEB﹣∠CEG=70°﹣50°=20°,故选:B.4.【解答】解:点A表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10,点A表示的数是﹣3,右移7个单位,得﹣3+7=4.所以点B表示的数是4或﹣10.故选:D.5.【解答】解:∵四边形ABCD为菱形,∴AD=AB=4,AB∥CD,∵∠BAD=120°,∴∠ADB=∠CDB=30°,∵O是对角线BD的中点,∴AO⊥BD,在Rt△AOD中,AO=AD=2,OD=OA=2,∵OE⊥CD,∴∠DEO=90°,在Rt△DOE中,OE=OD=,DE=OE=3,∴四边形AOED的周长=4+2++3=9+.故选:B.6.【解答】解:∵直线y=kx+b与x轴交于点(2,0),与y轴交于点(0,1),∴,解得∴直线为y=﹣+1,当y=2时,2=﹣+1,解得x=﹣2,由图象可知:不等式kx+b≤2的解集是x≥﹣2,故选:C.7.【解答】解:由题意,选项A阴影部分分面积为6,B,C,D的阴影部分的面积为5,如果能拼成正方形,选项A的正方形的边长为,选项B,C,D的正方形的边长为,观察图象可知,选项B,C,D阴影部分沿方格边线或对角线剪开均可得图1的5个图形,可以拼成图2的边长为的正方形,故选:D.8.【解答】解:∵3m=4,32m﹣4n=(3m)2÷(3n)4=2.∴42÷(3n)4=2,∴(3n)4=42÷2=8,又∵9n=32n=x,∴(3n)4=(32n)2=x2,∴x2=8,∴x==.故选:C.9.【解答】解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=BC=,AC=2BC=2,∴﹣﹣(﹣)=,故选:B.10.【解答】解:点O是AB的中点,则OQ是△ABP的中位线,当B、C、P三点共线时,PB最大,则OQ=BP最大,而OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,设点B(m,﹣m),则(m﹣2)2+(﹣m﹣2)2=32,解得:m2=,∴k=m(﹣m)=﹣,故选:A.二、填空题11.【解答】解:∵|﹣7|=7,|﹣9|=9,7<9,∴﹣7>﹣9,故答案为:>.12.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40,其中第四个数据为39,所以这组数据的中位数为39.故答案为39.13.【解答】解:∵∠BCD=∠BAC+∠ABC,∠BAC=30°,∠BCD=60°,∴∠ABC=∠BCD﹣∠BAC=30°,∴∠BAC=∠ABC,∴BC=AC=4,在Rt△BDC中,sin∠BCD=,∴sin60°==,∴BD=2(m),答:自动扶梯的垂直高度BD=2m,故答案为:2.14.【解答】解:∵x2﹣3xy﹣4y2=0,即(x﹣4y)(x+y)=0,可得x=4y或x=﹣y,∴或,即则的值是4或﹣1;故答案为:4或﹣1.15.【解答】解:连接CE,∵∠CAD=30°,∠ACD=90°,E是AD的中点,∴AC=AD,CE=AD=AE,∴∠ACE=∠CAE=30°∵∠BAC=30°,∠ABC=90°,∴AB=AC=AD,∠BAC=∠ACE,∴AB∥CE,∴△ABF∽△CEF,∴,∴,故答案为.16.【解答】解:(1)由题意∵﹣1<[x]≤2,∴0≤x≤2,故答案为0≤x≤2.(2)由题意:当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方,则有x=﹣1时,1+2a+3<﹣1+3,解得a<﹣1,或x=2时,4﹣2a+3≤1+3,解得a≥,故答案为a<﹣1或a≥.二、解答题17.【解答】解:原式==2.18.【解答】解:,法1:②﹣①×3,得 2x=3,解得:x=,把x=代入①,得 y=﹣1,∴原方程组的解为;法2:由②得:2x+3(2x+y)=9,把①代入上式,解得:x=,把x=代入①,得 y=﹣1,∴原方程组的解为.19.【解答】解:∵四边形ABCD是矩形,∴DC=AB=3,∠ADC=∠C=90°.∵CE=1,∴DE==.∵AF⊥DE,∴∠AFD=90°=∠C,∠∠ADF+∠DAF=90°.又∵∠ADF+∠EDC=90°,∴∠EDC=∠DAF,∴△EDC∽△DAF,∴=,即=,∴FD=,即DF的长度为.20.【解答】解:原式===,∵,∴原式=解法2:同解法1,得原式=,∵,∴xy=2,∴原式==1.21.【解答】解:(1)将点A(﹣2,﹣2)代入,得k=4,即,将B(1,a)代入,得a=4,即B(1,4),设直线AB的解析式为y=mx+n,将A(﹣2,﹣2)、B(1,4)代入y=kx+b,得,解得,∴直线AB的解析式为y=2x+2;(2)∵A(﹣2,﹣2)、B(1,4),∴,∵,∴.22.【解答】解:(1)截止5月31日该国新冠肺炎感染总人数累计为9÷45%=20(万人),扇形统计图中40﹣59岁感染人数对应圆心角的度数为360°×=72°,故答案为:20、72;(2)20﹣39岁人数为20×10%=2(万人),补全的折线统计图如图2所示;(3)该患者年龄为60岁及以上的概率为:=0.675;(4)该国新冠肺炎感染病例的平均死亡率为:.23.【解答】解:(1)设租用一辆轿车的租金为x元,由题意得:300×2+3x=1320,解得 x=240,答:租用一辆轿车的租金为240元;(2)①若只租用商务车,∵,∴只租用商务车应租6辆,所付租金为300×6=1800(元);②若只租用轿车,∵,∴只租用轿车应租9辆,所付租金为240×9=2160(元);③若混和租用两种车,设租用商务车m辆,租用轿车n辆,租金为W元.由题意,得,由6m+4n=34,得 4n=﹣6m+34,∴W=300m+60(﹣6m+34)=﹣60m+2040,∵﹣6m+34=4n≥0,∴,∴1≤m≤5,且m为整数,∵W随m的增大而减小,∴当m=5时,W有最小值1740,此时n=1.综上,租用商务车5辆和轿车1辆时,所付租金最少为1740元.24.【解答】证明:(1)如图1,连接AD、BC,∵AB是半圆O的直径,∴∠ADB=90°,∵DE⊥AB,∴∠ADE=∠ABD,又∵AF=FG,即点F是Rt△AGD的斜边AG的中点,∴DF=AF,∴∠DAF=∠ADF=∠ABD,又∵∠DAC=∠DBC,∴∠ABD=∠DBC,∴=,∴即点D平分;(2)如图2所示,连接OD、AD,∵点E是线段OA的中点,∴,∴∠AOD=60°,∴△OAD是等边三角形,∴AD=AO=AH,∴△ODH是直角三角形,且∠HDO=90°,∴DH是⊙O的切线.25.【解答】解:(1)∵四边形ABCD是平行四边形,∴AO=CO,又∵∠AEO=∠CFO,∠AOE=∠COF=90°,∴△AEO≌△CFO(AAS),∴OE=OF,故答案为:OE=OF;(2)补全图形如图所示,结论仍然成立,理由如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,∵点O为AC的中点,∴AO=CO,又∵∠AOE=∠COG,∴△AOE≌△COG(AAS),∴OE=OG,∵∠GFE=90°,∴OE=OF;(4)点P在线段OA的延长线上运动时,线段CF、AE、OE之间的关系为OE=CF+AE,证明如下:如图,延长EO交FC的延长线于点H,由(2)可知△AOE≌△COH,∴AE=CH,OE=OH,又∵∠OEF=30°,∠HFE=90°,∴HF=EH=OE,∴OE=CF+CH=CF+AE.26.【解答】解:(1)根据题意,可设抛物线的解析式为:y=a(x+1)(x﹣5),∵抛物线的对称轴为直线x=2,∴D(2,0),又∵=,∴CD=BD•tan∠CBD=4,即C(2,4),代入抛物线的解析式,得4=a(2+1)(2﹣5),解得,∴二次函数的解析式为=﹣x2++;(2)①设P(2,t),其中0<t<4,设直线BC的解析式为 y=kx+b,∴,解得即直线BC的解析式为,令y=t,得:,∴点E(5﹣t,t),把代入,得,即,∴,∴△BCF的面积=×EF×BD=(t﹣)=,∴当t=2时,△BCF的面积最大,且最大值为;②如图,连接AC,根据图形的对称性可知∠ACD=∠BCD,AC=BC=5,∴,过点P作PG⊥AC于G,则在Rt△PCG中,,∴,过点B作BH⊥AC于点H,则PG+PH≥BH,∴线段BH的长就是的最小值,∵,又∵,∴,即,∴的最小值为.。
四川省绵阳市2020年中考数学试题(Word版,含答案与解析)
四川省绵阳市2020年中考数学试卷一、单选题(共12题;共24分)1.﹣3的相反数是()A. ﹣3B. ﹣1C. √3D. 33【答案】 D【考点】相反数及有理数的相反数【解析】【解答】解:-3的相反数是3故答案为:D.【分析】利用相反数的定义得出即可.2.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A. 2条B. 4条C. 6条D. 8条【答案】B【考点】轴对称图形,作图﹣轴对称【解析】【解答】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故答案为:B.【分析】根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数.3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A. 0.69×107B. 69×105C. 6.9×105D. 6.9×106【答案】 D【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:690万=6900000=6.9×106 .故答案为:D .【分析】绝对值大于10的数用科学记数法表示一般形式为 a ×10n , n 为整数位数减1.4.下列四个图形中,不能作为正方体的展开图的是( )A. B.C. D.【答案】 D【考点】几何体的展开图【解析】【解答】解:正方体展开图的11种情况可分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,因此选项D 符合题意,故答案为:D .【分析】根据正方体的展开图的11种不同情况进行判断即可.5.若 √a −1 有意义,则a 的取值范围是( )A. a≥1B. a≤1C. a≥0D. a≤﹣1【答案】 A【考点】二次根式有意义的条件【解析】【解答】解:若 √a −1 有意义,则 a −1⩾0 ,解得: a ⩾1 .故答案为:A .【分析】直接利用二次根式有意义的条件分析得出答案.6.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( )A. 160钱B. 155钱C. 150钱D. 145钱【答案】 C【考点】二元一次方程组的实际应用-销售问题【解析】【解答】解:设共有x 人合伙买羊,羊价为y 钱,依题意,得: {5x +45=y 7x +3=y, 解得: {x =21y =150. 故答案为:C .【分析】设共有x 人合伙买羊,羊价为y 钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.7.如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E 恰好为DH的中点,若AE=3,CD=2,则GH=()A. 1B. 2C. 3D. 4【答案】B【考点】角平分线的性质,矩形的判定与性质【解析】【解答】解:过E作EM⊥BC,交FD于点N,∵DF//BC,∴EN⊥DF,∴EN//HG,∴ENHG =EDHD,∵E为HD中点,∴EDHD =12,∴ENHG =12,即HG=2EN,∴∠DNM=∠NMC=∠C=90°,∴四边形NMCD为矩形,∴MN=DC=2,∵BE平分∠ABC,EA⊥AB,EM⊥BC,∴EM=AE=3,∴EN=EM−MN=3−2=1,则HG=2EN=2.故答案为:B.【分析】过E作EM⊥BC,交FD于点H,可得EH⊥GD,得到EH与GH平行,再由E为HD中点,得到HG=2EH,同时得到四边形NMCD为矩形,再由角平分线定理得到AE=ME,进而求出EH的长,得到HG的长.8.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( ) A. 23 B. 12 C. 13 D. 16【答案】 A【考点】列表法与树状图法,概率公式【解析】【解答】解:三个不同的篮子分别用A 、B 、C 表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为 69=23 .故答案为:A .【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.9.在螳螂的示意图中,AB ∥DE ,△ABC 是等腰三角形,∠ABC =124°,∠CDE =72°,则∠ACD =( )A. 16°B. 28°C. 44°D. 45°【答案】 C【考点】平行线的性质,等腰三角形的性质【解析】【解答】解:延长 ED ,交 AC 于F ,∵ΔABC 是等腰三角形, ∠ABC =124° ,∴∠A =∠ACB =28° ,∵AB//DE ,∴∠CFD =∠A =28° ,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°−28°=44°,故答案为:C.【分析】延长ED,交AC于F,根据等腰三角形的性质得出∠A=∠ACB=28°,根据平行线的性质得出∠CFD=∠A=28°,10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A. 1.2小时B. 1.6小时C. 1.8小时D. 2小时【答案】C【考点】分式方程的实际应用【解析】【解答】解:设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为180x km/h,乙的速度为803−xkm/h,根据题意得:180(3−x)x =803−x,解得:x1=1.8或x2=9,经检验:x1=1.8或x2=9是原方程的解,x2=9不合题意,舍去,故答案为:C.【分析】设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为180xkm/h,乙的速度为803−xkm/h,根据“各匀速行驶一半路程”列出方程求解即可.11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A. 4 √3米B. 5 √2米C. 2 √13米D. 7米【答案】B【考点】二次函数的实际应用-拱桥问题【解析】【解答】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=32,设大孔所在抛物线解析式为y=ax2+ 32,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+ 32,∴a=- 350,∴大孔所在抛物线解析式为y=- 350x2+ 32,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为-7,∴点E坐标为(-7,- 3625),∴- 3625=m(x﹣b)2,∴x1= 65√1m+b,x2=- 65√−1m+b,∴MN=4,∴| 65√−1m+b-(- 65√−1m+b)|=4∴m=- 925,∴顶点为A的小孔所在抛物线的解析式为y=- 925(x﹣b)2,∵大孔水面宽度为20米,∴当x=-10时,y=- 92,∴- 92=- 925(x﹣b)2,∴x1= 52√2+b,x2=- 5√22+b,∴单个小孔的水面宽度=|(52√2+b)-(- 52√2+b)|=5 √2(米),故答案为:B.【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2 √7,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若B B′=2,则A A′=()A. √11B. 2 √3C. √13D. √14【答案】A【考点】等腰三角形的性质,勾股定理,矩形的判定与性质,相似三角形的判定与性质,旋转的性质【解析】【解答】解:过D作DE⊥BC于E,则∠DEC=∠DEB=90°,∵AD//BC,∠ABC=90°,∴∠DAB=∠ABC=90°,∴四边形ABED是矩形,∴BE=AD=2,DE=AB=2√7,∵将ΔABC绕点C顺时针方向旋转后得△A′B′C,∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,∴△A′CA∽△B′CB,∴A′AB′B =ACBC,∵△B′CD为等腰三角形,∴△B′CD为等腰直角三角形,∴CD=√2B′C,设B′C=BC=x,则CD=√2x,CE=x−2,∵CD2=CE2+DE2,∴(√2x)2=(x−2)2+(2√7)2,∴x=4(负值舍去),∴BC=4,∴AC=√AB2+BC2=2√11,∴A′A2=2√114,∴A′A=√11,故答案为:A.【分析】过D作DE⊥BC于E,则∠DEC=∠DEB=90°,根据矩形的性质得BE=AD=2,DE=AB=2√7,根据旋转的性质得到∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,推出△B′CD为等腰直角三角形,得到CD=√2B′C,设B′C=BC= x,则CD=√2x,CE=x−2,根据勾股定理即可得到结论.二、填空题(共7题;共16分)13.因式分解:x3y﹣4xy3=________.【答案】xy(x+2y)(x﹣2y)【考点】提公因式法与公式法的综合运用【解析】【解答】解:x3y﹣4xy3,=xy(x2﹣4y2),=xy(x+2y)(x﹣2y).故答案为:xy(x+2y)(x﹣2y).【分析】原式提取公因式xy,再利用平方差公式分解即可;14.平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为________.【答案】(﹣3,3)【考点】点的坐标,平移的性质,坐标与图形变化﹣平移【解析】【解答】解:∵将点A(﹣1,2)先向左平移2个单位横坐标﹣2,再向上平移1个单位纵坐标+1,∴平移后得到的点A1的坐标为:(﹣3,3).故答案为:(﹣3,3).【分析】根据在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)即可得结论.15.若多项式xy|m−n|+(n−2)x2y2+1是关于x,y的三次多项式,则mn=________.【答案】0或8【考点】多项式的项和次数【解析】【解答】解:∵多项式xy|m−n|+(n−2)x2y2+1是关于x,y的三次多项式,∴n−2=0,1+|m−n|=3,∴n=2,|m−n|=2,∴m−n=2或n−m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.【分析】直接利用多项式的次数确定方法得出答案.16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是________万元.(利润=销售额﹣种植成本)【答案】125【考点】一元一次不等式组的应用【解析】【解答】解:设甲种火龙果种植x亩,乙钟火龙果种植(100−x)亩,此项目获得利润w,甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:{0.9x+1.1(100−x)⩾980.9x+1.1(100−x)⩽100,解得:50⩽x⩽60,此项目获得利润w=1.1x+1.4(100−x)=140−0.3x,∵−0.3<0∴w随x的增大而减小,∴当x=50时,w的最大值为140−15=125万元,故答案为:125.【分析】设甲种火龙果种植x 亩,乙钟火龙果种植(100-x) 亩,此项目获得利润w ,根据题意列出不等式求出x 的范围,然后根据题意列出w 与x 的函数关系即可求出答案.17.如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为________.【答案】3√3−2【考点】三角形三边关系,含30°角的直角三角形,直角三角形斜边上的中线,四边形-动点问题【解析】【解答】解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC 于F,交CD于G,则OM+ME≥OF.∵∠AMD=90°,AD=4,OA=OD,∴OM=12AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=2 √3,GF=√3,OF=3 √3,∴ME≥OF﹣OM=3 √3﹣2,∴当O,M,E共线时,ME的值最小,最小值为3 √3﹣2.【分析】取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.求出OM,OF即可解决问题.18.若不等式x+52>﹣x﹣72的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是________.【答案】236≤m≤6【考点】不等式及其性质,解一元一次不等式【解析】【解答】解:解不等式x+52>﹣x﹣72得x>﹣4,∵x>﹣4都能使不等式(m﹣6)x<2m+1成立,①当m﹣6=0,即m=6时,则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0,则不等式(m﹣6)x<2m+1的解要改变方向,∴m﹣6<0,即m<6,∴不等式(m﹣6)x<2m+1的解集为x>2m+1m−6,∵x>﹣4都能使x>2m+1m−6成立,∴﹣4≥ 2m+1m−6,∴﹣4m+24≤2m+1,∴m≥ 236,综上所述,m的取值范围是236≤m≤6.故答案为:236≤m≤6.【分析】解不等式x+52>﹣x ﹣ 72 得x >﹣4,据此知x >﹣4都能使不等式(m ﹣6)x <2m+1成立,再分m ﹣6=0和m ﹣6≠0两种情况分别求解.19.如图,在平面直角坐标系xOy 中,一次函数的图象与反比例函数y = kx (k <0)的图象在第二象限交于A (﹣3,m ),B (n ,2)两点.(1)当m =1时,求一次函数的解析式;(2)若点E 在x 轴上,满足∠AEB =90°,且AE =2﹣m ,求反比例函数的解析式. 【答案】 (1)解:当 m =1 时,点 A(−3,1) , ∵ 点A 在反比例函数 y =kx 的图象上, ∴k =−3×1=−3 ,∴ 反比例函数的解析式为 y =−3x ;∵ 点 B(n,2) 在反比例函数 y =−3x 图象上, ∴2n =−3 , ∴n =−32 ,设直线 AB 的解析式为 y =ax +b ,则 {−3a +b =1−32a +b =2 ,∴ {a =23b =3, ∴ 直线 AB 的解析式为 y =23x +3 ;(2)解:如图,过点 A 作 AM ⊥x 轴于 M ,过点 B 作 BN ⊥x 轴于 N ,过点 A 作 AF ⊥BN 于 F ,交 BE 于 G ,则四边形 AMNF 是矩形, ∴FN =AM , AF =MN , ∵A(−3,m) , B(n,2) , ∴BF =2−m , ∵AE =2−m , ∴BF =AE ,在 ΔAEG 和 ΔBFG 中, {∠AGE =∠BGF(对顶角相等)∠AEG =∠BFG =90°AE =BF,∴ΔAEG ≅Rt ΔBFG (AAS ) , ∴AG =BG , EG =FG ,∴BE =BG +EG =AG +FG =AF ,∵ 点 A(−3,m) , B(n,2) 在反比例函数 y =kx 的图象上, ∴k =−3m =2n , ∴m =−23n ,∴BF =BN −FN =BN −AM =2−m =2+23n , MN =n −(−3)=n +3 , ∴BE =AF =n +3 ,∵∠AEM +∠MAE =90° , ∠AEM +∠BEN =90° , ∴∠MAE =∠NEB , ∵∠AME =∠ENB =90° , ∴ΔAME ∽ΔENB , ∴ME BN=AE BE=2−m n+3=2+23n n+3=23, ∴ME =23BN =43,在 Rt ΔAME 中, AM =m , AE =2−m ,根据勾股定理得, AM 2+ME 2=AE 2 , ∴m 2+(43)2=(2−m)2 , ∴m =59 ,∴k=−3m=−53,∴反比例函数的解析式为y=−53x.【考点】待定系数法求一次函数解析式,三角形全等及其性质,三角形全等的判定,勾股定理,相似三角形的判定与性质【解析】【分析】(1)将点A坐标代入反比例函数解析式中求出k,进而得出点B坐标,最后用待定系数法求出直线AB的解析式;(2)先判断出BF=AE,进而得出ΔAEG≅RtΔBFG(AAS),得出AG=BG,EG=FG,即BE=BG+EG=AG+FG=AF,再求出m=−23n,进而得出BF=2+23n,MN=n+3,即BE=AF=n+3,再判断出ΔAME∽ΔENB,得出MEBN=AEBE=23,得出ME=23BN=43,最后用勾股定理求出m,即可得出结论.三、解答题(共6题;共75分)20.(1)计算:| √5﹣3|+2 √5cos60°﹣√2× √8﹣(﹣√22)0.(2)先化简,再求值:(x+2+ 3x−2)÷ 1+2x+x2x−2,其中x=√2﹣1.【答案】(1)解:原式=3−√5+2√5×12−√22×2√2−1=3−√5+√5−2−1=0;(2)解:原式=(x2−4x−2+3x−2)÷(x+1)2x−2=(x+1)(x−1)x−2⋅x−2 (x+1)2=x−1x+1,当x=√2﹣1时,原式=√2−1−1√2−1+1=√2−22=1﹣√2.【考点】实数的运算,分式的混合运算,利用分式运算化简求值,0指数幂的运算性质,二次根式的乘除法,特殊角的三角函数值【解析】【分析】(1)先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.21.4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y 关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?【答案】(1)解:甲书店:y=0.8x,乙书店:当x⩽100时,y=x,当x>100时,y=100+0.6(x-100)=0.6x+40,乙书店:y={x(x⩽100)0.6x+40(x>100).(2)解:令0.8x=0.6x+40,解得:x=200,当x<200时,选择甲书店更省钱,当x=200,甲乙书店所需费用相同,当x>200,选择乙书店更省钱.【考点】分段函数,一次函数的实际应用【解析】【分析】(1)根据题意给出的等量关系即可求出答案.(2)先求出两书店所需费用相同时的书本数量,从而可判断哪家书店省钱.22.为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?【答案】(1)解:把这些数从小到大排列,最中间的数是第5和第6个数的平均数,则中位数是75+752=75(克);因为75出现了4次,出现的次数最多,所以众数是75克;平均数是:110(74+75+75+75+73+77+78+72+76+75)=75(克);(2)解:根据题意得:100×310=30(个),答:质量为75克的鸡腿有30个;(3)解:选B加工厂的鸡腿.∵A、B平均值一样,B的方差比A的方差小,B更稳定【考点】分析数据的集中趋势【解析】【分析】(1)根据中位数、众数和平均数的计算公式分别进行解答即可;(2)用总数乘以质量为75克的鸡腿所占的百分比即可;(3)根据方差的定义,方差越小数据越稳定即可得出答案.23.如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.【答案】(1)证明:∵∠BAC=∠CEB,∠CEB=∠DCA,∴∠BAC=∠DCA,∴AB//CD;(2)证明:连接EO并延长交⊙O于G,连接CG,如图1所示:则EG为⊙O的直径,∴∠ECG=90°,∵OC=OG,∴∠OCG=∠EGC,∵∠EAC=∠EGC,∠EAC=∠DCE,∴∠DCE=∠EGC=∠OCG,∵∠OCG+∠OCE=∠ECG=90°,∴∠DCE+∠OCE=90°,即∠DCO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(3)解:在 Rt ΔADC 中,由勾股定理得: AC =√AD 2+CD 2=√82+62=10 , ∴cos ∠ACD =CD AC=610=35, ∵CD 是 ⊙O 的切线, AB//CD , ∴∠ABC =∠ACD =∠CAB ,∴BC =AC =10 , AB =2BC ·cos ∠ABC =2×10×35=12 , 过点B 作 BG ⊥AC 于C ,如图2所示:设 GC =x ,则 AG =10−x ,由勾股定理得: AB 2−AG 2=BG 2=BC 2−GC 2 , 即: 122−(10−x)2=102−x 2 , 解得: x =145,∴GC =145,∴BG =√BC 2−GC 2=√102−(145)2=485,∴tan ∠ACB =BGGC =485145=247【考点】勾股定理,圆周角定理,切线的性质,切线的判定,锐角三角函数的定义【解析】【分析】(1)由圆周角定理与已知得 ∠BAC =∠DCA ,即可得出结论;(2)连接 EO 并延长交 ⊙O 于G ,连接 CG ,则 EG 为 ⊙O 的直径, ∠ECG =90° ,证明 ∠DCE =∠EGC =∠OCG ,得出 ∠DCE +∠OCE =90° ,即可得出结论;(3)由三角函数定义求出 cos ∠ACD =35 ,证出 ∠ABC =∠ACD =∠CAB ,求出 BC =AC =10 , AB =12 ,过点 B 作 BG ⊥AC 于 C ,设 GC =x ,则 AG =10−x ,由勾股定理得出方程,解方程得 GC =145,由勾股定理求出 BG =485,由三角函数定义即可得答案.24.如图,抛物线过点A (0,1)和C ,顶点为D ,直线AC 与抛物线的对称轴BD 的交点为B ( √3 ,0),平行于y 轴的直线EF 与抛物线交于点E ,与直线AC 交于点F ,点F 的横坐标为 4√33,四边形BDEF 为平行四边形.(1)求点F 的坐标及抛物线的解析式;(2)若点P 为抛物线上的动点,且在直线AC 上方,当△PAB 面积最大时,求点P 的坐标及△PAB 面积的最大值;(3)在抛物线的对称轴上取一点Q ,同时在抛物线上取一点R ,使以AC 为一边且以A ,C ,Q ,R 为顶点的四边形为平行四边形,求点Q 和点R 的坐标.【答案】 (1)解:设抛物线的解析式为y =ax 2+bx+c (a≠0), ∵A (0,1),B ( √3 ,0), 设直线AB 的解析式为y =kx+m , ∴ {√3k +m =0m =1,解得 {k =−√33m =1, ∴直线AB 的解析式为y =﹣ √33x+1,∵点F 的横坐标为 4√33,∴F 点纵坐标为﹣ √33×4√33+1=﹣ 13 ,∴F 点的坐标为( 43√3 ,﹣ 13 ), 又∵点A 在抛物线上, ∴c =1,对称轴为:x =﹣ b2a =√3 , ∴b =﹣2 √3 a ,∴解析式化为:y =ax 2﹣2 √3 ax+1, ∵四边形DBFE 为平行四边形. ∴BD =EF , ∴﹣3a+1=163a ﹣8a+1﹣(﹣ 13 ), 解得a =﹣1,∴抛物线的解析式为y =﹣x 2+2 √3 x+1;(2)解:设P (n ,﹣n 2+2 √3 n+1),作PP'⊥x 轴交AC 于点P',则P'(n ,﹣ √33n+1),∴PP'=﹣n 2+ 73√3 n ,S △ABP = 12 OB•PP'=﹣ √32n 2+72n =﹣ √32(n −76√3)2+4924√3 ,∴当n = 76√3 时,△ABP 的面积最大为 4924√3 ,此时P ( 76√3 , 4712 ).(3)解:∵ {y =√33x +1y =−x 2+2√3x +1 , ∴x =0或x = 73√3 , ∴C ( 73√3 ,﹣ 43 ), 设Q ( √3 ,m ), ①当AQ 为对角线时, ∴R (﹣ 43√3,m +73 ),∵R 在抛物线y = −(x −√3)2 +4上, ∴m+ 73 =﹣ (−43√3−√3)2 +4, 解得m =﹣443,∴Q (√3,−443) ,R (−43√3,−373) ; ②当AR 为对角线时, ∴R (103√3, m −73 ),∵R 在抛物线y = −(x −√3)2 +4上, ∴m ﹣ 73=−(103√3−√3)2 +4, 解得m =﹣10,∴Q ( √3 ,﹣10),R (103√3,−373 ).综上所述,Q (√3,−443) ,R (−43√3,−373) ;或Q ( √3 ,﹣10),R ( 103√3,−373 ).【考点】待定系数法求一次函数解析式,待定系数法求二次函数解析式,三角形的面积,二次函数与一次函数的综合应用,二次函数的其他应用【解析】【分析】(1)由待定系数法求出直线AB 的解析式为y =﹣ √33x+1,求出F 点的坐标,由平行四边形的性质得出﹣3a+1=163a ﹣8a+1﹣(﹣ 13 ),求出a 的值,则可得出答案;(2)设P (n ,﹣n 2+2 √3 n+1),作PP'⊥x 轴交AC 于点P',则P'(n ,﹣ √33n+1),得出PP'=﹣n 2+ 73√3 n ,由二次函数的性质可得出答案;(3)联立直线AC 和抛物线解析式求出C ( 73√3 ,﹣ 43 ),设Q ( √3 ,m ),分两种情况:①当AQ 为对角线时,②当AR 为对角线时,分别求出点Q 和R 的坐标即可.25.如图,在矩形ABCD 中,对角线相交于点O ,⊙M 为△BCD 的内切圆,切点分别为N ,P ,Q ,DN =4,BN =6.(1)求BC ,CD ;(2)点H 从点A 出发,沿线段AD 向点D 以每秒3个单位长度的速度运动,当点H 运动到点D 时停止,过点H 作HI ∥BD 交AC 于点I ,设运动时间为t 秒.①将△AHI 沿AC 翻折得△A H ′ I ,是否存在时刻t ,使点 H ′ 恰好落在边BC 上?若存在,求t 的值;若不存在,请说明理由;②若点F 为线段CD 上的动点,当△OFH 为正三角形时,求t 的值.【答案】 (1)解:∵⊙M 为△BCD 的内切圆,切点分别为N ,P ,Q ,DN =4,BN =6, ∴BP =BN =6,DQ =DN =4,CP =CQ ,BD =BN+DN =10, 设CP =CQ =a ,则BC =6+a ,CD =4+a , ∵四边形ABCD 是矩形, ∴∠BCD =90°,∴BC 2+CD 2=BD 2 , 即(6+a )2+(4+a )2=102 , 解得:a =2,∴BC =6+2=8,CD =4+2=6;(2)解:①存在时刻t = 2512 s ,使点H′恰好落在边BC 上;理由如下:如图1所示:由折叠的性质得:∠AH'I=∠AHI,AH'=AH=3t,∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∠BCD=90°,OA=OC=12AC,OB=OD=12BD,AC=BD,∴AC=BD=√BC2+CD2=√82+62=10,OA=OD=5,∴∠ADO=∠OAD,∵HI∥BD,∴∠AHI=∠ADO,∴∠AH'I=∠AHI=∠ADO=∠OAD=∠ACH',∴△AIH'∽△AH'C,∴AH′AC =AIAH′,∴AH'2=AI×AC,∵HI∥BD,∴△AIH∽△AOD,∴AIAO =AHAD,即AI5=3t8,解得:AI=158t,∴(3t)2=158t×10,解得:t=2512,即存在时刻t=2512s,使点H′恰好落在边BC上;②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,如图2所示:则OM∥CD∥PN,∠OMH=∠HNP=90°,OM是△ACD的中位线,∴OM=12CD=3,∵△OFH是等边三角形,∴OF=FH,∠OHF=∠HOF=60°,∴∠FHP=∠HPO=30°,∴FH=FP=OF,HP=√3OH,∴DF是梯形OMNP的中位线,∴DN=DM=4,∵∠MHO+∠MOH=∠MHO+∠NHP=90°,∴∠MOH=∠NHP,∴△OMH∽△HNP,∴OMHN =OHHP=√3,∴HN=√3OM=3 √3,∴DH=HN﹣DN=3 √3﹣4,∴AH=AD﹣DH=12﹣3 √3,∴t=AH3=4﹣√3,即当△OFH为正三角形时,t的值为(4﹣√3)s.【考点】勾股定理,翻折变换(折叠问题),相似三角形的判定与性质,四边形-动点问题【解析】【分析】(1)由切线长定理得出BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,设CP =CQ=a,由勾股定理得出BC2+CD2=BD2,得出方程,解方程即可;(2)①由折叠的性质得∠AH'I=∠AHI,AH'=AH=3t,证明△AIH'∽△AH'C,则AH'2=AI×AC,证△AIH∽△AOD,求出AI=158t,得出(3t)2=158t×10,解方程即可;②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,证出FH=FP=OF,HP=√3OH,DN=DM=4,证明△OMH∽△HNP,求出HN=√3OM=3 √3,则DH=HN﹣DN=3 √3﹣4,得出AH=AD﹣DH=12﹣3 √3,即可得出答案.。
2020年四川省自贡市中考数学试卷及答案(解析版)
2020 年四川省自贡市中考数学试卷.选择题(共 12 个小题) .1.( 4分)如图,直线 a ∥ b ,∠ 1= 50°,则∠ 2 的度数为(2.(4分)5月 22 日晚,中国自贡第 26届国际恐龙灯会开启网络直播,有着近千年历史的数 700000 用科学记数法表示为( )3.(4 分)如图所示的几何体的左视图是(4.(4 分)关于 x 的一元二次方程 ax 2﹣2x+2=0 有两个相等实数根,则 a 的值为(6.(4 分)下列图形中,是轴对称图形,但不是中心对称图形的是(B .50°C .55D .60 自贡灯会进入云游”时代, 70 余万人通过云观灯” 感受了 “天下第一灯”的璀璨.A .70× 104B .0.7×107C .7×105D .7×106A .5.A .B .C .1D .﹣ 14 分)在平面直角坐标系中, 将点(2,1)向下平移 3 个单位长度, 所得点的坐标是 (A .(﹣ 1,1)B .(5,1)C .( 2, 4)D .(2,﹣ 2)A .B .A . 404 分)对于一组数据 3,7,5, 3,2,下列说法正确的是(径画弧,交 AB 于点 D ,连接 CD ,则∠ ACD 的度数是(时每天的工作效率比原计划提高了 35%,结果提前 40 天完成了这一任务. 设实际工作时7. C . D .8. A .中位数是 5B .众数是 7C .平均数是 4D .方差是 34 分)如果一个角的度数比它补角的2 倍多 30 °,那么这个角的度数是(A . 50 °B .70°C .130°D . 160°9. 4 分)如图,在 Rt △ ABC 中,∠ ACB = 90°,∠ A = 50°,以点 B 为圆心, BC 长为半B .40°C .30°D .20°10.( 4分)函数 y = 与 y = ax 2+bx+c 的图象如图所示, 则函数y = kx ﹣ b 的大致图象为 ()80 万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作A . 50 °=40 每天绿化的面积为 x 万平方米,则下面所列方程中正确的是(15.( 4 分)某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序,请按正确顺序重新排序 只填番号) : ① 绘制扇形图;② 收集最受学生欢迎菜品的数据; ③ 利用扇形图分析出最受学生欢迎的菜品; ④ 整理所收集的数据.16.( 4 分)如图,我市在建高铁的某段路基横断面为梯形 坡角 β为 45°, AD 的坡角 α为 30°,则 AD 长为 米(结果保留根号)17.(4分)如图,矩形 ABCD 中,E 是 AB 上一点,连接 DE ,将△ ADE 沿 DE 翻折,恰好 使点 A 落在 BC 边的中点 F 处,在 DF 上取点 O ,以 O 为圆心, OF 长为半径作半圆与﹣= 40D .﹣=40 B . =40C .A . 12.(4分)如图,在平行四边形 ABCD 中, AD =2,AB = ,∠B 是锐角,AE ⊥ BC 于点 EFD =90°,则 AE 长为()A .2B .C .D .二、填空题6 个小题,每小题 4 分,共24 分)13.(4 分)分解因式: 3a 2﹣ 6ab+3b 2= 14.(4 分) 与﹣2 最接近的自然数是ABCD ,DC ∥ AB . BC 长 6 米,DF 、 EF .若∠CD 相切于点G.若AD =4,则图中阴影部分的面积为=4018.(4分)如图,直线 y =﹣ x+b 与 y 轴交于点 A ,与双曲线 y = 在第三象限交于 B 、C 两点,且 AB?AC =16.下列等边三角形△ OD 1E 1,△ E 1D 2E 2,△ E 2D 3E 3,⋯的边 OE 1, E 1E 2,E 2E 3,⋯在 x 轴上,顶点 D 1,D 2,D 3,⋯在该双曲线第一象限的分支上, 则 k =,前 25 个等边三角形的周长之和为 .上,且 CE =DF ,连接 AE 和BF 相交于点 M . 19. 20. 21.解答题 8 分) 8 分) 8 分) 计算: |﹣2|﹣(+π) 0+ 先化简,再求值: ?(﹣)﹣1+1),其中 x 是不等式组 的整数解.如图,在正方形 ABCD 中,点 E 在 BC 边的延长线上,点 F 在 CD 边的延长线共 8 个题,共 78 分)求证: AE =BF .22.(8 分)某校为了响应市政府号召,在“创文创卫”活动周中,设置了B :环境保护,C :卫生保洁,D :垃圾分类”四个主题,每个学生选一个主题参与.为 了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图条 形统计图和扇形统计图.( 1)本次调查的学生人数是 人, m = ;( 2)请补全条形统计图;( 3)学校要求每位同学从星期一至星期五选择两天参加活动. 如果小张同学随机选择连续两天,其中有一天是星期一的概率是 ;小李同学星期五要参加市演讲比赛,他 在其余四天中随机选择两天,其中有一天是星期三的概率是 .23.(10 分)甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库 存,甲、乙两家商场打折促销.甲商场所有商品按 9 折出售,乙商场对一次购物中超过 100 元后的价格部分打 8 折. ( 1)以 x (单位:元)表示商品原价, y (单位:元)表示实际购物金额,分别就两家商 场的让利方式写出 y 关于 x 的函数解析式;( 2)新冠疫情期间如何选择这两家商场去购物更省钱?24.( 10 分)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x ﹣2|的几何意义是数轴上 x 所对应的点与 2 所对应的点之间的距离:因为 |x+1|= |x ﹣(﹣ 1) |,所以 |x+1|的几何意义就是数轴上 x 所对应的点与﹣ 1 所对应的点之间的距离.(1)发现问题:代数式 |x+1|+|x ﹣ 2|的最小值是多少?(2)探究问题:如图,点 A 、B 、P 分别表示数﹣ 1、2、x ,AB =3.∵ |x+1|+|x ﹣2|的几何意义是线段 PA 与 PB 的长度之和,∴当点 P 在线段 AB 上时, PA+PB = 3,当点 P 在点 A 的左侧或点 B 的右侧时, PA+PB >A :文明礼仪,3.∴ |x+1|+|x ﹣ 2|的最小值是 3. (3)解决问题:① |x ﹣ 4|+|x+2|的最小值是;② 利用上述思想方法解不等式: |x+3|+|x ﹣1|> 4;③ 当 a 为何值时,代数式 |x+a|+|x ﹣3|的最小值是 2.25.(12 分)如图, ⊙O 是△ABC 的外接圆, AB 为直径,点 P 为⊙O 外一点,且 PA =PC = AB ,连接 PO 交 AC 于点 D ,延长 PO 交⊙O 于点 F .2)若 tan ∠ABC =2 ,证明: PA 是⊙O 的切线;3)在(2)条件下,连接 PB 交⊙O 于点 E ,连接 DE ,若 BC =2,求 DE 的长.26.(14 分)在平面直角坐标系中,抛物线 y =ax 2+bx+3与 x 轴交于点 A (﹣ 3,0)、0),交 y 轴于点 N ,点 M 为抛物线的顶点,对称轴与 x 轴交于点 C . 1)求抛物线的解析式;2)如图 1,连接 AM ,点 E 是线段 AM 上方抛物线上一动点, EF ⊥AM 于点 F ,过点 E作 EH ⊥x 轴于点 H ,交 AM 于点 D .点 P 是 y 轴上一动点,当 EF 取最大值时: ①求 PD+PC 的最小值;②如图 2,Q 点为 y 轴上一动点,请直接写出 DQ+ OQ的最小值.B (1,1)证明:图13.(4 分)如图所示的几何体的左视图是( )2020 年四川省自贡市中考数学试卷参考答案与试题解析一.选择题(共 12 个小题,每小题 4 分,共 48 分,在每题给出的四个选项中,只有一项 是符合题目要求的)解: 如图所示: ∵a ∥b ,∴∠ 3=∠ 1 = 50°, ∴∠ 2=∠ 3= 50°; 故选: B .2.(4分)5月 22日晚,中国自贡第 26届国际恐龙灯会开启网络直播,有着近千年历史的 自贡灯会进入“云游”时代, 70余万人通过 “云观灯” 感受了“天下第一灯” 的璀璨. 人 数 700000 用科学记数法表示为( )A .70×104B .0.7×107C . 7×105D . 7×106解: 700000 用科学记数法表示为 7× 105, 故选: C.B .50°C .55°D .601. ∠ 1= 50°,则∠ 2 的度数为(A . 40 °4.5.6.A.解:该几何体从左边看有两列,左边一列底层是一个正方形,右边一列是三个正方形.故选:B .4 分)关于x 的一元二次方程ax2﹣2x+2=0 有两个相等实数根,则a 的值为()A.解:∵关于x的一元二次方程ax2﹣2x+2=0 有两个相等实数根,B.C.1 D .﹣1.故选:A .∴a=4 分)在平面直角坐标系中,将点(2,1)向下平移3 个单位长度,所得点的坐标是()A.(﹣1,1)B.(5,1)C.(2,4)D.(2,﹣2)解:将点P(2,1)向下平移3 个单位长度所得点的坐标为(2,1﹣3)即(2,﹣2);故选:D .4 分)下列图形中,是轴对称图形,但不是中心对称图形的是(A.C.D.B.解:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故本选项不合题意;D、既不是轴对称图形,又不是中心对称图形,故本选项不合题意.故选:A .7.(4 分)对于一组数据3,7,5,3,2,下列说法正确的是()A .中位数是5B .众数是7 C.平均数是4 D.方差是3解:A、把这组数据从小到大排列为:2,3,3,5,7,最中间的数是3,则中位数是3,故本选项错误;B、3出现了2 次,出现的次数最多,则众数是3,故本选项错误;C、平均数是:(3+7+5+3+2)÷ 5=4,故本选项正确;D、方差是:[2×(3﹣4)2+(7﹣4)2+(5﹣4)2+(2﹣4)2]=3.2,故本选项错误;故选:C .8.(4分)如果一个角的度数比它补角的 2 倍多30°,那么这个角的度数是()A .50°B.70°C.130°D.160°解:设这个角是x°,根据题意,得x=2(180﹣x)+30,解得:x=130.即这个角的度数为130 °.故选:C .9.(4分)如图,在Rt△ABC中,∠ ACB=90°,∠A=50°,以点B为圆心,BC 长为半径画弧,交AB 于点D ,连接CD,则∠ ACD 的度数是()A .50°B.40°C.30°D.20°解:∵在Rt△ABC中,∠ ACB=90°,∠ A=50°,∴∠ B=40°,∵BC=BD,∴∠ BCD =∠ BDC = (180°﹣ 40°)= 70°, ∴∠ ACD = 90°﹣70°= 20°, 故选: D .10.( 4分)函数 y = 与 y = ax 2+bx+c 的图象如图所示, 则函数 y = kx ﹣ b 的大致图象为 ()解: 根据反比例函数的图象位于一、三象限知 k >0,根据二次函数的图象确知 a < 0,b <0,∴函数 y =kx ﹣b 的大致图象经过一、二、三象限, 故选: D .11.(4 分)某工程队承接了 80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前 40 天完成了这一任务. 设实际工作时每天绿化的面积为 x 万平方米,则下面所列方程中正确的是( )平方米,A .C .﹣﹣=40B . D .﹣ = 40解: 设实际工作时每天绿化的面积为x 万平方米,则原计划每天绿化的面积为故选: A ..(4分)如图,在平行四边形 ABCD 中, AD =2, AB = ,∠ B 是锐角, AE ⊥ BC 于点DF 、 EF .若∠ EFD = 90°,则 AE 长为( ) ∴DQ ∥BC , ∴∠ Q =∠ BEF ,∵ AF = FB ,∠ AFQ =∠ BFE ,∴△ QFA ≌△ EFB (AAS ), ∴ AQ = BE = x , ∵∠ EFD = 90°,∴DF ⊥ QE , ∴ DQ =DE = x+2,∵AE ⊥BC ,BC ∥AD , ∴AE ⊥AD ,∴∠ AEB =∠ EAD =90°, ∵AE 2=DE 2﹣AD 2=AB 2﹣BE 2, ∴( x+2)2﹣4=6﹣ x 2,依题意,得: = 40 ,﹣ = 40.12C .Q ,连接 DE ,设 BE = x .D .A .2B . ∵四边形 ABCD 是平行四边形,整理得:2x2+4x﹣6=0,解得x=1 或﹣3(舍弃),∴BE=1,∴ AE=,故选:B .二、填空题(共6个小题,每小题4分,共24 分)13.(4 分)分解因式:3a2﹣6ab+3b2=3(a﹣b)2.解:3a2﹣6ab+3 b2=3(a2﹣2ab+b2)=3(a﹣b)2.故答案为:3(a﹣b)2.14.(4 分)与﹣2 最接近的自然数是2 .解:∵3.5< <4,∴ 1.5< ﹣2< 2,∴与﹣2 最接近的自然数是2.故答案为:2.15.(4 分)某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号):②④①③ .①绘制扇形图;②收集最受学生欢迎菜品的数据;③利用扇形图分析出最受学生欢迎的菜品;④整理所收集的数据.解:② 收集最受学生欢迎菜品的数据;④ 整理所收集的数据;① 绘制扇形图;③ 利用扇形图分析出最受学生欢迎的菜品;故答案为:②④①③ .16.(4 分)如图,我市在建高铁的某段路基横断面为梯形ABCD ,DC∥ AB.BC 长6 米,坡角 β为 45°, AD 的坡角 α为 30°,则 AD 长为 6 米(结果保留根号)∴DE = CF ,在 Rt △CFB 中,CF =BC?sin45°= 3 (米), ∴DE = CF =3 (米),在 Rt △ADE 中,∵∠ A =30°,∠ AED =90°, ∴AD = 2DE =6 (米), 故答案为 6 .使点 A 落在 BC 边的中点 F 处,在 DF 上取点 O ,以 O 为圆心, OF 长为半径作半圆与CD 相切于点 G .若 AD =4,则图中阴影部分的面积为解: 连接 OG,17.(4 分)如图,矩形 ABCD 中,E 是 AB 上一点,连接DE ,将△ ADE 沿 DE 翻折,恰好∵CD ∥AB ,DE ⊥AB ,CF ⊥AB ,∴AD = DF =4,BF = CF =2, ∵矩形 ABCD 中,∠ DCF =90°, ∴∠ FDC = 30°, ∴∠ DFC = 60°, ∵⊙O 与 CD 相切于点 G , ∴OG ⊥CD , ∵BC ⊥ CD , ∴OG ∥BC ,∴△ DOG ∽△ DFC , ∴, ∴,设 OG =OF = x ,则 ,解得: x = ,即⊙O 的半径是 . 连接 OQ ,作 OH ⊥FQ , ∵∠ DFC = 60°, OF = OQ , ∴△OFQ 为等边△;同理△ ∴∠ GOQ =∠ FOQ = 60°,18.(4分)如图,直线 y =﹣ x+b 与 y 轴交于点 A ,与双曲线 y = 在第三象限交于C 两点,且 AB?AC =16.下列等边三角形△ OD 1E 1,△ E 1D 2E 2,△ E 2D 3E 3,⋯的边 OE 1,∵将△ ADE 沿 DE 翻折,恰好使点 A 落在 BC 边的中点 F 处,B 、OGQ 为等边△;S 扇形 OGQ =S 扇形 OQF ,∴ S 阴影=( S 矩形 OGCH ﹣S 扇形OGQ ﹣S △OQH )+(S 扇形 OQF ﹣ S △ OFQ )E 1E 2,E 2E 3,⋯在 x 轴上,顶点 D 1, D 2,D 3,⋯在该双曲线第一象限的分支上,则 4 ,前 25 个等边三角形的周长之和为 60解:设直线 y =﹣ x+b 与 x 轴交于点 D ,作 BE ⊥y 轴于 E ,CF ⊥y 轴于 F . ∵ y =﹣x+b ,∴当 y =0 时, x = b ,即点 D 的坐标为( b , 0),当 x =0时,y =b ,即 A 点坐标为( 0,b ), ∴OA = b ,OD =b .∵在 Rt △ AOD 中, tan ∠ADO = = , ∴∠ ADO = 60° ∵直线 y =﹣ x+b 与双曲线 y = 在第一象限交于点 ∴﹣ x+ b = , 整理得,﹣x 2+bx ﹣k = 0,∴AB =2EB ,同理可得: AC = 2FC ,∴ AB?AC =( 2EB )( 2FC )= 4EB?FC = k = 16,解得: k = 4 .由题意可以假设 D 1(m , m ), ∴m 2? = 4 ,由韦达定理得:x 1x 2==cos60°k ,即 EB?FC =,k ,k =B 、C 两点,∴ m=2∴ OE1=4,即第一个三角形的周长为12,设D2(4+n,n),∵(4+n)? n=4 ,解得n=2 ﹣2,∴E1E2=4 ﹣4,即第二个三角形的周长为12 ﹣12,设D3(4 +a,a),由题意(4 +a)? a=4 ,解得a=2 ﹣2 ,即第三个三角形的周长为12 ﹣12 ,∴第四个三角形的周长为6 ﹣6 ,∴前25 个等边三角形的周长之和12+12 ﹣12+12 ﹣12 +12 ﹣12 +⋯+12 ﹣12 =12 =60,故答案为4 ,60.三、解答题(共8 个题,共78 分)19.(8 分)计算:|﹣2|﹣(+π)0+(﹣)﹣1解:原式=2﹣1+(﹣6)=1+ (﹣6)=﹣5.+1),其中x 是不等式组的整数解.20.(8 分)先化简,再求值:解:?(+1)解: 在正方形 ABCD 中,AB =CD =CD =AD ,∵CE = DF , ∴BE =CF ,在△ AEB 与△ BFC 中,,∴△ AEB ≌△ BFC (SAS ), ∴AE =BF .22.(8 分)某校为了响应市政府号召,在“创文创卫”活动周中,设置了= ,,由不等式组 ,得﹣ 1≤x < 1,∵x 是不等式组 的整数解,∴x =﹣ 1,0,∵当 x =﹣ 1 时,原分式无意义, ∴ x = 0,当 x =0 时,原式= =﹣ .21.(8分)如图,在正方形 ABCD 中,点 E 在 BC 边的延长线上,点 上,且 CE =DF ,连接 AE 和BF 相交于点 M .F 在 CD 边的延长线A :文明礼仪,求证: AE =BF .B:环境保护,C:卫生保洁,D:垃圾分类”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图条形统计图和扇形统计图.302)请补全条形统计图;3)学校要求每位同学从星期一至星期五选择两天参加活动.如果小张同学随机选择连续两天,其中有一天是星期一的概率是;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中有一天是星期三的概率是解:(1)12÷ 20%=60(人),×100%=30%,则m=30;故答案为:60,30;2)C 组的人数为60﹣18﹣12﹣9=21(人),补全条形统计图如图:3)如果小张同学随机选择连续两天,画树状图如图:共有20 个等可能的结果,其中连续两天,有一天是星期一的结果有2 个,∴其中有一天是星期一的概率为 = ;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,画树状图如图:共有 12个等可能的结果,其中有一天是星期三的结果有 6 个,∴其中有一天是星期三的概率为 = ;故答案为: , .23.(10 分)甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库 存,甲、乙两家商场打折促销.甲商场所有商品按 9 折出售,乙商场对一次购物中超过 100 元后的价格部分打 8 折. ( 1)以 x (单位:元)表示商品原价, y (单位:元)表示实际购物金额,分别就两家商 场的让利方式写出 y 关于 x 的函数解析式;( 2)新冠疫情期间如何选择这两家商场去购物更省钱?解:(1)由题意可得,y 甲= 0.9 x ,当 0≤x ≤ 100 时, y 乙= x ,当 x >100时, y 乙=100+(x ﹣100)×0.8=0.8x+20,;(2)当 0.9x <0.8x+20 时,得 x < 200,即此时选择甲商场购物更省钱;当 0.9x = 0.8x+20 时,得 x =200,即此时两家商场购物一样;当 0.9x > 0.8x+200 时,得 x >200,即此时选择乙商场购物更省钱.24.( 10 分)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合 是解决数学问题的重要思想方法.例如,代数式 |x ﹣2|的几何意义是数轴上 x 所对应的点与 2 所对应的点之间的距离:因为 |x+1|= |x ﹣(﹣ 1) |,所以 |x+1|的几何意义就是数轴上 x 所对应的点与﹣ 1 所对应的点之间的距离.(1)发现问题:代数式 |x+1|+|x ﹣ 2|的最小值是多少?(2)探究问题:如图,点 A 、B 、P 分别表示数﹣ 1、2、x ,AB =3.由上可得, y 乙 =∵ |x+1|+|x﹣2|的几何意义是线段PA 与PB 的长度之和,∴当点P 在线段AB 上时,PA+PB=3,当点P 在点A 的左侧或点B 的右侧时,PA+PB> 3.∴ |x+1|+|x ﹣2|的最小值是3.(3)解决问题:①|x﹣4|+|x+2|的最小值是6 ;②利用上述思想方法解不等式:|x+3|+|x﹣1|> 4;③当a为何值时,代数式|x+a|+|x﹣3|的最小值是2.解:(1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?(2)探究问题:如图,点A、B、P 分别表示数﹣1、2、x,AB=3.∵ |x+1|+|x﹣2|的几何意义是线段PA 与PB 的长度之和,∴当点P 在线段AB 上时,PA+PB=3,当点P 在点A 的左侧或点B 的右侧时,PA+PB> 3.∴ |x+1|+|x ﹣2|的最小值是3.(3)解决问题:①|x﹣4|+|x+2|的最小值是6;故答案为:6;②如图所示,满足|x+3|+|x﹣1|>4的x范围为x<﹣3 或x>1;③当a为1或5时,代数式|x+a|+|x﹣3|的最小值是2.25.(12 分)如图,⊙ O是△ ABC 的外接圆,AB 为直径,点P 为⊙O 外一点,且PA=PC =AB,连接PO 交AC 于点D,延长PO 交⊙O 于点F.(1)证明:=;(2)若tan∠ABC=2 ,证明:PA是⊙O 的切线;(3)在(2)条件下,连接PB交⊙O于点E,连接DE,若BC=2,求DE 的长.∵PC=PA,OC=OA,∴ OP 垂直平分线段AC,∴=.(2)证明:设BC=a,∵ AB 是直径,∴∠ ACB=90°,∵tan∠ABC==2 ,∴AC=2 a,AB==CD=AD =a,∵ PA=PC=AB,∴ PA=PC=3 a,∵∠ PDC=90°,∴ PD===4a,∵DC=DA,AO=OB,∴OD =BC=a,∴AD2=PD?OD,∵∠ ADP=∠ ADO=90°,∴△ ADP∽△ ODA ,∴∠ PAD=∠ DOA ,∵∠ DOA+∠DAO =90°,∴∠ PAD+∠ DAO=90°,∴∠ PAO=90°,∴OA⊥ PA,∴PA 是⊙O 的切线.3)解:如图,过点E作EJ⊥PF于J,BK⊥ PF 于K.∵BC=2,由(1)可知,PA=6 ,AB=6,∵∠ PAB=90°,∴ PB===6 ,∵PA2=PE?PB,PE==4 ,∵∠ CDK =∠ BKD =∠ BCD =90°,∴四边形CDKB 是矩形,∴CD=BK=2 ,BC=DK =2,∵PD=8,∴PK=10,∵EJ∥BK,==PJ∴DJ=PD﹣PJ=8﹣=,∴DE===.26.(14 分)在平面直角坐标系中,抛物线 y =ax 2+bx+3与 x 轴交于点 A (﹣3,0)、B (1,0),交 y 轴于点 N ,点 M 为抛物线的顶点,对称轴与 x 轴交于点 C .( 1)求抛物线的解析式;(2)如图 1,连接 AM ,点 E 是线段 AM 上方抛物线上一动点, EF ⊥AM 于点 F ,过点 E 作 EH ⊥x 轴于点 H ,交 AM 于点 D .点 P 是 y 轴上一动点,当 EF 取最大值时:①求 PD+PC 的最小值;②如图 2,Q 点为 y 轴上一动点,请直接写出 DQ+ OQ 的最小值.解:( 1)抛物线的表达式为: y = a ( x+3)( x ﹣ 1)= a ( x 2+2x ﹣ 3)= ax 2+2ax ﹣3a , 即﹣ 3a = 3,解得: a =﹣ 1,故抛物线的表达式为: y =﹣ x 2﹣ 2x+3;(2)由抛物线的表达式得,点 M (﹣1, 4),点 N (0,3),则 tan ∠ MAC = =2,则设直线 AM 的表达式为: y = 2x+b ,将点 A 的坐标代入上式并解得: b = 6,故直线 AM 的表达式为: y = 2x+6,∵∠ EFD =∠ DHA = 90°,∠ EDF =∠ ADH ,∴∠ MAC =∠ DEF ,则 tan ∠DEF =2,则 cos ∠ DEF = ,设点 E (x ,﹣ x 2﹣2x+3),则点 D (x ,2x+6), 则 FE = EDcos ∠DEF =(﹣ x 2﹣2x+3﹣2x ﹣ 6)×= ∵﹣ <0,故 EF 有最大值,此时 x =﹣ 2,故点 D (﹣ 2,2);﹣ x 2﹣ 4x ﹣ 3),①点 C (﹣ 1,0)关于 y 轴的对称点为点 B (1,0),连接 BD 交 y 轴于点 P ,则点 P 为 所求点,PD+PC = PD+PB =DB 为最小,=;,过点 D 作 DK ⊥ OK 于点 K ,交 y 轴于点 Q ,将点 D 的坐标代入上式并解得: b = 2则直线 DK 的表达式为: y =﹣x+2﹣ 故点 Q ( 0,2﹣ ),由直线 KD 的表达式知, QD 与x 负半轴的夹角(设为 α)的正切值为 ,则cos∵DK ⊥OK ,故设直线 DK 的表达式为:x+b , 则 BD = ② 过点 O 作直线 OK ,使 sin ∠ NOK则直线 OK 的表达式为: y = x ,4 √15 4 √152。
2020年四川省成都市中考数学试卷(有详细解析)
2020年四川省成都市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共10小题,共30.0分)1.−2的绝对值是()A. −2B. 1C. 2D. 122.如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是()A. B. C. D.3.2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为()A. 3.6×103B. 3.6×104C. 3.6×105D. 36×1044.在平面直角坐标系中,将点P(3,2)向下平移2个单位长度得到的点的坐标是()A. (3,0)B. (1,2)C. (5,2)D. (3,4)5.下列计算正确的是()A. 3a+2b=5abB. a3⋅a2=a6C. (−a3b)2=a6b2D. a2b3÷a=b36.成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是()A. 5人,7人B. 5人,11人C. 5人,12人D. 7人,11人7.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于12BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为()A. 2B. 3C. 4D. 68.已知x=2是分式方程kx +x−3x−1=1的解,那么实数k的值为()A. 3B. 4C. 5D. 69.如图,直线l1//l2//l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为()A. 2B. 3C. 4D. 10310.关于二次函数y=x2+2x−8,下列说法正确的是()A. 图象的对称轴在y 轴的右侧B. 图象与y 轴的交点坐标为(0,8)C. 图象与x 轴的交点坐标为(−2,0)和(4,0)D. y 的最小值为−9二、填空题(本大题共9小题,共36.0分) 11. 分解因式:x 2+3x =______.12. 一次函数y =(2m −1)x +2的值随x 值的增大而增大,则常数m 的取值范围为______.13. 如图,A ,B ,C 是⊙O 上的三个点,∠AOB =50°,∠B =55°,则∠A 的度数为______.14. 《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为______.15. 已知a =7−3b ,则代数式a 2+6ab +9b 2的值为______.16. 关于x 的一元二次方程2x 2−4x +m −32=0有实数根,则实数m 的取值范围是______.17. 如图,六边形ABCDEF 是正六边形,曲线FA 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA⏜1,A 1B 1⏜,B 1C 1⏜,C 1D 1⏜,D 1E 1⏜,E 1F 1⏜,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线FA 1B 1C 1D 1E 1F 1的长度是______.18. 在平面直角坐标系xOy 中,已知直线y =mx(m >0)与双曲线y =4x 交于A ,C 两点(点A 在第一象限),直线y =nx(n <0)与双曲线y =−1x 交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为______.19. 如图,在矩形ABCD 中,AB =4,BC =3,E ,F 分别为AB ,CD 边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH.若点P 的速度是点Q 的速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为______,线段DH 长度的最小值为______. 三、计算题(本大题共1小题,共8.0分)20. 成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A 处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D 处测得塔A 处的仰角为45°,塔底部B 处的俯角为22°.已知建筑物的高CD 约为61米,请计算观景台的高AB 的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)四、解答题(本大题共8小题,共76.0分) 21. (1)计算:2sin60°+(12)−2+|2−√3|−√9;(2)解不等式组:{4(x −1)≥x +2, ①2x+13>x −1. ②.22. 先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2.23. 2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有______人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为______;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.(x>0)的图象经过点A(3,4),过点A 24.在平面直角坐标系xOy中,反比例函数y=mx的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若△AOB的面积为△BOC的面积的2倍,求此直线的函数表达式.25.如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tanB=4,求⊙O的半径;3(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.26.在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:x(元/件)1213141516y(件)120011001000900800(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27.在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE的度数;(2)如图2,当AB=5,且AF⋅FD=10时,求BC的长;(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求AB的值.BC28.在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(−1,0),B(4,0)两点,与y轴交于点C(0,−2).(1)求抛物线的函数表达式;(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求S1的最大值;S2(3)如图2,连接AC,BC,过点O作直线l//BC,点P,Q分别为直线l和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.答案和解析1.C解:−2的绝对值为2.2.D解:从左面看是一列2个正方形.3.B解:36000=3.6×104,4.A解:将点P(3,2)向下平移2个单位长度所得到的点坐标为(3,2−2),即(3,0),5.C解:A、3a与2b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、a3⋅a2=a5,原计算错误,故此选项不符合题意;C、(−a3b)2=a6b2,原计算正确,故此选项符合题意;D、a2b3÷a=ab3,原计算错误,故此选项不符合题意.6.A解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人.7.C解:由作图知,MN是线段BC的垂直平分线,∴BD=CD,∵AC=6,AD=2,∴BD=CD=4,8.B解:把x=2代入分式方程得:k2−1=1,解得:k=4.9.D解:∵直线l1//l2//l3,∴ABBC =DEEF,∵AB =5,BC =6,EF =4, ∴56=DE 4, ∴DE =103,10. D解:∵二次函数y =x 2+2x −8=(x +1)2−9=(x +4)(x −2), ∴该函数的对称轴是直线x =−1,在y 轴的左侧,故选项A 错误; 当x =0时,y =−8,即该函数与y 轴交于点(0,−8),故选项B 错误;当y =0时,x =2或x =−4,即图象与x 轴的交点坐标为(2,0)和(−4,0),故选项C 错误;当x =−1时,该函数取得最小值y =−9,故选项D 正确;11. x(x +3)解:x 2+3x =x(x +3).12. m >12解:∵一次函数y =(2m −1)x +2中,函数值y 随自变量x 的增大而增大, ∴2m −1>0,解得m >12.13. 30°解:∵OB =OC ,∠B =55°, ∴∠BOC =180°−2∠B =70°, ∵∠AOB =50°,∴∠AOC =∠AOB +∠BOC =70°+50°=120°, ∵OA =OC , ∴∠A =∠OCA =180°−120°2=30°,14. {5x +2y =102x +5y =8解:设1头牛值金x 两,1只羊值金y 两, 由题意可得,{5x +2y =102x +5y =8,15. 49解:∵a =7−3b , ∴a +3b =7, ∴a 2+6ab +9b 2 =(a +3b)2=72 =49,16. m ≤72解:∵关于x 的一元二次方程2x 2−4x +m −32=0有实数根, ∴△=(−4)2−4×2×(m −32)=16−8m +12≥0, 解得:m ≤72,17. 7π解:FA ⏜1的长=60⋅π⋅1180=π3,A 1B 1⏜的长=60⋅π⋅2180=2π3,B 1C 1⏜的长=60⋅π⋅3180=3π3, C 1D 1⏜的长=60⋅π⋅4180=4π3,D 1E 1⏜的长=60⋅π⋅5180=5π3,E 1F 1⏜的长=60⋅π⋅6180=6π3,∴曲线FA 1B 1C 1D 1E 1F 1的长度=π3+2π3+⋯+6π3=21π3=7π,18. (√2,2√2)或(2√2,√2)解:联立y =mx(m >0)与y =4x 并解得:{x =√my =±2√m,故点A 的坐标为(√m 2√m),联立y =nx(n <0)与y =−1x 同理可得:点D(√−1n,−√−n),∵这两条直线互相垂直,则mn =−1,故点D(√m,√m ),则点B(−√m,√m ),则AD 2=(√m √m)2+(2√m +√m )2=5m +5m , 同理可得:AB 2=5m +5m =AD 2, 则AB =14×10√2,即AB 2=252=5m +5m ,解得:m =2或12,故点A 的坐标为(√2,2√2)或(2√2,√2),19.3√2√13−√2解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O作ON⊥CD 于N.∵四边形ABCD是矩形,DF=CF,AE=EB,∴四边形ADFE是矩形,∴EF=AD=3,∵FQ//PE,∴△MFQ∽△MEP,∴MFME =FQPE,∵PE=2FQ,∴EM=2MF,∴EM=2,FM=1,当点P与A重合时,PQ的值最大,此时PM=√AE2+ME2=√22+22=2√2,MQ=√FQ2+MF2=√12+12=√2,∴PQ=3√2,∵MF//ON//BC,MO=OB,∴FN=CN=1,DN=DF+FN=3,ON=12(FM+BC)=2,∴OD=√DN2+ON2=√32+22=√13,∵BH⊥PQ,∴∠BHM=90°,∵OM=OB,∴OH=12BM=12×√22+22=√2,∵DH≥OD−OH,∴DH≥√13−√2,∴DH的最小值为√13−√2,20.解:过点D作DE⊥AB于点E,根据题意可得四边形DCBE是矩形,∴DE=BC,BE=DC=61,在Rt△ADE中,∵∠ADE =45°,∴AE =DE ,∴AE =DE =BC ,在Rt △BDE 中,∠BDE =22°,∴DE =BE tan22∘≈610.40≈152.5,∴AB =AE +BE =DE +CD =152.5+61≈214(米).答:观景台的高AB 的值约为214米.21. 解:(1)原式=2×√32+4+2−√3−3 =√3+4+2−√3−3=3;(2){4(x −1)≥x +2, ①2x+13>x −1. ②, 由①得,x ≥2;由②得,x <4,故此不等式组的解集为:2≤x <4.22. 解:原式=x+3−1x+3⋅(x−3)(x+3)x+2=x −3,当x =3+√2时,原式=√2.23. 180 126°解:(1)根据题意得:54÷30%=180(人),答:这次被调查的学生共有180人;故答案为:180;(2)根据题意得:360°×(1−20%−15%−30%)=126°,答:扇形统计图中“篮球”对应的扇形圆心角的度数为126°,故答案为:126°;2种, ∴P(选中甲、乙)=212=16.24.解:(1)∵反比例函数y=mx(x>0)的图象经过点A(3,4),∴k=3×4=12,∴反比例函数的表达式为y=12x;(2)∵直线y=kx+b过点A,∴3k+b=4,∵过点A的直线y=kx+b与x轴、y轴分别交于B,C两点,∴B(−bk,0),C(0,b),∵△AOB的面积为△BOC的面积的2倍,∴12×4×|−bk|=2×12×|−bk|×|b|,∴b=±2,当b=2时,k=23,当b=−2时,k=2,∴直线的函数表达式为:y=23x+2,y=2x−2.25.解:(1)如图,连接OD,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)∵tanB=43=ACBC,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x2+9x2=100,∴x=2,∴BC=6,∵AC=AD=8,AB=10,∴BD=2,∵OB2=OD2+BD2,∴(6−OC)2=OC 2+4,∴OC =83, 故⊙O 的半径为83;(3)连接OD ,DE ,由(1)可知:△ACO≌△ADO ,∴∠ACO =∠ADO =90°,∠AOC =∠AOD ,又∵CO =DO ,OE =OE ,∴△COE≌△DOE(SAS),∴∠OCE =∠OED ,∵OC =OE =OD ,∴∠OCE =∠OEC =∠OED =∠ODE ,∴∠DEF =180°−∠OEC −∠OED =180°−2∠OCE ,∵点F 是AB 中点,∠ACB =90°,∴CF =BF =AF ,∴∠FCB =∠FBC ,∴∠DFE =180°−∠BCF −∠CBF =180°−2∠OCE ,∴∠DEF =∠DFE ,∴DE =DF =CE ,∴AF =BF =DF +BD =CE +BD .26. 解:(1)∵y 与x 满足一次函数的关系,∴设y =kx +b ,将x =12,y =1200;x =13,y =1100代入得:{1200=12k +b 1100=13k +b, 解得:{k =−100b =2400, ∴y 与x 的函数关系式为:y =−100x +2400;(2)设线上和线下月利润总和为m 元,则m =400(x −2−10)+y(x −10)=400x −4800+(−100x +2400)(x −10)=−100(x −19)2+7300,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元.27. 解:(1)∵将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处,∴BC =BF ,∠FBE =∠EBC ,∵BC =2AB ,∴BF =2AB ,∴∠AFB =30°,∵四边形ABCD 是矩形,∴AD//BC,∴∠AFB=∠CBF=30°,∴∠CBE=12∠FBC=15°;(2)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴∠BFE=∠C=90°,CE=EF,又∵矩形ABCD中,∠A=∠D=90°,∴∠AFB+∠DFE=90°,∠DEF+∠DFE=90°,∴∠AFB=∠DEF,∴△FAB∽△EDF,∴AFDE =ABDF,∴AF⋅DF=AB⋅DE,∵AF⋅DF=10,AB=5,∴DE=2,∴CE=DC−DE=5−2=3,∴EF=3,∴DF=√EF2−DE2=√32−22=√5,∴AF=√5=2√5,∴BC=AD=AF+DF=2√5+√5=3√5.(3)过点N作NG⊥BF于点G,∵NF=AN+FD,∴NF=12AD=12BC,∵BC=BF,∴NF=12BF,∵∠NFG=∠AFB,∠NGF=∠BAF=90°,∴△NFG∽△BFA,∴NGAB =FGFA=NFBF=12,设AN=x,∵BN平分∠ABF,AN⊥AB,NG⊥BF,∴AN=NG=x,设FG=y,则AF=2y,∵AB2+AF2=BF2,∴(2x)2+(2y)2=(2x+y)2,解得y=43x.∴BF=BG+GF=2x+43x=103x.∴ABBC =ABBF=2x103x=35.28.解:(1)设抛物线的解析式为y=a(x+1)(x−4).∵将C(0,−2)代入得:4a=2,解得a=12,∴抛物线的解析式为y=12(x+1)(x−4),即y=12x2−32x−2.(2)过点D作DG⊥x轴于点G,交BC于点F,过点A作AK⊥x轴交BC的延长线于点K,∴AK//DG,∴△AKE∽△DFE,∴DFAK =DEAE,∴S1S2=S△BDES△ABE=DEAE=DFAK,设直线BC的解析式为y=kx+b,∴{4k+b=0b=−2,解得{k=12b=−2,∴直线BC的解析式为y=12x−2,∵A(−1,0),∴y=−12−2=−52,∴AK=52,设D(m,12m2−32m−2),则F(m,12m−2),∴DF=12m−2−12m2+32m+2=−12m2+2m.∴S1S2=−12m2+2m52=−15m2+45m=−15(m−2)2+45.∴当m=2时,S1S2有最大值,最大值是45.(3)符合条件的点P的坐标为(689,349)或(6+2√415,3+√415).∵l//BC,∴直线l的解析式为y=12x,设P(a,a2),①当点P在直线BQ右侧时,如图2,过点P作PN⊥x轴于点N,过点Q作QM⊥直线PN于点M,∵A(−1,0),C(0,−2),B(4,0),∴AC=√5,AB=5,BC=2√5,∵AC2+BC2=AB2,∴∠ACB=90°,∵△PQB∽△CAB,∴PQPB =ACBC=12,∵∠QMP=∠BNP=90°,∴∠MQP+∠MPQ=90°,∠MPQ+∠PBN=90°,∴∠MQP=∠PBN,∴△QPM∽△PBN,∴QMPN =PMBN=PQPB=12,∴QM=a4,PM=12(a−4)=12a−2,∴MN=a−2,BN−QM=a−4−a4=34a−4,∴Q(34a,a−2),将点Q的坐标代入抛物线的解析式得12×(34a)2−32×34a−2=a−2,解得a=0(舍去)或a=689.∴P(689,34 9).②当点P在直线BQ左侧时,由①的方法同理可得点Q的坐标为(54a,2).此时点P的坐标为(6+2√415,3+√415).。
2020年四川省中考数学试题卷(含答案)
四川省中考数学试题卷注意事项:1.全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2.考生必须在答题卡上作答,答在试题卷、草稿纸上无效。
3.在答题卡上作答时,考生需首先准确填写自己的姓名、准考证号,并用2B 铅笔准确填涂好自己的准考证号。
A 卷的第Ⅰ卷为选择题,用2B 铅笔填涂作答;A 卷的第Ⅱ卷以及B 卷中横线及框内上注有 “▲”的地方,是需要考生在答题卡上作答的内容或问题,用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。
请按照题号在各题目对应的答题区域内作答,超出答题区域书写的答案无效。
4.保持答题卡面清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1. 在实数0、2-、3-、1-中,最小的是( ▲ ) A .0B .2-C .|3|-D .-12.如图,由几个小正方体组成的立体图形的左视图是( ▲ )3.某种流感病毒的直径是约为000043.0毫米,用科学记数法表示为( ▲ )毫米 A. 41043.0-⨯ B. 5103.4⨯ C. 5103.4-⨯ D.6103.4-⨯ 4.下列运算正确的是( ▲ )A. 632a a a =⋅B.44)(a a =- C. 532a a a =+ D.532)(a a =5. 下列图形中,是中心对称图形的是 ( ▲ )A .B .C .D .6.若分式11+x 有意义,则x 的取值范围是( ▲ ) A .1≠x B .1-≠x C .1-≥x D .1->x7.如图,已知CD AB //,CE 交AB 于点F ,若 20=∠E ,45=∠C ,则A ∠的度数为( ▲ )A .5°B .15°C .25°D .35° 8.某班抽取6名同学参加体能测试,成绩如下:85,95,85,80,80,85.下列表述错误..A. B. C.D.是( ▲ )A .众数是85B .平均数是85C .方差是20D .极差是15 9. 将2x y =向上平移2个单位后所得的抛物线的解析式为( ▲ ) A .y=x 2+2B .y=x 2-2C .y=(x+2)2D .y=(x-2)210.如图,AB 是O 的直径,∠ABC=300,6=OA ,则扇形AOC 面积为( ▲ )A .π2B .π4C . π6D .π8第II 卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分)11.如图,把一块含有30°的三角板的两个顶点放在一长方形纸片的对边上.如果∠1=20°,那么∠2的度数是 ▲ 度.12.若x =1是一元二次方程x 2+x +c =0的一个解,则=2c ▲ .13.如图,△ABC 的外接圆的圆心坐标为 ▲ .14.如图,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是▲ .yx O AB CA 'B 'C '1 2 3 4 5 6 7 8 910 11 12 12 3 4 5 6 7 8 9 10 11 14题图21(第11题图)(第13题图)三、解答题(本大题共6个小题,共54分。
2020年四川省南充市中考数学试卷及其答案
2020年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请根据正确选项的代号填涂答题卡对应位置.填涂正确记4分,不涂、错涂或多涂记0分.1.(4分)若=﹣4,则x的值是()A.4B.C.﹣D.﹣42.(4分)2020年南充市各级各类学校在校学生人数约为1150000人,将1150000用科学记数法表示为()A.1.15×106B.1.15×107C.11.5×105D.0.115×1073.(4分)如图,四个三角形拼成一个风车图形,若AB=2,当风车转动90°,点B运动路径的长度为()A.πB.2πC.3πD.4π4.(4分)下列运算正确的是()A.3a+2b=5ab B.3a•2a=6a2C.a3+a4=a7D.(a﹣b)2=a2﹣b25.(4分)八年级某学生在一次户外活动中进行射击比赛,七次射击成绩依次为(单位:环):4,5,6,6,6,7,8.则下列说法错误的是()A.该组成绩的众数是6环B.该组成绩的中位数是6环C.该组成绩的平均数是6环D.该组成绩数据的方差是106.(4分)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.B.C.a﹣b D.b﹣a7.(4分)如图,面积为S的菱形ABCD中,点O为对角线的交点,点E是线段BC的中点,过点E作EF⊥BD于F,EG⊥AC于G,则四边形EFOG的面积为()A.S B.S C.S D.S8.(4分)如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()A.B.C.D.9.(4分)如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y=ax2的图象与正方形有公共点,则实数a的取值范围是()A.≤a≤3B.≤a≤1C.≤a≤3D.≤a≤110.(4分)关于二次函数y=ax2﹣4ax﹣5(a≠0)的三个结论:①对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则﹣<a≤﹣1或1≤a<;③若抛物线与x轴交于不同两点A,B,且AB≤6,则a<﹣或a≥1.其中正确的结论是()A.①②B.①③C.②③D.①②③二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上. 11.(4分)计算:|1﹣|+20=.12.(4分)如图,两直线交于点O,若∠1+∠2=76°,则∠1=度.13.(4分)从长分别为1,2,3,4的四条线段中,任意选取三条线段,能组成三角形的概率是.14.(4分)笔记本5元/本,钢笔7元/支,某同学购买笔记本和钢笔恰好用去100元,那么最多购买钢笔支.15.(4分)若x2+3x=﹣1,则x﹣=.16.(4分)△ABC内接于⊙O,AB为⊙O的直径,将△ABC绕点C旋转到△EDC,点E在⊙O上,已知AE=2,tan D=3,则AB=.三、解答题(本大题共9个小题,其86分)解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:(﹣1)÷,其中x=+1.18.(8分)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.19.(8分)今年,全球疫情大爆发,我国派遣医疗专家组对一些国家进行医疗援助.某批次派出20人组成的专家组,分别赴A、B、C、D四个国家开展援助工作,其人员分布情况如统计图(不完整)所示:(1)计算赴B国女专家和D国男专家人数,并将条形统计图补充完整.(2)根据需要,从赴A国的专家中,随机抽取两名专家对当地医疗团队进行培训,求所抽取的两名专家恰好是一男一女的概率.20.(10分)已知x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根.(1)求k的取值范围.(2)是否存在实数k,使得等式+=k﹣2成立?如果存在,请求出k的值;如果不存在,请说明理由.21.(10分)如图,反比例函数y=(k≠0,x>0)的图象与y=2x的图象相交于点C,过直线上点A(a,8)作AB⊥y轴交于点B,交反比例函数图象于点D,且AB=4BD.(1)求反比例函数的解析式.(2)求四边形OCDB的面积.22.(10分)如图,点A,B,C是半径为2的⊙O上三个点,AB为直径,∠BAC的平分线交圆于点D,过点D作AC的垂线交AC的延长线于点E,延长ED交AB的延长线于点F.(1)判断直线EF与⊙O的位置关系,并证明.(2)若DF=4,求tan∠EAD的值.23.(10分)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示.求z关于x的函数解析式(写出x的范围).(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)24.(10分)如图,边长为1的正方形ABCD中,点K在AD上,连接BK,过点A,C作BK的垂线,垂足分别为M,N,点O是正方形ABCD的中心,连接OM,ON.(1)求证:AM=BN.(2)请判定△OMN的形状,并说明理由.(3)若点K在线段AD上运动(不包括端点),设AK=x,△OMN的面积为y,求y关于x的函数关系式(写出x的范围);若点K在射线AD上运动,且△OMN的面积为,请直接写出AK长.25.(12分)已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).(1)求二次函数的解析式.(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=,求点K的坐标.2020年四川省南充市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请根据正确选项的代号填涂答题卡对应位置.填涂正确记4分,不涂、错涂或多涂记0分.1.(4分)若=﹣4,则x的值是()A.4B.C.﹣D.﹣4【解答】解:∵=﹣4,∴x=﹣,故选:C.2.(4分)2020年南充市各级各类学校在校学生人数约为1150000人,将1150000用科学记数法表示为()A.1.15×106B.1.15×107C.11.5×105D.0.115×107【解答】解:1150000=1.15×106,故选:A.3.(4分)如图,四个三角形拼成一个风车图形,若AB=2,当风车转动90°,点B运动路径的长度为()A.πB.2πC.3πD.4π【解答】解:由题意可得:点B运动路径的长度为==π,故选:A.4.(4分)下列运算正确的是()A.3a+2b=5ab B.3a•2a=6a2C.a3+a4=a7D.(a﹣b)2=a2﹣b2【解答】解:A、原式不能合并,不符合题意;B、原式=6a2,符合题意;C、原式不能合并,不符合题意;D、原式=a2﹣2ab+b2,不符合题意.故选:B.5.(4分)八年级某学生在一次户外活动中进行射击比赛,七次射击成绩依次为(单位:环):4,5,6,6,6,7,8.则下列说法错误的是()A.该组成绩的众数是6环B.该组成绩的中位数是6环C.该组成绩的平均数是6环D.该组成绩数据的方差是10【解答】解:A、∵6出现了3次,出现的次数最多,∴该组成绩的众数是6环,故本选项正确;B、该组成绩的中位数是6环,故本选项正确;C、该组成绩=(4+5+6+6+6+7+8)=6(环),故本选项正确;D、该组成绩数据的方差S2=[(4﹣6)2+(5﹣6)2+3×(6﹣6)2+(7﹣6)2+(8﹣6)2]=(环2),故本选项错误;故选:D.6.(4分)如图,在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.B.C.a﹣b D.b﹣a【解答】解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,∴∠ABC=∠C=2∠ABD=72°,∴∠ABD=36°=∠A,∴BD=AD,∴∠BDC=∠A+∠ABD=72°=∠C,∴BD=BC,∵AB=AC=a,BC=b,∴CD=AC﹣AD=a﹣b,故选:C.7.(4分)如图,面积为S的菱形ABCD中,点O为对角线的交点,点E是线段BC的中点,过点E作EF ⊥BD 于F ,EG ⊥AC 于G ,则四边形EFOG 的面积为()A.S B.S C.S D.S【解答】解:∵四边形ABCD 是菱形,∴OA =OC ,OB =OD ,AC ⊥BD ,S =AC ×BD ,∵EF ⊥BD 于F ,EG ⊥AC 于G ,∴四边形EFOG 是矩形,EF ∥OC ,EG ∥OB ,∵点E 是线段BC 的中点,∴EF 、EG 都是△OBC 的中位线,∴EF =OC =AC ,EG =OB =BD ,∴矩形EFOG 的面积=EF ×EG =AC ×BD =S ;故选:B .8.(4分)如图,点A ,B ,C 在正方形网格的格点上,则sin∠BAC =()A.B.C.D.【解答】解:如图,过点B 作BD ⊥AC 于D ,由勾股定理得,AB ==,AC ==3,∵S △ABC =AC •BD =×3•BD =×1×3,∴BD =,∴sin∠BAC ===.故选:B .9.(4分)如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y=ax2的图象与正方形有公共点,则实数a的取值范围是()A.≤a≤3B.≤a≤1C.≤a≤3D.≤a≤1【解答】解:设抛物线的解析式为y=ax2,当抛物线经过(1,3)时,a=3,当抛物线经过(3,1)时,a=,观察图象可知≤a≤3,故选:A.10.(4分)关于二次函数y=ax2﹣4ax﹣5(a≠0)的三个结论:①对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则﹣<a≤﹣1或1≤a<;③若抛物线与x轴交于不同两点A,B,且AB≤6,则a<﹣或a≥1.其中正确的结论是()A.①②B.①③C.②③D.①②③【解答】解:∵二次函数y=ax2﹣4ax﹣5的对称轴为直线x=﹣,∴x1=2+m与x2=2﹣m关于直线x=2对称,∴对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;故①正确;当x=3时,y=﹣3a﹣5,当x=4时,y=﹣5,若a>0时,当3≤x≤4时,﹣3a﹣5≤y≤﹣5,∵当3≤x≤4时,对应的y的整数值有4个,分别是﹣5,﹣6,﹣7,﹣8,∴﹣9<﹣3a﹣5≤﹣8∴1≤a<,若a<0时,当3≤x≤4时,﹣5≤y≤﹣3a﹣5,∵当3≤x≤4时,对应的y的整数值有4个,分别是﹣5,﹣4,﹣3,﹣2,∴﹣2≤﹣3a﹣5<﹣1∴﹣<a≤﹣1,故②正确;若a>0,抛物线与x轴交于不同两点A,B,且AB≤6,∴Δ>0,当x=5时,25a﹣20a﹣5≥0,∴,∴a≥1,若a<0,抛物线与x轴交于不同两点A,B,且AB≤6,∴Δ>0,当x=5时,25a﹣20a﹣5≤0,∴,∴a<﹣,综上所述:当a<﹣或a≥1时,抛物线与x轴交于不同两点A,B,且AB≤6.故选:D.二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11.(4分)计算:|1﹣|+20=.【解答】解:原式=﹣1+1=.故答案为:.12.(4分)如图,两直线交于点O,若∠1+∠2=76°,则∠1=38度.【解答】解:∵两直线交于点O,∴∠1=∠2,∵∠1+∠2=76°,∴∠1=38°.故答案为:38.13.(4分)从长分别为1,2,3,4的四条线段中,任意选取三条线段,能组成三角形的概率是.【解答】解:从1,2,3,4四条线段中任选三条,共有四种情况2,3,4;1,3,4;1,2,4;1,2,3,其中构成三角形的只有一种2,3,4,∴能组成三角形的概率是故答案为:.14.(4分)笔记本5元/本,钢笔7元/支,某同学购买笔记本和钢笔恰好用去100元,那么最多购买钢笔10支.【解答】解:设某同学买了x支钢笔,则买了y本笔记本,由题意得:7x+5y=100,如果x=1,那么y=,不是正整数,舍去;如果x=2,那么y=,不是正整数,舍去;如果x=3,那么y=,不是正整数,舍去;如果x=4,那么y=不是正整数,舍去;如果x=5,那么y=13,如果x=6,那么y=,不是正整数,舍去;如果x=7,那么y=,不是正整数,舍去;如果x=8,那么y=,不是正整数,舍去如果x=9,那么y=不是正整数,舍去;如果x=10,那么y=6,如果x=11,那么y=不是正整数,舍去;如果x=12,那么y=,不是正整数,舍去;如果x=13,那么y=,不是正整数,舍去;∴x的最大值是10,故答案为:10.15.(4分)若x2+3x=﹣1,则x﹣=﹣2.【解答】解:x﹣==,∵x2+3x=﹣1,∴x2=﹣1﹣3x,∴原式====﹣2,故答案为:﹣2.16.(4分)△ABC内接于⊙O,AB为⊙O的直径,将△ABC绕点C旋转到△EDC,点E在⊙O上,已知AE=2,tan D=3,则AB=.【解答】解:∵将△ABC绕点C旋转到△EDC,∴∠ABC=∠D,∠ACE=∠BCD=∠ABE,AC=CE,BC=CD,∠ACE=∠BCD,∠ECD=∠ACB=90°,∴∠ABE+∠ABC+∠CBD=∠BCD+∠D+∠CBD=180°,∴E,B,D三点共线,∵AB为⊙O的直径,∴∠AEB=∠ACB=90°,∵将△ABC绕点C旋转到△EDC,∴AC=CE,BC=CD,∠ACE=∠BCD,∠ECD=∠ACB=90°,∵tan D==3,∴设CE=3x,CD=x,∴DE=x,∵∠ACE=∠BCD,∠D=∠ABC=∠AEC,∴△ACE∽△BCD,∴=3,∠CBD=∠CAE,∵AE=2,∴BD=∴BE=DE﹣BD=x﹣,∵AE2+BE2=AB2,∴22+(x﹣)2=(x)2,∴x=,∴AB=DE=,故答案为:.三、解答题(本大题共9个小题,其86分)解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【解答】解:(﹣1)÷====,当x=+1时,原式==﹣.18.(8分)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.【解答】证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠ACE=∠ABC=∠CDE=90°,∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,∴∠ACB=∠CED.在△ABC和△CDE中,,∴△ABC≌△CDE(ASA),∴AB=CD.19.(8分)今年,全球疫情大爆发,我国派遣医疗专家组对一些国家进行医疗援助.某批次派出20人组成的专家组,分别赴A、B、C、D四个国家开展援助工作,其人员分布情况如统计图(不完整)所示:(1)计算赴B国女专家和D国男专家人数,并将条形统计图补充完整.(2)根据需要,从赴A国的专家中,随机抽取两名专家对当地医疗团队进行培训,求所抽取的两名专家恰好是一男一女的概率.【解答】解:(1)赴B国女专家人数为20×40%﹣5=3(人)赴D国男专家人数为20×(1﹣20%﹣40%﹣25%)﹣2=1(人)条形统计图补充为:(2)画树状图为:共有20种等可能的结果数,其中所抽取的两名专家恰好是一男一女的结果数为12,所以所抽取的两名专家恰好是一男一女的概率==.20.(10分)已知x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根.(1)求k的取值范围.(2)是否存在实数k,使得等式+=k﹣2成立?如果存在,请求出k的值;如果不存在,请说明理由.【解答】解:(1)∵一元二次方程x2﹣2x+k+2=0有两个实数根,∴Δ=(﹣2)2﹣4×1×(k+2)≥0,解得:k≤﹣1,∴k的取值范围为k≤﹣1.(2)∵x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根,∴x1+x2=2,x1x2=k+2.∵+=k﹣2,∴==k﹣2,∵k2﹣4=2,∴k2﹣6=0,解得:k1=﹣,k2=,经检验,k1=﹣,k2=均为原方程的解,k2=不符合题意,舍去,∴k=﹣.∴存在这样的k值,使得等式+=k﹣2成立,k值为﹣.21.(10分)如图,反比例函数y=(k≠0,x>0)的图象与y=2x的图象相交于点C,过直线上点A(a,8)作AB⊥y轴交于点B,交反比例函数图象于点D,且AB=4BD.(1)求反比例函数的解析式.(2)求四边形OCDB的面积.【解答】解:(1)∵点A(a,8)在直线y=2x上,∴a=4,A(4,8),∵AB⊥y轴于点B,AB=4BD,∴BD=1,即D(1,8),∵点D在y=上,∴k=8.∴反比例函数的解析式为y=.(2)由,解得或(舍弃),∴C(2,4),∴S四边形OBDC =S△AOB﹣S△ADC=×4×8﹣×4×3=10.22.(10分)如图,点A,B,C是半径为2的⊙O上三个点,AB为直径,∠BAC的平分线交圆于点D,过点D作AC的垂线交AC的延长线于点E,延长ED交AB的延长线于点F.(1)判断直线EF与⊙O的位置关系,并证明.(2)若DF=4,求tan∠EAD的值.【解答】解:(1)直线EF与⊙O相切,证明:连接OD,如图所示:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)在Rt△ODF中,OD=2,DF=4,∴OF==6,∵OD∥AE,∴,∴==,∴AE=,ED=,∴tan∠EAD==.23.(10分)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示.求z关于x的函数解析式(写出x的范围).(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)【解答】解:(1)由图可知,当0<x≤12时,z=16,当12<x≤20时,z是关于x的一次函数,设z=kx+b,则解得:∴z=﹣x+19,∴z关于x的函数解析式为z=(2)设第x个生产周期工厂创造的利润为w万元,①当0<x≤12时,w=(16﹣10)×(5x+40)=30x+240,∴由一次函数的性质可知,当x=12时,w=30×12+240=600(万元);最大值②当12<x≤20时,w=(﹣x+19﹣10)(5x+40)=﹣x2+35x+360=﹣(x﹣14)2+605,因为﹣<0,=605(万元).∴当x=14时,w最大值综上所述,工厂第14个生产周期创造的利润最大,最大是605万元.24.(10分)如图,边长为1的正方形ABCD中,点K在AD上,连接BK,过点A,C作BK的垂线,垂足分别为M,N,点O是正方形ABCD的中心,连接OM,ON.(1)求证:AM=BN.(2)请判定△OMN的形状,并说明理由.(3)若点K在线段AD上运动(不包括端点),设AK=x,△OMN的面积为y,求y关于x的函数关系式(写出x的范围);若点K在射线AD上运动,且△OMN的面积为,请直接写出AK长.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABM+∠CBM=90°,∵AM⊥BM,CN⊥BN,∴∠AMB=∠BNC=90°,∴∠MAB+∠MBA=90°,∴∠MAB=∠CBM,∴△ABM≌△BCN(AAS),∴AM=BN;(2)△OMN是等腰直角三角形,理由如下:如图,连接OB,∵点O是正方形ABCD的中心,∴OA=OB,∠OBA=∠OAB=45°=∠OBC,AO⊥BO,∵∠MAB=∠CBM,∴∠MAB﹣∠OAB=∠CBM﹣∠OBC,∴∠MAO=∠NBO,又∵AM=BN,OA=OB,∴△AOM≌△BON(SAS),∴MO=NO,∠AOM=∠BON,∵∠AON+∠BON=90°,∴∠AON+∠AOM=90°,∴∠MON=90°,∴△MON是等腰直角三角形;(3)在Rt△ABK中,BK==,∵S△ABK=×AK×AB=×BK×AM,∴AM==,∴BN=AM=,∵cos∠ABK==,∴BM==,∴MN=BM﹣BN=∵S△OMN=MN2=,∴y=(0<x<1);当点K在线段AD上时,则=,解得:x1=3(不合题意舍去),x2=,当点K在线段AD的延长线时,同理可求y=(x>1),∴=,解得:x1=3,x2=(不合题意舍去),综上所述:AK的值为3或时,△OMN的面积为.25.(12分)已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).(1)求二次函数的解析式.(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=,求点K的坐标.【解答】解:(1)∵二次函数图象过点B(4,0),点A(﹣2,0),∴设二次函数的解析式为y=a(x+2)(x﹣4),∵二次函数图象过点C(0,4),∴4=a(0+2)(0﹣4),∴a=﹣,∴二次函数的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)存在,理由如下:如图1,取BC中点Q,连接MQ,∵点A(﹣2,0),B(4,0),C(0,4),点P是AC中点,点Q是BC中点,∴P(﹣1,2),点Q(2,2),BC==4,设直线BP解析式为:y=kx+b,由题意可得:,解得:∴直线BP的解析式为:y=﹣x+,∵∠BMC=90°∴点M在以BC为直径的圆上,∴设点M(c,﹣c+),∵点Q是Rt△BCM的中点,∴MQ=BC=2,∴MQ2=8,∴(c﹣2)2+(﹣c+﹣2)2=8,∴c=4或﹣,当c=4时,点B,点M重合,即c=4,不合题意舍去,∴c=﹣,则点M坐标(﹣,),故线段PB上存在点M(﹣,),使得∠BMC=90°;(3)如图2,过点D作DE⊥BC于点E,设直线DK与BC交于点N,∵点A(﹣2,0),B(4,0),C(0,4),点D是AB中点,∴点D(1,0),OB=OC=4,AB=6,BD=3,∴∠OBC=45°,∵DE⊥BC,∴∠EDB=∠EBD=45°,∴DE=BE==,∵点B(4,0),C(0,4),∴直线BC解析式为:y=﹣x+4,设点E(n,﹣n+4),∴﹣n+4=,∴n=,∴点E(,),在Rt△DNE中,NE===,①若DK与射线EC交于点N(m,4﹣m),∵NE=BN﹣BE,∴=(4﹣m)﹣,∴m=,∴点N(,),∴直线DK解析式为:y=4x﹣4,联立方程组可得:,解得:或,∴点K坐标为(2,4)或(﹣8,﹣36);②若DK与射线EB交于N(m,4﹣m),∵NE=BE﹣BN,∴=﹣(4﹣m),∴m=,∴点N(,),∴直线DK解析式为:y=x﹣,联立方程组可得:,解得:或,∴点K坐标为(,)或(,),综上所述:点K的坐标为(2,4)或(﹣8,﹣36)或(,)或(,).。
2020年四川省成都市中考数学试卷及答案
2020年四川省成都市中考数学试卷及答案2020年四川省成都市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)求-2的绝对值,正确答案是C.2.2.(3分)从四个选项中选择一个形状与所给图形相同的左视图,正确答案是A.。
3.(3分)将用科学记数法表示,正确答案是B.3.6×104.4.(3分)将点P(3,2)向下平移2个单位长度得到的点的坐标是D.(3,4)。
5.(3分)下列计算正确的是C.(-a3b)2=a6b2.6.(3分)某班同学分小组到都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫进行研学旅行,数据的众数和中位数分别是A.5人,7人。
7.(3分)已知x=2是分式方程k/(x-1)+3/(x-3)=1的解,求实数k的值,正确答案是D.6.8.(3分)求分式方程x/(x-1)+3/(x-3)=k的解中,x=2的解,正确答案是B.4.9.(3分)在△ABC中,按照给定步骤作图,求BD的长,正确答案是C.4.10.(3分)本题有误,删除。
10.(3分) (2020·成都) 关于二次函数 $y=x^2+2x-8$,下列说法正确的是()A。
图象的对称轴在 y 轴的右侧 B。
图象与y 轴的交点坐标为 (0,-8) C。
图象与 x 轴的交点坐标为 (-2,0) 和(4,0) D。
y 的最小值为 -911.(4分) (2020·成都) 分解因式:$x^2+3x=x(x+3)$12.(4分) (2020·成都) 一次函数 $y=(2m-1)x+2$ 的值随 x值的增大而增大,则常数 m 的取值范围为 $m>\frac{1}{2}$13.(4分) (2020·成都) 如图,A,B,C 是 $\odot O$ 上的三个点,$\angle AOB=50°$,$\angle BOC=55°$,则 $\angleA$ 的度数为 $75°$14.(4分) (2020·成都) 《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系。
2024年四川省成都市中考数学真题卷及答案解析
2024年四川省成都市中考数学A 卷(共100分)第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是( )A. 5B. ﹣5C. 15- D. 152. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B. C. D.3. 下列计算正确的是( )A. ()2233x x = B. 336x y xy +=C. ()222x y x y +=+ D. ()()2224x x x +-=-4. 在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是( )A. ()1,4--B. ()1,4-C. ()1,4D. ()1,4-5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( )A. 53B. 55C. 58D. 646. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB AD =B. AC BD ⊥C. AC BD =D.ACB ACD∠=∠7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩ B. 142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩ C. 142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩ D.142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE∠=∠ B. 5BC =C DE DF = D. 53BE EF =第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m +=,则()2m n +的值为______.10. 分式方程132x x=-解是____.11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______..的12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______.13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒---.(2)解不等式组:2311123x x x +≥-⎧⎪⎨--<⎪⎩①②15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x 亲子互动慢游线48的园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.18. 如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.20. 若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.21. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD中点,的连接BE .若BE BC =,2CD =,则BD =______.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将的其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BD CE的值.【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE 绕点A 旋转过程中,试探究C ,D ,E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE 的面积;若不能,请说明理由.2024年四川省成都市中考数学A卷(共100分)第I卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是()A. 5B. ﹣5C.15D.15【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A.2. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A. B. C. D.【答案】A【解析】【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可.【详解】解:该几何体的主视图为,故选:A.3. 下列计算正确的是()A. ()2233x x = B. 336x y xy +=C. ()222x y x y +=+ D. ()()2224x x x +-=-【答案】D【解析】【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意;D .()()2224x x x +-=-,原计算正确,故该选项符合题意;故选:D .4. 在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是( )A. ()1,4-- B. ()1,4- C. ()1,4 D. ()1,4-【答案】B【解析】【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P -关于原点对称的点的坐标为()1,4-;故选:B .5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( )A. 53B. 55C. 58D. 64【答案】B【解析】【分析】本题主要考查了中位数的定义,根据中位数的定义求解即可.【详解】解:参赛的六个村得分分别为:55,64,51,50,61,55,把这6个数从小到大排序:50,51,55,55,61,64,∴这组数据的中位数是:5555552+=,故选:B .6. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A AB AD = B. AC BD ⊥ C. AC BD = D. ACB ACD∠=∠【答案】C【解析】【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可.【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠,∴选项A 中AB AD =不一定正确,故不符合题意;选项B 中AC BD ⊥不一定正确,故不符合题意;选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意,故选:C .7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩ B. 142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩ C. 142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩D. .142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩【答案】B【解析】【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可.【详解】解:设人数为x ,琎价为y ,根据每人出12钱,会多出4钱可得出1y x 42=-,每人出13钱,又差了3钱.可得出133y x =+,则方程组为:142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩,故选:B .8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE∠=∠ B. 5BC =C. DE DF = D. 53BE EF =【答案】D【解析】【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF 为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定.【详解】解:由作图可知,BF 为ABC ∠的角平分,∴ABE CBE ∠=∠,故A 正确;∵四边形ABCD 为平行四边形,∴,,AD BC AB CD AD BC == ,∵AD BC∥∴AEB CBE ∠=∠,∴AEB ABE ∠=∠,∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△,∴BE AB AE EF DF ED==,∴332BE EF DF ==,∴32BE EF =,2DF =,故D 错误;∵2DE =,∴DE DF =,故C 正确,故选:D .第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m +=,则()2m n +的值为______.【答案】1【解析】【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵()240m ++=,∴40m +=,50n -=,解得4m =-,5n =,∴()()22451m n +=-+=,故答案为:1.10. 分式方程132x x=-的解是____.【答案】x=3【解析】【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______.【答案】4π【解析】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.【详解】解:由题意得 AB 的长为π120π64π180180n r ⨯==,故答案为:4π12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______.【答案】35【解析】【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是38,可得38x x y =+,进而利用比例性质求解即可.【详解】解:∵随机取出一枚棋子,它是黑棋的概率是38,∴38x x y =+,则35x y =,故答案为:35.13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.【答案】5【解析】【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,∴3,4AO AA '==,∴在Rt A AO ' 中,5A O '===,故答案为:5三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒---.(2)解不等式组:2311123x x x +≥-⎧⎪⎨--<⎪⎩①②【答案】(1)5;(2)29x -≤<【解析】【分析】本题考查实数的混合运算、解一元一次不等式组,熟练掌握相关运算法则并正确求解是解答的关键.(1)先计算算术平方根、特殊角的三角函数值、零指数幂、化简绝对值,然后加减运算即可;(2)先求得每个不等式的解集,再求得它们的公共部分即为不等式组的解集.【详解】解:(1()02sin6020242π︒--4212=+-+-5=+-5=;(2)解不等式①,得2x ≥-,解不等式②,得9x <,∴该不等式组的解集为29x -≤<.15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x 亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【解析】【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息 是解答的关键.(1)根据选择“亲子互动慢游线”人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x 值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可.的【小问1详解】解:调查总人数为4830160÷%=(人),选择“世界公园打卡线”的人数为9016040360⨯=(人),故答案为:160,40;【小问2详解】解:“国风古韵观赏线”对应的圆心角度数为4436099160︒⨯=︒;【小问3详解】解:选择“园艺小清新线”的人数为16044404828---=(人),∴该单位选择“园艺小清新线”的员工人数为282200385160⨯=(人).16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)【答案】9.2尺【解析】【分析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC 和BD ,结合题意利用平均数即可求得春分和秋分时日影长度.【详解】解:∵73.4ACB ∠=︒,杆子AB 垂直于地面,AB 长8尺.∴tan ∠=AB ACB BC ,即8 2.393.35BC ≈≈,∵26.6ADB ∠=︒,∴tan AB ADB BD ∠=,即8160.50BD ≈=,∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39169.22+≈.答:春分和秋分时日影长度9.2尺.17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.【答案】(1)见详解;(2.【解析】【分析】(1)先证明EBC DBF ∽,然后利用对应边成比例,即可证明;(2)利用EBC DBF ∽,知道EBC DBF ∠=∠,从而推出CBF EBA ∠=∠,结合A CBF ∠=∠,知道A EBA ∠=∠,推出AE BE =,接下来证明BFC ABC ∠=∠,那么有tan tan BFC ∠=∠,即CB AC CF BC==不妨设CF x =,代入求得CF 的长度,不妨设EF y =,在Rt CEB △和Rt CFB △中利用勾股定理求得EF 和BF 的长度,最后利用tan tan CEB FDB ∠=∠,求得DF 的长度,然后在利用勾股定理求得BD 的长度.【小问1详解】BD Q 是O 的直径90BFD C∴∠=︒=∠又CEB FDB∠∠=EBC DBF∴ ∽EC CBDF FB∴=BC DF BF CE⋅=⋅∴【小问2详解】由(1)可知,EBC DBF∽EBC DBF ∴∠=∠EBC FBE DBF FBE∴∠-∠=∠-∠CBF EBA∴∠=∠A CBF∠=∠ A EBA∴∠=∠AE BE∴=A CBF∠=∠ 9090A CBF∴︒-∠=︒-∠ABC CFB∴∠=∠tan BFC ∠=tan tan BFC ∠∴=∠CBACCF BC ∴==不妨设CF x =,那么CB =AF ==x ∴=CF ∴=5CB ===不妨设EF y =,那么AE AF EF y BE=-=-=在Rt CEB △中,CE EF CF y =+=+5CB =,BE y=-222(5)y y ∴+=-y ∴=EF ∴=在Rt CFB △中,CF =,5BC =BF ∴===CEB FDB∠∠= tan tan CEB FDB∴∠=∠CB BF CE DF∴==DF ∴=BD ∴===∴O 的直径是故答案为:CF =,O 直径是【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键.18. 如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4-或()4,4-,16k =- (3)1-【解析】【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x -,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =-,则()2,0D -,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +-=,根据题意,方程220x x k +-=有且只有一个实数根,利用根的判别式求解即可.【小问1详解】解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =-+中,得42m =-+,则6m =,∴6y x =-+,将(),0B b 代入6y x =-+中,得06b =-+,则6b =;【小问2详解】解:设(),C t s ,由(1)知()2,4A ,()6,0B 若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =-⎧⎨=⎩,∴()4,4C -,则4416k =-⨯=-;当OB 为对角线时,则062004ts +=+⎧⎨+=+⎩,解得44t s =⎧⎨=-⎩,∴()4,4C -,则4416k =-⨯=-;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4-或()4,4-,16k =-;【小问3详解】解:如图,设点(),0D x ,则(),0E x -,0x <,若ABD EBA △∽△,则AB BDBE AB=,即2AB BE BD =⋅,∴()()()()22264066x x -+-=+-,即24x =,解得2x =±,∵0x <,∴2x =-,则()2,0D -,设直线AC 的表达式为y px q =+,则2420p q p q +=⎧⎨-+=⎩,解得12p q =⎧⎨=⎩,∴直线AC 的表达式为2y x =+,联立方程组2y x ky x =+⎧⎪⎨=⎪⎩,得220x x k +-=,∵有且只有一点C ,∴方程220x x k +-=有且只有一个实数根,∴2402k +==∆,解得1k =-;由题意,ABD ABE ∽V V 不存在,故满足条件的k 值为1-.【点睛】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.【答案】100︒##100度【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒-∠-∠=︒-︒-︒=︒,故答案为:100︒20. 若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.【答案】7【解析】【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n -+=,5bm n a+=-=,从而得到252n n =-,再将原式利用完全平方公式展开,利用252n n =-替换2n 项,整理后得到m n 2++,再将5m n +=代入即可.【详解】解:∵m ,n 是一元二次方程2520x x -+=的两个实数根,∴2520n n -+=,5bm n a+=-=,则252n n =-∴()22m n +-244m n n =+-+5244m n n =+--+2m n =++52=+7=故答案为:721. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.【答案】 ①. 9②. 144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;当3n =时,有{}1,3和{}2,3两种取法,则2k =;当4n =时,有{}1,4,{}2,4,{}3,4,{}2,3四种取法,则243144k =+==;故当5n =时,有{}1,5,{}2,5,{}3,5,{}4,5,{}2,4,{}3,4六种取法,则426k =+=;当6n =时,有{}1,6,{}2,6,{}3,6,{}4,6,{}5,6,{}2,5,{}3,5,{}4,5,{}3,4九种取法,则2653194k =++==;依次类推,当n 为偶数时,()()2135314n k n n =-+-++++= ,故当24n =时,2242321195311444k =++++++== ,故答案为:9,144.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.【解析】【分析】连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,根据直角三角形斜边上的中线性质和等腰三角形的性质证得112CF DF CD ===,EAC ECA =∠∠,ECD EDC BEC ∠=∠=∠,进而利用三角形的外角性质和三角形的中位线性质得到2CED CAE ∠=∠,22AC EF m ==,证明CBE CED ∽,利用相似三角形的性质和勾股定理得到232m x =+;根据角平分线的定义和相似三角形的判定与性质证明CAB FBE ∽得到()()2212m x x =++,进而得到关于x 的一元二次方程,进而求解即可.【详解】解:连接CE ,过E 作EFCD ⊥于F ,设BD x =,EF m =,∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =,∴112CF DF CD ===,EAC ECA =∠∠,ECD EDC ∠=∠,∴2CED CAE ∠=∠,22AC EF m ==,∵BE BC =,∴BEC ECB ∠=∠,则BEC EDC ∠=∠,又BCE ECD ∠=∠,∴CBE CED ∽,∴CE CBCD CE=,2CBE CED CAE ∠=∠=∠,∴()22242CE CD CB x x =⋅=+=+,则222232m EF CE CF x ==-=+;∵AD 是ABC 的一条角平分线,∴2CAB CAE CBE ∠=∠=∠,又90ACB BFE ∠=∠=︒,∴CAB FBE ∽,∴AC BCBF EF =∴221m x x m+=+,则()()2212m x x =++,∴()()()23212x x x +=++,即240x x --=,解得x =,【点睛】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.【答案】 ①.> ②. 112m -<<【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.【详解】解:由()224123y x x x =-+-=--+得抛物线对称轴为直线2x =,开口向下,∵101x <<,24x >,∴1222x x -<-,∴12y y >;∵12m m m <+<+,11m x m <<+,212m x m +<<+,323m x m +<<+,∴123x x x <<, ∵存在132y y y <<,∴12x <,32x >,且()11,A x y 离对称轴最远,()22,B x y 离对称轴最近,∴132222x x x ->->-,即134x x +<,且234x x +>,∵132224m x x m +<+<+,232325m x x m +<+<+,∴224m +<且254m +>,解得112m -<<,故答案为:>;112m -<<.二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .的(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克 (2)A 种水果的最低销售单价为12.5元/kg 【解析】【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克, B 种水果购进y 千克,根据题意列出二元一次方程组求解即可.(2)根据题意列出关于利润和进价与售价的不等式求解即可.【小问1详解】解:设A 种水果购进x 千克, B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩,解得:1000500x y =⎧⎨=⎩,∴A 种水果购进1000千克,B 种水果购进500千克【小问2详解】设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a -≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.【答案】(1)4AB = (2)10tan 3ABD ∠=(3)抛物线L '与L 交于定点()3,0【解析】【分析】(1)根据题意可得2230ax ax a --=,整理得2230x x --=,即可知()()1,0,3,0,A B -则有4AB =;(2)由题意得抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,可求得2246ABD S n n =-++△,结合题意可得直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,即可求得21ACD S n =- ,进一步解得点720,39D ⎛⎫- ⎪⎝⎭,过D 作DH AB ⊥于点H ,则220,39BH DH ==,即可求得tan DHABD BH ∠=;(3)设()2,23,D n an an a --可求得直线AD 解析式为()()31y a n x =-+,过点D 作DM AB ⊥,可得21,23AM n DM an an a =+=-++,结合题意得1,EM n =+()2,23,A n an an a -++'()24,23,B n an an a '+-++设抛物线L '解析式为是()20y ax bx c a =++>,由于过点A ',B '可求得抛物线L '解析式为()22463y ax an a x an a =+--++,根据()22232463ax ax a ax an a x an a--=+--++解得3x =,即可判断抛物线L '与L 交于定点()3,0.【小问1详解】解:∵抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点,∴2230ax ax a --=,整理得2230x x --=,解得121,3,x x =-=∴()()1,0,3,0,A B -则()314AB =--=;【小问2详解】当1a =时,抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,则()221142324622ABD D S AB y n n n n =⋅=-⨯⨯--=-++ ,设直线AD 解析式为()1y k x =+,∵点D 在直线AD 上,∴()2231n n k n --=+,解得3k n =-,则直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,∴()()()2112641122ACD D A S CE x x n n n ⎡⎤=⋅-=⨯---⨯+=-⎣⎦ ,∵ACD 的面积与ABD △的面积相等,。
2023年四川省南充市中考数学真题(原卷版和解析版)
2023年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A 、B 、C 、D 四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置,填涂正确记4分,不涂、错涂或多涂记0分.1.如果向东走10m 记作10m +,那么向西走8m 记作()A.10m- B.10m+ C.8m- D.8m+2.如图,将ABC 沿BC 向右平移得到DEF ,若5BC =,2BE =,则CF 的长是()A.2B.2.5C.3D.53.某女鞋专卖店在一周内销售了某种女鞋60双,对这批鞋子尺码及销量进行统计,得到条形统计图(如图).根据图中信息,建议下次进货量最多的女鞋尺码是()A.22cmB.22.5cmC.23cmD.23.5cm4.如图,小兵同学从A 处出发向正东方向走x 米到达B 处,再向正北方向走到C 处,已知BAC α∠=,则A ,C 两处相距()A.sin xα米 B.cos xα米 C.sin x α⋅米D.cos x α⋅米5.《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”(尺、寸是长度单位,1尺=10寸).意思是,现有一根长木,不知道其长短.用一根绳子去度量长木,绳子还剩余4.5尺;将绳子对折再度量长木,长木还剩余1尺.问长木长多少?设长木长为x 尺,则可列方程为()A.()14.512x x +=- B.()14.512x x +=+C.()1 4.512x x -=+ D.()1 4.512x x -=-6.如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为()A.6.4mB.8mC.9.6mD.12.5m7.若点(),P m n 在抛物线2y ax =(0a ≠)上,则下列各点在抛物线()21y a x =+上的是()A.(),1m n + B.()1,m n + C.(),1m n - D.()1,m n -8.如图,在Rt ABC △中,90610C AC AB ∠=︒==,,,以点A 为圆心,适当长为半径画弧,分别交AC AB ,于点M ,N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧在CAB ∠的内部相交于点P ,画射线AP 与BC 交于点D ,DE AB ⊥,垂足为E .则下列结论错误的是()A .CAD BAD∠=∠ B.CD DE= C.AD = D.:3:5CD BD =9.关于x ,y 的方程组321x y m x y n+=-⎧⎨-=⎩的解满足1x y +=,则42m n ÷的值是()A.1B.2C.4D.810.抛物线254y x kx k =-++-与x 轴的一个交点为(,0)A m ,若21m -≤≤,则实数k 的取值范围是()A.2114k -≤≤ B.k ≤214-或1k ≥C.5k -≤≤98D.5k ≤-或k ≥98二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11.若分式12x x +-的值为0,则x 的值为________.12.不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有________个.13.如图,AB 是O 的直径,点D ,M 分别是弦AC ,弧AC 的中点,12,5AC BC ==,则MD 的长是________.14.小伟用撬棍撬动一块大石头,已知阻力和阻力臂分别为1000N 和0.6m ,当动力臂由1.5m 增加到2m 时,撬动这块石头可以节省________N 的力.(杜杆原理:阻力⨯阻力臂=动力⨯动力臂)15.如图,直线23y kx k =-+(k 为常数,0k <)与x ,y 轴分别交于点A ,B ,则23OA OB+的值是________.16.如图,在等边ABC 中,过点C 作射线CD BC ⊥,点M ,N 分别在边AB ,BC 上,将ABC 沿MN 折叠,使点B 落在射线CD 上的点B '处,连接AB ',已知2AB =.给出下列四个结论:①CN NB +'为定值;②当2BN NC =时,四边形BMB N '为菱形;③当点N 与C 重合时,18AB M ∠'=︒;④当AB '最短时,72120MN =.其中正确的结论是________(填写序号)三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明、证明过程或演算步骤.17.先化简,再求值:()()()2222a a a -+-+,其中32a =-.18.如图,在ABCD Y 中,点E ,F 在对角线AC 上,CBE ADF ∠=∠.求证:(1)AE CF =;(2)BE DF ∥.19.为培养学生劳动习惯,提升学生劳动技能,某校在五月第二周开展了劳动教育实践周活动.七(1)班提供了四类活动:A .物品整理,B .环境美化,C .植物栽培,D .工具制作.要求每个学生选择其中一项活动参加,该班数学科代表对全班学生参与四类活动情况进行了统计,并绘制成统计图(如图).(1)已知该班有15人参加A 类活动,则参加C 类活动有多少人?(2)该班参加D 类活动的学生中有2名女生和2名男生获得一等奖,其中一名女生叫王丽,若从获得一等奖的学生中随机抽取两人参加学校“工具制作”比赛,求刚好抽中王丽和1名男生的概率.20.已知关于x 的一元二次方程22(21)30x m x m m ---+=(1)求证:无论m 为何值,方程总有实数根;(2)若1x ,2x 是方程的两个实数根,且212152x x x x +=-,求m 的值.21.如图,一次函数图象与反比例函数图象交于点()16A -,,3,3B a a ⎛⎫- ⎪⎝⎭,与x 轴交于点C ,与y 轴交于点D .(1)求反比例函数与一次函数的解析式;(2)点M 在x 轴上,若OAM OAB S S =△△,求点M 的坐标.22.如图,AB 与O 相切于点A ,半径OC AB ∥,BC 与O 相交于点D ,连接AD .(1)求证:OCA ADC ∠∠=;(2)若12,tan 3AD B ==,求OC 的长.23.某工厂计划从A ,B 两种产品中选择一种生产并销售,每日产销x 件.已知A 产品成本价m 元/件(m 为常数,且46m ≤≤,售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B 产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y 元,y (元)与每日产销x (件)满足关系式 2.800.01y x =+(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润.(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价-成本)⨯产销数量-专利费】24.如图,正方形ABCD 中,点M 在边BC 上,点E 是AM 的中点,连接ED ,EC .(1)求证:ED EC =;(2)将BE 绕点E 逆时针旋转,使点B 的对应点B '落在AC 上,连接MB '.当点M 在边BC 上运动时(点M 不与B ,C 重合),判断CMB ' 的形状,并说明理由.(3)在(2)的条件下,已知1AB =,当45DEB ∠'=︒时,求BM 的长.25.如图1,抛物线23y ax bx =++(0a ≠)与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线上,点Q 在x 轴上,以B ,C ,P ,Q 为顶点的四边形为平行四边形,求点P 的坐标;(3)如图2,抛物线顶点为D ,对称轴与x 轴交于点E ,过点()1,3K 的直线(直线KD 除外)与抛物线交于G ,H 两点,直线DG ,DH 分别交x 轴于点M ,N .试探究EM EN ⋅是否为定值,若是,求出该定值;若不是,说明理由.2023年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A 、B 、C 、D 四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置,填涂正确记4分,不涂、错涂或多涂记0分.1.如果向东走10m 记作10m +,那么向西走8m 记作()A.10m -B.10m+ C.8m- D.8m+【答案】C 【解析】【分析】根据具有相反意义的量即可得.【详解】解:因为向东与向西是一对具有相反意义的量,所以如果向东走10m 记作10m +,那么向西走8m 记作8m -,故选:C .【点睛】本题考查了具有相反意义的量,熟练掌握具有相反意义的量是解题关键.2.如图,将ABC 沿BC 向右平移得到DEF ,若5BC =,2BE =,则CF 的长是()A.2B.2.5C.3D.5【答案】A 【解析】【分析】利用平移的性质得到BE CF =,即可得到CF 的长.【详解】解:∵ABC 沿BC 方向平移至DEF 处.∴2BE CF ==,故选:A .【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.3.某女鞋专卖店在一周内销售了某种女鞋60双,对这批鞋子尺码及销量进行统计,得到条形统计图(如图).根据图中信息,建议下次进货量最多的女鞋尺码是()A.22cmB.22.5cmC.23cmD.23.5cm【答案】D 【解析】【分析】进货量最多的应该是销量最多的,故求出众数即可.【详解】专卖店进货量最多的应该是销量最多的,根据条形统计图可得,众数是23.5cm ,故下次进货最多的女鞋尺码是23.5cm ;故选:D【点睛】本题考查众数的意义,理解众数是解题的关键.4.如图,小兵同学从A 处出发向正东方向走x 米到达B 处,再向正北方向走到C 处,已知BAC α∠=,则A ,C 两处相距()A.sin xα米 B.cos xα米 C.sin x α⋅米D.cos x α⋅米【答案】B 【解析】【分析】根据锐角三角函数中余弦值的定义即可求出答案.【详解】解:小兵同学从A 处出发向正东方向走x 米到达B 处,再向正北方向走到C 处,90ABC ∴∠=︒,AB x =米.cos ABAC α∴=,cos cos AB xAC αα∴==米.故选:B .【点睛】本题考查了锐角三角函数中的余弦值,解题的关键在于熟练掌握余弦值的定义.余弦值就是在直角三角形中,锐角的邻边与斜边之比.5.《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”(尺、寸是长度单位,1尺=10寸).意思是,现有一根长木,不知道其长短.用一根绳子去度量长木,绳子还剩余4.5尺;将绳子对折再度量长木,长木还剩余1尺.问长木长多少?设长木长为x 尺,则可列方程为()A.()14.512x x +=- B.()14.512x x +=+C.()14.512x x -=+ D.()1 4.512x x -=-【答案】A 【解析】【分析】设长木长为x 尺,则绳子长为()4.5x +尺,根据“将绳子对折再度量长木,长木还剩余1尺”,可列出方程.【详解】设长木长为x 尺,则绳子长为()4.5x +尺,根据题意,得()14.512x x +=-故选:A【点睛】本题考查一元一次方程解决实际问题,理解题意,找出等量关系列出方程是解题的关键.6.如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为()A.6.4mB.8mC.9.6mD.12.5m【答案】B 【解析】【分析】根据镜面反射性质,可求出ACB ECD ∠=∠,再利用垂直求ABC EDC ∽,最后根据三角形相似的性质,即可求出答案.【详解】解:如图所示,由图可知,AB BD ⊥,CD DE ⊥,CF BD⊥90ABC CDE \Ð=Ð=°.根据镜面的反射性质,∴ACF ECF ∠=∠,∴9090ACF ECF ︒-∠=︒-∠,ACB ECD ∴∠=∠,ABC EDC ∴ ∽,AB BCDE CD∴=. 小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,1.6m AB ∴=,2m BC =,10m CD =.1.6210DE ∴=.8m DE ∴=.故选:B .【点睛】本题考查了相似三角形的应用,解题的关键在于熟练掌握镜面反射的基本性质和相似三角形的性质.7.若点(),P m n 在抛物线2y ax =(0a ≠)上,则下列各点在抛物线()21y a x =+上的是()A.(),1m n + B.()1,m n + C.(),1m n - D.()1,m n -【答案】D 【解析】【分析】观察抛物线2y ax =和抛物线()21y a x =+可以发现,它们通过平移得到,故点(),P m n 通过相同的平移落在抛物线()21y a x =+上,从而得到结论.【详解】∵抛物线()21y a x =+是抛物线2y ax =(0a ≠)向左平移1个单位长度得到∴抛物线2y ax =上点(),P m n 向左平移1个单位长度后,会在抛物线()21y a x =+上∴点()1,m n -在抛物线()21y a x =+上故选:D【点睛】本题考查函数图象与点的平移,通过函数解析式得到平移方式是解题的关键.8.如图,在Rt ABC △中,90610C AC AB ∠=︒==,,,以点A 为圆心,适当长为半径画弧,分别交AC AB ,于点M ,N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧在CAB ∠的内部相交于点P ,画射线AP 与BC 交于点D ,DE AB ⊥,垂足为E .则下列结论错误的是()A.CAD BAD∠=∠ B.CD DE = C.AD = D.:3:5CD BD =【答案】C【解析】【分析】由作图方法可知,AD 是BAC ∠的角平分线,则由角平分线的定义和性质即可判定A 、B ;利用勾股定理求出BC ,利用等面积法求出3CD =,由此求出AD BD 、即可判断C 、D .【详解】解:由作图方法可知,AD 是BAC ∠的角平分线,∴CAD BAD ∠=∠,故A 结论正确,不符合题意;∵90C DE AB ∠=︒,⊥,∴CD DE =,故B 结论正确,不符合题意;在Rt ABC △中,由勾股定理得8BC ==,∵ABC ACD BAD S S S =+△△△,∴111222AC BC CD AC AB DE ⋅=⋅+⋅,∴11168610222CD CD ⨯⨯=⨯+⨯,∴3CD =,∴5AD BD BC CD ===-=,故C 结论错误,符合题意;∴:3:5CD BD =,故D 结论正确,不符合题意;故选C .【点睛】本题主要考查了勾股定理,角平分线的性质和定义,角平分线的尺规作图,灵活运用所学知识是9.关于x ,y 的方程组321x y m x y n+=-⎧⎨-=⎩的解满足1x y +=,则42m n ÷的值是()A.1B.2C.4D.8【答案】D【解析】【分析】法一:利用加减法解方程组,用,n m 表示出,x y ,再将求得的代数式代入+1x y =,得到,m n 的关系,最后将42m n ÷变形,即可解答.法二:321x y m x y n +=-⎧⎨-=⎩①②中①-②得到()221m n x y -=++,再根据1x y +=求出23m n -=代入代数式进行求解即可.【详解】解:法一:321x y m x y n +=-⎧⎨-=⎩①②,+①②得421x m n =+-,解得214m n x +-=,将214m n x +-=代入②,解得2314m n y --=,1x y =+ ,21231144m n m n +---∴+=,得到23m n -=,2234222228m n m n m n -∴÷=÷===,法二:321x y m x y n +=-⎧⎨-=⎩①②①-②得:2221x y m n +=--,即:()221m n x y -=++,∵1x y +=,∴22113m n -=⨯+=,2234222228m n m n m n -∴÷=÷===,故选:D .【点睛】本题考查了根据二元一次方程解的情况求参数,同底数幂除法,幂的乘方,熟练求出,m n 的关系10.抛物线254y x kx k =-++-与x 轴的一个交点为(,0)A m ,若21m -≤≤,则实数k 的取值范围是()A.2114k -≤≤ B.k ≤214-或1k ≥C.5k -≤≤98 D.5k ≤-或k ≥98【答案】B【解析】【分析】根据抛物线有交点,则2504x kx k -++-=有实数根,得出5k ≤-或1k ≥,分类讨论,分别求得当2x =-和1x =时k 的范围,即可求解.【详解】解:∵抛物线254y x kx k =-++-与x 轴有交点,∴2504x kx k -++-=有实数根,∴240b ac ∆=-≥即()22254452904k k k k k ⎛⎫+-=+-=+-≥ ⎪⎝⎭解得:5k ≤-或1k ≥,当5k ≤-时,如图所示,依题意,当2x =-时,54204k k --+-≥,解得:214k ≤-,当1x =时,5104k k -++-≤,解得98k ≤,即214k ≤-,当1k ≥时,当2x =-时,54204k k --+-≤,解得:214k ≥-∴1k ≥综上所述,k ≤214-或1k ≥,故选:B .【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11.若分式12x x +-的值为0,则x 的值为________.【答案】1-【解析】【分析】根据分式12x x +-的值为0,得到1020x x +=⎧⎨-≠⎩,求解即可得到答案.【详解】解: 分式12x x +-的值为0,1020x x +=⎧∴⎨-≠⎩,解得:=1x -,故答案为:1-.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键,还要注意分式的分母不能为零.12.不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有________个.【答案】6【解析】【分析】设袋中红球有x 个,然后根据概率计算公式列出方程求解即可.【详解】解:设袋中红球有x 个,由题意得:0.64x x =+,解得6x =,检验,当6x =时,40x +≠,∴6x =是原方程的解,∴袋中红球有6个,故答案为:6.【点睛】本题主要考查了已知概率求数量,熟知红球的概率=红球数量÷球的总数是解题的关键.13.如图,AB 是O 的直径,点D ,M 分别是弦AC ,弧AC 的中点,12,5AC BC ==,则MD 的长是________.【答案】4【解析】【分析】根据圆周角定理得出90ACB ∠=︒,再由勾股定理确定13AB =,半径为132,利用垂径定理确定OM AC ⊥,且6AD CD ==,再由勾股定理求解即可.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵12,5AC BC ==,∴13AB =,∴11322AO AB ==,∵点D ,M 分别是弦AC ,弧AC 的中点,∴OM AC ⊥,且6AD CD ==,∴52OD ==,∴4MD OM OD AO OD =-=-=,故答案为:4.【点睛】题目主要考查圆周角定理、垂径定理及勾股定理解三角形,理解题意,综合运用这些知识点是解题关键.14.小伟用撬棍撬动一块大石头,已知阻力和阻力臂分别为1000N 和0.6m ,当动力臂由1.5m 增加到2m 时,撬动这块石头可以节省________N 的力.(杜杆原理:阻力⨯阻力臂=动力⨯动力臂)【答案】100【解析】【分析】设动力为N x ,根据阻力⨯阻力臂=动力⨯动力臂,分别解得动力臂在1.5m 和2m 时的动力,即可解答.【详解】解:设动力为N x ,根据阻力⨯阻力臂=动力⨯动力臂,当动力臂在1.5m 时,可得方程110000.6 1.5x ⨯=,解得1400x =,当动力臂在2m 时,可得方程210000.62x ⨯=,解得2300x =,400N 300N 100N -=,故节省100N 的力,故答案为:100.【点睛】本题考查了一元一次方程的实际应用,根据题目中给出的等量关系,正确列方程是解题的关键.15.如图,直线23y kx k =-+(k 为常数,0k <)与x ,y 轴分别交于点A ,B ,则23OA OB+的值是________.【答案】1【解析】【分析】根据一次函数解析式得出23k OA k-=,23OB k =-+,然后代入化简即可.【详解】解:23y kx k =-+,∴当0y =时,32x k =-+,当0x =时,23y k =-+,∴3232k OA k k -=-+=,23OB k =-+,∴2323232312332232323k k k OA OB k k k k k -+=+=-==-----,故答案为:1.【点睛】题目主要考查一次函数与坐标轴的交点及求代数式的值,熟练掌握一次函数的性质是解题关键.16.如图,在等边ABC 中,过点C 作射线CD BC ⊥,点M ,N 分别在边AB ,BC 上,将ABC 沿MN 折叠,使点B 落在射线CD 上的点B '处,连接AB ',已知2AB =.给出下列四个结论:①CN NB +'为定值;②当2BN NC =时,四边形BMB N '为菱形;③当点N 与C 重合时,18AB M ∠'=︒;④当AB '最短时,72120MN =.其中正确的结论是________(填写序号)【答案】①②④【解析】【分析】根据等边三角形的性质可得2BC =,根据折叠的性质可得NB NB '=,由此即可判断①正确;先解直角三角形可得30CB N '∠=︒,从而可得60B NC B '∠=︒=∠,然后根据平行线的判定可得,BM B N MB BN ''∥∥,根据菱形的判定即可得②正确;先根据折叠的性质可得,60B C BC MB C B ''=∠=∠=︒,从而可得AC B C '=,再根据等腰三角形的性质可得75AB C CAB ''∠=∠=︒,然后根据AB M AB C MB C '∠'∠-∠'=即可判断③错误;当AB '最短时,则AB CD '⊥,过点M 作ME BC ⊥于点E ,连接BB ',交MN 于点O ,先利用勾股定理求出7,4BN BB '==,根据折叠的性质可得2OB =,设()0BE y y =>,则74EN y =-,2BM y =,再利用勾股定理可得EM =,MN =然后根据1122BMN S BN EM OB MN =⋅=⋅ 建立方程,解一元二次方程可得y 的值,由此即可判断④正确.【详解】解:ABC 是等边三角形,且2AB =,2BC AC AB ∴===,60B ACB ∠=∠=︒,由折叠的性质得:NB NB '=,2CN NB CN NB BC ∴+'=+==,是定值,则结论①正确;当2BN NC =时,则2NB NC '=,在Rt CB N ' 中,1sin 2CB N NC NB '∠==',30CB N '∴∠=︒,60B NC B '∴∠=︒=∠,BM B N '∴∥,由折叠的性质得:60MB N B '∠=∠=︒,60MB N B NC ''∴∠=∠=︒,MB BN '∴∥,∴四边形BMB N '为平行四边形,又NB NB '= ,∴四边形BMB N '为菱形,则结论②正确;如图,当点N 与C 重合时,CD BC ⊥ ,90BCD ∴∠=︒,由折叠的性质得:,60B C BC MB C B ''=∠=∠=︒,AC B C '∴=,30ACB BCD ACB '∠=∠-∠=︒,()118030752AB C CAB ''∴∠=∠=⨯︒-︒=︒,15AB C AB M MB C ''∠-∠∴∠'==︒,则结论③错误;当AB '最短时,则AB CD '⊥,如图,过点M 作ME BC ⊥于点E ,连接BB ',交MN 于点O ,2,30AC ACB '=∠=︒ ,cos30B C AC '∴=⋅︒=,BB '∴==,由折叠的性质得:17,22BB MN OB BB ''⊥==,设BN B N x '==,则2CN BC BN x =-=-,在Rt B CN '△中,222CN B C B N ''+=,即()2222x x -+=,解得74x =,74BN ∴=,设()0BE y y =>,则74EN y =-,2BM y =,EM ∴=,MN ∴==1122BMN S BN EM OB MN =⋅=⋅ ,7742∴=解得710=y 或702y =-<(不符合题意,舍去),72120MN ∴==,则结论④正确;综上,正确的结论是①②④,故答案为:①②④.【点睛】本题考查了等边三角形的性质、折叠的性质、解直角三角形、菱形的判定、一元二次方程的应用等知识点,熟练掌握折叠的性质是解题关键.三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明、证明过程或演算步骤.17.先化简,再求值:()()()2222a a a -+-+,其中32a =-.【答案】48a --;2-【解析】【分析】先用平方差公式、完全平方公式展开,再去括号、合并同类项进行化简,最后代入求值.【详解】()()()2222a a a -+-+()()22444a a a =--++22444a a a =----48a =--当32a =-时原式48a =--3482⎛⎫=-⨯-- ⎪⎝⎭2=-【点睛】本题考查平方差公式、完全平方公式、整式的化简求值,熟练进行整式的化简是解题的关键.18.如图,在ABCD Y 中,点E ,F 在对角线AC 上,CBE ADF ∠=∠.求证:(1)AE CF =;(2)BE DF ∥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)根据平行四边形的性质推出相应的线段和相应的角度相等,再利用已知条件求证ABE CDF ∠=∠,最后证明()ASA ABE CDF ≌△△即可求出答案.(2)根据三角形全等证明角度相等,再利用邻补角定义推出BEFEFD ∠=∠即可证明两直线平行.【小问1详解】证明: 四边形ABCD 为平行四边形,AB CD ∴∥,AB CD =,ABC ADC ∠=∠,BAE FCD \Ð=Ð.CBE ADF ∠=∠Q ,ABC ADC ∠=∠,ABE CDF ∴∠=∠.()ASA ABE CDF ∴ ≌.AE CF ∴=.【小问2详解】证明:由(1)得()ASA ABE CDF ≌△△,AEB CFD ∴∠=∠.180AEB BEF ∠+∠=︒Q ,180CFD EFD ∠+∠=︒,BEF EFD ∴∠=∠.BE DF ∴∥.【点睛】本题考查了平行四边形的性质,邻补角定义,三角形全等,平行线的判定,解题的关键在于熟练掌握平行四边形的性质.19.为培养学生劳动习惯,提升学生劳动技能,某校在五月第二周开展了劳动教育实践周活动.七(1)班提供了四类活动:A .物品整理,B .环境美化,C .植物栽培,D .工具制作.要求每个学生选择其中一项活动参加,该班数学科代表对全班学生参与四类活动情况进行了统计,并绘制成统计图(如图).(1)已知该班有15人参加A 类活动,则参加C 类活动有多少人?(2)该班参加D 类活动的学生中有2名女生和2名男生获得一等奖,其中一名女生叫王丽,若从获得一等奖的学生中随机抽取两人参加学校“工具制作”比赛,求刚好抽中王丽和1名男生的概率.【答案】(1)10人(2)13【解析】【分析】(1)根据A 类人数及占比得出总人数,然后乘以C 所占比例即可;(2)令王丽为女1,另外的女生为女2,男生分别为男1,男2,根据画树状图求概率即可求解.【小问1详解】解:这次被调查的学生共有15=5030%(人)参加C 类活动有:()50122%30%28%10⨯---=(人)∴参加C 类活动有10人;【小问2详解】解:令王丽为女1,另外的女生为女2,男生分别为男1,男2,画树状图为:共有12种等可能结果,符合题意的有4种,∴恰好选中王丽和1名男生的概率为:41=123【点睛】本题主要考查了扇形统计图的综合运用,样本估计总体,画树状图法求概率,读懂统计图,从统计图中得到必要的信息是解决问题的关键.20.已知关于x 的一元二次方程22(21)30x m x m m ---+=(1)求证:无论m 为何值,方程总有实数根;(2)若1x ,2x 是方程的两个实数根,且212152x x x x +=-,求m 的值.【答案】(1)见解析(2)25或1.【解析】【分析】(1)根据一元二次方程根的情况与判别式的关系,只要判定0∆≥即可得到答案;(2)根据一元二次方程根与系数的关系得到1221x x m +=-,2123x x m m =-+,整体代入得到2230m m +-=求解即可得到答案.【小问1详解】证明: 关于x 的一元二次方程22(21)30x m x m m ---+=,∴1a =,()21b m =--,23c m m =-+,∴()()()222242141341b ac m m m m ⎡⎤∆=-=----+=-⎣⎦⨯⨯,∵()2410m -≥,即0∆≥,∴不论m 为何值,方程总有实数根;【小问2详解】解:∵1x ,2x 是关于x 的一元二次方程22(21)30x m x m m ---+=的两个实数根,∴1221x x m +=-,2123x x m m =-+,∵()22121221121121222252x x x x x x x x x x x x x x +-++===-,∴()2121212x x x x +=-,∴22(21)132m m m -=--+,整理,得25207m m -+=,解得125m =,21m =,∴m 的值为25或1.【点睛】本题考查一元二次方程根的情况与判别式关系,一元二次方程根与系数的关系,熟记一元二次方程判别式与方程根的情况联系、一元二次方程根与系数的关系是解决问题的关键.21.如图,一次函数图象与反比例函数图象交于点()16A -,,3,3B a a ⎛⎫- ⎪⎝⎭,与x 轴交于点C ,与y 轴交于点D .(1)求反比例函数与一次函数的解析式;(2)点M 在x 轴上,若OAM OAB S S =△△,求点M 的坐标.【答案】(1)反比例函数解析式为6y x =-,一次函数的解析式为24y x =-+(2)M 点的坐标为8,03⎛⎫- ⎪⎝⎭或8,03⎛⎫ ⎪⎝⎭【解析】【分析】(1)设反比例函数解析式为1k y x =,将()16A -,代入1k y x =,根据待定系数法,即可得到反比例函数解析式,将3,3B a a ⎛⎫- ⎪⎝⎭代入求得的反比例函数,解得a 的值,得到B 点坐标,最后根据待定系数法即可求出一次函数解析式;(2)求出点C 的坐标,根据OAB OAC OBC S S S =+△△△求出OAB S ,分两种情况:M 在O 点左侧;M 点在O 点右侧,根据三角形面积公式即可解答.【小问1详解】解:设反比例函数解析式为1k y x =,将()16A -,代入1k y x =,可得161k =-,解得16k =-,∴反比例函数的解析式为6y x =-,把3,3B a a ⎛⎫- ⎪⎝⎭代入6y x =-,可得()336a a-=-,解得1a =,经检验,1a =是方程的解,()3,2B ∴-,设一次函数的解析式为2y k x b =+,将()16A -,,()3,2B -代入2y k x b =+,可得623x b x b =-+⎧⎨-=+⎩,解得224k b =-⎧⎨=⎩,∴一次函数的解析式为24y x =-+;【小问2详解】解:当0y =时,可得024x =-+,解得2x =,()2,0C ∴,2OC ∴=,112622822OAC OBC OAB S S S ∴=+=⨯⨯+⨯⨯=△△△,OAM OAB S S = △△,1862OAM OM S ∴==⨯⨯△,83OM ∴=,M 在O 点左侧时,8,03M ⎛⎫- ⎪⎝⎭;M 点在O 点右侧时,8,03M ⎛⎫⎪⎝⎭,综上,M 点的坐标为8,03⎛⎫- ⎪⎝⎭或8,03⎛⎫ ⎪⎝⎭.【点睛】本题考查了待定系数法求一次函数和反比例函数,一次函数与三角形面积问题,熟练求出OAB S 是解题的关键.22.如图,AB 与O 相切于点A ,半径OC AB ∥,BC 与O 相交于点D ,连接AD .(1)求证:OCA ADC ∠∠=;(2)若12,tan 3AD B ==,求OC 的长.【答案】(1)见解析(25【解析】【分析】(1)连接OA ,根据切线的性质得出90OAB ∠=︒,再由平行线的性质得出90AOC ∠=︒,利用圆周角定理及等腰直角三角形的性质即可证明;(2)过点A 作AH BC ⊥,过点C 作CF BA ⊥的延长线于点F ,根据勾股定理及等腰直角三角形的性质得出2AH DH ==,再由正切函数确定32BH =5AB =形的判定和性质求解即可.【小问1详解】证明:连接OA ,如图所示:∵AB 与O 相切于点A ,∴90OAB ∠=︒,∵OC AB ∥,∴90AOC ∠=︒,∴45ADC ∠=︒,∵OC OA =,∴45OCA ∠=︒,∴OCA ADC ∠∠=;【小问2详解】过点A 作AH BC ⊥,过点C 作CF BA ⊥交BA 的延长线于点F ,如图所示:由(1)得45OCA ADC ∠∠==︒,∴AHD ∆为等腰直角三角形,∵2AD =,∴AH DH ==,∵1tan 3B =,∴BH =AB ==,由(1)得90AOC OAF ∠∠==︒,∵CF BA ⊥,∴四边形OCFA 为矩形,∵OA OC =,∴四边形OCFA 为正方形,∴CF FA OC r ===,∵,90B B AHB CFB ∠∠∠∠===︒,∴ ABH CBF ∽,∴BH AHBF CF =2r =,解得:r =,∴OC =【点睛】题目主要考查圆周角定理,解直角三角形及正方形与相似三角形的判定和性质,理解题意,作出辅助线,综合运用这些知识点是解题关键.23.某工厂计划从A ,B 两种产品中选择一种生产并销售,每日产销x 件.已知A 产品成本价m 元/件(m 为常数,且46m ≤≤,售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B 产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y 元,y (元)与每日产销x (件)满足关系式 2.800.01y x =+(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润.(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价-成本)⨯产销数量-专利费】【答案】(1)()()18300500w m x x =--<≤,()220.018800300w x x x =-+-<≤(2)()15003970w m =-+最大元,1420w =2最大(3)当4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;当 5.1m =时,该工厂应该选择产销任一产品都能获得最大日利润;当5.16m <≤时,该工厂应该选择产销B 产品能获得最大日利润,理由见解析【解析】【分析】(1)根据题木所给的利润计算公式求解即可;(2)根据(1)所求利用一次函数和二次函数的性质求解即可;(3)比较(2)中所求A 、B 两种产品的最大利润即可得到答案.【小问1详解】解:由题意得,()()18300500w m x x =--<≤,()()()2222012800.010.018800300w x x x x x =--+=-+-<≤【小问2详解】解:∵46m ≤≤,∴80m ->,∴1w 随x 增大而增大,∴当500x =时,1w 最大,最大为()()8500305003970m m -⨯-=-+元;()2220.018800.014001520w x x x =-+-=--+,∵0.010-<,∴当400x <时,2w 随x 增大而增大,∴当300x =时,2w 最大,最大为()20.0130040015201420-⨯-+=元;【小问3详解】解:当50039701420m -+>,即4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;当50039701420m -+=,即 5.1m =时,该工厂应该选择产销任一产品都能获得最大日利润;当50039701420m -+<,即5.16m <≤时,该工厂应该选择产销B 产品能获得最大日利润;综上所述,当4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;当 5.1m =时,该工厂应该选择产销任一产品都能获得最大日利润;当5.16m <≤时,该工厂应该选择产销B 产品能获得最大日利润.【点睛】本题主要考查了一次函数的实际应用,二次函数的实际应用,一元一次不等式的实际应用,正确理解题意列出对应的函数关系式是解题的关键.24.如图,正方形ABCD 中,点M 在边BC 上,点E 是AM 的中点,连接ED ,EC .(1)求证:ED EC =;(2)将BE 绕点E 逆时针旋转,使点B 的对应点B '落在AC 上,连接MB '.当点M 在边BC 上运动时(点M 不与B ,C 重合),判断CMB ' 的形状,并说明理由.(3)在(2)的条件下,已知1AB =,当45DEB ∠'=︒时,求BM 的长.【答案】(1)见解析(2)等腰直角三角形,理由见解析(3)2BM =【解析】【分析】(1)根据正方形的基本性质以及“斜中半定理”等推出EAD EBC ≌,即可证得结论;(2)由旋转的性质得EB EB AE EM '===,从而利用等腰三角形的性质推出90MB C '∠=︒,再结合正方形对角线的性质推出B M B C ''=,即可证得结论;(3)结合已知信息推出CME AMC ∽,从而利用相似三角形的性质以及勾股定理进行计算求解即可.【小问1详解】证:∵四边形ABCD 为正方形,∴90BAD ABC ∠=∠=︒,AD BC =,∵点E 是AM 的中点,。
2020学年四川省成都市中考试题数学及答案解析
2020年四川省成都市中考试题数学一、选择题(共10小题,每小题3分,共30分)1.实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是( )A.aB.bC.cD.d解析:根据实数的大小比较解答即可.由数轴可得:a<b<c<d.答案:D2. 2020年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A.4×104B.4×105C.4×106D.0.4×106解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.1万=10000=104. 40万=400000=4×105.答案:B3.如图所示的正六棱柱的主视图是( )A.B.C.D.解析:根据主视图是从正面看到的图象判定则可.从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.答案:A4.在平面直角坐标系中,点P(-3,-5)关于原点对称的点的坐标是( )A.(3,-5)B.(-3,5)C.(3,5)D.(-3,-5)解析:根据关于原点对称的点的坐标特点解答.点P(-3,-5)关于原点对称的点的坐标是(3,5).答案:C5.下列计算正确的是( )A.x2+x2=x4B.(x-y)2=x2-y2C.(x2y)3=x6yD.(-x)2·x3=x5解析:根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘法法则计算,判断即可.A、x2+x2=2x2,A错误;B、(x-y)2=x2-2xy+y2,B错误;C、(x2y)3=x6y3,C错误;D、(-x)2·x3=x5,D正确.答案:D6.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( )A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC解析:全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误.答案:C7.如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃解析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题. 由图可得,极差是:30-20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误,平均数是:2022242628283032577++++++=℃,故选项D错误.答案:B8.分式方程1112++=-xx x的解是( )A.x=1B.x=-1C.x=3D.x=-3解析:1112++=-xx x,去分母,方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2),x2-x-2+x=x2-2x,x=1,经检验,x=1是原分式方程的解.答案:A9.如图,在ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是( )A.πB.2πC.3πD.6π解析:根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.∵在ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:212033360ππ⨯⨯=.答案:C10.关于二次函数y=2x2+4x-1,下列说法正确的是( )A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为-3解析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题. ∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确.答案:D二、填空题(共4小题,每小题4分,共16分)11.等腰三角形的一个底角为50°,则它的顶角的度数为 .解析:本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小. ∵等腰三角形底角相等, ∴180°-50°×2=80°, ∴顶角为80°. 答案:80°12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色乒乓球的个数是 .解析:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,∴该盒子中装有黄色乒乓球的个数是:16×38=6.答案:613.已知654==a b c ,且a+b-2c=6,则a 的值为 .解析:直接利用已知比例式假设出a ,b ,c 的值,进而利用a+b-2c=6,得出答案.∵654==a b c , ∴设a=6x ,b=5x ,c=4x , ∵a+b-2c=6, ∴6x+5x-8x=6, 解得:x=2, 故a=12. 答案:1214.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E.若DE=2,CE=3,则矩形的对角线AC 的长为 .解析:连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,22325-AD在Rt△ADC中,()225530 =+=AC30三、解答题(本大题共6个小题,共54分)15.计算.(1)23282sin603 +︒+-.解析:(1)根据立方根的意义,特殊角锐角三角函数,绝对值的意义即可求出答案.答案:(1)原式4226233=+-⨯+=(2)化简:21111⎛⎫-÷⎪+-⎝⎭xx x.解析:(2)根据分式的运算法则即可求出答案.答案:(2)原式()()()()111111111+-+-+-===-++x x x xx xxx x x x16.若关于x的一元二次方程x2-(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围. 解析:根据方程的系数结合根的判别式△>0,即可得出关于a的一元一次不等式,解之即可得出a的取值范围.答案:∵关于x的一元二次方程x2-(2a+1)x+a2=0有两个不相等的实数根,∴△=[-(2a+1)]2-4a2=4a+1>0,解得:a>14-.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值 .解析:(1)利用12÷10%=120,即可得到m的值;用120×40%即可得到n的值.答案:(1)12÷10%=120,故m=120,n=120×40%=48,m=54120=45%.故答案为120;45%.(2)请补全条形统计图.解析:(2)根据n的值即可补全条形统计图.答案:(2)n=120×40%=48,画出条形图:(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.解析:(3)根据用样本估计总体,3600×1254120+×100%,即可答.答案:(3)3600×1254120+×100%=1980(人),答:估计该景区服务工作平均每天得到1980名游客的肯定.18.由我国完全自主设计、自主建造的首艘国产航母于2020年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2,75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)解析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.答案:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,CD=AC·cos∠ACD=27.2海里,在直角三角形BCD中,BD=CD·tan∠BCD=20.4海里.答:还需航行的距离BD的长为20.4海里.19.如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(-2,0),与反比例函数=kyx(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式.解析:(1)根据一次函数y=x+b 的图象经过点A(-2,0),可以求得b 的值,从而可以解答本题.答案:(1)∵一次函数y=x+b 的图象经过点A(-2,0), ∴0=-2+b ,得b=2,∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数=ky x (x >0)的图象交于B(a ,4),∴4=a+2,得a=2,∴4=2k,得k=8,即反比例函数解析式为:8=y x (x >0).(2)设M 是直线AB 上一点,过M 作MN ∥x 轴,交反比例函数=ky x (x >0)的图象于点N ,若A ,O ,M ,N 为顶点的四边形为平行四边形,求点M 的坐标.解析:(2)根据平行四边形的性质和题意,可以求得点M 的坐标,注意点M 的横坐标大于0. 答案:(2)∵点A(-2,0), ∴OA=2,设点M(m-2,m),点N(8m ,m),当MN ∥AO 且MN=AO 时,四边形AOMN 是平行四边形,|8m -(m-2)|=2,解得,2或3+2,∴点M 的坐标为2-2,2)或3,320.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线.解析:(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证.答案:(1)证明:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线.(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长.解析:(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD.答案:(2)连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴AB ADAD AF,即AD2=AB·AF=xy,则(3)若BE=8,sinB=513,求DG的长.解析:(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.答案:(3)连接EF,在Rt△BOD中,5 sin13==ODBOB,设圆的半径为r,可得5813=+rr,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴5 sin13∠==AFAEFAE,∴550sin101313 =∠=⨯=AF AE AEF,∵AF∥OD,∴501013513===AG AFDG OD,即DG=1323AD,∴18===AD,则1323==DG.一、填空题(共5小题,每小题4分,共20分)21.已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为 . 解析:原式分解因式后,将已知等式代入计算即可求出值.∵x+y=0.2,x+3y=1,∴2x+4y=1.2,即x+2y=0.6,则原式=(x+2y)2=0.36. 答案:0.3622.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .解析:针尖落在阴影区域的概率就是四个直角三角形的面积之和与大正方形面积的比. 设两直角边分别是2x ,3x 13,小正方形边长为x , 所以S 大正方形=13x 2,S 小正方形=x 2,S 阴影=12x 2,则针尖落在阴影区域的概率为2212121313=x x . 答案:121323.已知a >0,11=S a ,S 2=-S 1-1,321=S S ,S 4=-S 3-1,541=S S ,…(即当n 为大于1的奇数时,11-=n n S S ;当n 为大于1的偶数时,S n =-S n-1-1),按此规律,S 2018= .解析:根据S n 数的变化找出S n 的值每6个一循环,结合2018=336×6+2,即可得出S 2018=S 2,此题得解.11=S a ,211111+=--=--=-a a S S a ,3211==-+aS S a ,4311111=--=-=-++a S S a a ,()5411==-+Sa S , S 6=-S 5-1=(a+1)-1=a ,7611==S S a ,…,∴S n 的值每6个一循环. ∵2018=336×6+2,∴S 2018=S 2=1+-a a . 答案:1+-a a24.如图,在菱形ABCD 中,tanA=43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥AD 时,BNCN 的值为 .解析:延长NF 与DC 交于点H ,∵∠ADF=90°, ∴∠A+∠FDH=90°,∵∠DFN+∠DFH=180°,∠A+∠B=180°,∠B=∠DFN , ∴∠A=∠DFH ,∴∠FDH+∠DFH=90°, ∴NH ⊥DC ,设DM=4k ,DE=3k ,EM=5k ,∴AD=9k=DC,DF=6k,∵tanA=tan∠DFH=4 3,则sin∠DFH=4 5,∴42455==DH DF k,∴2421955=-=CH k k k,∵3 cos cos5===CHC ANC,∴CN=35CH=7k,∴BN=2k,∴27=BN CN.答案:2 725.设双曲线=kyx(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线=kyx(k>0)的眸径为6时,k的值为 .解析:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y=-x上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P′的坐标,再利用反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,=⎧⎪⎨=⎪⎩y xkyx,解得:11⎧=⎪⎨=-⎪⎩x ky k22⎧=⎪⎨=⎪⎩x ky k∴点A的坐标为(k-k,点B的坐标为k k ∵PQ=6,∴OP=3,点P的坐标为(322-,322).根据图形的对称性可知:AB=OO′=PP′,∴点P′的坐标为(3222-+k3222+k又∵点P′在双曲线=kyx上,∴32322222⎛⎫⎛⎫+-=+⎪ ⎪⎪ ⎪⎝⎝k k k,解得:k=32.答案:32二、解答题(本大题共3小题,每小题10分,共30分)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式.解析:(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.答案:(1)()()13003008015000300≤≤⎧⎪=⎨+⎪⎩>x xyx x.(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?解析:(2)设甲种花卉种植为 a m2,则乙种花卉种植(12000-a)m2,根据实际意义可以确定a的范围,结合种植费用y(元)与种植面积x(m2)之间的函数关系可以分类讨论最少费用为多少.答案:(2)设甲种花卉种植为am2,则乙种花卉种植(12000-a)m2.∴()20021200≥⎧⎪⎨≤-⎪⎩aa a,∴200≤a≤800,当200≤a<300时,W1=130a+100(1200-a)=30a+12000;当a=200时,W min=126000元;当300≤a≤800时,W2=80a+15000+100(1200-a)=135000-20a;当a=800时,W min=119000元.∵119000<126000∴当a=800时,总费用最少,最少总费用为119000元.此时乙种花卉种植面积为1200-800=400m2.答:应该分配甲、乙两种花卉的种植面积分别是800m2和400m2,才能使种植总费用最少,最少总费用为119000元.27.在Rt△ABC中,∠ACB=90°,AB=7,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A′,B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数.解析:(1)由旋转可得:AC=A′C=2,进而得到BC=3,依据∠A′BC=90°,可得cos3∠'=='BCA CBA C,即可得到∠A′CB=30°,∠ACA′=60°.答案:(1)由旋转可得:AC=A′C=2,∵∠ACB=90°,7,AC=2,∴3∵∠ACB=90°,m∥AC,∴∠A′BC=90°,∴cos3∠'=='BCA CBA C,∴∠A′CB=30°,∴∠ACA′=60°.(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长.解析:(2)根据M为A′B′的中点,即可得出∠A=∠A′CM,进而得到3322==PB BC,依据tan∠Q=tan∠A=3,即可得到BQ=BC×3=2,进而得出PQ=PB+BQ=72.答案:(2)∵M为A′B′的中点,∴∠A ′CM=∠MA′C,由旋转可得,∠MA′C=∠A,∴∠A=∠A′CM,∴tan∠PCB=tan∠A=32,∴332==PB BC,∵tan∠Q=tan∠A=3,∴BQ=BC×3=2,∴PQ=PB+BQ=72.(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA′B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由. 解析:(3)依据3''''=-=-四边形B Q PCQ A CB PCQPAS S S S,即可得到S四边形PA′B′Q最小,即S △PCQ最小,而1322=⨯=PCQS PQ BC PQ,利用几何法或代数法即可得到S△PCQ的最小值=3,S四边形PA′B′Q=3-3.答案:(3)如图所示:∵3''''=-=-四边形B Q PCQ A CB PCQPAS S S S,∴S四边形PA′B′Q最小,即S△PCQ最小,∴1322=⨯=PCQS PQ BC PQ.法一:(几何法)取PQ的中点G,则∠PCQ=90°,∴CG=12PQ,即PQ=2CG,当CG最小时,PQ最小,∴CG⊥PQ,即CG与CB重合时,CG最小,∴CG min=3,PQ min=23,∴S△PCQ的最小值=3,S四边形PA′B′Q=3-3;法二(代数法)设PB=x,BQ=y,由射影定理得:xy=3,∴当PQ最小时,x+y最小,∴(x+y)2=x2+2xy+y2=x2+6+y2≥2xy+6=12,当x=y=3时,“=”成立,∴3323=+=PQ,∴S△PCQ的最小值=3,S四边形PA′B′Q=3-3.28.如图,在平面直角坐标系xOy中,以直线x=52对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线与y轴交于点D.(1)求抛物线的函数表达式.解析:(1)根据已知列出方程组求解即可.答案:(1)由题意可得,52251⎧-=⎪⎪=⎨⎪++=⎪⎩baca b c,解得,a=1,b=-5,c=5;∴二次函数的解析式为:y=x2-5x+5.(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若34=AFFB,且△BCG与△BCD面积相等,求点G的坐标.解析:(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,求出直线l的解析式,在分两种情况分别分析出G点坐标即可.答案:(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,则34==AF MQFB QN,∵MQ=32,∴NQ=2,B(92,114);∴19421+=⎧⎪⎨+=⎪⎩k mk m,解得,1212⎧=⎪⎪⎨⎪=⎪⎩km,∴1122=+ly x,D(0,12),同理可求,125=-+BCy x,∵S△BCD=S△BCG,∴①DG ∥BC(G 在BC 下方),1122=-+DG y x , ∴2512512-+=-+x x x ,解得,x 1=32,x 2=3,∵x >52,∴x=3,∴G(3,-1).②G 在BC 上方时,直线G 2G 3与DG 1关于BC 对称, ∴2312192=-+G G y x , ∴21255192-+=-+x x x ,解得,x 1=94+,x 2=94-,∵x >52,∴x=94+,∴G(,),综上所述点G 的坐标为G(3,-1),G(,).(3)若在x 轴上有且仅有一点P ,使∠APB=90°,求k 的值.解析:(3)根据题意分析得出以AB 为直径的圆与x 轴只有一个交点,且P 为切点,P 为MN 的中点,运用三角形相似建立等量关系列出方程求解即可.答案:(3)由题意可知:k+m=1,∴m=1-k ,∴y l =kx+1-k ,∴kx+1-k=x 2-5x+5,解得,x 1=1,x 2=k+4,∴B(k+4,k 2+3k+1),设AB 中点为O ′,∵P 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点, ∴O ′P ⊥x 轴,∴P 为MN 的中点,∴P(52+k ,0),∵△AMP ∽△PNB , ∴=AM PN PMBN , ∴AM ·BN=PN ·PM ,∴()2551314122++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭k k k k k , ∵k >0,∴6163-+==-+k .。
2020年四川省乐山市中考数学试卷及其答案
2020年四川省乐山市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.1.(3分)的倒数是()A.2B.C.﹣2D.﹣2.(3分)某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A.1100B.1000C.900D.1103.(3分)如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=()A.10°B.20°C.30°D.40°4.(3分)数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B,则点B表示的数是()A.4B.﹣4或10C.4或﹣10D.﹣105.(3分)如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD 于点E,连接OA.则四边形AOED的周长为()A.9+2B.9+C.7+2D.86.(3分)直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤﹣2B.x≤﹣4C.x≥﹣2D.x≥﹣47.(3分)观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是()A.B.C.D.8.(3分)已知3m=4,32m﹣4n=2.若9n=x,则x的值为()A.8B.4C.2D.9.(3分)在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分面积为()A.B.C.D.π10.(3分)如图,在平面直角坐标系中,直线y=﹣x与双曲线y=交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连接AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.﹣B.﹣C.﹣2D.﹣二、填空题:本大题共6个小题,每小题3分,共18分.11.(3分)用“>”或“<”符号填空:﹣7﹣9.12.(3分)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.13.(3分)如图是某商场营业大厅自动扶梯示意图.自动扶梯AB的倾斜角为30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角为60°,A、C之间的距离为4m.则自动扶梯的垂直高度BD=m.(结果保留根号)14.(3分)已知y≠0,且x2﹣3xy﹣4y2=0.则的值是.15.(3分)把两个含30°角的直角三角板按如图所示拼接在一起,点E为AD的中点,连接BE交AC于点F.则=.16.(3分)我们用符号[x]表示不大于x的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么:(1)当﹣1<[x]≤2时,x的取值范围是;(2)当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象上方或图象上,则实数a的范围是.三、本大题共3个小题,每小题9分,共27分.17.(9分)计算:|﹣2|﹣2cos60°+(π﹣2020)0.18.(9分)解二元一次方程组:19.(9分)如图,E是矩形ABCD的边CB上的一点,AF⊥DE于点F,AB=3,AD=2,CE=1.求DF 的长度.四、本大题共3个小题,每小题10分,共30分.20.(10分)已知y=,且x≠y,求()÷的值.21.(10分)如图,已知点A(﹣2,﹣2)在双曲线y=上,过点A的直线与双曲线的另一支交于点B(1,a).(1)求直线AB的解析式;(2)过点B作BC⊥x轴于点C,连接AC,过点C作CD⊥AB于点D.求线段CD的长.22.(10分)自新冠肺炎疫情暴发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为°;(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.五、本大题共2个小题,每小题10分,共20分.23.(10分)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车6300轿车4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?24.(10分)如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC于点F,连接BD交AC于点G,且AF=FG.(1)求证:点D平分;(2)如图2所示,延长BA至点H,使AH=AO,连接DH.若点E是线段AO的中点.求证:DH是⊙O的切线.六、本大题共2个小题,第25题12分,第26题13分,共25分.25.(12分)点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.(1)如图1,当点P与点O重合时,线段OE和OF的关系是;(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF,AE,OE之间的关系.26.(13分)已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连接AC,BC,且tan∠CBD=,如图所示.(1)求抛物线的解析式;(2)设P是抛物线的对称轴上的一个动点.①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连接FB、FC,求△BCF的面积的最大值;②连接PB,求PC+PB的最小值.2020年四川省乐山市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.1.(3分)的倒数是()A.2B.C.﹣2D.﹣【解答】解:的倒数是2;故选:A.2.(3分)某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A.1100B.1000C.900D.110【解答】解:2000×=1100(人),故选:A.3.(3分)如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=()A.10°B.20°C.30°D.40°【解答】解:∵∠FEA=40°,GE⊥EF,∴∠CEF=180°﹣∠FEA=180°﹣40°=140°,∠CEG=180°﹣∠AEF﹣∠GEF=180°﹣40°﹣90°=50°,∵射线EB平分∠CEF,∴,∴∠GEB=∠CEB﹣∠CEG=70°﹣50°=20°,故选:B.4.(3分)数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B,则点B表示的数是()A.4B.﹣4或10C.4或﹣10D.﹣10【解答】解:如果A向右平移得到,点B表示的数是:﹣3+7=4,如果A向左平移得到,点B表示的数是:﹣3﹣7=﹣10,故点B表示的数是4或﹣10.故选:C.5.(3分)如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD 于点E,连接OA.则四边形AOED的周长为()A.9+2B.9+C.7+2D.8【解答】解:∵四边形ABCD为菱形,∴AD=AB=4,AB∥CD,∵∠BAD=120°,∴∠ADB=∠CDB=30°,∵O是对角线BD的中点,∴AO⊥BD,在Rt△AOD中,AO=AD=2,OD=OA=2,∵OE⊥CD,∴∠DEO=90°,在Rt△DOE中,OE=OD=,DE=OE=3,∴四边形AOED的周长=4+2++3=9+.故选:B.6.(3分)直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A.x≤﹣2B.x≤﹣4C.x≥﹣2D.x≥﹣4【解答】解:∵直线y=kx+b与x轴交于点(2,0),与y轴交于点(0,1),∴,解得∴直线为y=﹣+1,当y=2时,2=﹣+1,解得x=﹣2,由图象可知:不等式kx+b≤2的解集是x≥﹣2,故选:C.7.(3分)观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是()A.B.C.D.【解答】解:由题意,选项D阴影部分面积为6,A,B,C的阴影部分的面积为5,如果能拼成正方形,选项D的正方形的边长为,选项A,B,C的正方形的边长为,观察图象可知,选项A,B,C阴影部分沿方格边线或对角线剪开均可得图1的5个图形,可以拼成图2的边长为的正方形,故选:D.8.(3分)已知3m=4,32m﹣4n=2.若9n=x,则x的值为()A.8B.4C.2D.【解答】解:∵3m =4,32m ﹣4n =(3m )2÷(3n )4=2.∴42÷(3n )4=2,∴(3n )4=42÷2=8,又∵9n =32n =x ,∴(3n )4=(32n )2=x 2,∴x 2=8,∴x ==.故选:C .9.(3分)在△ABC 中,已知∠ABC =90°,∠BAC =30°,BC =1.如图所示,将△ABC 绕点A 按逆时针方向旋转90°后得到△AB ′C ′.则图中阴影部分面积为()A.B.C.D.π【解答】解:∵∠ABC =90°,∠BAC =30°,BC =1,∴AB =BC =,AC =2BC =2,∴图中阴影部分面积=S 扇形ACC ′﹣S 扇形ADB ′﹣S △AB ′C ′=﹣﹣×1×=﹣,故选:B .10.(3分)如图,在平面直角坐标系中,直线y =﹣x 与双曲线y =交于A 、B 两点,P 是以点C (2,2)为圆心,半径长1的圆上一动点,连接AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为()A.﹣B.﹣C.﹣2D.﹣【解答】解:连接BP,点O是AB的中点,则OQ是△ABP的中位线,所以OQ=BP当B、C、P三点共线时,PB最大,则OQ最大,而OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,设点B(m,﹣m),则(m﹣2)2+(﹣m﹣2)2=32,解得:m2=,∴k=m(﹣m)=﹣,故选:A.二、填空题:本大题共6个小题,每小题3分,共18分.11.(3分)用“>”或“<”符号填空:﹣7>﹣9.【解答】解:∵|﹣7|=7,|﹣9|=9,7<9,∴﹣7>﹣9,故答案为:>.12.(3分)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是39.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40,其中第四个数据为39,所以这组数据的中位数为39.故答案为39.13.(3分)如图是某商场营业大厅自动扶梯示意图.自动扶梯AB的倾斜角为30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角为60°,A、C之间的距离为4m.则自动扶梯的垂直高度BD=m.(结果保留根号)【解答】解:∵∠BCD=∠BAC+∠ABC,∠BAC=30°,∠BCD=60°,∴∠ABC=∠BCD﹣∠BAC=30°,∴∠BAC=∠ABC,∴BC=AC=4m,在Rt△BDC中,sin∠BCD=,∴sin60°==,∴BD=2m,故答案为:2.14.(3分)已知y≠0,且x2﹣3xy﹣4y2=0.则的值是4或﹣1.【解答】解:∵x2﹣3xy﹣4y2=0,即(x﹣4y)(x+y)=0,可得x=4y或x=﹣y,∴或,即的值是4或﹣1;故答案为:4或﹣1.15.(3分)把两个含30°角的直角三角板按如图所示拼接在一起,点E为AD的中点,连接BE交AC于点F.则=.【解答】解:连接CE,∵∠CAD=30°,∠ACD=90°,E是AD的中点,∴AC=AD,CE=AD=AE,∴∠ACE=∠CAE=30°∵∠BAC=30°,∠ABC=90°,∴AB=AC=AD,∠BAC=∠ACE,∴AB∥CE,∴△ABF∽△CEF,∴,∴,故答案为.16.(3分)我们用符号[x]表示不大于x的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么:(1)当﹣1<[x]≤2时,x的取值范围是0≤x<3;(2)当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象上方或图象上,则实数a的范围是﹣≤a≤0.【解答】解:(1)当﹣1<[x]≤2时,[x]表示不大于x的最大整数,∴[x]=0、1或2,∴0≤x<3.故答案为:0≤x<3.(2)由题意:当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象上方或图象上,当﹣1≤x<0时,则有[x]=﹣1时,函数分别为:y1=x2+2a+3,y2=2,由题意,2a+3≥2,∴a≥﹣,当0≤x<1时,则有[x]=0,y1=x2﹣2a[x]+3=x2+3,而y2=[x]+3=3,y1≥y2,此时y1的图象在y2的图象上方或图象上.当1≤x<2时,则有[x]=1,y1=x2﹣2a+3,y2=4,当x=1时,y1有最小值,最小值要大于或等于4,∴1﹣2a+3≥4,解得a≤0,综上所述,﹣≤a≤0时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象上方或图象上,故答案为:﹣≤a≤0.三、本大题共3个小题,每小题9分,共27分.17.(9分)计算:|﹣2|﹣2cos60°+(π﹣2020)0.【解答】解:原式==2.18.(9分)解二元一次方程组:【解答】解:,法1:②﹣①×3,得2x=3,解得:x=,把x=代入①,得y=﹣1,∴原方程组的解为;法2:由②得:2x+3(2x+y)=9,把①代入上式,解得:x=,把x=代入①,得y=﹣1,∴原方程组的解为.19.(9分)如图,E是矩形ABCD的边CB上的一点,AF⊥DE于点F,AB=3,AD=2,CE=1.求DF 的长度.【解答】解:∵四边形ABCD是矩形,∴DC=AB=3,∠ADC=∠C=90°.∵CE=1,∴DE==.∵AF⊥DE,∴∠AFD=90°=∠C,∠ADF+∠DAF=90°.又∵∠ADF+∠EDC=90°,∴∠EDC=∠DAF,∴△EDC∽△DAF,∴=,即=,∴FD=,即DF的长度为.四、本大题共3个小题,每小题10分,共30分.20.(10分)已知y=,且x≠y,求()÷的值.【解答】解:原式===,∵,∴原式=解法2:同解法1,得原式=,∵,∴xy=2,∴原式==1.21.(10分)如图,已知点A(﹣2,﹣2)在双曲线y=上,过点A的直线与双曲线的另一支交于点B(1,a).(1)求直线AB的解析式;(2)过点B作BC⊥x轴于点C,连接AC,过点C作CD⊥AB于点D.求线段CD的长.【解答】解:(1)将点A(﹣2,﹣2)代入,得k=4,即,将B(1,a)代入,得a=4,即B(1,4),设直线AB的解析式为y=mx+n,将A(﹣2,﹣2)、B(1,4)代入y=mx+n,得,解得,∴直线AB的解析式为y=2x+2;(2)∵A(﹣2,﹣2)、B(1,4),∴,∵,∴.22.(10分)自新冠肺炎疫情暴发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为20万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为72°;(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为1%、2.75%、3.5%、10%、20%,求该国新冠肺炎感染病例的平均死亡率.【解答】解:(1)截止5月31日该国新冠肺炎感染总人数累计为9÷45%=20(万人),扇形统计图中40﹣59岁感染人数对应圆心角的度数为360°×=72°,故答案为:20,72;(2)20﹣39岁人数为20×10%=2(万人),补全的折线统计图如图所示;(3)该患者年龄为60岁及以上的概率为:=0.675;(4)该国新冠肺炎感染病例的平均死亡率为:.五、本大题共2个小题,每小题10分,共20分.23.(10分)某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车6300轿车4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?【解答】解:(1)设租用一辆轿车的租金为x元,由题意得:300×2+3x=1320,解得x=240,答:租用一辆轿车的租金为240元;(2)①只租赁商务车,∵(辆);∴需要租赁6辆商务车(坐满)时,所用租金为:6×300=1800(元);②只租赁商轿车,∵(辆);∴需要租赁轿车9辆,所用租金为:9×240=2160(元);③混合租赁两种车,设租赁商务车m辆,租赁轿车n辆,总租金为w元,由题意,得34≤6m+4n<38,w=300m+240n.∵m,n>0,且均为整数,∴当m=1时,n=7,w=300×1+240×7=1980,当m=2时,n=6,w=300×2+240×6=2040,当m=3时,n=4,w=300×3+240×4=1860,当m=4时,n=3,w=300×4+240×3=1920,当m=5时,n=1,w=300×5+240×1=1740,∴m=5时,租金最少为1740元;所以租用商务车5辆和轿车1辆时,所付租金最少为1740元.24.(10分)如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC于点F,连接BD交AC于点G,且AF=FG.(1)求证:点D平分;(2)如图2所示,延长BA至点H,使AH=AO,连接DH.若点E是线段AO的中点.求证:DH是⊙O的切线.【解答】证明:(1)如图1,连接AD、BC,∵AB是半圆O的直径,∴∠ADB=90°,∵DE⊥AB,∴∠ADE=∠ABD,又∵AF=FG,即点F是Rt△AGD的斜边AG的中点,∴DF=AF,∴∠DAF=∠ADF=∠ABD,又∵∠DAC=∠DBC,∴∠ABD=∠DBC,∴=,∴即点D平分;(2)如图2所示,连接OD、AD,∵点E是线段OA的中点,∴,∴∠AOD=60°,∴△OAD是等边三角形,∴AD=AO=AH,∴△ODH是直角三角形,且∠HDO=90°,∴DH是⊙O的切线.六、本大题共2个小题,第25题12分,第26题13分,共25分.25.(12分)点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.(1)如图1,当点P与点O重合时,线段OE和OF的关系是OE=OF;(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF,AE,OE之间的关系.【解答】解:(1)∵四边形ABCD是平行四边形,∴AO=CO,又∵∠AEO=∠CFO=90°,∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴OE=OF,故答案为:OE=OF;(2)补全图形如图所示,结论仍然成立,理由如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,∵点O为AC的中点,∴AO=CO,又∵∠AOE=∠COG,∴△AOE≌△COG(ASA),∴OE=OG,∵∠GFE=90°,∴OE=OF;(3)点P在线段OA的延长线上运动时,线段CF,AE,OE之间的关系为OE=CF+AE,证明如下:如图,延长EO交FC的延长线于点H,由(2)可知△AOE≌△COH,∴AE=CH,OE=OH,又∵∠OEF=30°,∠HFE=90°,∴HF=EH=OE,∴OE=CF+CH=CF+AE.26.(13分)已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连接AC,BC,且tan∠CBD=,如图所示.(1)求抛物线的解析式;(2)设P是抛物线的对称轴上的一个动点.①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连接FB、FC,求△BCF的面积的最大值;②连接PB,求PC+PB的最小值.【解答】解:(1)根据题意,可设抛物线的解析式为:y=a(x+1)(x﹣5),∵抛物线的对称轴为直线x=2,∴D(2,0),又∵=,∴CD=BD•tan∠CBD=4,即C(2,4),代入抛物线的解析式,得4=a(2+1)(2﹣5),解得,∴二次函数的解析式为=﹣x2++;(2)①设P(2,t),其中0<t<4,设直线BC的解析式为y=kx+b,∴,解得即直线BC的解析式为,令y=t,得:,∴点E(5﹣t,t),把代入,得,即,∴,∴△BCF的面积=×EF×BD=(t﹣)=,∴当t=2时,△BCF的面积最大,且最大值为;②如图,据图形的对称性可知∠ACD=∠BCD,AC=BC=5,∴,过点P作PG⊥AC于G,则在Rt△PCG中,,∴,过点B作BH⊥AC于点H,则PG+PB≥BH,∴线段BH的长就是的最小值,∵,又∵,∴,即,∴的最小值为.。