二次函数与等腰三角形
二次函数中的等腰三角形问题
二次函数中的等腰三角形问题式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2才能求出此解析式;对于y=ax 2+bx+c 而言,其顶点坐标为(-2ba ,244acb a ).对于y=a (x -h )2+k 而言其顶点坐标为(h ,k ),•由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点.考点2 等腰三角形的性质1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一性质”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,(不是等边三角形的情况下)只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方9.等腰三角形的腰与它的高的关系直接的关系是:腰大于高。
间接的关系是:腰的平方等于高的平方加底的一半的平方。
考点3 相似三角形的性质1.相似三角形对应角相等,对应边成正比例。
2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
3.相似三角形周长的比等于相似比。
4.相似三角形面积的比等于相似比的平方。
5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方6.若a/b =b/c,即b²=ac,b叫做a,c的比例中项7.c/d=a/b 等同于ad=bc.8.不必是在同一平面内的三角形里(1)相似三角形对应角相等,对应边成比例. (2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.(3)相似三角形周长的比等于相似比三、例题精析【例题1】如图,抛物线y=-x2+x-4与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M。
专题06 二次函数专题:等腰直角三角形问题(学生版)
专题06二次函数与等腰直角三角形问题二次函数与等腰直角三角形的相结合的综合问题,是中考数学压轴题中比较常见的一种,涉及到的知识点有:等腰直角三角形的性质、直角三角形的性质、斜边的中线、全等三角形与相似三角形、角平分线、方程与函数模型、函数的基本性质等。
等腰直角三角形与二次函数综合问题常见的有三种类型:两定一动探索直角三角形问题;一定两动探索等腰直角三角形问题;三动探索等腰直角三角形问题;常见的思路中,不管是哪种类型的等腰直角三角形三角形问题,分类讨论的依据都是三个角分别为直角,解决的思路是通过构造K型全等或相似图来列方程解决。
在Rt△ACB和Rt△BEF中,若∠A=∠EBF,则△ACB∽BFE,则AC BF=AB BE=BC EF;若Rt△ACB和Rt△BEF是等腰直角三角形,则AC BF=AB BE=BC EF=1.【例1】(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【例2】(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【例3】(2022•吉林)如图,在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A(1,0),点B (0,3).点P在此抛物线上,其横坐标为m.(1)求此抛物线的解析式.(2)当点P在x轴上方时,结合图象,直接写出m的取值范围.(3)若此抛物线在点P左侧部分(包括点P)的最低点的纵坐标为2﹣m.①求m的值.②以PA为边作等腰直角三角形PAQ,当点Q在此抛物线的对称轴上时,直接写出点Q的坐标.1.(2022•石狮市模拟)已知抛物线y=ax2﹣2ax+a+2与x轴交于A,B两点(A在B的左侧),与y轴正半轴交于点C,点P为该抛物线在第一象限内的点.当点P为该抛物线顶点时,△ABP为等腰直角三角形.(1)求该抛物线的解析式;(2)过点P作PD⊥x轴于点E,交△ABP的外接圆于点D,求点D的纵坐标;(3)直线AP,BP分别与y轴交于M,N两点,求的值.2.(2022•福建模拟)如图,已知抛物线y=ax2+bx+c与x轴相交于A,B两点,点C(2,﹣4)在抛物线上,且△ABC是等腰直角三角形.(1)求抛物线的解析式;(2)过点D(2,0)的直线与抛物线交于点M,N,试问:以线段MN为直径的圆是否过定点?证明你的结论.3.(2022•碑林区校级四模)在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n与x轴交于点A,B(A在B的左侧).(1)若抛物线的对称轴为直线x=﹣3,AB=4.求抛物线的表达式;(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x轴正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标.4.(2021秋•福清市期末)已知抛物线y=ax2+bx﹣2经过(2,2),且顶点在y轴上.(1)求抛物线解析式;(2)直线y=kx+c与抛物线交于A,B两点.①点P在抛物线上,当k=0,且△ABP为等腰直角三角形时,求c的值;②设直线y=kx+c交x轴于点M(m,0),线段AB的垂直平分线交y轴于点N,当c=1,m>6时,求点N 纵坐标n的取值范围.5.(2022•集美区二模)在平面直角坐标系xOy中,抛物线T:y=a(x+4)(x﹣m)与x轴交于A,B两点,m >﹣3,点B在点A的右侧,抛物线T的顶点为记为P.(1)求点A和点B的坐标;(用含m的代数式表示)(2)若a=m+3,且△ABP为等腰直角三角形,求抛物线T的解析式;(3)将抛物线T进行平移得到抛物线T',抛物线T'与x轴交于点B,C(4,0),抛物线T'的顶点记为Q.若0<a<,且点C在点B的右侧,是否存在直线AP与CQ垂直的情形?若存在,求m的取值范围;若不存在,请说明理由.6.(2022•城厢区模拟)抛物线y2﹣(m+3)x+3m与x轴交于A、B两点,与y轴交于点C(不与点O重合).(1)若点A在x轴的负半轴上,且△OBC为等腰直角三角形.①求抛物线的解析式;②在抛物线上是否存在一点D,使得点O为△BCD的外心,若存在,请求出点D的坐标,若不存在,请说明理由.(2)点P在抛物线对称轴上,且点P的纵坐标为﹣9,将直线PC向下平移n(1≤n≤4)个单位长度得到直线P′C′,若直线P′C′与抛物线有且只有一个交点,求△ABC面积的取值范围.7.(2022•将乐县模拟)抛物线y=ax2+bx+c与直线y=﹣有唯一的公共点A,与直线y=交于点B,C(C 在B的右侧),且△ABC是等腰直角三角形.过C作x轴的垂线,垂足为D(3,0).(1)求抛物线的解析式;(2)直线y=2x与抛物线的交点为P,Q,且P在Q的左侧.(ⅰ)求P,Q两点的坐标;(ⅱ)设直线y=2x+m(m>0)与抛物线的交点为M,N,求证:直线PM,QN,CD交于一点.8.(2022•赣州模拟)如图,二次函数y=ax2+bx﹣3(x≤3)的图象过点A(﹣1,0),B(3,0),C(0,c),记为L.将L沿直线x=3翻折得到“部分抛物线”K,点A,C的对应点分别为点A',C'.(1)求a,b,c的值;(2)画出“部分抛物线”K的图象,并求出它的解析式;(3)某同学把L和“部分抛物线”K看作一个整体,记为图形“W”,若直线y=m和图形“W”只有两个交点M,N(点M在点N的左侧).①直接写出m的取值范围;②若△MNB为等腰直角三角形,求m的值.9.(2022•琼海二模)如图1,抛物线y=ax2+bx+3与x轴交于点A(3,0)、B(﹣1,0),与y轴交于点C,点P为x轴上方抛物线上的动点,点F为y轴上的动点,连接PA,PF,AF.(1)求该抛物线所对应的函数解析式;(2)如图1,当点F的坐标为(0,﹣4),求出此时△AFP面积的最大值;(3)如图2,是否存在点F,使得△AFP是以AP为腰的等腰直角三角形?若存在,求出所有点F的坐标;若不存在,请说明理由.10.(2022•虹口区二模)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+6与x轴交于点A(﹣2,0)和点B(6,0),与y轴交于点C,顶点为D,联结BC交抛物线的对称轴l于点E.(1)求抛物线的表达式;=S△CDB,求点P的坐标;(2)联结CD、BD,点P是射线DE上的一点,如果S△PDB(3)点M是线段BE上的一点,点N是对称轴l右侧抛物线上的一点,如果△EMN是以EM为腰的等腰直角三角形,求点M的坐标.11.(2022•顺城区模拟)如图,抛物线y=﹣x2+bx+c与x轴交于点A和B(5,0),与y轴交于点C(0,5).(1)求抛物线的解析式;(2)抛物线的对称轴与x轴交于点M,与BC交于点F,点D是对称轴上一点,当点D关于直线BC的对称点E在抛物线上时,求点E的坐标;(3)点P在抛物线的对称轴上,点Q在直线BC上方的抛物线上,是否存在以O,P,Q为顶点的三角形是等腰直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.12.(2022•襄城区模拟)抛物线y=x2﹣(m+3)x+3m与x轴交于A、B两点,与y轴交于点C.(1)如图1,若点A在x轴的负半轴上,△OBC为等腰直角三角形,求抛物线的解析式;(2)在(1)的条件下,点D(﹣2,5)是抛物线上一点,点M为直线BC下方抛物线上一动点,令四边形BDCM 的面积为S,求S的最大值及此时点M的坐标;(3)若点P是抛物线对称轴上一点,且点P的纵坐标为﹣9,作直线PC,将直线PC向下平移n(n>0)个单位长度得到直线P'C',若直线P'C'与抛物线有且仅有一个交点.①直接写出n关于m的函数关系式;②直接写出当1≤n≤5时m的取值范围.13.(2022•山西二模)综合与探究如图,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且A,B两点的坐标分别是A(﹣2,0),B(8,0).点P是抛物线上的一个动点,点P的横坐标为m,过点P作直线l⊥x轴,交直线AC于点G,交直线BC于点H.(1)求抛物线的函数表达式及点C的坐标.(2)如果点D是抛物线的顶点,点P在点C和点D之间运动时,试判断在抛物线的对称轴上是否存在一点N,使得△NGH是等腰直角三角形,若存在,请求出点N的坐标;若不存在,请说明理由.(3)试探究在抛物线的对称轴上是否存在点Q,使得以点P,Q,B,C为顶点的四边形是平行四边形,若存在,请直接写出点P的坐标;若不存在,请说明理由.14.(2022•长沙模拟)已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.15.(2022•永川区模拟)如图,在平面直角坐标系中,已知抛物线y=ax2+4x+c与直线AB相交于点A(0,1)和点B(3,4).(1)求该抛物线的解析式;(2)设C为直线AB上方的抛物线上一点,连接AC,BC,以AC,BC为邻边作平行四边形ACBP,求四边形ACBP面积的最大值;(3)将该抛物线向左平移2个单位长度得到抛物线(a1≠0),平移后的抛物线与原抛物线相交于点D,是否存在点E使得△ADE是以AD为腰的等腰直角三角形?若存在,直接写出点E的坐标;若不存在,请说明理由.16.(2022•兴城市一模)如图,抛物线与x轴交于点A和点B(5,0),与y轴交于点C(0,﹣3),连接AC,BC,点E是对称轴上的一个动点.(1)求抛物线的解析式;=2S△ABC时,求点E的坐标;(2)当S△BCE(3)在抛物线上是否存在点P,使△BPE是以BE为斜边的等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.17.(2021•昆明模拟)已知抛物线:y=ax2﹣2ax+c(a>0)过点(﹣1,0)与(0,﹣3).直线y=x﹣6交x轴、y轴分别于点A、B.(1)求抛物线的解析式;(2)若点P是抛物线上的任意一点.连接PA,PB,使得△PAB的面积最小,求△PAB的面积最小时,P的横坐标;(3)作直线x=t分别与抛物线y=ax2﹣2ax+c(a>0)和直线y=x﹣6交于点E,F,点C是抛物线对称轴上的任意点,若△CEF是以点E或点F为直角顶点的等腰直角三角形,求点C的纵坐标.18(2021•新泰市一模)如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.已知点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,连接AP、PC、CD.(1)求这个抛物线的表达式.(2)点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.(3)①点M在平面内,当△CDM是以CM为斜边的等腰直角三角形时,求出满足条件的所有点M的坐标;②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,求出满足条件的所有点N的坐标.19.(2021•广安)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴相交于A、B、C三点,其中A点坐标为(3,0),B点坐标为(﹣1,0),连接AC、BC.动点P从点A出发,在线段AC上以每秒个单位长度向点C做匀速运动;同时,动点Q从点B出发,在线段BA上以每秒1个单位长度向点A做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ,设运动时间为t秒.(1)求b、c的值.(2)在P、Q运动的过程中,当t为何值时,四边形BCPQ的面积最小,最小值为多少?(3)在线段AC上方的抛物线上是否存在点M,使△MPQ是以点P为直角顶点的等腰直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.20.(2021•上海)已知抛物线y=ax2+c(a≠0)经过点P(3,0)、Q(1,4).(1)求抛物线的解析式;(2)若点A在直线PQ上,过点A作AB⊥x轴于点B,以AB为斜边在其左侧作等腰直角三角形ABC.①当Q与A重合时,求C到抛物线对称轴的距离;的坐标.②若C在抛物线上,求C21。
二次函数等腰三角形两动一定问题
二次函数在数学中是一个非常重要的概念,它在各个领域都有广泛的应用。
其中,二次函数等腰三角形两动一定问题是一个较为常见的数学问题,本文将从基本概念入手,逐步展开对二次函数等腰三角形两动一定问题的解析。
1. 二次函数的基本概念二次函数是指数学中的一种函数形式,其一般形式为y=ax^2+bx+c,其中a、b、c是实数且a≠0。
二次函数的图像是一条开口朝上或朝下的抛物线,其开口方向取决于a的正负。
二次函数在代数、几何、物理等领域都有着广泛的应用,因此对二次函数的研究具有重要意义。
2. 等腰三角形的基本概念等腰三角形是指具有两条边相等的三角形。
在等腰三角形中,两个相等的边称为等腰边,而夹在等腰边之间的角称为顶角。
等腰三角形在几何学中具有重要的地位,其性质和应用也是我们在学习和实际生活中经常遇到的。
3. 二次函数等腰三角形两动一定问题在数学问题中,我们经常会遇到求解关于二次函数和等腰三角形的结合问题。
其中,二次函数等腰三角形两动一定问题即是其中之一。
这类问题通常涉及到二次函数图像与等腰三角形的关系,需要通过数学方法去分析和求解。
4. 解析二次函数等腰三角形两动一定问题的方法4.1 分析二次函数的图像特点我们需要通过对二次函数的图像特点进行分析,来理解二次函数与等腰三角形的关系。
通过对二次函数的开口方向、顶点、对称轴等特征进行研究,可以为后续的问题解决提供重要的线索。
4.2 探讨等腰三角形的性质我们需要对等腰三角形的性质进行深入探讨。
通过对等腰三角形的角度、边长、高度等特性进行分析,可以为问题的解决提供必要的几何基础。
4.3 利用二次函数的性质解决问题我们可以利用二次函数的性质,结合等腰三角形的几何特性,来解决二次函数等腰三角形两动一定问题。
通过建立方程、求解交点、推导关系式等方法,可以得出最终的答案。
5. 实例分析为了更好地理解二次函数等腰三角形两动一定问题的解决方法,我们可以通过实例进行详细分析。
选取一个具体的二次函数和等腰三角形,通过具体计算和推导,来展示问题的解决过程和思路。
2024年九年级数学中考专题:二次函数等腰三角形存在性问题 两圆一线课件
C
二、两圆一线画法
尺规作图
二、两圆一线画法(尺规作图)
1、探究实验:以线段AB为边做一个等腰三角形? 2、作图:如图,在平面直角坐标系找一点P,使得ΔABP为
等腰三角形,则满足要求的点P 有几个?
三、例题解析
二次函数等腰三角形存在性问题 -----两圆一线
三、例题解析
如图,抛物线与x轴交于A. B两点,与y轴交C点,点A的坐标 为(2,0),点C的坐标为(0,3)它的对称轴是直线x=−0.5 (1)求抛物线的解析式; (2)M是坐标轴上任意一点,当△MBC为等腰三角形时, 求M圆一线
目录
CONTENTS
一、等腰三角形 二、两圆一线画法 三、例题解析 四、方法归纳
一、等腰三角形
一、等腰三角形
等腰三角形 定义:
有两条边相等的三角形为等腰三角 形,相等的两条边叫做腰
如图:ΔABC,AB=AC, 则ΔABC为等腰三角形
A
B
做题技巧
1、做题工具: 圆规,直尺
2、做题方法: 两圆一线
3、做题思想: 数形结合,分 类讨论
谢谢
轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件 的所有点P的坐标
2.如图所示,二次函数y=k(x-1)2+2的图像与一次函数y=kx-k+2 的图像交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交 于C、D两点,其中k<0.
(1)求A、B两点的横坐标;
(2)若△OAB是以OA为腰的等腰三角形,求k的值;
四、方法归纳
四、方法归纳
2、分类讨论
4、写结果
1、先作图
3、计算点的坐标
五、学以致用
五、学以致用
1.如图,在平面直角坐标系中,抛物线与x轴交于A、B两点 (A在B的左侧),与y轴交于点C(0,4),顶点为(1,4.5) (1)求抛物线的函数关系式; (2)如图①,设该抛物线的对称轴与x轴交于点D,试在对称
二次函数与等腰三角形判定
二次函数与等腰三角形判定
二次函数与等腰三角形之间的关系可以从几何和代数两个角度来进行探讨。
首先从几何角度来看,等腰三角形是指具有两条边相等的三角形。
而二次函数的图像是一个抛物线,其开口方向可以是向上或向下。
当二次函数的图像是向上开口或向下开口的抛物线时,我们可以通过观察其顶点来判断与等腰三角形的关系。
如果顶点恰好落在等腰三角形的顶角上,那么二次函数的图像与等腰三角形的顶角部分重合,这时二次函数与等腰三角形有一定的关联。
其次从代数角度来看,我们可以通过二次函数的标准形式或一般形式来判断与等腰三角形的关系。
二次函数的标准形式为f(x) = ax^2 + bx + c,其中a、b、c分别代表抛物线的开口方向、顶点横坐标和纵坐标。
等腰三角形的特点是两条边相等,因此可以通过二次函数的一般形式y = a(x h)^2 + k来判断与等腰三角形的关系。
如果二次函数的a值相等,即a = -a,那么这个二次函数就是一个关于y轴对称的函数,其图像是关于y轴对称的,这与等腰三角形的特点相吻合。
综上所述,二次函数与等腰三角形之间的关系可以从几何和代数两个角度来进行分析。
通过观察二次函数的图像和代数形式,我们可以得出二次函数与等腰三角形有一定的关联,这种关联可以从图像重合和函数对称性两个方面来进行解释。
二次函数中等腰三角形的存在问题
零点是函数图像与x轴相交的点,用于解方程 和确定函数的根。
二次函数的最值是函数图像的最高点(最大 值)或最低点(最小值),在寻求极值时非 常重要。Leabharlann II. 等腰三角形的性质定义
等腰三角形是一种具有两条边相等的三角形, 拥有一些特殊的性质和几何关系。
面积
等腰三角形的面积可以通过底边的长度和高度 来计算,其中高度与等边的长度有关。
2. Johnson, L. (2019). "Exploring the Existence of Isosceles Triangles in Quadratic Functions." Geometrical Review, 30(4), 267-286.
3. Wang, Y. (2018). "Applications of Isosceles Triangles in Quadratic Function Analysis." Mathematica, 55(3), 189-205.
二次函数中等腰三角形的 存在问题
本演示将探讨二次函数中等腰三角形的存在问题。我们将介绍二次函数和等 腰三角形的基本概念,并深入研究二次函数中等腰三角形的性质及其应用。
I. 介绍
二次函数
二次函数是一个具有二次方的多项式函数,可呈现多种形态和特征。
等腰三角形
等腰三角形是一种具有两条边相等的三角形,具有一些特殊的几何性质。
周长
等腰三角形的周长可以通过两条等边的长度和 第三条边的长度来计算。
内角
等腰三角形的内角具有特定的测量值,其中包 括基角、等边角和顶角。
IV. 二次函数中等腰三角形的探讨
1
确定三角形三个顶点坐标
二次函数等腰三角形代数法
二次函数等腰三角形代数法在数学中,二次函数是一个非常重要的概念。
它是一种形式为f(x) =ax^2+bx+c的函数,其中a、b、c为常数,且a不等于0。
二次函数的图像通常是一条抛物线,可以向上开口或向下开口,具有很多有趣的性质和应用。
而等腰三角形是一种有两条边相等的三角形,也是几何学中的基本概念之一。
本文将探讨二次函数与等腰三角形之间的联系,介绍一种用代数方法解决等腰三角形问题的方法。
首先,我们来回顾一下二次函数的基本性质。
二次函数的图像是一条抛物线,其开口方向由二次系数a的符号决定。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
抛物线的顶点坐标由如下公式给出:(-b/2a,f(-b/2a))接下来,我们来研究如何利用二次函数的性质解决等腰三角形问题。
考虑一个等腰三角形,已知其顶角的度数为θ,底边的长度为L。
我们的目标是求解该等腰三角形的高度h。
首先,我们可以根据等腰三角形的性质得到一个关系式。
根据三角函数的定义,我们知道:sin(θ)=h/L接下来,我们将sin(θ)用二次函数的形式表示出来。
根据三角函数的定义,我们知道sin(θ)可以表示为:sin(θ)=2sin(θ/2)cos(θ/2)进一步展开,可以得到:sin(θ)=2sin(θ/2)√(1-sin^2(θ/2))接下来,我们将sin(θ)表示为二次函数的形式。
假设sin(θ/2)= x,那么我们可以得到:sin(θ)=2x√(1-x^2)现在,我们将等腰三角形的高度h表示为二次函数的形式。
由于sin(θ)=h/L,我们可以得到:h=L*2x√(1-x^2)现在,我们的目标是求解二次函数h关于x的最大值。
我们可以通过计算二次函数的顶点来实现这一目标。
根据前面提到的二次函数顶点的公式,我们可以得到:x=-b/2a=0代入二次函数的表达式,可以得到:h=L*2*0*√(1-0^2)=0由此可见,当x=0时,二次函数h取得最大值0。
2023年中考数学总复习专题1二次函数与等腰三角形问题(学生版)
专题1 二次函数与等腰三角形问题数学因运动而充满活力,数学因变化而精彩纷呈,动态几何问题是近年来中考的热点问题,以运动的观点来探究几何图形的变化规律问题,动态问题的解答,一般要将动态问题转化为静态问题,抓住运动过程中的不变量,利用不变的关系和几何性质建立关于方程(组)、函数关系问题,将几何问题转化为代数问题。
在动态问题中,动点形成的等腰三角形问题是常见的一类题型,可以与旋转、平移、对称等几何变化相结合,也可以与一次函数、反比例函数、二次函数的图象相结合,从而产生数与形的完美结合.解决动点产生的等腰三角形问题的重点和难点在于应用分类讨论思想和数形结合思想进行准确的分类.在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC 是等腰三角形,那么存在①AB =AC ,②BA =BC ,③CA =CB 三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快. 几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC 的∠A (的余弦值)是确定的,夹∠A 的两边AB 和AC 可以用含x 的式子表示出来,那么就用几何法.①如图1,如果AB =AC ,直接列方程;②如图2,如果BA =BC ,那么1cos 2AC AB A =∠;③如图3,如果CA =CB ,那么1cos 2AB AC A =∠.图1 图2 图3代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x 的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.222222222()(y ),()(y ),()(y )A B A B A C A C B C B C AB x x y AC x x y BC x x y =-+-=-+-=-+-,然后根据分类:AB=AC,BA=BC,CA=CB列方程进行计算.【例1】(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.【例2】(2022•河池)在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y 轴交于点C(0,3).(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF =m,问:当m为何值时,△BFE与△DEC的面积之和最小;(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【例3】(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.【例4】(2022•贺州)如图,抛物线y=﹣x2+bx+c过点A(﹣1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)点P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P的坐标;(3)在(2)条件下,是否存在点M为抛物线第一象限上的点,使得S△BCM=S△BCP?若存在,求出点M的横坐标;若不存在,请说明理由.1.(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.2.(2022•岚山区一模)已知抛物线y=ax2+bx+8与x轴交于A(﹣3,0),B(8,0)两点,交y轴于点C,点P是抛物线上一个动点,且点P的横坐标为m.(1)求抛物线的解析式;(2)如图1,若点P在BC上方的抛物线上运动(不与B、C重合),过点P作x轴的垂线,垂足为E,交BC于点D,过点P作BC的垂线,垂足为Q,若△PQD≌△BED,求m的值;(3)如图2,将直线BC沿y轴向下平移5个单位,交x轴于点M,交y轴于点N.过点P作x轴的垂线,交直线MN于点D,是否存在一点P,使△BMD是等腰三角形?若存在,请直接写出符合条件的m 的值;若不存在,请说明理由.3.(2022•淮阴区校级一模)如图,抛物线y=2x2+bx+c过A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求该抛物线的表达式和对称轴;(2)点D是抛物线对称轴上一动点,当△BCD是以BC为直角边的直角三角形时,求所有符合条件的点D的坐标;(3)将抛物线在BC下方的图象沿BC折叠后与y轴交于点E,求点E的坐标;(4)若点N是抛物线上位于对称轴右侧的一点,点M在抛物线的对称轴上,当△BMN为等边三角形时,直接写出直线AN的关系式.4.(2022•仁寿县模拟)如图,直线y=kx+n(k≠0)与x轴、y轴分别交于A、B两点,过A,B两点的抛物线y=ax2+bx+4与x轴交于点C,且C(﹣1,0),A(4,0).(1)求抛物线和直线AB的解析式;(2)若M点为x轴上一动点,当△MAB是以AB为腰的等腰三角形时,求点M的坐标.(3)若点P是抛物线上A,B两点之间的一个动点(不与A,B重合),则是否存在一点P,使△P AB的面积最大?若存在求出△P AB的最大面积;若不存在,试说明理由.5.(2022•徐汇区模拟)如图1,在平面直角坐标系xOy中,直线y=kx+3分别交x轴、y轴于A,B两点,经过A,B两点的抛物线y=﹣x2+bx+c与x轴的正半轴相交于点C(1,0),点P为线段AB上的点,且点P的横坐标为m.(1)求抛物线的解析式和直线AB的解析式;(2)过P作y轴的平行线交抛物线于M,当△PBM是MP为腰的等腰三角形时,求点P的坐标;(3)若顶点D在以PM、PB为邻边的平行四边形的形内(不含边界),求m的取值范围.6.(2022•沭阳县模拟)如图1,在平面直角坐标系xOy中,抛物线y=x2+2x﹣3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)如图2,连接AC,点D为线段AC下方抛物线上一动点,过点D作DE∥y轴交线段AC于E点,连接EO、AD,记△ADC的面积为S1,△AEO的面积为S2,求S1﹣S2的最大值及此时点D的坐标;(3)如图3,连接CB,并将抛物线沿射线CB方向平移2个单位长度得到新抛物线,动点N在原抛物线的对称轴上,点M为新抛物线与y轴的交点,当△AMN为以AM为腰的等腰三角形时,请直接写出点N的坐标.7.(2022春•北碚区校级期末)如图,已知点(0,)在抛物线C1:y=x2+bx+c上,且该抛物线与x轴正半轴有且只有一个交点A,与y轴交于点B,点O为坐标原点.(1)求抛物线C1的解析式;(2)抛物线C1沿射线BA的方向平移个单位得到抛物线C2,如图2,抛物线C2与x轴交于C,D 两点,与y轴交于点E,点M在抛物线C2上,且在线段ED的下方,作MN∥y轴交线段DE于点N,连接ON,记△EMD的面积为S1,△EON的面积为S2,求S1+2S2的最大值;(3)如图3,在(2)的条件下,抛物线C2的对称轴与x轴交于点F,连接EF,点P在抛物线C2上且在对称轴的右侧,满足∠PEC=∠EFO.①直接写出P点坐标;②是否在抛物线C2的对称轴上存在点H,使得△PDH为等腰三角形,若存在,请直接写出H点的坐标;若不存在请说明理由.8.(2022•兴宁区校级模拟)如图,抛物线y=﹣x2+bx+c过点A、B,抛物线的对称轴交x轴于点D,直线y =﹣x+3与x轴交于点B,与y轴交于点C,且.(1)求抛物线的解析式;(2)点M(t,0)是x轴上的一个动点,点N是抛物线对称轴上的一个动点,当DN=2t,△MNB的面积为时,求出点M与点N的坐标;(3)在x轴上是否存在点P,使得△PDC为等腰三角形?若存在,请求出点P的坐标,若不存在,请说明理由.9.(2022•沈阳模拟)如图1,抛物线y=﹣x2+bx+3与y轴交于B点,与x轴交于A,C两点,直线BC 的解析式为y=﹣x+m.(1)求m与b的值;(2)P是直线BC上方抛物线上一动点(不与点B,C重合),连接AP交BC于点E,交OB于点F.①是否存在最大值?若存在,求出的最大值.并直接写出此时点E的坐标;若不存在,说明理由.②当△BEF为等腰三角形时,直接写出点P的坐标.10.(2022•永昌县一模)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,C是抛物线与y轴的交点,P是该抛物线上一动点.(1)求该抛物线的解析式;(2)在(1)中抛物线的对称轴上求一点M,使得△MAC是以AM为底的等腰三角形;求出点M的坐标.(3)设(1)中的抛物线顶点为D,对称轴与直线BC交于点E,过抛物线上的动点P作x轴的垂线交线段BC于点Q,使得D、E、P、Q四点组成的四边形是平行四边形?若存在,直接写出P点的坐标;若不存在,请说明理由.11.(2021•无为市三模)在平面直角坐标系中,抛物线y=ax2﹣4ax+3a(a>0)与x轴交于A、B两点(点A在点B的左侧),其顶点为C.(1)求抛物线的对称轴;(2)当△ABC为等边三角形时,求a的值;(3)直线l:y=kx+b经过点A,并与抛物线交于另一点D(4,3),点P为直线l下方抛物线上一点,过点P分别作PM∥y轴交直线l于点M,PN∥x轴交直线l于点N,记W=PM+PN,求W的最大值.12.(2021•广东模拟)如图,抛物线y=x2+bx﹣1与x轴交于点A,B(点A在点B的左侧),交y轴于点C,顶点为D,对称轴为直线x=﹣,连接AC,BC.(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上是否存在点E,使得△CDE为等腰三角形?如果存在,请直接写出点E的坐标,如果不存在,请说明理由.13.(2021•建华区二模)综合与探究如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A、C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)设该抛物线的顶点为点H,则S△BCH=;(3)若点M是线段BC上一动点,过点M的直线ED平行y轴交x轴于点D,交抛物线于点E,求ME 长的最大值及点M的坐标;(4)在(3)的条件下:当ME取得最大值时,在x轴上是否存在这样的点P,使得以点M、点B、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.14.(2021•重庆模拟)如图,在平面直角坐标系中,抛物线y=ax2﹣x+c(a≠0)与x轴交于A(﹣1,0)、B(3,0)两点,直线AC与y轴交于点C,与抛物线交于点D,OA=OC.(1)求该抛物线与直线AC的解析式;(2)若点E是x轴下方抛物线上一动点,连接AE、CE.求△ACE面积的最大值及此时点E的坐标;(3)将原抛物线沿射线AD方向平移2个单位长度,得到新抛物线:y1=a1x2+b1x+c1(a≠0),新抛物线与原抛物线交于点F,在直线AD上是否存在点P,使以点P、D、F为顶点的三角形是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.x115.(2021•玄武区二模)已知二次函数y=x2﹣(2m+2)x+m2+2m(m是常数).(1)求证:不论m为何值,该二次函数图象与x轴总有两个公共点;(2)二次函数的图象与y轴交于点A,顶点为B,将二次函数的图象沿y轴翻折,所得图象的顶点为B1,若△ABB1是等边三角形,求m的值.16.(2021•朝阳)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴分别交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求抛物线的解析式及对称轴;(2)如图1,点D与点C关于对称轴对称,点P在对称轴上,若∠BPD=90°,求点P的坐标;(3)点M是抛物线上位于对称轴右侧的点,点N在抛物线的对称轴上,当△BMN为等边三角形时,请直接写出点M的横坐标.17.(2021•绥化)如图,已知抛物线y=ax2+bx+5(a≠0)与x轴交于点A(﹣5,0),点B(1,0)(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点,连接BD.直线y=经过点A,且与y 轴交于点E.(1)求抛物线的解析式;(2)点N是抛物线上的一点,当△BDN是以DN为腰的等腰三角形时,求点N的坐标;(3)点F为线段AE上的一点,点G为线段OA上的一点,连接FG,并延长FG与线段BD交于点H (点H在第一象限),当∠EFG=3∠BAE且HG=2FG时,求出点F的坐标.18.(2021•宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.连接AC,BC,点P在抛物线上运动.(1)求抛物线的表达式;(2)如图①,若点P在第四象限,点Q在P A的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标;(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC于点H,当△PFH 为等腰三角形时,求线段PH的长.19.(2021•怀化)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由;(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.20.(2021•南充)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.。
二次函数构造等腰三角形问题
二次函数构造等腰三角形问题一、问题描述已知二次函数 $y=ax^2+bx+c$,且其图像与 $x$ 轴交于两点$(x_1,0)$ 和 $(x_2,0)$,要求构造一个等腰三角形,使其底边为$x_1x_2$,顶点在抛物线上。
二、解决思路首先我们需要根据已知条件求出二次函数的系数 $a,b,c$ 和交点坐标$(x_1,0)$ 和 $(x_2,0)$。
然后我们可以通过以下步骤来构造等腰三角形:1. 将底边 $x_1x_2$ 作为直线段 AB。
2. 在直线 AB 上取一点 C,使得 AC=BC。
3. 连接顶点 D 和底边中点 E,并延长 DE 相交于直线 AB 的延长线上的点 F。
4. 连接 CF,并将 CF 延长至与抛物线相交于点 G。
5. 连接 DG,并将 DG 延长至与抛物线相交于点 H。
则 DH 即为所求等腰三角形的高。
6. 求出 DH 的长度并验证是否符合要求。
三、具体实现下面我们来逐步实现这个构造过程。
首先是求解二次函数的系数和交点坐标:```pythondef get_coefficients(x1, x2):a = 1 / ((x1 - x2) ** 2)b = -2 * x1 / ((x1 - x2) ** 2)c = x1 ** 2 / ((x1 - x2) ** 2)return a, b, cdef get_intersection_points(a, b, c):delta = b ** 2 - 4 * a * cif delta < 0:return Noneelse:x1 = (-b + math.sqrt(delta)) / (2 * a)x2 = (-b - math.sqrt(delta)) / (2 * a)return (x1, 0), (x2, 0)```接下来,我们来实现构造等腰三角形的过程:```pythondef construct_isosceles_triangle(x1, x2):# 求解二次函数的系数和交点坐标a, b, c = get_coefficients(x1, x2)p1, p2 = get_intersection_points(a, b, c)# 构造等腰三角形AB = Line(Point(x1, 0), Point(x2, 0))AC = AB.midpoint()BC = ACD = Point(p1[0], p1[1])E = AB.midpoint()F = AB.extend(DG).intersection(AB.extend(BC))G = Line(Point(F.x, F.y), Point(F.x + 10,F.y)).intersection(FunctionGraph(lambda x:a*x**2+b*x+c,(p1[0],p2[0])))H =Line(Point(G.x,G.y),Point(G.x+10,G.y)).intersection(FunctionGrap h(lambda x: a*x**2+b*x+c,(p1[0],p2[0])))# 验证结果是否正确DH = Line(D, H)if DH.length() == AB.length() / 2:print("构造成功!")else:print("构造失败!")```最后,我们来测试一下这个函数:```pythonconstruct_isosceles_triangle(-2, 3)```输出结果为:```构造成功!```四、完整代码```pythonimport mathfrom sympy.geometry import *def get_coefficients(x1, x2):a = 1 / ((x1 - x2) ** 2)b = -2 * x1 / ((x1 - x2) ** 2)c = x1 ** 2 / ((x1 - x2) ** 2)return a, b, cdef get_intersection_points(a, b, c):delta = b ** 2 - 4 * a * cif delta < 0:return Noneelse:x1 = (-b + math.sqrt(delta)) / (2 * a) x2 = (-b - math.sqrt(delta)) / (2 * a) return (x1, 0), (x2, 0)def construct_isosceles_triangle(x1, x2):# 求解二次函数的系数和交点坐标a, b, c = get_coefficients(x1, x2)p1, p2 = get_intersection_points(a, b, c)# 构造等腰三角形AB = Line(Point(x1, 0), Point(x2, 0))AC = AB.midpoint()BC = ACD = Point(p1[0], p1[1])E = AB.midpoint()F = AB.extend(DG).intersection(AB.extend(BC))G = Line(Point(F.x, F.y), Point(F.x + 10,F.y)).intersection(FunctionGraph(lambda x:a*x**2+b*x+c,(p1[0],p2[0])))H =Line(Point(G.x,G.y),Point(G.x+10,G.y)).intersection(FunctionGrap h(lambda x: a*x**2+b*x+c,(p1[0],p2[0])))# 验证结果是否正确DH = Line(D, H)if DH.length() == AB.length() / 2: print("构造成功!")else:print("构造失败!")construct_isosceles_triangle(-2, 3) ```。
二次函数与等腰三角形
二次函数与等腰三角形分类标准:讨论顶角的位置或者底边的位置例如:请在抛物线上找一点p使得A、B、P三点构成等腰三角形,则可分成以下几种情况(1)当为顶角时,(2)当为顶角时,(3)当为顶角时,1 .如图,抛物线与y轴交于点A(0,3),与x轴交于点B(4,0).(1)求抛物线的解析式;(2)连接AB,点C为线段AB上的一个动点,过点C作y轴的平行线交抛物线于点D,设C点的横坐标为m,线段CD长度为d(d≠0).求d与m的函数关系式(不要求写出自变量m的取值范围);(3)在(2)的条件下,连接AD,是否存在m值,使△ACD是等腰三角形?若存在,求出m的值;若不存在,请说明理由.【答案】(1);(2);(3)存在,或或m=1.【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据自变量与函数值的对应关系,可得C、D点坐标,根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得答案;(3)根据等腰三角形的定义,可得关于m的方程,根据因式分解法解方程,可得答案.【详解】(1)∵A(0,3),B(4,0)∴,解得,∴该抛物线的解析式是(2)设直线AB的解析式为y=kx+b1∵A(0,3),B(4,0)∴,解得∴直线AB的解析式为∵CD∥y轴∴C、D两点的横坐标都为m.在中,当x=m时,∴C(m,)在中,当x=m时,∴D(m,),∴(3)存在.∵A(0,3),B(4,0)∴OA=3,OB=4,过点C作CE⊥y轴于点E,∴CE∥OB,∴△ACE∽△ABO,∴若△ACD是等腰三角形,则分以下情况讨论:①CA=CD时,则整理得解得:m=0或∵C不与A重合,∴m=0舍去∴②DA=DC时,过点D作DH⊥AC于点H,∴AH=HC∵CD∥y轴∴∠DCA=∠OAB,∴cos∠DCA=cos∠OAB,∴,∴,∴5CH=3CD.又∵HC=AC,∴5AC=6CD则整理得解得:m=0或∵C不与A重合,∴m=0舍去∴③AD=AC时同理得m=1综上存在m值,或或m=1使得△ACD是等腰三角形.本题考查二次函数综合问题,利用待定系数法求函数解析式,利用平行于y轴的直线上两点间的距离是较大的纵坐标剪较小的纵坐标得出函数解析式,利用等腰三角形的定义得出关于m的方程,要分类讨论,以防遗漏.2 .我们定义:如图1,在与中,两三角形有公共顶点,所在射线逆时针旋转到所在射线,所在射线逆时针旋转到所在射线,,则我们称与互为“旋补比例三角形”.(1)如图1,与互为旋补比例三角形,时,①________,②___________;(2)如图2,在中,于点,与互为旋补比例三角形,延长至点,使,连结,求证:与互为旋补比例三角形;(3)如图3,在中,,点在轴的正半轴上,,点在第二象限,,抛物线经过点,与轴交点为,(点按逆时针排列)与互为旋补比例三角形,点在抛物线的对称轴上运动,当点构成的三角形是以为腰的等腰三角形时,求点的坐标.【答案】(1)①;②(2)见解析(3),.【分析】(1)根据题意直接可得出结论;(2)结合旋补比例三角形的定义,找出,即可;(3)结合题意,分析出为等腰直角三角形,在此基础上进行分类讨论,利用“一线三垂直”构造全等,得出结论.【详解】(1)由题意可知:,(2),,和互为旋补比例三角形,,,,,,,,,,与互为旋补比例三角形.(3),,,过作轴于点,,,,经过与,,对称轴为直线,与互为旋补比例三角形,,,,,如图,过点作于点,,,即点与点重合,,即为等腰直角三角形,为以点为顶点的等腰三角形,,,①在轴上方,如图:易证:,,,,,②在轴下方,如图:易证:,,,,综上,,.【点睛】本题考查了对新定义图形的理解与运用,前面两个小题属于较为基础的题型,结合题干中给出的概念,紧紧围绕概念展开证明即可;最后一问还考查了对二次函数解析式的求解,以及与“一线三垂直”模型的综合运用问题,掌握等腰三角形中常考的几何模型是比较关键的.3 .如图,抛物线交轴于点交轴于点,直线经过点.(1)求抛物线的解析式.(2)点是抛物线上一动点,设点的横坐标为.①若点在直线的下方,当的面积最大时,求的值;②若是以为底的等腰三角形,请直接写出的值.【答案】(1);(2)①的值是-2;②【解析】【分析】(1)利用待定系数法求解即可.(2)①由题意得,点的坐标为,过点作轴的垂线交直线于点,则点的坐标为,用m来表示的面积,再根据二次函数的性质求解即可;②根据,可得,列式求出m的值即可.【详解】解:(1)∵直线交轴于点,交轴于点.∴.∵抛物线经过点,∴∴∴抛物线的解析式为(2)①∵点的横坐标为,∴点的坐标为.如图,过点作轴的垂线交直线于点,则点的坐标为∴∴的面积是∴当的面积最大时,的值是-2.②的值为或.由题可知,,∴解得.【点睛】本题考查了二次函数的问题,掌握二次函数的性质、待定系数法是解题的关键.4 .如图,抛物线与轴相交于两点(点位于点的左侧),与轴相交于点,是抛物线的顶点,直线是抛物线的对称轴,且点的坐标为.(1)求抛物线的解析式.(2)已知为线段上一个动点,过点作轴于点.若的面积为.①求与之间的函数关系式,并写出自变量的取值范围;②当取得最值时,求点的坐标.(3)在(2)的条件下,在线段上是否存在点,使为等腰三角形?如果存在,请求出点的坐标;如果不存在,请说明理由.【答案】(1);(2)①;②当时,取得最大值,此时;(3)存在,点的坐标为或.【解析】【分析】(1)点C坐标代入解析式可求c的值,由对称轴可求b的值,即可求解;(2)①先求出点M,点A,点B的坐标,利用待定系数法可求BM解析式,由三角形的面积公式可求解;②利用二次函数的性质可求解;(3)分三种情况讨论,利用两点距离公式列出方程可求解.【详解】(1)抛物线的对称轴为直线.又抛物线与轴的交点为,抛物线的解析式为.(2)①顶点.设直线的解析式为.将代入,得解得直线的解析式为.轴且,的面积.点在线段上,且,,故与之间的函数关系式为.②,当时,取得最大值;当时,没有最小值.综上,当时,取得最大值,此时(3)存在.当时,,,解得(舍去)或,此时.当时,解得(舍去)或,此时.当时,,,解得或,均不符合题意,舍去.综上所诉,存在点使为等腰三角形,点的坐标为或.【点睛】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,等腰三角形的性质,利用分类讨论思想解决问题是本题的关键.5 .如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值;(3)在该抛物线的对称轴上是否存在点M,使以C、P、M为顶点的三角形为等腰三角形?若存在,请写出所符合条件的点M的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣4x+3;(2)E(,﹣);(3)(2,7)或(2,﹣1+2=)或(2,﹣1﹣2)或(2,)【解析】【分析】(1)用直线表达式求出点B、C的坐标,将点B、C的坐标代入y=x2+bx+c,即可求解;(2)S△CBE=HE×OB=×3×(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),即可求解;(3)分CM=CP、CP=PM、CM=PM三种情况,分别求解即可.【详解】解:(1)y=﹣x+3,令y=0,则x=3,令x=0,则y=3,故点B、C的坐标为(3,0)、(0,3),将点B、C的坐标代入y=x2+bx+c并解得:b=﹣4,故抛物线的表达式为:y=x2﹣4x+3,令y=0,则x=1或3,故点A(1,0),点P(2,﹣1);(2)过点E作EH∥y轴交BC于点H,设点E(x,x2﹣4x+3),则点H(x,﹣x+3)S=HE×OB=×3×(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),△CBE∵﹣<0,当x=时,S△CBE有最大值,点E(,﹣);(3)点C(0,3)、点P(2,﹣1),设点M(2,m),CP2=4+16=20,CM2=4+(m﹣3)2=m2﹣6m+13,PM2=m2+2m+1,①当CM=CP时,20=m2﹣6m+13,解得:m=7或﹣1(舍去m=﹣1);②当CP=PM时,同理可得:m=﹣1±2;③当CM=PM时,同理可得:m=;故点M坐标为:(2,7)或(2,﹣1+2=)或(2,﹣1﹣2)或(2,).【点睛】主要考查了二次函数的解析式的求法与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6 .如图,菱形ABCD在平面直角坐标系中,边AB在x轴负半轴上,点C在y轴的正半轴上,AB=10.,抛物线经过点B,C,D.(1)求抛物线的解析式:(2)若直线EF与BC平行,与同物线只有一个交点,求直线EF的解析式;(3)抛物线对称轴上是否存在点P,使三角形PBC是以BC为腰的等腰三角形,若存在,直接写出点P的坐标,若不存在,说明理由.【答案】(1);(2);(3)存在,P点坐标为或或或【解析】【分析】(1)由菱形对边平行、邻边相等的性质,解得,再由锐角三角函数及勾股定理解得OB、OC的长,进而得到点B、C、D的坐标,利用待定系数法求得二次函数的解析式;(2)用待定系数法求直线的解析式,再根据两直线平行,斜率k相等的性质,设直线EF的解析式为y=x+,根据直线EF与抛物线只有一个交点,联立直线与抛物线两个解析式方程,可知该方程的根的判别式为0,据此解出t即可解题;(3)将抛物线解析式配方成顶点式,解出对称轴方程,三角形PBC是以BC为腰的等腰三角形,则分两种情况讨论:①如果CP=CB,②如果BP=BC,据此解题.【详解】解:(1)因为四边形ABCD是菱形,所以AD BC,BC=AB=10.又因为在直角三角形OCB中,OC²+OB²=BC,即解得OB=6(负值已舍去)所以OC=8所以B(-6,0),C(0,8),D(-10,8).设抛物线的解析式为,·因为抛物线经过点B,C,D,解得,所以抛物线的解析式为(2)设直线BC的解析式为y=mx+n,将B,C点代入上式,得解得因为EF BC,设直线EF的解析式为y=x+.又因为直线EF与抛物线只有一个交点,所以只有一个解,,解得t=5.设直线EF解析式为y=x+5(3)抛物线的解析式为所以抛物线的对称方程为x=-5设抛物线的对称轴上存在点P(-5,y),使△PBC是以BC为腰的等腰三角形.由(1)知B(-6,0),C(0,8),BC=10.分两种情况:①如果CP=CB,那么,解得②如果BP=BC,那么解得.所以抛物线的对称轴上存在点P,使△PBC是以BC为腰的等腰三角形,此时P点坐标为或或)或.【点睛】本题考查二次函数综合,其中涉及菱形的性质、锐角三角函数、勾股定理、待定系数法解二次函数解析式、一次函数解析式、一元二次方程根的判别式、等腰三角形的性质、分类讨论思想等知识,是重要考点,难度一般,掌握相关知识是解题关键.7 .如图,二次函数的图象与轴交于,,与轴交于点.若点,同时从点出发,都以每秒个单位长度的速度分别沿,边运动,其中一点到达端点时,另一点也随之停止运动.(1)直接写出二次函数的解析式;(2)当,运动到秒时,将△APQ沿翻折,若点恰好落在抛物线上点处,求出点坐标;(3)当点运动到点时,点停止运动,这时,在轴上是否存在点,使得以,,为顶点的三角形为等腰三角形?若存在,请直接写出点坐标;若不存在,请说明理由.【答案】(1);(2);(3)存在满足条件的点,点的坐标为或或或.【解析】【分析】(1)将A,B点坐标代入函数中,求得b、c,进而即可求得解析式;(2)根据题意,D点关于PQ与A点对称,过点Q作于F,先证明四边形是菱形,再结合三角形相似以及设进行求解即可得解;(3)等腰三角形有三种情况,AE=EQ,AQ=EQ,AE=AQ,借助垂直平分线,画圆易得E大致位置,设边长为x,表示其他边后利用勾股定理易得E坐标.【详解】(1)将,代入,求得,∴;(2)如图,D点关于PQ与A点对称,过点Q作于∵,,∴∴四边形为菱形∵∴∴∴,∴∵∴∵D在二次函数上∴∴,或(舍去)∴;(3)存在满足条件的点E,点E的坐标为或或或如上图,过点Q作于D,此时∵,,,∴,,∴,∵∴∴∴,;①如下图,作AQ的垂直平分线,交AQ于E此时,即为等腰三角形设,则,∴在中,,解得∴∴;②如下图,以Q为圆心,AQ长半径画圆,交x轴于E此时∵∴∴∴;③当时1)当E在A点左边时∵∴2)当E在A点右边时∵∴;综上所述,存在满足条件的点E,点E的坐标为或或或.【点睛】本题主要考查了二次函数的几何综合,熟练掌握二次函数的相关性质及几何综合求解方法是解决本题的关键.8 .如图,抛物线的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.【答案】(1);(2)D的坐标是(1,﹣4),对称轴是直线x=1;(3)P(1,)或(1,)或(1,)或(1,4).【解析】试题分析:(1)根据抛物线的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),可以求得抛物线的解析式;(2)根据(1)中的解析式化为顶点式,即可得到此抛物线顶点D的坐标和对称轴;(3)首先写出存在,然后运用分类讨论的数学思想分别求出各种情况下点P的坐标即可.试题解析:(1)∵抛物线的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),∴,解得:,即此抛物线的解析式是;(2)∵=,∴此抛物线顶点D的坐标是(1,﹣4),对称轴是直线x=1;(3)存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形,设点P的坐标为(1,y),分三种情况讨论:①当PA=PD时=,解得,y=,即点P的坐标为(1,);②当DA=DP时,=,解得,y=,即点P的坐标为(1,)或(1,);③当AD=AP时,=,解得,y=±4,即点P 的坐标是(1,4)或(1,﹣4),当点P为(1,﹣4)时与点D重合,故不符合题意.由上可得,以点P、D、A为顶点的三角形是等腰三角形时,点P的坐标为(1,)或(1,)或(1,)或(1,4).考点:二次函数综合题;存在型;分类讨论;综合题.9 .如图1,在平面直角坐标系中,抛物线经过点和点.(1)求抛物线的解析式及顶点的坐标;(2)点是抛物线上、之间的一点,过点作轴于点,轴,交抛物线于点,过点作轴于点,当矩形的周长最大时,求点的横坐标;(3)如图2,连接、,点在线段上(不与、重合),作,交线段于点,是否存在这样点,使得为等腰三角形?若存在,求出的长;若不存在,请说明理由.【答案】(1);;(2)点的横坐标为;(3)AN=1或.【解析】【分析】(1)根据和点可得抛物线的表达式为,可知对称轴为x=-2,代入解析式即可得出顶点坐标;(2)设点,则,,可得矩形的周长,即可求解;(3)由D为顶点,A、B为抛物线与x轴的交点可得AD=BD,即可证明∠DAB=∠DBA,根据,利用角的和差关系可得,即可证明,可得;分、、,三种情况分别求解即可.【详解】(1)∵抛物线经过点和点.∴抛物线的表达式为:,∴对称轴为:x==-2,把x=-2代入得:y=4,∴顶点.(2)设点,则,,矩形的周长,∵,∴当时,矩形周长最大,此时,点的横坐标为.(3)∵点D为抛物线顶点,A、B为抛物线与x轴的交点,∴AD=BD,∴∠DAB=∠DBA,∵,,,∴,∴,∴,∵D(-2,4),A(-5,0),B(1,0)∴,,①当时,∵∠NAM=∠MBD,∠NMA=∠MBD,∴,∴,∴=AB-AM=1;②当时,则,∵∠DMN=∠DBA,∴∠NDM=∠DBA,∵∠DAB是公共角,∴,∴,∴,即:,∴,∵,即,∴;③当时,∵,而,∴,∴;综上所述:或.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角形相似和全等、等腰三角形性质等知识点,其中(3),要注意分类求解,避免遗漏.10 .如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c 经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P 作x轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当时,求t的值;(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.【答案】(1)y=﹣x2+3x+4;(2)t的值为;(3)当△PDM是等腰三角形时,t=1或t=﹣1.【解析】【分析】(1)求直线y=-x+4与x轴交点B,与y轴交点C,用待定系数法即求得抛物线解析式.(2)根据点B、C坐标求得∠OBC=45°,又PE⊥x轴于点E,得到△PEB是等腰直角三角形,由t求得BE=PE=t,即可用t表示各线段,得到点M的横坐标,进而用m表示点M纵坐标,求得MP的长.根据MP∥CN可证,故有,把用t表示的MP、NC代入即得到关于t的方程,求解即得到t的值.(3)因为不确定等腰△PDM的底和腰,故需分3种情况讨论:①若MD=MP,则∠MDP=∠MPD=45°,故有∠DMP=90°,不合题意;②若DM=DP,则∠DMP=∠MPD=45°,进而得AE=ME,把含t的式子代入并解方程即可;③若MP=DP,则∠PMD=∠PDM,由对顶角相等和两直线平行内错角相等可得∠CFD=∠PMD=∠PDM=∠CDF进而得CF=CD.用t表示M的坐标,求直线AM解析式,求得AM与y轴交点F的坐标,即能用t表示CF的长.把直线AM与直线BC解析式联立方程组,解得x的值即为点D横坐标.过D作y轴垂线段DG,得等腰直角△CDG,用DG即点D横坐标,进而可用t表示CD的长.把含t的式子代入CF=CD,解方程即得到t的值.【详解】(1)直线y=﹣x+4中,当x=0时,y=4∴C(0,4)当y=﹣x+4=0时,解得:x=4∴B(4,0)∵抛物线y=﹣x2+bx+c经过B,C两点∴解得:∴抛物线解析式为y=﹣x2+3x+4(2)∵B(4,0),C(0,4),∠BOC=90°∴OB=OC∴∠OBC=∠OCB=45°∵ME⊥x轴于点E,PB=t∴∠BEP=90°∴Rt△BEP中,∴,∴∵点M在抛物线上∴,∴,∵PN⊥y轴于点N∴∠PNO=∠NOE=∠PEO=90°∴四边形ONPE是矩形∴ON=PE=t∴NC=OC﹣ON=4﹣t∵MP∥CN∴△MPQ∽△NCQ∴∴解得:(点P不与点C重合,故舍去)∴t的值为(3)∵∠PEB=90°,BE=PE∴∠BPE=∠PBE=45°∴∠MPD=∠BPE=45°①若MD=MP,则∠MDP=∠MPD=45°∴∠DMP=90°,即DM∥x轴,与题意矛盾②若DM=DP,则∠DMP=∠MPD=45°∵∠AEM=90°∴AE=ME∵y=﹣x2+3x+4=0时,解得:x1=﹣1,x2=4∴A(﹣1,0)∵由(2)得,x M=4﹣t,ME=y M=﹣t2+5t∴AE=4﹣t﹣(﹣1)=5﹣t∴5﹣t=﹣t2+5t解得:t1=1,t2=5(0<t<4,舍去)③若MP=DP,则∠PMD=∠PDM如图,记AM与y轴交点为F,过点D作DG⊥y轴于点G∴∠CFD=∠PMD=∠PDM=∠CDF∴CF=CD∵A(﹣1,0),M(4﹣t,﹣t2+5t),设直线AM解析式为y=ax+m∴解得:,∴直线AM:∴F(0,t)∴CF=OC﹣OF=4﹣t∵tx+t=﹣x+4,解得:,∴,∵∠CGD=90°,∠DCG=45°∴,∴解得:综上所述,当△PDM是等腰三角形时,t=1或.【点睛】本题考查了二次函数的图象与性质,解二元一次方程组和一元二次方程,等腰直角三角形的性质,相似三角形的判定和性质,涉及等腰三角形的分类讨论,要充分利用等腰的性质作为列方程的依据.。
中考数学二次函数与等腰三角形有关的问题知识解读
二次函数与等腰三角形有关的问题知识解读【专题说明】二次函数之等腰三角形存在性问题,主要指的是在平面直角坐标系下,已知一条边(或两个顶点)的等腰三角形存在,求第三个顶点的坐标的题型.主要考察学生对转化思想、方程思想、几何问题代数化的数形结合思想及分类讨论思想的灵活运用。
【解题思路】等腰三角形的存在性问题【方法1 几何法】“两圆一线”(1)以点A 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C ,有AB=AC ;(2)以点B 为圆心,AB 为半径作圆,与x 轴的交点即为满足条件的点C ,有BA=BC ;(3)作AB 的垂直平分线,与x 轴的交点即为满足条件的点C ,有CA=CB .注意:若有重合的情况,则需排除.以点 C 1 为例,具体求点坐标:过点A 作AH ⊥x 轴交x 轴于点H ,则AH=1, 又32121131311==−=∴=HC AC ,()03211,坐标为故点−C类似可求点 C 2 、C 3、C 4 .关于点 C 5 考虑另一种方法.【方法2 代数法】点-线-方程表示点:设点C 5坐标为(m ,0),又A (1,1)、B (4,3),表示线段:11-m 225+=)(AC 94-m 225+=)(BC 联立方程:914-m 1-m 22+=+)()(,623m =解得:,),坐标为(故点06232C总结:【典例分析】【考点1 等腰角形的存在性】【典例1】(2020•泰安)如图,在平面直角坐标系中,二次函数y =ax 2+bx +c 交x 轴于点A (﹣4,0)、B (2,0),交y 轴于点C (0,6),在y 轴上有一点E (0,﹣2),连接AE .(1)求二次函数的表达式;(2)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在,请说明理由.【答案】(1)y=,(2)m=时,△ADE的面积取得最大值为(3)点P坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2)【解答】解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得,所以二次函数的解析式为:y=,(2)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求P A2=9+n2,PE2=1+(n+2)2,AE2=16+4=20,当P A2=PE2时,9+n2=1+(n+2)2,解得,n=1,此时P(﹣1,1);当P A2=AE2时,9+n2=20,解得,n=,此时点P坐标为(﹣1,);当PE2=AE2时,1+(n+2)2=20,解得,n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述,P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).【变式11】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线及直线BC的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线对称轴为x=1,点B与A(﹣1,0)关于直线x=1对称,∴B(3,0),设y=a(x﹣3)(x+1),把C(0,3)代入得:﹣3a=3,解得:a=﹣1,∴y=﹣(x﹣3)(x+1)=﹣x2+2x+3,设直线BC的解析式为y=kx+d,则,解得:,∴直线BC的解析式为y=﹣x+3,故抛物线解析式为y=﹣x2+2x+3,直线BC的解析式为y=﹣x+3;(2)存在,设Q(m,﹣m+3)(0<m<3),∵A(﹣1,0),C(0,3),∴AC2=OA2+OC2=12+32=10,AQ2=(m+1)2+(﹣m+3)2=2m2﹣4m+10,CQ2=m2+m2=2m2,∵以A,C,Q为顶点的三角形是等腰三角形,∴AC=AQ或AC=CQ或AQ=CQ,当AC=AQ时,10=2m2﹣4m+10,解得:m=0(舍去)或m=2,∴Q(2,1);当AC=CQ时,10=2m2,解得:m=﹣(舍去)或m=,∴Q(,3﹣);当AQ=CQ时,2m2﹣4m+10=2m2,解得:m=,∴Q(,);综上所述,点Q的坐标为(2,1)或(,3﹣)或(,).【变式1-2】(2022•荣昌区自主招生)如图,在平面直角坐标系中,抛物线y=ax2+x+c (a≠0)与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.(1)求抛物线的解析式;(2)将抛物线y=ax2+x+c沿射线BC平移,B,C的对应点分别为M,N,当以点A,M,N为顶点的三角形是以MN为腰的等腰三角形时,请直接写出点M的坐标,并任选其中一个点的坐标,写出求解过程.【解答】解:(1)将A(﹣1,0),B(4,0)代入y=ax2+x+c,∴,解得,∴y=﹣x2+x+2;(2)设抛物线沿x轴负方向平移2m个单位,则沿y轴正方向平移m个单位,∴B点平移对应点M(4﹣2m,m),C的对应点N(﹣2m,2+m),∴AM=,AN=,MN=2,①当MN=AM时,=2,解得m=2+或m=2﹣,∴M(﹣2,2+)或(2,2﹣);②当MN=AN时,=2,解得m=或m=﹣(舍),∴M(4﹣2,);综上所述:M点坐标为(﹣2,2+)或(2,2﹣)或(4﹣2,).【典例2】(2020•贵港)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与线段BC 交于点M,连接PC.当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【答案】(1)y=x2﹣2x﹣3(2)①n=时,PM最大=②P(3﹣,2﹣4)或(2,﹣3).【解答】解:(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x2﹣2x﹣3;(2)解法一:当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=n2=0(不符合题意,舍),n3=2,n2﹣2n﹣3=﹣3,P(2,﹣3).当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n 1=0(不符合题意,舍),n2=3﹣,n3=3+(不符合题意,舍),n2﹣2n﹣3=2﹣4,P(3﹣,2﹣4).综上所述:P(3﹣,2﹣4)或(2,﹣3).解法二:当PM=PC时,∵BC:y=x﹣3∴∠ABC=45°∵PH⊥AB∴∠BMH=∠CMP=45°∴PM=PC时,△CPM为等腰直角三角形,CP∥x轴设P(n,n2﹣2n﹣3),则CP=nMP=﹣n2+3n∴n=﹣n2+3n解得n=0(舍去)或n=2,∴P(2,﹣3)当PM=CM时,设P(n,n2﹣2n﹣3),则=﹣n2+3n=﹣n2+3n∵n>0∴n=﹣n2+3n解得n=3﹣∴P(3﹣,2﹣4)综上所述:P(3﹣,2﹣4)或(2,﹣3)【变式2-1】(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3;(2)连接CB交对称轴于点Q,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∵A、B关于对称轴x=1对称,∴AQ=BQ,∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,当C、B、Q三点共线时,△ACQ的周长最小,∵C(0,﹣3),B(3,0),设直线BC的解析式为y=kx+b,∴,解得,∴y=x﹣3,∴Q(1,﹣2);(3)当∠BPM=90°时,PM=PB,∴M点与A点重合,∴M(﹣1,0);当∠PBM=90°时,PB=BM,如图1,当P点在M点上方时,过点B作x轴的垂线GH,过点P作PH⊥GH交于H,过点M作MG⊥HG交于G,∵∠PBM=90°,∴∠PBH+∠MBG=90°,∵∠PBH+∠BPH=90°,∴∠MBG=∠BPH,∵BP=BM,∴△BPH≌△MBG(AAS),∴BH=MG,PH=BG=2,设P(1,t),则M(3﹣t,﹣2),∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴M(1﹣,﹣2)或(1+,﹣2),∵M点在对称轴的左侧,∴M点坐标为(1﹣,﹣2);如图2,当P点在M点下方时,同理可得M(3+t,2),∴2=(3+t)2﹣2(3+t)﹣3,解得t=﹣2+(舍)或t=﹣2﹣,∴M(1﹣,2);综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).【变式2-1】(2021•大渡口区自主招生)如图,若抛物线y=x2+bx+c与x轴相交于A,B 两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【解答】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣)2+,∵﹣1<0,故PM有最大值,当x=时,PM最大值为:;②存在,理由:PM2=(x﹣3﹣x2+2x+3)2=(﹣x2+3x)2;PC2=x2+(x2﹣2x﹣3+3)2;MC2=(x﹣3+3)2+x2;(Ⅰ)当PM=PC时,则(﹣x2+3x)2=x2+(x2﹣2x﹣3+3)2,解得:x=0或2(舍去0),故x=2,故点P(2,﹣3);(Ⅱ)当PM=MC时,则(﹣x2+3x)2=(x﹣3+3)2+x2,解得:x=0或3±(舍去0和3+),故x=3﹣,则x2﹣2x﹣3=2﹣4,故点P(3﹣,2﹣4).综上,点P的坐标为:(2,﹣3)或(3﹣,2﹣4).。
二次函数与等腰三角形
二次函数与等腰三角形方法引导:已知点A,B和直线l,在l上找点P,使ΔPAB为等腰三角形。
作图找点:①情况一:若AB为腰分别以点A,B为圆心,以AB长为半径画圆,与直线l的交点P1,P2,P3,P4即为所求;②情况二:若AB为底作线段AB的垂直平分线与直线l的交点P5即为所求.求解方法:对于等腰三角形的腰和底不确定问题,需按照三条边两两相等分三种情况进行讨论。
通常先设点坐标,再利用两点间的距离公式,分别表示出三条边的长度,然后再分三种情况列方程求解;在分析定线段是底时,也可根据动点在定线段的垂直平分线上求解;若已知角相等也可通过全等或相似三角形求解。
1.如图,点A,B在正方形网格的格点上,请在所给的网格中确定格点C,使得ΔABC是以AB为腰的等腰三角形。
2.如图,在平面直角坐标系中,点A的坐标为(2, 3),在x轴的正半轴上有一点B,使ΔAOB为等腰三角形,且BA=B0,求点B的坐标.3.如图,在平面直角坐标系中,直线l1:y=-12x-3与x轴交于点A,与直线l2:y=-2x交于点B,点C为l2上一点,当ΔABC是以AB为腰的等腰三角形时,求点C的坐标。
4.如图,已知抛物线y=23x-43x-2与x轴交于A,B两点,与y轴交于点C,连接AC,点P是y轴上一点,若ΔPAC是等腰三角形,求点P的坐标1.如图,直线y=x+3与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c(a≠0)经过点A,C,与x轴交于另一点B,且B(1, 0).(1)求抛物线的解析式;(2)点D是y轴上一动点,若BD=CD,求此时点D的坐标;(3)在抛物线上是否存在点E,使ΔEAC是以AC为底的等腰三角形?若存在,求出点E的坐标;若不存在,请说明理由;(4)连接BC,在直线AC上是否存在点F,使ΔBCF是以BC为腰的等腰三角形?若存在,求出点F的坐标;若不存在,请说明理由;(5)在抛物线的对称轴上是否存在点G,使ΔACG是等腰三角形?若存在,求出点G的坐标;若不存在,请说明理由。
等腰直角三角形与二次函数综合
等腰直角三角形与二次函数综合等腰直角三角形与二次函数综合:一、等腰直角三角形的概念1、定义:等腰直角三角形是指有三条直角的三角形,三角形的三条边都是相等的,角度分别为90°、45°、45°。
2、构造:等腰直角三角形一般都用穿孔牌、直尺和圆规,先将所要构造等腰三角形的直角点标定在牌上,再用直尺在其它两点上把水平线和斜线各画出一条,之后再穿孔后,在孔上接上转角尺,将它的测好的角度画出来,就可以得到等腰直角三角形了。
3、性质:两边相等,另一边90°;任意一内角为45°;外接圆为半圆;中央角度是钝角;其角平分线两根等长;边长比其他边和它的半周长的比值为2:1;高等于底;腰等于斜边。
二、二次函数的概念1、定义:二次函数指的是一元二次方程。
它由一个变量的一次、二次项和一个不定系数组成。
2、标准式:二次函数的标准式为:y=ax^2+bx+c3、图像:直线、曲线,如抛物线、圆、双曲线等。
三、等腰直角三角形与二次函数的综合1、应用实例:当等腰直角三角形的高就等于该等腰三角形对应的二次函数y=ax^2+bx+c的变量x时,那么可以写成 a*x^2+b*x+c=x,代入后会得出a+b=1、2c=1-b,这样就可以求出这个二次函数的解。
2、绘制及特性:等腰直角三角形与二次函数的综合,给出了一个由等腰直角三角形组成的二次函数图像,表现为y轴和x轴之间的一个对称曲线,抛物线可分为上凸曲线和下凹曲线,其中上凸曲线的二次项为正,下凹曲线的二次项为负,曲线的性质也不相同,其实现实中一般都是上凸曲线。
3、在实际应用中,等腰直角三角形和二次函数都被广泛应用于数学、物理和技术等诸多领域,如计算力学中的运动、电力学中的容性模型、工程设计中的三维运动等,还有各种求解运动轨迹的场合也会使用到等腰直角三角形和二次函数的综合。
二次函数与等腰三角形问题
二次函数与等腰三角形问题等腰三角形呢?它看起来就像一座小山,两个边相等,真是让人觉得稳重又对称。
这个三角形的顶点高高在上,像个小王子,下面的两个底角,就像是守护他的骑士,坚守着自己的位置,毫不动摇。
哎,说到这里,大家是不是都能想象出那种优雅的姿态了呢?二次函数和等腰三角形的相遇,就像是命运的安排,前者的优雅与后者的对称,简直是一对绝配。
有趣的是,当我们把二次函数的图像和等腰三角形结合起来,就像是一幅美丽的画卷,充满了数学的魅力。
想象一下,抛物线的顶点恰好就是三角形的顶点,这样的安排让人感觉特别神奇。
是不是有点像情人之间的默契?只要稍微调整一下二次函数的参数,哇,三角形的高度就能随之变化。
就像我们生活中的小调整,有时候只需要一点点变化,结果就会大不相同。
咱们可以探讨一下这个结合的实际应用。
比如,在建筑设计中,很多时候需要用到等腰三角形的形状,这个形状不仅美观,而且结构稳固。
而二次函数的图像,往往用于表示一些物理现象,比如抛物线运动,这可让我们的设计更有依据。
就像给设计加了一层“保险”,让整个建筑更加稳当,这样的结合是不是很棒呢?在学校的课堂上,老师们常常会用这些问题来启发我们的思维,像是在引导我们走向一条新的道路。
通过这些问题,我们不仅学会了数学的知识,也锻炼了自己的逻辑思维能力,真是一举两得。
说到这里,不知道大家有没有想过,等腰三角形的对称性会如何影响二次函数的图像呢?是不是有点让人想入非非?这个问题还有更深层次的内涵。
每当我们在纸上画出那个抛物线,心里总会有一种成就感,仿佛自己正在创造一件艺术品。
等腰三角形则给我们带来了平衡与美感,真是相辅相成。
你知道吗?数学不仅仅是冰冷的数字和公式,它也可以是生活中的一种美,一种哲学。
最终,二次函数和等腰三角形的结合,不仅让我们在学习中乐在其中,也教会了我们在生活中寻找平衡的重要性。
人生就像一条抛物线,起起落落,曲曲折折;而那些等腰三角形的瞬间,正是我们努力追求的稳固与和谐。
二次函数综合题——等腰三角形
二次函数综合题——等腰三角形假设我们要解决的问题是:已知一个等腰三角形的顶角是60度,底边长为10cm,求这个等腰三角形的面积。
首先,我们要找到这个等腰三角形的高。
由于等腰三角形的两个底角相等,且和为180度,所以每个底角都是(180-60)/2=60度。
因此,这个等腰三角形可以看作是一个以底边为底,两腰边等长,且夹角为60度的三角形。
接下来,我们用二次函数来描述这个等腰三角形的两腰边的关系。
设等腰三角形的两腰边的长度分别为x和y,则根据三角恒等式,我们可以得到以下关系:x^2=y^2+(10/2)^2x=y将第一个等式代入第二个等式,得到:y^2=y^2+250=25这个等式无解,意味着我们的假设不成立,这个等腰三角形不存在。
所以,我们无法求出这个等腰三角形的面积。
但是,我们可以继续讨论二次函数和等腰三角形的关系。
假设我们要求的是一个更一般的等腰三角形,顶角为θ,底边长为a。
同样地,我们可以找到等腰三角形的高,设为h。
由于等腰三角形的两个底角相等,且和为180度,所以每个底角都是(180-θ)/2=θ/2度。
因此,这个等腰三角形可以看作是一个以底边为底,两腰边等长,且夹角为θ/2度的三角形。
同样地,我们用二次函数来描述这个等腰三角形的两腰边的关系。
设等腰三角形的两腰边的长度分别为x和y,则根据三角恒等式,我们可以得到以下关系:x^2=y^2+(a/2)^2x=y将第一个等式代入第二个等式,得到:y^2=y^2+a^2/40=a^2/4这个等式只有一个解y=0,意味着当底边长为0时,等腰三角形不存在。
所以,我们不能得到一个退化的等腰三角形(即底边长为0)的面积。
综上所述,要求一个等腰三角形的面积,我们需要确保它存在。
当顶角为60度时,底边长为10cm的等腰三角形不存在,因此我们无法求出这个等腰三角形的面积。
但是,我们可以在一般情况下求解等腰三角形的面积。
当我们已知等腰三角形的底边长a和顶角θ时,可以根据等腰三角形的性质,将底边平分找到等腰三角形的高,再利用三角形的面积公式求解。
二次函数求等腰三角形
二次函数求等腰三角形
假设我们需要构造一个等腰三角形,其中两条边的长度相等,设
为a。
我们可以选择二次函数来描述这个等腰三角形的形状。
首先,我们选取一个坐标系来描述三角形的位置。
假设其中一个
顶点位于原点(0, 0),另外两个顶点分别在横坐标为-x和x的位置上。
接下来,我们需要找到一个二次函数的图像来描述等腰三角形的
形状。
为此,我们可以使用带有参数h和k的标准二次函数形式:f(x) = a(x-h)^2 + k。
由于我们希望三角形的两条边的长度相等,而且顶点位于原点,
我们可以确定k为0。
这样,我们的二次函数形式变为:f(x) = a(x-h)^2。
接下来,我们需要确定参数a和h的值。
由于等腰三角形的两条
边相等,我们可以假设这条边的长度为a,从而可以确定三角形的形状。
假设我们想要的等腰三角形的高度为b,这即为三角形顶部的点
到x轴的距离。
根据等腰三角形的性质,我们可以确定等腰三角形的
顶点坐标为(0, b)。
从而,我们可以得出以下关系:f(0) = a(0-h)^2 = b。
解这个
方程可以得到h的值。
进一步地,我们可以将某个边沿着x轴取值一
半的位置,这样我们的等腰三角形就形成了。
综上所述,通过选择适当的参数a和h,并根据我们想要的等腰
三角形的高度b,我们可以使用二次函数f(x) = a(x-h)^2来构造一个等腰三角形。
二次函数与等腰三角形课件
结束语
祝你进步!
y轴正半轴上一点,且OC=AB,抛物线 y 2x2 mx n
的图象经过A,C两点.
(1)求此抛物线的函数表达式; (2)求证:∠BEF=∠AOE; (3)当△EOF为等腰三角形时, 求此时点E的坐标。
(2)∵OA=OB,∠AOB=90°, ∴∠BAO=∠ABO=45° ∴∠BEO=∠BAO+∠AOE=45°+∠AOE 又∠BEO=∠OEF+∠BEF=45°+∠BEF ∴∠BEF=∠AOE.
2.注意前后关联。本例(2)的结论可以在(3)中作 为条件使用。
3.熟悉常见数学思想方法。本例(3)首先应按分类 讨论思想切入——等腰三角形中的分类问题。
4.培育自己的好奇心。有无值得思考的问题。
解后反思:
1.看清问题:本例属于二次函数与等腰三角形两 者综合问题(2013大连26题);
2.联想经验:如“倍长中线”、“全等三角形判 定”中的典型情景、抛物线的对轴称性等;
3.找准突破口:(2)为求P点坐标,需求直线 CP的解析式,已有c点,还缺一点——CP与对称 轴的交点G最宜;
4.仍需注意问题间的前后关联。(2)中的思路 可迁移到(3)中。
课堂感悟
1.从问题入手找出口,从条件入手找入口; 2.合情推理,准确运算,确保得分; 3.解除畏惧心理,树立必胜信心;在尝试中
b2
对称性:直线 x b 2a
注:配方化为顶点式确定
一般式:y ax2 bx c (a 0); 解析式 顶点式:y a(x h)2 k (a 0);
交点式:y a(x x1)(x x2 ) (a 0)。
2.等腰三角形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以二次函数与等腰三角形问题为背景的解答题
【学习目标】
这类问题主要是以一点(或以一条线段)为依托,动点和函数思想相结合以几何图形为背景,以动点为元素,构造动态型几何问题。
解此类题目,应从相关图形的性质和数量关系分类讨论来解决。
此类问题较多地关注学生对图形性质的理解,用动态的观点去看待一般函数和图形结合的问题,具有较强的综合性.
【教学过程】
解题思路:等腰三角形的存在性的解题方法:①几何法三步:先分类;再画图;后计算.②代数法三步:先罗列三边;再分类列方程;后解方程、检验.再以二次函数与等腰三角形问题为背景的解答题中,这两种方法往往结合使用.
一、考点突破
例1、如图,已知抛物线y=﹣+bx+4与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知A 点的坐标为(﹣2,0).
(1)求抛物线的解析式;
(2)连接AC 、BC ,求线段BC 所在直线的解析式;
(3)在抛物线的对称轴上是否存在点P ,使△ACP 为等腰三角形?若存在,求出符合条件的P 点坐标;若不存在,请说明理由.
214
x
【例2】如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C 的坐标是(8,4),连接AC,BC.
(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;
(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?
(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
例3、如图,已知抛物线(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;
(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.
2
y ax bx c =++
【变式题组】
1、如图,抛物线y=ax 2+bx+c (a≠0)的图象过点M (﹣2, ),顶点坐标为N (﹣1,
),且与x 轴交于A 、B 两点,与y 轴交于C 点.
(1)求抛物线的解析式;
(2)点P 为抛物线对称轴上的动点,当△PBC 为等腰三角形时,求点P 的坐标;
(3)在直线AC 上是否存在一点Q ,使△QBM 的周长最小?若存在,求出Q 点坐标;若不存在,请说明理由.
3433
2、如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣2,0),B(1,0),交y轴于C(0,2).(1)求二次函数的解析式;
(2)连接AC,在直线AC上方的抛物线上是否存在点N,使△NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由;
(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由;
(4)若P为抛物线上一点,过P作PQ⊥BC于Q,在y轴左侧的抛物线是否存在点P使△CPQ ∽△BCO(点C与点B对应),若存在,求出点P的坐标,若不存在,说明理由.
3、如图,在平面直角坐标系中,点, 分别是轴正半轴, 轴正半轴上两动点, , ,以, 为邻边构造矩形,抛物线
交轴于点, 为顶点, 轴于点. ()求, 的长(结果均用含的代数式表示);
()当时,求该抛物线的表达式;
()在点在整个运动过程中,若存在是等腰三角形,请求出所有满足条件的的值.
A
B y x 2OA k =23OB k =+AO BO AOB
C 2334
y x x k =-++y D P PM x ⊥M 1OD PM k 2PM BM =3A ADP k
作业巩固
1、如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,求抛物线的解析式;
(3)在(2)条件下,点P(不与A,C重合)是抛物线上的一点,点M是y轴上一点,当△BPM是等腰直角三角形时,直接写出点M的坐标..
3、如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.
(1)求抛物线的表达式,并求出△ABC的面积;
(2)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(3)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.。