流体力学 第四章 流体动力学基础 (3)

合集下载

工程流体力学 第4章 粘性流体动力学基础

工程流体力学 第4章 粘性流体动力学基础

沿程损失水头 (hf):
hf

LV2 D 2g
达西(Darcy)公式
λ:为沿程损失系数,与流动状态、管壁的粗糙度等有关
hf不仅与管段长度成正比,还与管道直径成反比
2020年1月10日
FESTO气动中心
局部阻力水头损失 :当流体在运动中遇到局部障 碍(半开阀门、管道弯头、粗细管接口、滤网等)时, 流线会发生局部变形,并且由于流动分离、二次流等 原因产生漩涡运动,从而耗散一部分机械能,造成水 头损失。
2020年1月10日
FESTO气动中心
解 :(1)求管中心最大流速 umax 2V 2 6.35 12.7cm/s
(2)离管中心 r=20mm 处的流速
u

umax

p
4L
r2
当r=50mm时,管轴处u=0,则有
0 12.7 p 52
4L
p 0.51
4L
则r=20mm在处的流速 u 12.7 0.51 22 10.7cm/s
LV2
d 2g

64 / Re
2020年1月10日
FESTO气动中心
克服沿程阻力而消耗的功率
W

ghf Q

pQ

128 LQ 2 d 4
动能修正系数


1
R2
R u 32rdr 2
0 V
2020年1月10日
FESTO气动中心
例: 设有一恒定有压均匀管流,已知管径d=20mm,管长l=20m, 管 中 水 流 流 速 V=0.12m/s , 水 温 t=10℃ 时 水 的 运 动 粘 度 ν=1.306×10-6m2/s。求沿程阻力损失

李玉柱流体力学课后题标准答案第四章

李玉柱流体力学课后题标准答案第四章

第四章 流体动力学基础4-1 设固定平行平板间液体的断面流速分布为1/7max /2/2u B y u B -⎛⎫= ⎪⎝⎭,0y ≥总流的动能修正系数为何值?解:172max max 0127282B A A B y v ud u dy u B A B ⎛⎫- ⎪=== ⎪⎝⎭⎰⎰因为31.0A A u d A v α∆⎛⎫≈+⎪⎝⎭⎰ u u v ∆=-所以 172233821.0 1.01 1.0572B B A A B y u v d dy B A v B α-⎛⎫⎛⎫-- ⎪⎛⎫⎪≈+=+⋅-= ⎪⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭⎰⎰4-2 如图示一股水流自狭长的缝中水平射出,其厚度00.03m δ=,平均流速V 0=8m/s ,假设此射流受重力作用而向下弯曲,但其水平分速保持不变。

试求(1)在倾斜角45θ=o 处的平均流速V ;(2)该处的水股厚度δ。

解:(1)由题意可知:在45度水流处,其水平分速度仍为8m/s,由勾股定理可得:V=︒45sin 8=11.31m/s (2)水股厚度由流量守恒可得:VD D V δδ=000,由于缝狭长,所以两处厚度近似相等,所以000.0380.02111.31V V δδ⨯===m 。

4-3 如图所示管路,出口接一收缩管嘴,水流射人大气的速度V 2=20m/s ,管径d 1=0.1m ,管嘴出口直径d 2=0.05m ,压力表断面至出口断面高差H =5m ,两断面间的水头损失为210.5(/2)V g 。

试求此时压力表的读数。

解:取压力表处截面为截面1-1,收缩管嘴处截面为截面2-2,选择两截面包围的空间为控制体,由实际流体的恒定总流能量方程得:2211221222wV p V p z z h g g g g ρρ'++=+++, 由连续性方程2211V A V A =可得1-1断面流速s m 51=V ,由上述两个方程可得压力表的读数(相对压强):222112212wV V p p z z h g g ρ⎛⎫-'-=+-+ ⎪⎝⎭, 上式计算结果为:2.48at 。

4工程流体力学 第四章流体动力学基础

4工程流体力学 第四章流体动力学基础
因为 F 沿 y 轴正向,所以 Fy 取正值
Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS

p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:

流体力学第四章

流体力学第四章

• 在每一个微元流束的有效截面上,各点的速度可认为是相同的 总流:无数微元流束的总和。
38
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
均匀流与非均匀流·渐变流和急变流
均匀流——同一条流线上各空间点上的流速相 同的流动,流线是平行直线,各有效截面上的 流速分布沿程不变 非均匀流——同一条流线上各空间点上的流速不 同的流动,流线不是平行直线,即沿流程方向速 度分布不均
迹线· 流线 1、迹线 1)定义:某一质点在某一时段内的运动轨迹 线。 2)迹线的微分方程
dx dy dz dt ux u y uz
烟火的轨迹为迹线
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
25
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
一维、二维和三维流动
三维流动:流动参数是x、y、z三个坐标的函数
的流动。
二维流动:流动参数是x、y两个坐标的函数的
流动。
一维流动:是一个坐标的函数的流动。
26
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
x= x (t)
dux ux ux dx ux dy ux dz ax dt t x dt y dt z dt
(1)当地加速度(时变加速度):流动过程中流体 由于速度随时间变化而引起的加速度; (2)迁移加速度(位变加速度):流动过程中流体 由于速度随位置变化而引起的加速度。

流体力学第四章

流体力学第四章
流体力学
动量方程16-运动控制体
已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 出口截面A11= 0.003m22,求Rxx和 Ryy 出口截面A = 0.003m ,求R 和 R
解:(1) 坐标系 (2) 控制体
r r r Vr = V − U
流体力学
动量方程15-运动控制体
∂ ∂t

CV
r r r r r ρVr dτ + ∫ ρVrVr ⋅ ndS = ΣF
CS
流体仅在控制面的有限个区域流入流出且 ρ,V 在进出口截面均布,定常流动
r r & ∑ F = ∑ mriVri
(
)
out
−∑
(
r & mriVri
)
in
r r r 其中 Vr = V − VCV
φ
流体力学
雷诺输运方程1
欧拉方法描述系统物理量对时间的变化率
CSIII CSI I
t
r V
II
III
dS3
dS1 r n
r n
r V
t +δ t
DN sys Dt
流体力学
= lim
N sys (t + δt ) − N sys (t )
δt → 0
δt
雷诺输运方程2
DN sys Dt
DN sys Dt
流体力学
质点导数与系统导数
质点导数
r Dφ ∂φ = + (V ⋅ ∇ )φ Dt ∂t
流体质点某物理量随时间的变化率同空 间点上物理量之间的关系 系统导数
DN ∂ = Dt ∂t r r φV ⋅ ndS

流体力学

流体力学
第四章 流体流体运动学和流体动 力学基础
流体力学基本方程
连 续 性 方 程
动 量 方 程
动 量 矩 方 程
伯 努 利 方 程
能 量 方 程
第一节 描述流体运动的两种方法
流体的流动是由充满整个流动空间的无限多个流体 质点的运动构成的。充满运动流体的的空间称为流场。

欧拉法


着眼于整个流场的状态,即研究表征流场内流体流动 特性的各种物理量的矢量场与标量场
7.湿周 水力半径 当量直径
湿周——在总流的有效截面上,流体与固体壁面的接触长度。
水力半径——总流的有效截面积A和湿周之比。
圆形截面管道的几何直径
d 2 4A d 4R d x
D
R
A x
非圆形截面管道的当量直径
4A 4R x
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
二、欧拉法
欧拉法(euler method)是以流体质点流经流场中 各空间点的运动来研究流动的方法。 ——流场法
研究对象:流场
它不直接追究质点的运动过程,而是以充满运动
流体质点的空间——流场为对象。研究各时刻质点在 流场中的变化规律。将个别流体质点运动过程置之不 理,而固守于流场各空间点。通过观察在流动空间中 的每一个空间点上运动要素随时间的变化,把足够多 的空间点综合起来而得出的整个流体的运动情况。
由欧拉法的特点可知,各物理量是空间点x,y,z和时 间t的函数。所以速度、密度、压强和温度可表示为:
v v x,y,z,t = x,y,z,t p p x,y,z,t T T x,y,z,t
1.速度
u ux, y, z, t

工程流体力学课件3流体动力学基础

工程流体力学课件3流体动力学基础

恒质





恒能
恒 定
量 守

恒动


程连
续 方
程恒 定

程能 量 方
流 三

程动



• v1 A1 = v2 A2
说明流量不变时,过流断面越小, 流速越大 —— 水射器原理
Φ
D
小头
大头
消防水枪喷嘴
收缩段 亚音速
喉部 音速
扩散段 超音速
拉瓦尔喷管
由拉瓦尔喷管可获得超音速气流,其原理广泛应用 于超音速燃气轮机中的叶栅,冲压式喷气发动机,火箭 喷管及超音速风洞等处。
3)在恒定流情况下,当判别第II段管中是缓变 流还是急变流时,与该段管长有无关系?
区分均匀流及非均匀流与过流断面上流速 分布是否均匀有无关系?是否存在“非恒定 均匀流”与“恒定急变流”?
当水箱水面恒定时: a)为恒定均匀流;b)为恒定非均匀流。 当水箱水面不恒定时: a)为非恒定均匀流;b)为非恒定非均匀流。
uz F3(x, y, z,t)
x,y,z,t —欧拉变量

dux
ux t
dt
ux x
dx
ux y
dy
ux z
dz
a
x
a y
az
dux
dt du y
dt duz
dt
dF1
dt dF2
dt dF3
dt
ux t
ux
ux x
uy
ux y
uz
ux z
u y t
ux
u y x
uy
u y y
重、难点

工程流体力学课件3流体动力学基础

工程流体力学课件3流体动力学基础
总结词
边界层理论是研究流体在固体表面附近流动的理论, 其特征包括流体的粘性和湍流状态。
详细描述
边界层理论主要关注流体与固体表面之间的相互作用 ,特别是流体的粘性和湍流状态对流动的影响。在边 界层内,流体的速度和压力变化梯度较大,湍流状态 较为明显。
边界层分离现象和转捩过程
总结词
边界层分离现象是指流体在经过曲面或突然扩大区域 时,流速减小,压力增加,导致流体离开壁面并形成 回流的现象。转捩过程则是从层流到湍流的过渡过程 。
有旋流动
需要求解偏微分方程组,如纳维-斯托克斯 方程(Navier-Stokes equations),该方 程组较为复杂,需要采用数值方法进行求解

05 流体动力学中的湍流流动
湍流流动的定义和特征
湍流流动的定义
湍流是一种高度复杂的流动状态,其中流体的速度、压 力和其它属性随时间和空间变化。
湍流流动的特征
质量守恒定律在流体中的应用
质量守恒定律
物质的质量不会凭空产生也不会消失,只会从一种形式转化为另一种形式。在流体中,质量守恒定律表现为流体 微元的质量变化率等于进入和离开微元的净质量流量。
质量守恒方程
根据质量守恒定律,流体微元的质量变化率可以表示为流入和流出微元的净质量流量。这个方程是流体动力学基 本方程之一,用于描述流体的运动特性。
流体流动的描述方法
描述流体流动的方法包括拉格朗日法和欧拉法。
拉格朗日法是以流体质点作为描述对象,追踪各个质点的运动轨迹,研究其速度、加速度等参数随时 间的变化。欧拉法是以空间点作为描述对象,研究空间点上流速、压强等参数随时间和空间的变化。
03 流体动力学基本方程的推 导
牛顿第二定律在流体中的应用
能源

《流体力学》 合肥工业大学 胡小春 曾亿山 答案

《流体力学》 合肥工业大学 胡小春 曾亿山 答案

流体力学第1章 绪论1.1 若某种牌号的汽油的重度γ为7000N/m 3,求它的密度ρ。

解:由g γρ=得,3327000N/m 714.29kg/m9.8m /m γρ===g1.2 已知水的密度ρ=997.0kg/m 3,运动黏度ν=0.893×10-6m 2/s ,求它的动力黏度μ。

解:ρμ=v 得,3624997.0kg/m 0.89310m /s 8.910Pa s μρν--==⨯⨯=⨯⋅ 1.3 一块可动平板与另一块不动平板同时浸在某种液体中,它们之间的距离为0.5mm ,可动板若以 0.25m/s 的速度移动,为了维持这个速度需要单位面积上的作用力为2N/m 2,求这两块平板间流体的动力黏度μ。

解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度可计算为13du u 0.25500s dy y 0.510--===⨯ 由牛顿切应力定律d d uyτμ=,可得两块平板间流体的动力黏度为 3d 410Pa s d yuτμ-==⨯⋅1.4上下两个平行的圆盘,直径均为d ,间隙厚度为δ,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以角速度ω旋转,求所需力矩T 的表达式。

题1.4图解:圆盘不同半径处线速度 不同,速度梯度不同,摩擦力也不同,但在微小面积上可视为常量。

在半径r 处,取增量dr ,微面积 ,则微面积dA 上的摩擦力dF 为du r dF dA2r dr dz ωμπμδ== 由dF 可求dA 上的摩擦矩dT32dT rdF r dr πμωδ==积分上式则有d 43202d T dT r dr 32πμωπμωδδ===⎰⎰1.5 如下图所示,水流在平板上运动,靠近板壁附近的流速呈抛物线形分布,E 点为抛物线端点,E 点处0d d =y u ,水的运动黏度ν=1.0×10-6m 2/s ,试求y =0,2,4cm 处的切应力。

(提示:先设流速分布C By Ay u ++=2,利用给定的条件确定待定常数A 、B 、C )题1.5图解:以D 点为原点建立坐标系,设流速分布C By Ay u ++=2,由已知条件得C=0,A=-625,B=50则2u 625y 50y =-+ 由切应力公式du dyτμ=得du(1250y 50)dy τμρν==-+ y=0cm 时,221510N/m τ-=⨯;y=2cm 时,222 2.510N/m τ-=⨯;y=4cm 时,30τ= 1.6 某流体在圆筒形容器中。

李玉柱流体力学课后题答案

李玉柱流体力学课后题答案

第四章流体动力学基础总流的动能修正系数为何值?4-2如图示一股水流自狭长的缝中水平射出,其厚度 & =0.03m ,平均流速V0 = 8m/s,假设此射流受重力作用而向下弯曲, 但其水平分速保持不变。

试求(1) 在倾斜角8=45处的平均流速V; (2)该处的水股厚度6。

解:(1)由题意可知:在45度水流处,其水平■分速度仍为8m/s,由勾股定理 可得:V=—=11.31m/ssin 45(2)水股厚度由流量守包可得:60V 0D 0 =5VD ,由丁缝狭长,所以两处厚度近似相等,所以6=%V°=00^8= 0.021m 。

V 11.314-3如图所示管路,出口接一收缩管嘴,水流射人大气的速度V 2=20m/s,管 径d 1 =0.1m ,管嘴出口直径d 2= 0.05m,压力表断面至出口断面高差 H = 5m,两 断面间的水头损失为0.5(V 12/2g)。

试求此时压力表的读数。

4-1设固定平■行平板间液体的断面流速分布为u B/2-yumax1/7i ,y"B/251 2 B B解:v =—「A Ud A =— [2—A B 02—y B2 1L d 7U max dy — 8U max1.0 — A — d A u =uA A v A-斯以、―1.0 邑 A A u —vd A =1.0 -v AyB2ply =1.05题4T图聘4-2图场4-3图解:取压力表处截面为截面 1-1,收缩管嘴处截面为截面 2-2,选择两截面 包围的空间为控制体,由实际流体的包定总流能量方程得:22V1P i V2 p2U 二7 习F z2+hw , 2g g : 2g g :由连续性方程A|V 1 = A 2V 2可得1-1断面流速V 1 =5m/s, 由上述两个方程可得压力表的读数(相对压强):R -P 2 =也 一V1 +弓 _"hW j g P,\、 2gJ上式计算结果为:2.48at 。

流体力学课后习题与答案

流体力学课后习题与答案

第三、四章 流体动力学基础习题及答案3-8已知流速场u x =xy 2, 313y u y =-, u z =xy, 试求:(1)点(1,2,3)的加速度;(2)是几维流动;(3)是恒定流还是非恒定流;(4)是均匀流还是非均匀流?解:(1)411633x x x x x x y z u u u u a u u u xy t x y z ∂∂∂∂=+++==∂∂∂∂25333213313233312163. 06m/s y y z x y a y u y a yu xu xy xy xy a =-===+=-====(2)二元流动 (3)恒定流(4)非均匀流41xy 33-11已知平面流动速度分布为x y 2222cxu u x ycy x y =-=++,, 其中c 为常数。

求流线方程并画出若干条流线。

解:2222-xdx=ydyx ydx dydx dy cy cx u u x y x y =⇒-=⇒++积分得流线方程:x 2+y 2=c方向由流场中的u x 、u y 确定——逆时针3-17下列两个流动,哪个有旋?哪个无旋?哪个有角变形?哪个无角变形?(1)u x =-ay,u y =ax,u z =0 (2)z 2222,,0,a c x ycy cxu u u x y x y =-==++式中的、为常数。

z 2222,,0,a c x y cy cxu u u x y x y =-==++式中的、为常数。

解:(1)110 ()()22yx x y z u u a a a xy ωωω∂∂===-=+=∂∂有旋流动 xy 11()()0 22y x xy zx u u a a x y εεε∂∂=+=-==∂∂ 无角变形 (2)222222222222222222211()2()2()22()()12()2()0 0 2()y x z x y u u x y c cx x y c cy x y x y x y c x y c x y x y ωωω∂⎡⎤∂+-+-=-=+⎢⎥∂∂++⎣⎦⎡⎤+-+====⎢⎥+⎣⎦无旋流动2222xy 22222112()()()022()()y x u u c x y c x y x y x y x y ε∂⎡⎤∂---=+==-≠⎢⎥∂∂++⎣⎦ 有角变形4—7变直径管段AB ,d A =0.2m,d B =0.4m ,高差△h=1.5m ,测得p A =30kPa ,p B =40kPa ,B 点处断面平均流速v B =1.5m/s ,试判断水在管中的流动方向。

第4章粘性流体动力学基础

第4章粘性流体动力学基础

流体力学研究所 张华

du A B dy
n
1
2 3

1
4
0
du dy
1 . =0+µ du/dy,binghan流体,泥浆、血浆、牙膏等 2 . =µ du/dy)0.5 ,伪塑性流体,尼龙、橡胶、油漆等 ( 3 . =µ du/dy ,牛顿流体,水、空气、汽油、酒精等 4 . =µ (du/dy)2,胀塑性流体,生面团、浓淀粉糊等 5 . =0,µ 0,理想流体,无粘流体。 =
的影响 (2)圆柱绕流 理想流体绕过圆柱时的流动特点:
流体力学研究所 张华
• 在流体质点绕过圆柱的过程中,只有动能、压能的相互 转换,而无机械能的损失。在圆柱面上压强分布对称, 无阻力存在。(达朗贝尔疑题)
20/59
EXIT
2. 流体的粘滞性对流动的影响 粘性流体绕圆柱时的绕流特点:
• 雷诺数的物理意义: 雷诺数代表作用在流体微团上的惯性力与粘性力之比。
28/59
EXIT
4.2、雷诺实验、层流与湍流
流体力学研究所 张华
雷诺数正比于惯性力与粘性力之比的说明:

惯性力正比于质量乘加速度:
~ ρ V2 L2

粘性力正比于剪应力乘面积:
~ μVL

VL Re 因此惯性力与粘性力之比正比于:~
VL Re ,
其中L是特征长度 如板长 ,
27/59
EXIT
4.2、雷诺实验、层流与湍流
流体力学研究所 张华
• 实验发现,随着雷诺数增加而呈现的不同流态(层流或湍 流)对于流动的摩擦阻力、流动损失、速度分布等影响很 大。
• 雷诺数之所以对粘性流体运动的流态及其他相关特性起 着重要作用,在于雷诺数具有很明显的物理意义。

李玉柱流体力学课后题解答第四章

李玉柱流体力学课后题解答第四章

李玉柱流体力学课后题解答-第四章————————————————————————————————作者:————————————————————————————————日期:第四章 流体动力学基础4-1 设固定平行平板间液体的断面流速分布为1/7max /2/2u B y u B -⎛⎫= ⎪⎝⎭,0y ≥总流的动能修正系数为何值?解:172max max 0127282B A A B y v ud u dy u B A B ⎛⎫- ⎪=== ⎪⎝⎭⎰⎰因为31.0A A u d A v α∆⎛⎫≈+⎪⎝⎭⎰ u u v ∆=-所以 172233821.0 1.01 1.0572B B A AB y u v d dy B A v B α-⎛⎫⎛⎫-- ⎪⎛⎫⎪≈+=+⋅-= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭⎰⎰4-2 如图示一股水流自狭长的缝中水平射出,其厚度00.03m δ=,平均流速V 0=8m/s ,假设此射流受重力作用而向下弯曲,但其水平分速保持不变。

试求(1)在倾斜角45θ=处的平均流速V ;(2)该处的水股厚度δ。

解:(1)由题意可知:在45度水流处,其水平分速度仍为8m/s,由勾股定理可得:V=︒45sin 8=11.31m/s (2)水股厚度由流量守恒可得:VD D V δδ=000,由于缝狭长,所以两处厚度近似相等,所以000.0380.02111.31V V δδ⨯===m 。

4-3 如图所示管路,出口接一收缩管嘴,水流射人大气的速度V 2=20m/s ,管径d1=0.1m,管嘴出口直径d 2=0.05m,压力表断面至出口断面高差H=5m ,两断面间的水头损失为210.5(/2)V g 。

试求此时压力表的读数。

解:取压力表处截面为截面1-1,收缩管嘴处截面为截面2-2,选择两截面包围的空间为控制体,由实际流体的恒定总流能量方程得:2211221222wV p V p z z h g g g g ρρ'++=+++, 由连续性方程2211V A V A =可得1-1断面流速s m 51=V ,由上述两个方程可得压力表的读数(相对压强):222112212w V V p p z z h g g ρ⎛⎫-'-=+-+⎪⎝⎭, 上式计算结果为:2.48at 。

流体力学第四章

流体力学第四章

1.渐变流及其特性
渐变流过水断面近似为平面,即渐变流是流线接近于
平行直线的流动。均匀流是渐变流的极限。
动压强特性:在渐变流同一过水断面上,各点动压强
按静压强的规律式分布,即
注:上述结论只适用于渐变流或均匀流的同一过水断面上 的 各点,对不同过水断面,其单位势能往往不同。
选取:控制断面一般取在渐变流过水断面或其极限情况均匀 流断面上。
即J=JP。 5.总水头线和测压管水头线之间的距离为相应段
的流速水头。
6.如果测压管水头线在总流中心线以上,压强就 是正职;如相反,则压强为负值,则有真空。
4.总流能量方程在推导过程中的限制条件
(1)不可压缩流体;
(2)恒定流;
(3)质量力只有重力,所研究的流体边界是静止 的(或处于平衡状态);
取管轴0-0为基准面,测压管所在断面
1,2为计算断面(符合渐变流),断面的形
心点为计算点,对断面1,2写能量方程(4-
15),由于断面1,2间的水头损失很小,
可视
,取α1=α2=1,得
由此得:
故可解得:
式中,K对给定管径是常量,称为文丘里流 量计常数。
实际流量 : μ——文丘里流量计系数,随流动情况和管
流体力学
第四章 流体动力学基础
本章是工程流体力学课程中最重要的一 章。本章建立了控制流体运动的微分方程, 即理想流体运动微分方程和实际流体的运 动微分方程;并介绍了求解理想流体运动 微分方程的伯努利积分形式;构建了工程 流体力学中应用最广的恒定总流运动的三 大基本方程:连续性方程、伯努利方程 (即能量方程)和动量方程。通过本章的 学习要培养综合运用三大基本方程分析、 计算实际总流运动问题的能力。
道收缩的几何形状而不同。

流体力学-知识点

流体力学-知识点

第一章 流体的基本概念质量力:f X i Yj Z k =++表面力:0lim =limA A P T p AAτ∆→∆→∆∆=∆∆/w w g s γργγρρ== =/体积压缩系数:111dV d V dpdp Kρβρ=-==温度膨胀系数: 11dV d V dTdTραρ==-pRT ρ= =du du T Adydyμμτμνρ= =第二章 流体静力学欧拉平衡微分方程:()dp Xdx Ydy Zdz ρ=++0p p h γ=+ vv a v p p p p p h γ'=-=-=12sin A p l Kl A γα⎛⎫=+= ⎪⎝⎭匀加速水平直线运动中液体的平衡:0arctan s a a ap p x z ax gz C z x g g g γα⎛⎫⎛⎫=+--+==- ⎪ ⎪⎝⎭⎝⎭=匀角速度旋转运动容器中液体的平衡:2222220222s r r rp p z z C z g g g ωωωγ⎛⎫=+--== ⎪⎝⎭静止液体作用于平面壁上的总压力:1.解析法:C c c D C C J P h A p A y y y Aγ===+2.图解法:静水总压力大小等于压强分布图的体积,其作用线通过压强分布图的形心,该作用线与受压面的交点即是压力中心D 。

第三章 流体运动学基础欧拉法:速度为()()(),,,,,,,,,x x y y z z u u x y z t u u x y z t u u x y z t ⎧=⎪=⎨⎪=⎩加速度为x x x x x xx y z y y y y y y x y z z z z z zz x y zdu u u u u a u u u dt t x y zdu u u u u a u u u dt t x y z du u u u u a u u u dt t x y z ∂∂∂∂⎧==+++⎪∂∂∂∂⎪∂∂∂∂⎪==+++⎨∂∂∂∂⎪⎪∂∂∂∂==+++⎪∂∂∂∂⎩()u a u u t ∂=+⨯∇∂0utu t⎧∂≠⎪⎪∂⎨∂⎪=⎪∂⎩非恒定流: 恒定流: ()()u u u u ⎧⨯∇≠⎪⎨⨯∇=⎪⎩非均匀流: 均匀流: 流线微分方程:xyzdx dy dz u u u ==迹线微分方程:xyzdx dy dz dt u u u ===流体微团运动分解:1.亥姆霍兹(Helmhotz )速度分解定理 2.微团运动分解 (1)平移运动(2)线变形运动 线变形速度:x xy y z z u xu y u z θθθ∂⎧=⎪∂⎪∂⎪=⎨∂⎪⎪∂=⎪∂⎩(3)角变形运动 角变形速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=+⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=+⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=+⎪∂∂⎪⎝⎭⎩ (4)旋转运动 旋转角速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=-⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=-⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=-⎪∂∂⎪⎝⎭⎩3.有旋运动与无旋运动定义涡量:2xyzij k u xy z u u u ω∂∂∂Ω==∇⨯=∂∂∂有旋流:0Ω≠ 无旋流:0Ω= 即y z x z y xu u y z u u z x u u xy ∂⎧∂=⎪∂∂⎪⎪∂∂=⎨∂∂⎪∂⎪∂=⎪∂∂⎩ 或 000x y z ωωω⎧=⎪=⎨⎪=⎩平面无旋运动:1.速度势函数(简称势函数)(),,x y z ϕ (1)存在条件:不可压缩无旋流。

流体力学-第四章 流体动力学基础

流体力学-第四章 流体动力学基础

Dt t CV
CS
单位质量流体的能量 e (u V 2 gz) 流体系统的总能量
2
DE ed eV ndS
Dt t CV
CS
E ed
初始时刻系统与控制体重合
Q WSYS Q WCV
ed eV ndS Q W
t CV
CS
§4.2 对控制体的流体力学积分方程
§4.1 系统和控制体,雷诺输运定理
雷诺输运定理:
举例:动量定理运用于流体系统
F Dk Dt
F 是外界作用系统的合力,K 是系统的动量,
k Vd
由于系统不断改变位置、形状大小,组成系统的流体质点的密度和速度随
时间也是变化的,所以系统的动量也是变化的,求其对时间的变化率,即
求该流体系统体积分的物质导数。
取 N M 单位体积的质量
DM 0 Dt
d V ndS 0
t CV
CS
d V ndS 0
t CV
CS
积分形式的连续性方程
§4.2 对控制体的流体力学积分方程
非定常流动情况下:
d V ndS 0
t CV
CS
即单位时间内控制体内流体质量的增加或减少等于同时间内通过控制面流入 或流出的净流体质量。如果控制体内的流体质量不变,则必然同一时间内流 入与流出控制体的流体质量相等。
左端第一项——是控制体内流体动量随时间变化而产生的力,它反映流体运动的非定常性
左端第二项——是单位时间内流体流入和流出控制体的动量之差,它表示流入动量与流出动量
不等所产生的力。
§4.2 对控制体的流体力学积分方程
定常流动条件:
F
FB FS
VV ndS
CS
VV ndS

流体力学资料复习整理

流体力学资料复习整理
同样还有,时均压力
9.水力光滑管与水力粗糙管
10.流体流过固体壁面时,沿壁面法线方向速度逐渐增大的区域称为附面层。流体在壁面附近反向流回而形成回流的现象称为附面层的分离。
第六章能量损失及管路计算
1.尼古拉茨实验:实验装置:人工粗糙管--把经过筛选的大小均匀一致的固体颗粒粘贴在管壁上,这样的管路称为人工粗糙管。实验原理:能量方程;实验目的:λ~Re、Δ/d
3.当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。通常液体和低速流动的气体(U<70m/s)可作为不可压缩流体处理。
4.压缩系数:
弹性模数:
膨胀系数:
5.流体的粘性:运动流体内存在内摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现。温度升高时,液体的粘性降低,气体粘性增加。
第二过渡区:这时层流底层已经不能遮盖壁面的粗糙峰,壁面的粗糙峰对中部的紊流产生了影响。Re
Δ/d和Re对阻力系数λ均有影响。
水力粗糙区:对同一管道而言,层流底层已经变得非常薄,以至于管壁上所有的粗糙峰都凸入了紊流区,及时雷诺数再大,也不再有新的凸峰对流动产生影响,这表现为λ不随Re变化
2.局部阻力损失与局部阻力系数:流经局部装置时,流体一般都处于高紊流状态。这表现为局部阻力系数ξ只与局部装置的结构有关而与雷诺数无关。
伯努里方程可理解为:微元流的任意两个过水断面的单位总机械能相等。由于是定常流,通过微元流各过水断面的质量流量相同,所以在单位时间里通过各过水断面的总机械能(即能量流量)也相等。
2.沿流线法线方向压力和速度的变化:当流线的曲率半径很大或流体之间的夹角很小时,流线近似为平行直线,这样的流动称为缓变流,否则称为急变流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
令 ( x, y) C ,或
d 0
积分
( x, y )
等势线——由势函数值相等的点连接起来的曲线 等势线方程式
例题2:已知某二维液流流速场为
ux U uy 0
要求:(1)证明该平面流动为势流; (2)求其等势线方程式。
1 u y ux )0 解:(1) z ( 2 x y
若平面流动是无旋流(亦即有势流)时,有
1 u y ux z ( )0 2 x y

ux
u y x

ux 0 y

y 代入上式,得: uy x
2 2 2 0 2 x y
拉普拉斯方程
三、恒定平面势流的流速势函数及等势线
无旋流
例题1:已知某二维液流流速场为
解:由 d uy dx ux dy Udy 积分得: Uy C1
ux U uy 0
y
求其流线方程式
5 4 2
令 C2,即得流线方程式
y C2 C1 C U U
1
0
x
流函数的性质之二:两流线间所通过的单宽流量等于该两
p p ( ) 2 r
( b)
所以p沿r方向按抛物线规律分布,如图b所示。最后,上式中C的确定: 由单位深度(z=1)的流量
2 2 C Q ur rd rd 2C 0 0 r Q C 2 称为平面点源(汇)强度。
ux y uy x
其中
(二)流函数的性质 流函数的性质之一:同一流线上各点的流函数值为常数。
值相等的点连
等流函数线——某一时刻,把流函数 接起来所得的曲线
等流函数线方程式为 C或d 0 即有 d uy dx ux dy 0 恰好为流线方程式
(1)问是无旋流还是有旋流; (2)若是无旋流,求其速度势; (3)求平面流动的流函数; (4)求压强分布。
ux
Cx ; 2 2 x y
uy
Cy ; 2 2 x y
uz 0
y
u
y
u=ur u
解:(1) 因
u
x 2Cxy y ( x2 y 2 )2
u
2Cyx y x ( x2 y 2 )2
Y
A
O
r X
q 2u 0
(c)

叠加后的流动流速场 x q q cos u u u x x 0 2 ( x 2 y 2 ) 0 2 r y q q sin u y y 2 ( x 2 y 2 ) 2 r
Y
•通过驻点的流线方程
驻点A
所以该液流为平面势流。
(2)依 d ( x, y) ux dx u y dy Udx 积分得: ( x, y) Ux C1 令 ( x, y) C2 则得等势线方程式为 x
C2 C1 C U U
y
0 1 2 3 4 5
x
流函数与流速势函数的关系
流线的流函数值之差。
y
证明:通过ds段的微小流量为
a
ds
M
dx
dy
ux
a
b
x
dq ux dy uy dx
所以通过曲线ab的流量为
详见教材P96
b
uy
a
q dq ux dy u y dx d a b
b b b
a
a
流函数的性质之三:平面势流的流函数是一个调和函数。
u x u y y x

二、恒定平面流的流函数及其性质 (一)流函数的形式
ux u y 0 不可压缩恒定平面势流的连续性方程式为 x y 流函数 ux (u y ) 也即: 必存在一函数 ( x, y) x y dx dy u y dx u x dy 且其全微分可记为 d x y
该流网如图a所示。 点源流:
1 u0 x 1 u0 y

3q 8
y
u=ur u
x r x q q 1 d 2 u r dr u rd dr 2 ln r 2 =0 2r 2 3 q q d 2 ur rd u dr d 2 2 2 58q 即流线是辐射线,等势线是一簇与流线正交的同心圆(图b)。 (b)
从上式中可见,流线是一簇通过原点的射线( =Const )由此说明了等 势线与流线互相正交。
(4)由平面势流流场的伯努利方程,若不计重力的影响,应
将 u C 代入整理得
u2 C1 2g p
p
r
p C设r时u=0,p=p则C´= p ,于是 C 2
r
2
x
x
u y
u u u z z x 0 z y x z
1


x y z 0
为无旋流。
(a)
(2)对于点源汇流动,为方便起见采用极坐标示(如图a),此时:
u 0
2 2 ur u u x uy
C x2 y 2

C r
因: d ux dx u y dy
例1:求均匀流与点源流动叠加后的流动
(1)均匀流: ux u0 (常数),u y 0 (2)点源流:ur q / 2r, u 0 y C 1 2 3 4 3 C 2 1 (a) x u
y
解:
叠加后的流速势函数与流函数
均匀流:
d1 u x dx u y dy u0 dx d 1 u y dx u x dy u0 dy
叠加后的流速势函数与流函数(图c)
q q q ln r u0 r cos ln r u0 x ln x 2 y 2 2 2 2 q q 1 2 u0 y u0 r sin 2 2
1 2 u0 x
ux dy 其上任意点的斜率 m2 dx uy uy ux m1 m2 ( ) 1 所以流线与等势线在该点上正交 ux uy
五、势流叠加原理 势流叠加原理: 流速势可以进行叠加。 当几个势流叠加后,其流动仍为势流。
先看下源流和汇流的速度势和流函数的极坐标表达式(P99)
参考教材P104,设定角度 值
q 2u 0
(c)
结论:通过驻点的流线将流场分为两部分;由均匀流引起的这部分流
量皆在这条流线之外流动,而由点源引起的那部分流量皆在这条流线之内 流动。这样便可把通过滞止点的这一条流线视为固壁,并且仅考察其外部 绕流,这就是所谓“二元半体绕流”。
例2:对于下面平面点源汇流动:
0
存在流速势函数 ( x, y, z)
dx dy dz ux dx u y dy u z dz 且有 d ( x, y, z ) x y z
对于平面势流,则有二维流速势函数 ( x, y )
x uy y ux
d ( x, y) dx dy ux dx u y dy x y
ux 0, u y 0
,r
q 2u0
则: A
r X
O
通过驻点的流线为:
u0 r sin

q C 2
q u0 y C 2
q 2u 0
(c)
通过驻点
A(
q q , ) 则有: C 2u0 2
A
Y
通过驻点的流线:
O
r
X
q q u0 r sin 2 2
流函数与流速势函数为共轭函数
ux y uy x ux x uy y
ux x y uy y x
等流函数线与等流速势线相正交,即流线与等势线正交。
证明:等流函数线就是流线,其方程式为 d uy dx ux dy 0 dy u y 其上任意点的斜率 m1 dx ux 等流速势线就是等势线,其方程式为 d ( x, y) ux dx u y dy 0
第十讲
第四章
流体动力学
§4.6 恒定平面势流 流函数及其性质 流速势函数及等势线 势流叠加原理
§4.6 恒定平面势流
一、基本方程组
不可压缩恒定平面流动:
1、平面流动,即
uz 0

2、不可压缩液体,即=Const 。 3、连续性方程:
ux uy 0 x y
4、平面无旋流动,即
z 0
d u y dx ux dy
Cy Cx u y dx u x dy 2 dx 2 dy 2 2 x y x y y d( ) xdy ydx x C tg 1 y Const C Const C 2 C y2 x y2 x 1 ( ) x

u x dx u y dy u dr ur dr u rd
C dr C ln r C C ln x 2 y 2 C r


上式中积分常数可任意给定,现取积分常数 C/ 等于0,由该式可见,等势线 是一簇以原点为圆心的同心圆(r=Const) (3) 因:
相关文档
最新文档