二次函数与角度模型

合集下载

第09讲 函数(一次函数二次函数和幂函数)模型及其应用高中数学常见题型解法归纳反馈训练及详细解析

第09讲 函数(一次函数二次函数和幂函数)模型及其应用高中数学常见题型解法归纳反馈训练及详细解析

【知识要点】一、在现实生活中有许多问题,往往隐含着量与量之间的关系,可通过成立变量之间的函数关系和对所得函数的研究,使问题取得解决.数学模型方式是把实际问题加以抽象归纳,成立相应的数学模型,利用这些模型来研究实际问题的一般数学方式;数学模型那么是把实际问题用数学语言抽象归纳,再从数学角度来反映或近似地反映实际问题时所得出的关于实际问题的数学描述.数学模型来源于实际,它是对实际问题抽象归纳加以数学描述后的产物,它又要回到实际中去查验,因此对实际问题有深刻的理解是运用数学模型方式的前提.二、函数是描述客观世界转变规律的根本数学模型,不同的转变现象需要用不同的函数模型来描述,数学应用题的建模进程就是信息的获取、存储、处置、综合、输出的进程,熟悉一些根本的数学模型,有助于提高咱们解决实际问题的能力.三、一次函数、二次函数和幂函数的图像和性质一、一次函数的一般形式为,y kx b =+当0k >时,函数单调递增,当0k <时,函数单调递减,当0k =时,函数是常数函数.二、二次函数的一般形式是2(0)y ax bx c a =++≠,当0a >时,函数的图像抛物线开口向上,极点坐标为24(,)24b ac b a a --,函数在(,)2b a -∞-单调递减,在(,)2b a -+∞2b x a=-时,函数有最小值244ac b a -.当0a <时,函数的图像抛物线开口向下,极点坐标为24(,)24b ac b a a --,函数在(,)2b a-∞-单调递增,在(,)2b a -+∞2b x a=-时,函数有最大值244ac b a -. 3、 幂函数的一般形式为(,a y x a R a x =∈是常数,是自变量),其特征是以幂的底为自变量,指数为常数,其概念域随着常数a 取值的不同而不同. 所有幂函数都在(0,)+∞有概念,而且图像都过点〔1,1〕;0,a >幂函数在(0,)+∞是增函数,0a <,幂函数在(0,)+∞是减函数.四、解决实际问题的解题进程一、 对实际问题进展抽象归纳:研究实际问题中量与量之间的关系,肯定变量之间的主、被动关系,并用x 、y 别离表示问题中的变量;二、成立函数模型:将变量y表示为x的函数,在中学数学内,咱们成立的函数模型一般都是函数的解析式;3、求解函数模型:按如实际问题所需要解决的目标及函数式的构造特点正确选择函数知识求得函数模型的解,并恢复为实际问题的解.这些步骤用框图表示:五、解应用题的一般程序1读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是根底;2建:将文字语言转化为数学语言,利用数学知识,成立相应的数学模型.熟悉根本数学模型,正确进展建“模〞是关键的一关;3解:求解数学模型,取得数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化进程;4答:将数学结论恢复给实际问题的结果.六、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、幂函数模型、分段函数模型、三角函数模型、数列函数、线性目标函数模型和综合函数模型等. 学科@网【方式讲评】【例1】某地域1995年底沙漠面积为95万公顷,为了解该地域沙漠面积的转变情况,进展了持续5年的观测,并将每一年年末的观测结果记录如下表.按照此表所给的信息进展预测:〔1〕若是不采取任何办法,那么到2010年末,该地域的沙漠面积将大约变成多少万公顷;〔2〕若是从2000年末后采取植树造林等办法,每一年改造0.6万公顷沙漠,那么到哪一年年末该地域沙漠面积减少到90万公顷?〔2〕设从1996年算起,第x年年末该地域沙漠面积能减少到90万公顷,由题意得+--=,x x950.20.6(5)90x=〔年〕解得20故到2015年年末,该地域沙漠面积减少到90万公顷.=+的图【点评】〔1〕由表观察知,沙漠面积增加数y与年份数x之间的关系图象近似地为一次函数y kx b象,这是解题的切入点和关键点.〔2〕求一次函数的解析式一般利用待定系数法.【反映检测1】某工厂在甲、乙两地的两个分厂各生产某种机械12台和6台,现销售给A地10台,B地8台,从甲地调运1台至A地、B地的运费别离为400元和800元,从乙地调运1台至A地、B地的运费别离为300元和500元.〔1〕设从乙地调运x台至A地,求总运费y关于x的函数关系式;〔2〕假设总运费不超过9000元,问共有几种调动方案?〔3〕求出总运费最低的调运方案及最低的费用.【例2】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全数租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每一个月需要保护费150元,未租出的车每辆每一个月需要保护费50元.〔1〕当每辆车的月租金定为3600元时,能租出多少辆车?〔2〕当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?【点评】〔1〕在实际问题背景下,成立收益、利润的函数模型,一般是利润=收入-各项支出.〔2〕依照公司的月收益为:租出车辆⨯〔月租金-保护费〕-未租出车辆⨯保护费,将月收益视为月租金的函数,构造函数模型求解问题.【反映检测2】某化工厂引进一条先进生产线生产某种化工产品,其生产的总本钱y〔万元〕与年产量x〔吨〕之间的函数关系式可以近似地表示为24880005xy x=-+,此生产线年产量最大为210吨.〔1〕求年产量为多少吨时,生产每吨产品平均本钱最低,并求最低本钱.〔2〕假设每吨产品平均出厂价为40万元,那么昔时产量为多少吨时,可以取得最大利润?最大利润是多少?【例3】有一片树林现有木材储蓄量为7100c m3,要力争使木材储蓄量20年后翻两番,即抵达28400 c m3.〔1〕求平均每一年木材储蓄量的增加率;〔2〕若是平均每一年增加率为8%,几年可以翻两番?【点评】〔1〕增加率〔降低率〕的问题一般是指数或幂函数模型,若是时间求增加率〔降低率〕,多是幂函数模型.〔2〕“翻两番〞指此刻是原来的4倍,“翻n番〞指的是此刻是原来的2n倍.【反映检测3】〔1〕在1975年某市每千克猪肉的平均价钱是1.4元,而到了2021年,该市每千克猪肉的平均价钱是15元,假定这30年来价钱年平均增加率一样,求猪肉价钱的年平均增加率.〔2〕另一方面,1975年时该市职工月平均工资是40元,而到了2021年,该市职工月平均工资是860元,通过猪肉价钱的增加和工资增加的对照,试说明人们的生活水平是日趋提高,并计算假设按这种速度,到2021年,估量该市职工月平均工资是多少元?高中数学常见题型解法归纳及反映检测第09讲:函数(一次函数、二次函数和幂函数〕模型及其应用参考答案【反映检测1答案】〔1〕2008600(06,)y x x x z =+≤≤∈;〔2〕共有3种调运方案;〔3〕乙分厂的6 台机械全数调往B 地,从甲分厂调往A 地10 台,调往B 地2台,最小值是8600元.【反映检测2答案】〔1〕年产量为200吨时,每吨平均本钱最低为32万元;〔2〕年产量为210吨时,可取得最大利润1660万元.【反映检测2详细解析】(1)每吨平均本钱为y x(万元), 那么80008000482483255y x x x x x=+-≥-=,当且仅当80005x x =,即200x =时取等号, ∴年产量为200吨时,每吨平均本钱最低为32万元.(2)设年取得总利润为()R x 万元,那么R(x)=40x-y=40x-25x +48x-8 000=-25x +88x-8 000=-15 (x-220)2+1 680(0≤x ≤210),∵()R x 在[0,210]上是增函数, ∴210x =时,()R x 有最大值为-(210-220)2+1 680=1 660,∴年产量为210吨时,可取得最大利润1 660万元.【反映检测3答案】〔1〕8.2%;(2)4000元.【反映检测3详细解析】〔1〕设猪肉价钱的年平均增加率是%x ,那么有3015 1.4(1%)x =+.利用计算器可得8.2x =.〔2〕该市职工月工资和年平均增加率是%x ,那么有3084040(1%)x =+,利用计算器可得10.8x =.因为10.88.2>,因这人们的生活水平是日趋提高.照这样的速度到2021年,职工月平均工资是15860(110.8%)4000+≈元.。

专题01 二次函数的定义五种模型全攻略(解析版)

专题01 二次函数的定义五种模型全攻略(解析版)

专题01 二次函数的定义五种模型全攻略【考点导航】目录【典型例题】 (1)【考点一二次函数的识别】 (1)【考点二二次函数中各项的系数】 (2)【考点三利用二次函数的定义求参数】 (3)【考点四已知二次函数上一点,求字母或式子的值】 (5)【考点五列二次函数的关系式】 (6)【过关检测】 (8)【典型例题】【考点一二次函数的识别】【变式训练】1.(2023·浙江·九年级假期作业)以下函数式二次函数的是()【考点二 二次函数中各项的系数】例题:(2023·全国·九年级假期作业)二次函数221y x x =--+的二次项系数是( )A .1B .1-C .2D .2-【答案】B【分析】根据二次函数的定义“一般地,形如2y ax bx c =++(a 、b 、c 是常数,0a ¹)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项”作答即可.【详解】解:二次函数221y x x =--+的二次项系数是1-.故选:B .【点睛】此题主要考查了二次函数的定义,关键是注意在找二次项系数,一次项系数和常数项时,不要漏掉符号.【变式训练】1.(2023·浙江·九年级假期作业)二次函数()32-=x x y 的二次项系数与一次项系数的和为( )A .2B .2-C .1-D .4-【答案】D 【分析】将函数解析式化简,得到各系数,计算即可.【详解】解:()23622x y x x x --==,∴二次项系数是2,一次项系数是6-,∴264-=-,故选:D .【点睛】此题考查了二次函数定义,正确理解二次函数的各项的系数是解题的关键.2.(2022·全国·九年级假期作业)二次函数2(1)y x x =-的二次项系数是________.【答案】2【分析】首先把二次函数化为一般形式,再进一步求得二次项系数.【详解】解:y =2x (x -1)=2x 2-2x .所以二次项系数2.故答案为:2.【点睛】本题主要考查了二次函数的定义,一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.【考点三 利用二次函数的定义求参数】例题:(2023·全国·九年级假期作业)若函数()2231y m x mx =+++是二次函数,则( )A .2m ³-B .2m ¹C .2m ¹-D .2m =-【答案】C 【分析】根据二次函数的定义,即可求解.【详解】解:根据题意得20m +¹,解得2m ¹-,故选:C .【点睛】本题主要考查了二次函数的定义,熟练掌握形如2y ax bx c =++(a ,b ,c 是常数,0a ¹)的函数,叫做二次函数是解题的关键.【变式训练】【点睛】本题考查了二次函数的定义,解题关键是掌握二次函数的定义条件:二次函数2y ax bx c =++的定义条件是:a 、b 、c 为常数,0a ¹,自变量最高次数为2.【考点四 已知二次函数上一点,求字母或式子的值】例题:(2022秋·浙江温州·九年级校考阶段练习)若抛物线223y ax x =-+经过点(1,2)P ,则a 的值为( )A .0B .1C .2D .3【答案】B【分析】将点P 代入函数表达式中,解方程可得a 值.【详解】解:将(1,2)P 代入223y ax x =-+中,得:22=121+3a -´´,解得:=1a ,故选B .【点睛】本题考查了二次函数图象上的点,熟知二次函数图像上的点的坐标满足函数表达式是解题的关键.【变式训练】1.(2022秋·天津西青·九年级校考阶段练习)抛物线23y ax bx =+-过点(2,4),则代数式84a b +的值为( )A .14B .2C .-2D .-14【答案】A【分析】将点(2,4)的坐标代入抛物线y=ax 2+bx -3关系式,再整体扩大2倍,即可求出代数式的值.【详解】解:将点(2,4)代入抛物线y=ax 2+bx -3得4a +2b -3=4,整理得8a +4b =14.故选:A .【点睛】本题考查了二次函数图象上点的坐标特征,熟悉整体思想是解题的关键.2.(2022秋·山东泰安·九年级统考阶段练习)若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( )A .6B .7C .8D .20【答案】B【分析】先把点()2,3-代入解析式,得到2=7c b -,然后化简247=2c b --(c-4b )-7,整体代入即可得到答案.【详解】解:把点()2,3-代入2y x bx c =-++,得:2=7c b -,∵247=2c b --(c-2b )-7277=7=´-;故选择:B .【点睛】本题考查了一元二次方程,解题的关键是灵活运用整体代入法解题.【考点五 列二次函数的关系式】【变式训练】1.(2022秋·九年级单元测试)一台机器原价为50万元,如果每年的折旧率是()0x x >,两年后这台机器的价格为y 万元,则y 与x 之间的函数关系式为_____.【答案】()2501y x =-【分析】根据题意列出函数解析式即可.【详解】解:∵一台机器原价为50万元,每年的折旧率是()0x x >,两年后这台机器的价格为y 万元,∴y 与x 之间的函数关系式为()2501y x =-.故答案为:()2501y x =-.【点睛】本题主要考查了列二次函数关系式,解题的关键是理解题意,掌握两年后价格=原价()21x ´-.2.(2023·浙江·九年级假期作业)某市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克70元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当60x =时,8050y x ==;时,100y =.在销售过程中,每天还要支付其它费用450元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利润w (元)与销售单价x (元)之间的函数关系式.【答案】(1)2200y x =-+(3070x ££);(2)222606450w x x =-+-(3070x ££)【分析】(1)根据y 与x 写成一次函数解析式,设为y kx b =+,把x 与y 的两对值代入求出k 与b 的值,即可确定出y 与x 的解析式,并求出x 的范围即可;(2)根据利润=单价´销售量列出w 关于x 的二次函数解析式即可.【详解】(1)设y 与x 的函数关系式为y kx b =+.60x =Q 时,80y =,50x =时,100y =,608050100k b k b +=ì\í+=î,解得2200k b =-ìí=î,2200y x \=-+,根据部门规定,得3070x ££.(2)22(30)450(30)(2200)45030702260600045022606450w x y x x x x x x x =--=--+-=-+--=-£-£+()【点睛】本题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.【过关检测】一、选择题二、填空题6.(2023秋·江西宜春·九年级统考期末)二次函数2=23y x x --中,当=1x -时,y 的值是________.【答案】0【分析】把=1x -代入2=23y x x --计算即可.【详解】解:当=1x -时,2=23=123=0y x x ---+,故答案为:0.【点睛】本题考查了求二次函数的值,解题的关键是把=1x -代入2=23y x x --计算.7.(2022春·全国·九年级专题练习)把y =(2-3x )(6+x )变成y =ax ²+bx +c 的形式,二次项为____,一次项系数为______,常数项为______.【答案】23x - -16 12【解析】略8.(2023秋·河南洛阳·九年级统考期末)已知函数||1(1)45m y m x x +=++-是关于x 的二次函数,则一次函;【答案】二次函数关系【分析】根据矩形面积公式求出y 与x 之间的函数关系式即可得到答案.【详解】解:由题意得()()2302050600y x x x x =++=++,∴y 与x 之间的函数关系是二次函数关系,故答案为;二次函数关系.【点睛】本题主要考查了列函数关系式和二次函数的定义,正确列出y 与x 之间的函数关系式是解题的关键.三、解答题。

最新人教版初中九年级上册数学《二次函数》精品课件

最新人教版初中九年级上册数学《二次函数》精品课件

别是函数解析式的二次项系数、一次项系数和常数项.
二次项
常数项
分别指出下列二次函数解析式的自变量、各项 及各项系数。
①y=6x2 ,
②m 1 n2 1 n ,
22
③ y=20x2+40x+20 .
ቤተ መጻሕፍቲ ባይዱ
出题角度一 二次函数的识别
下列函数中是二次函数的有 ①⑤⑥ 。
①√ y= 2x2 2
×③y x2(1 x2 ) 1 最高次数是4
⑤√ y=x( x 1)
×②y 2x2 x(1 2x) a=0
×④y
1 x2
x2
√⑥y
x4 x2 x2 1
=x2
二次函数:y=ax²+bx+c (a,b,c为常数,a≠0)
运用定义法判断一个函数是否为二次函数的 步骤: (1)将函数解析式右边整理为含自变量的代 数式,左边是函数(因变量)的形式; (2)判断右边含自变量的代数式是否是整式; (3)判断自变量的最高次数是否是2; (4)判断二次项系数是否不等于0.
产品原产量是20t,一年后的产量是原产量的 (1+x) 倍; 两年后的产量是一年后的产量的 (1+x) 倍.于是两年后的产 量y与增加的倍数x的关系式为 y=20(1+x)2 .
y=20(1+x)2
y=20x2+40x+20 y是x的函数吗?
y=20x2+40x+20表示两年后的产量y与计划增产的倍数x的关
6. 一辆汽车的行驶距离s(单位:m)与行驶时间t(单位:s) 的函数关系式为s=9t+0.5t2,则经过12s汽车行驶了 180 m,行 驶380m 需 20 s.

《一题可破万题——二次函数压轴题常见模型小结》

《一题可破万题——二次函数压轴题常见模型小结》

——二次函数压轴题常见模型小结DBO AxyC问题1:求抛物线解析式和顶点D 坐标12()()y a x x x x =--2y ax bx c=++2()y a x h k=-+十字相乘配方法(★)12轴交点(,0)、(,0)x x x 轴交点(0,c )y 顶点(h,k )原始三角形:重视四点围成的三角形(边、角关系)函数 点形2223(3)(1)(1)4y x x y x x y x =+-=+-=+-问题2:判断△ACD 的形状,并说明理由DBOAxyCD (-1,-4)BOA (-3,0)xyC (0,-3)问题3:E是y轴上一动点,若BE=CE,求点E的坐标DB OA xyCB(1,0)O xyC(0,-3)B(1,0)O xyC(0,-3)问题4:抛物线上有一动点P,过点P作PM⊥x轴于点M,交直线AC与点N,在线段PM、MN中,若其中一条线段是另一条线段的2倍,求点P的坐标。

DB OA xyC最大值及此时点P 的坐标DBO Ax yC PH DB O Ax yC PHEFDB O AxyC PHE F于G ,PH 为邻边作矩形PEGH ,求矩形PEGH 周长的最大值。

DBO Ax yCDB O AxyC PHEG问题7:在对称轴上找一点P,使得△BCP的周长最小,求出P点坐标及△BCP的周长DB OA xyCB(1,0)OA(-3,0)xyC(0,-3).x=1P问题8:在对称轴上找一点P,使得∣PA-PC∣最大,求出P点坐标DB OA xyCB(1,0)OA(-3,0)xyC(0,-3).x=1P问题9:线段MN=1,在对称轴上运动(M 点在N 点上方),求四边形BMNC 周长的最小值及此时M 点坐标DBOAxyC已知抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,OA=OC=3,顶点为D 2y x bx c =++B (1,0)OA (-3,0)xyC (0,-3).x=1NB ’ B ’’M将军饮马:这个将军饮的不是马,是数学!解题依据:两点间线段最短;点到直线的垂直距离最短;翻折,对称。

二次函数(一)——常见二次函数模型

二次函数(一)——常见二次函数模型

二次函数(一)——所描述的关系、结识抛物线、刹车距离与二次函数一、 知识点回顾1.函数概念小结2.待定系数法求函数解析式3.图像平移法则二、 典例剖析考点1【二次函数的相关概念】例1下列函数中,哪些是二次函数?y=3(x-1)²+1 (2)y=x +x 1 (3)s=3-2t (4)y=21x x- (5)y=(x+3)²-x² (6) v=10πr²随堂练习11.下列结论正确的是A .y =ax 2是二次函数B .二次函数自变量的取值范围是所有实数C .二次方程是二次函数的特例D .二次函数的取值范围是非零实数2.下列函数中:①y =-x 2;②y =2x ;③y =22+x 2-x 3;④m =3-t -t 2是二次函数的是______(其中x 、t 为自变量).3.下列各关系式中,属于二次函数的是(x 为自变量)A .y =81x 2 B .y C .y =21x D .y =a 2x考点2【二次函数的一般式】例2-1若y=(m +1)x 267m m --是二次函数,则m=( )A .-1B .7C .-1或7D .以上都不对例2-2.已知抛物线y=ax²经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,-4)是否在此抛物线上.(3)求出此抛物线上纵坐标为-6的点的坐标.随堂练习21.函数y =ax 2+bx +c (a ,b ,c 是常数)是二次函数的条件是A .a ≠0,b ≠0,c ≠0B .a <0,b ≠0,c ≠0C .a >0,b ≠0,c ≠0D .a ≠02.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?3.如果函数y=x 232k k -++kx+1是二次函数,则k 的值一定是______考点3【常见的二次函数模型】例3-1【面积问题】如图5,一块草地是长80 m 、宽60 m 的矩形,欲在中间修筑两条互相垂直的宽为x m 的小路,这时草坪面积为y m 2.求y 与x 的函数关系式,并写出自变量x 的取值范围.例3-2【密植问题】某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. 假设果园增种x 棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?如果果园橙子的总产量为y 个,那么请你写出y 与x 之间的关系式.例3-3【利率问题】人民币一年定期储蓄的年利率是x ,一年到期后,银行将本息合计自动转存,到支取时,银行将扣除利息的20%作为利息税,我如果将10000元存入银行,请写出两年后支取时的本息和y(元)与年利率x的函数表达式。

二次函数 直角三角形

二次函数 直角三角形

二次函数直角三角形二次函数是一种常见的数学模型,其图像呈现出连续的曲线,可以用于描述许多实际问题,如物体的运动轨迹、物体的抛射运动、电子电路等。

而直角三角形是一个三角形中的一种特殊情况,其中一个角为90度。

在这篇文章中,我们将讨论二次函数与直角三角形之间的关系,以及如何利用二次函数和三角函数求解直角三角形问题。

一、二次函数二次函数是一种以自变量x的二次多项式的形式表示的函数,其一般式为:y=ax²+bx+c,其中a、b、c为常数,且a≠0。

二次函数的图像通常呈现出抛物线状,其开口向上或向下取决于系数a的正负性。

当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。

二、二次函数与直角三角形之间的关系二次函数可以用于描述许多物理问题,如自由落体运动、抛体运动等。

这些物理问题中通常包含有物体的高度、速度、加速度等数值。

而这些数值往往与直角三角形有直接关系。

例如,在自由落体运动中,当一个物体从高度h自由落下时,其高度与时间的关系可以表示为二次函数y=-gt²/2 + h,其中g为重力加速度,t为时间。

同时,当物体与地面碰撞时,其速度可以表示为v=gt,即与时间t存在线性关系。

这些物理问题中的二次函数常常与直角三角形有关,我们可以将物体高度与时间关系中的高度看作直角三角形中的斜边,将时间看作直角三角形中的一条直角边,将落地时的高度看作直角三角形中的另一条直角边。

这样,我们就可以将二次函数转化为三角函数的形式,利用三角函数求解直角三角形的问题。

三、利用三角函数求解直角三角形的问题在直角三角形中,我们通常会用三角函数来计算三角形的各边和角度的大小。

其中最常用的三角函数包括正弦函数、余弦函数和正切函数。

通过利用三角函数可以快速地求解直角三角形的各项参数,如角度、斜边、直角边以及三角形的面积等。

下面是利用三角函数求解直角三角形的常用公式:1.正弦定理:a/sin(A)=b/sin(B)=c/sin(C)。

二次函数与角度和差倍分

二次函数与角度和差倍分

二次函数与角度和差倍分1.引言1.1 概述二次函数与角度和差倍分是数学领域中的重要概念和理论。

二次函数是一种特殊的函数形式,其解析式可以表示为一个变量的二次多项式形式。

二次函数具有独特的性质和特点,其图像通常呈现出抛物线的形状,对于解决实际问题和分析数学模型具有广泛的应用。

角度和差则是指两个角度之间的加法和减法运算。

在三角函数中,角度和差公式是一组重要的等式,用于求解两个角度的和与差的三角函数值。

通过角度和差公式,可以将一个三角函数表达式化简为另一种形式,从而使计算更加简便。

本文旨在探讨二次函数与角度和差之间的关系,以及它们在实际问题中的应用和意义。

首先,我们将介绍二次函数的定义和特点,包括二次函数的一般形式、顶点坐标、对称轴等内容。

然后,我们将深入讨论角度和差的定义及其常见的倍分公式,包括正弦、余弦和正切函数的角度和差倍分公式。

最后,我们将总结二次函数与角度和差的关系,并探讨它们在实际问题中的应用和意义。

通过本文的阅读,读者将能够全面了解二次函数与角度和差的概念和理论,并能够运用它们解决实际问题。

无论是在科学研究还是日常生活中,这些知识都是非常有用的,能够帮助我们更好地理解数学的本质和应用。

1.2文章结构文章结构部分的内容可以包括以下几个方面:1. 章节划分:介绍本文的章节划分和内容安排,即明确说明文章包含哪些主要章节和各个章节的主题。

2. 二次函数部分:简要介绍文章中关于二次函数的内容,包括定义和特点以及图像和性质。

可以提及二次函数的标准形式、顶点形式和一般式,以及二次函数图像的开口方向、对称轴和顶点位置等基本性质。

3. 角度和差倍分部分:概述文章中关于角度和差倍分的内容,包括角度和差的定义和角度和差的倍分公式。

可以提及如何计算角度和差以及如何利用倍分公式得出特定角度的倍分值。

4. 结构关联:指出二次函数和角度和差倍分之间的关系,即通过二次函数的性质可以推导出角度和差倍分的公式。

可以说明角度和差倍分在解决二次函数问题中的应用价值。

第二章 第十节 函数的模型与应用 解析版-备战2022年(新高考)数学一轮复习考点讲解+习题练习

第二章 第十节 函数的模型与应用   解析版-备战2022年(新高考)数学一轮复习考点讲解+习题练习

第十节函数模型及其应用知识回顾1.几类函数模型2.三种函数模型的性质1.【2019年浙江丽水高一上学期期末考试数学试卷统测】某种放射性元素的原子数N随时间t的变化规律是N=N0eλt,其中N0,λ是正的常数.当N=2N0时,t=________ .ln⁡2【答案】1λ【解析】【解答】某种放射性元素的原子数N随时间t的变化规律是N=N0eλt,其中N0,λ是正的常数.当N= 2N0时,则N=N0eλt=2N0≠0,化为:eλt=2,ln⁡2.解得t=1λ故答案为1λln⁡2.【分析】由题意可得:N =N 0e λt =2N 0≠0,化为:e λt =2,化为对数式即可得出. 【备注】【点评】本题考查了指数式化为对数式,考查了推理能力与计算能力,属于基础题.2.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为________. 答案p +1q +1-1解析 设年平均增长率为x ,则(1+x )2=(1+p )(1+q ), ∴x =1+p1+q -1.3.某公司租地建仓库,已知仓库每月占用费y 1与仓库到车站的距离成反比,而每月车载货物的运费y 2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y 1,y 2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________千米处. 答案 5解析 由题意得,y 1=k 1x ,y 2=k 2x ,其中x >0,当x =10时,代入两项费用y 1,y 2分别是2万元和8万元,可得k 1=20,k 2=45,y 1+y 2=20x +45x ≥220x ·45x =8,当且仅当20x =45x ,即x =5时取等号.4.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为________. 答案 15,12解析 由三角形相似得24-y 24-8=x 20,得x =54(24-y ),∴S =xy =-54(y -12)2+180,∴当y =12时,S 有最大值,此时x =15.5.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a 、b 、c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________分钟.答案 3.75解析 根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎪⎨⎪⎧7a +b =0.1,9a +b =-0.3,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.0.所以p =-0.2t 2+1.5t -2.0=-15(t 2-152t +22516)+4516-2=-15(t -154)2+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟.6.(多选)某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少13,则使产品达到市场要求的过滤次数可以为(参考数据:lg2≈0.301,lg 3≈0.477)( ) A .6 B .9 C .8 D .7 答案 BC解析 设经过n 次过滤,产品达到市场要求, 则2100×⎝⎛⎭⎫23n ≤11 000,即⎝⎛⎭⎫23n ≤120, 由n lg 23≤-lg 20,即n (lg 2-lg 3)≤-(1+lg 2),得n ≥1+lg 2lg 3-lg 2≈7.4,故选BC.课中讲解考点一.函数图像刻画变化过程例1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )解析:选C 小明匀速行驶时,图象为一条直线,且距离学校越来越近,故排除A.因交通堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.故选C.变式1.如图,四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象表示该容器中水面的高度h 和时间t 之间的关系,其中不正确的个数为( )A.1B.2C.3 D.4解析:选A将水从容器顶部一个孔中以相同的速度注入其中,容器中水面的高度h和时间t之间的关系可以从高度随时间的变化率上反映出来.图①应该是匀速的,故下面的图象不正确;②中的变化率应该是越来越慢的,正确;③中的变化率是先快后慢再快,正确;④中的变化率是先慢后快再慢,也正确,故只有①是错误的.例2.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()答案 D解析y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.变式2.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)的影响.根据近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据得到下面的散点图.则下列哪个作为年销售量y关于年宣传费x的函数模型最适合()A.y=ax+b B.y=a+b xC.y=a·b x D.y=ax2+bx+c答案 B解析根据散点图可知,选择y=a+b x最适合.考点二.应用所给的模型解决实际问题例1.候鸟每年都要随季节的变化而进行大规模迁徙,研究某种候鸟的专家发现,该种候鸟的飞行速度 v (单位:m ⋅s −1)与其耗氧量 Q 之间的关系为 v =a +blog 3⁡Q10(其中 a 、b 是常数).据统计,该种鸟类在静止时的耗氧量为 30 个单位,而其耗氧量为个 90 单位时,飞行速度为 1m ⋅s −1.若这种候鸟为赶路程,飞行的速度不能低于 2m ⋅s −1,求其耗氧量至少要多少个单位. 【答案】270 个单位【解析】由题意,知 {a +blog 3⁡3010=0a +blog 3⁡9010=1,即 {a +b =0a +2b =1,解得 {a =−1b =1,所以 v =−1+log 3⁡Q 10, 要使飞行速度不能低于 2m ⋅s −1,则有 v ⩾2,即 −1+log 3⁡Q 10⩾2,即 log 3⁡Q10⩾3,解得 Q10⩾27,即 Q10⩾270,所以耗氧量至少要 270 个单位.变式1.数据显示,某 IT 公司 2018 年上半年五个月的收入情况如下表所示:月份 2 3 4 5 6月收入(万元)1.42.565.311121.3根据上述数据,在建立该公司 2018 年月收入 y (万元)与月份 x 的函数模型时,给出两个函数模型 y =x 12 与 y =2x 3供选择.(1) 你认为哪个函数模型较好,并简单说明理由; 【答案】函数 y =2x 3这一模型较好【解析】画出散点图由图可知点 (2,1.4);(3,2.56);(4,5.31);(5,11);(6,21.3) 基本上是落在函数 y =2x 3的图像的附近,因此用函数 y =2x 3这一模型较好.(2) 试用你认为较好的函数模型,分析大约从第几个月份开始,该公司的月收入会超过 100 万元?(参考数据 lg⁡2=0.3010,lg⁡3=0.4771) 【答案】大约从第 9 月份开始 【解析】当2x 3>100 时,2x >300,∴lg⁡2x >lg⁡300即 xlg⁡2>2+lg⁡3∴x >2+lg⁡3lg 2=2+0.47710.3010≈8.23故大约从第 9 月份开始,该公司的月收入会超过 100 万元. 当2x 3>100 时,2x >30028=256<300;29=512>300故大约从第 9 月份开始,该公司的月收入会超过 100 万元.例2.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式y =⎝⎛⎭⎫116t -a(a 为常数),如图所示,根据图中提供的信息,回答下列问题:①从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为________________________________________________________________________.②据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室. 答案 ①y =⎩⎪⎨⎪⎧10t ,0≤t ≤0.1,⎝⎛⎭⎫116t -0.1,t >0.1②0.6解析 ①设y =kt ,由图象知y =kt 过点(0.1,1), 则1=k ×0.1,k =10,∴y =10t (0≤t ≤0.1). 由y =⎝⎛⎭⎫116t -a过点(0.1,1),得1=⎝⎛⎭⎫1160.1-a , 解得a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).②由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6. 故至少需经过0.6小时学生才能回到教室.变式2.拟定甲、乙两地通话m 分钟的电话费(单位:元)由f (m )=1.06(0.5[m ]+1)给出,其中m >0,[m ]是不超过m 的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为______元. 答案 4.24解析 ∵m =6.5,∴[m ]=6, 则f (6.5)=1.06×(0.5×6+1)=4.24. 考点三.构建函数模型解决实际问题1.二次函数模型例1.某企业为打入国际市场,决定从A ,B 两种产品中只选择一种进行投资生产,已知投资生产这两种产品的有关数据如下表(单位:万美元):预计m ∈[6,8],另外,年销售x 件B 产品时需上交0.05x 2万美元的特别关税,假设生产出来的产品都能在当年销售出去.(1)写出该厂分别投资生产A ,B 两种产品的年利润y 1,y 2与生产相应产品的件数x 1,x 2之间的函数关系式,并指明定义域;(2)如何投资才可获得最大年利润?请你做出规划.[解] (1)由题意得y 1=10x 1-(20+mx 1)=(10-m )x 1-20(0≤x 1≤200且x 1∈N),y 2=18x 2-(40+8x 2)-0.05x 22=-0.05x 22+10x 2-40=-0.05(x 2-100)2+460(0≤x 2≤120且x 2∈N). (2)∵6≤m ≤8,∴10-m >0, ∴y 1=(10-m )x 1-20为增函数. 又0≤x 1≤200,x 1∈N ,∴当x 1=200时,生产A 产品的最大利润为(10-m )×200-20=1 980-200m (万美元). ∵y 2=-0.05(x 2-100)2+460(0≤x 2≤120,且x 2∈N), ∴当x 2=100时,生产B 产品的最大利润为460万美元. (y 1)max -(y 2)max =(1 980-200m )-460=1 520-200m . 易知当6≤m <7.6时,(y 1)max >(y 2)max .即当6≤m <7.6时,投资生产A 产品200件可获得最大年利润;当m =7.6时,投资生产A 产品200件或投资生产B 产品100件,均可获得最大年利润; 当7.6<m ≤8时,投资生产B 产品100件可获得最大年利润.变式1. 某城市对一种售价为每件160元的商品征收附加税,税率为R %(即每销售100元征税R 元),若每年销售量为⎝⎛⎭⎫30-52R 万件,要使附加税不少于128万元,则R 的取值范围是( ) A .[4,8] B .[6,10] C .[4%,8%] D .[6%,10%]答案 A解析 根据题意,要使附加税不少于128万元,需⎝⎛⎭⎫30-52R ×160×R %≥128, 整理得R 2-12R +32≤0,解得4≤R ≤8,即R ∈[4,8].2. 指对数函数模型例2.某公司为激励创新,计划逐年加大研发资金投入.若该公司2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2018年 B .2019年 C .2020年D .2021年变式2.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( )A .16小时B .20小时C .24小时D .28小时[解析] (1)设第n (n ∈N *)年该公司全年投入的研发资金开始超过200万元. 根据题意得130(1+12%)n -1>200, 则lg[130(1+12%)n -1]>lg 200, ∴lg 130+(n -1)lg 1.12>lg 2+2, ∴2+lg 1.3+(n -1)lg 1.12>lg 2+2, ∴0.11+(n -1)×0.05>0.30,解得n >245,又∵n ∈N *,∴n ≥5,∴该公司全年投入的研发资金开始超过200万元的年份是2020年.故选C. (2)由已知得192=e b ,① 48=e 22k +b =e 22k ·e b ,②将①代入②得e 22k =14,则e 11k =12,当x =33时,y =e 33k +b =e 33k ·e b =⎝⎛⎭⎫123×192=24,所以该食品在33 ℃的保鲜时间是24小时.故选C. [答案] (1)C (2)C3. 对勾函数模型例3 某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (万元)与营运年数x 的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为________.答案 5解析 根据图象求得y =-(x -6)2+11, ∴年平均利润yx=12-⎝⎛⎭⎫x +25x , ∵x +25x ≥10,当且仅当x =5时等号成立.∴要使平均利润最大,客车营运年数为5.变式3.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9 3 平方米,且高度不低于 3 米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x =________米.答案 2 3解析 由题意可得BC =18x -x2(2≤x <6),∴y =18x +3x 2≥218x ×3x2=6 3. 当且仅当18x =3x2(2≤x <6),即x =23时等号成立.4. 分段函数模型例4.某市营业区内住宅电话通话费用为前 3 分钟 0.20 元,以后每分钟 0.10 元(前 3 分钟不足 3 分钟按 3 分钟计,以后不足 1 分钟按 1 分钟计).(1) 在直角坐标系内,画出一次通话在 6 分钟内(包括 6 分钟)的话费 y (元)关于通话时间 t (分钟)的函数图象; 【答案】见解析 【解析】如下图所示.(2) 如果一次通话t分钟(t>0),写出话费y(元)关于通话时间t(分钟)的函数关系式(可用[t]表示不小于t的最小整数).【答案】y={0.2,0<t⩽30.2+[t−3]×0.1,t>3【解析】由(1)知,话费y与时间t的关系是分段函数.当0<t⩽3时,话费y为0.2元;当t>3时,话费y应为(0.2+[t−3]×0.1)元.所以y={0.2,0<t⩽30.2+[t−3]×0.1,t>3.变式4.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;①该店月销量Q(百件)与销量价格P(元)的关系如图所示;①每月需各种开支2000元.(1) 当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;【答案】当P=19.5元时,月利润余额最大,为450元【解析】设该店月利润余额为L元,则由题设得L=Q(P−14)×100−3600−2000①由销量图易得Q={−2P+50,14⩽P⩽20−32P+40,20<P⩽26,代入①式得L={(−2P+50)(P−14)×100−5600,14⩽P⩽20(−32P+40)(P−14)×100−5000,20<P⩽26当14⩽P⩽20时,L max=450元,此时P=19.5元;当20<P⩽26时,L max=12503元,此时P=613元.故当P=19.5元时,月利润余额最大,为450元.(2) 企业乙只依靠该店,最早可望在几年后脱贫?【答案】最早可望在20年后脱贫【解析】设可在n年后脱贫,依题意有12n×450−50000−58000⩾0,解得n⩾20.即最早可望在20年后脱贫.课后习题一.单选题1.(2018·北京石景山联考)小明在如图1所示的跑道上匀速跑步,他从点A出发,沿箭头方向经过点B跑到点C,共用时30 s,他的教练选择了一个固定的位置观察小明跑步的过程,设小明跑步的时间为t(s),他与教练间的距离为y(m),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点NC.点P D.点Q解析:选D假设这个位置在点M,则从A至B这段时间,y不随时间的变化改变,与函数图象不符,故A选项错误;假设这个位置在点N,则从A至C这段时间,A点与C点对应y的大小应该相同,与函数图象不符,故B选项错误;假设这个位置在点P,则由函数图象可得,从A到C的过程中,会有一个时刻,教练到小明的距离等于经过30 s时教练到小明的距离,而点P不符合这个条件,故C选项错误;经判断点Q符合函数图象,故D选项正确,选D.2.(2019·洛阳模拟)某校为了规范教职工绩效考核制度,现准备拟定一函数用于根据当月评价分数x(正常情况下0≤x≤100,且教职工平均月评价分数在50分左右,若有突出贡献可以高于100分)计算当月绩效工资y(元).要求绩效工资不低于500元,不设上限,且让大部分教职工绩效工资在600元左右,另外绩效工资越低或越高时,人数要越少.则下列函数最符合要求的是()A.y=(x-50)2+500 B.y=10x25+500C .y =11 000(x -50)3+625D .y =50[10+lg(2x +1)]解析:选C 由题意知,拟定函数应满足:①是单调递增函数,且增长速度先快后慢再快;②在x =50左右增长速度较慢,最小值为500.A 中,函数y =(x -50)2+500先减后增,不符合要求;B 中,函数y =10x25+500是指数型函数,增长速度是越来越快,不符合要求;D 中,函数y =50[10+lg(2x +1)]是对数型函数,增长速度是越来越慢,不符合要求;而C 中,函数y =11 000(x -50)3+625是由函数y =x 3经过平移和伸缩变换得到的,符合要求.故选C.3.(2019·邯郸名校联考)某企业准备投入适当的广告费对甲产品进行促销宣传,在一年内预计销售量y (万件)与广告费x (万元)之间的函数关系为y =1+3x x +2(x ≥0).已知生产此产品的年固定投入为4万元,每生产1万件此产品仍需再投入30万元,且能全部售完. 若每件甲产品售价(元)定为“平均每件甲产品所占生产成本的150%”与“年平均每件甲产品所占广告费的50%”之和,则当广告费为1万元时,该企业甲产品的年利润为( )A .30.5万元B .31.5万元C .32.5万元D .33.5万元解析:选B 由题意,产品的生产成本为(30y +4)万元,销售单价为30y +4y ×150%+xy ×50%,故年销售收入为z =⎝⎛⎭⎫30y +4y ×150%+xy ×50%·y =45y +6+12x .∴年利润W =z -(30y +4)-x =15y +2-x 2=17+45x x +2-x 2(万元).∴当广告费为1万元时,即x =1,该企业甲产品的年利润为17+451+2-12=31.5(万元).故选B. 4.一种放射性元素的质量按每年10%衰减,这种放射性元素的半衰期(剩余质量为最初质量的一半所需的时间叫作半衰期)是(精确到0.1,已知lg 2≈0.301 0,lg 3≈0.477 1)( ) A .5.2 B .6.6 C .7.1 D .8.3 答案 B解析 设这种放射性元素的半衰期是x 年, 则(1-10%)x =12,化简得0.9x =12,即x =log 0.912=lg12lg 0.9=-lg 22lg 3-1≈-0.301 02×0.477 1-1≈6.6(年).故选B. 5.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( ) A .13 m 3 B .14 m 3 C .18 m 3 D .26 m 3答案 A解析 设该职工用水x m 3时,缴纳的水费为y 元,由题意得y =⎩⎪⎨⎪⎧mx ,0<x ≤10,10m +x -10·2m ,x >10,则10m +(x -10)·2m =16m ,解得x =13.6.(2020·青岛模拟)某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x ,y 应为( )A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14答案 A解析 由三角形相似得24-y 24-8=x 20,得x =54(24-y ),所以S =xy =-54(y -12)2+180,所以当y =12时,S 有最大值,此时x =15.检验符合题意.二.多选题7.(多选)在一次社会实践活动中,某数学调研小组根据车间持续5个小时的生产情况画出了某种产品的总产量y (单位:千克)与时间x (单位:小时)的函数图象,则以下关于该产品生产状况的正确判断是( )A .在前三小时内,每小时的产量逐步增加B .在前三小时内,每小时的产量逐步减少C .最后一小时内的产量与第三小时内的产量相同D .最后两小时内,该车间没有生产该产品 答案 BD解析 由该车间5小时来某种产品的总产量y (千克)与时间x (小时)的函数图象,得前三小时的年产量逐步减少,故A 错误,B 正确;后两小时均没有生产,故C 错误,D 正确.三.填空题 8.(2019·唐山模拟)某人计划购买一辆A 型轿车,售价为14.4万元,购买后轿车每年的保险费、汽油费、车检费、停车费等约需2.4万元,同时汽车年折旧率约为10%(即这辆车每年减少它的价值的10%),试问,大约使用________年后,用在该车上的费用(含折旧费)达到14.4万元.解析:设使用x 年后花费在该车上的费用达到14.4万元,依题意可得,14.4(1-0.9x )+2.4x =14.4. 化简得x -6×0.9x =0. 令f (x )=x -6×0.9x ,易得f (x )为单调递增函数,又f (3)=-1.374<0,f (4)=0.063 4>0,所以函数f (x )在(3,4)上有一个零点. 故大约使用4年后,用在该车上的费用达到14.4万元. 答案:49.某地区要建造一条防洪堤,其横断面为等腰梯形ABCD ,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面面积为93平方米,且高度不低于3米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤横断面的外周长不超过10.5米,则其腰长x 的取值范围为________.解析:根据题意知,93=12(AD +BC )h ,其中AD =BC +2×x 2=BC +x ,h =32x ,所以93=12(2BC +x )32x ,得BC =18x -x2,由⎩⎨⎧h =32x ≥3,BC =18x -x2>0,得2≤x <6.所以y =BC +2x =18x +3x2(2≤x <6),由y =18x +3x2≤10.5,解得3≤x ≤4.因为[3,4] ⊆[2,6),所以腰长x 的取值范围为[3,4]. 答案:[3,4]10.(2019·皖南八校联考)某购物网站在2019年11月开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为________. 答案 3解析 为使花钱总数最少,需使每张订单满足“每张订单金额(6折后)满300元时可减免100元”,即每张订单打折前原金额不少于500元.由于每件原价48元,因此每张订单至少11件,又42=11×3+9,所以最少需要下的订单张数为3.11.某市用37辆汽车往灾区运送一批救灾物资,假设以v km/h 的速度直达灾区,已知某市到灾区公路线长400 km ,为了安全起见,两辆汽车的间距不得小于⎝⎛⎭⎫v 202 km ,那么这批物资全部到达灾区的最少时间是______ h .(车身长度不计) 答案 12解析 设全部物资到达灾区所需时间为t h ,由题意可知,t 相当于最后一辆车行驶了⎣⎡⎦⎤36×⎝⎛⎭⎫v 202+400 km 所用的时间,因此,t =36×⎝⎛⎭⎫v 202+400v =36v 400+400v≥236v 400×400v=12, 当且仅当36v 400=400v ,即v =2003时取等号.故这些汽车以2003 km/h 的速度匀速行驶时,所需时间最少,最少时间为12 h.四.解答题12.某城市现有人口总数为 100 万,如果年自然增长率为 1.2%,试解答下面的问题: (1) 写出 x 年后该城市的人口总数 y (万人)与年数 x (年)的函数关系式; 【答案】y =100×(1+1.2%)x ,x ∈N ∗【解析】1 年后该城市人口总数为 y =100+100×1.2%=100×(1+1.2%);2 年后该城市人口总数为 y =100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2;3 年后该城市人口总数为 y =100×(1+1.2%)3;…; x 年后该城市人口总数为 y =100×(1+1.2%)x ,x ∈N ∗.(2) 计算 10 年以后该城市人口总数(精确到 0.1 万); 【答案】112.7 万【解析】10 年后该城市人口总数为 y =100×(1+1.2%)10=100×1.01210≈112.7(万).(3) 计算大约多少年以后该城市人口总数将达到 120 万(精确到 1 年). 【答案】16 年【解析】令 y =120,则有 100×(1+1.2%)x =120,解方程可得 15<x <16. 故大约 16 年后该城市人口总数将达到 120 万.13.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压 p (千帕)是气球的体积 V (立方米)的反比例函数,其图象如图所示.(千帕是一种压强单位)(1) 写出这个函数的解析式;【答案】p=96V【解析】设p与V的函数的解析式为p=k,把点A(1.5,64)代入,解得k=96.V∴这个函数的解析式为p=96.V(2) 当气球的体积为0.8立方米时,气球内的气压是多少千帕?【答案】120千帕【解析】把V=0.8代入p=96,p=120,V当气球的体积为0.8立方米时,气球内的气压是120千帕.(3) 当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?立方米【答案】气球的体积应不小于23,【解析】由p=144时,V=23∴p⩽144时,V⩾2,3当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于2立方米314.如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE=4米,CD=6米.为合理利用这块钢板,在五边形ABCDE内截取一个矩形BNPM,使点P在边DE上.设MP=x米,PN=y米,将y表示成x的函数,求该函数的解析式及定义域.【答案】y=−12x+10,定义域为[4,8]【解析】作PQ⊥AF于Q,∴PQ=(8−y)米,EQ=(x−4)米.又△EPQ∼△EDF,∴EQPQ =EFFD,即x−48−y=42.∴y=−12x+10,定义域为[4,8].15.大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数v=1 2log3⁡O100,单位是m/s,其中O表示鱼的耗氧量的单位数,(1) 当一条鱼的行氧量是2700个单位时,它的游速是多少?【答案】当一条鱼的行氧量是2700个单位时,它的游速是32(m/s)【解析】由题意得v=12log3⁡2700100=32(m/s)当一条鱼的行氧量是2700个单位时,它的游速是32(m/s).(2) 计算一条鱼静止时耗氧量的单位数.【答案】当一条鱼静止时耗氧量的单位数是100【解析】当一条鱼静止时,即v=0,则0=12log3⁡O100,解得O=100当一条鱼静止时耗氧量的单位数是100.。

高考一轮复习第2章函数导数及其应用第10讲函数模型及其应用

高考一轮复习第2章函数导数及其应用第10讲函数模型及其应用

第十讲 函数模型及其应用知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理知识点 函数模型及其应用 1.几类常见的函数模型函数模型 函数解析式一次函数模型f(x)=ax +b(a ,b 为常数,a≠0)反比例函数模型 f(x)=kx +b(k ,b 为常数且k≠0)二次函数模型 f(x)=ax 2+bx +c(a ,b ,c 为常数,a≠0)指数函数模型 f(x)=ba x+c(a ,b ,c 为常数,b≠0,a >0且a≠1) 对数函数模型 f(x)=blog a x +c(a ,b ,c 为常数,b≠0,a >0且a≠1) 幂函数模型f(x)=ax n +b(a ,b 为常数,a≠0)2.三种函数模型的性质函数性质y =a x(a>1)y =log a x(a>1) y =x n(n>0)在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快越来越慢相对平稳 图象的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较存在一个x 0,当x>x 0时,有log a x<x n<a x3.解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的数学模型;(3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:重要结论1.函数f(x)=x a +bx (a>0,b>0,x>0)在区间(0,ab]内单调递减,在区间[ab ,+∞)内单调递增.2.直线上升、对数缓慢、指数爆炸双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =2x的函数值比y =x 2的函数值大.( × )(2)“指数爆炸”是指数型函数y =a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.( × ) (3)幂函数增长比直线增长更快.( × ) (4)不存在x 0,使ax 0<x a0<log a x 0.( × ) [解析] (1)当x =-1时,2-1<(-1)2.(2)“指数爆炸”是针对b>1,a>0的指数型函数g(x)=a ·b x+c.(3)幂函数增长速度是逐渐加快的,当变量较小时,其增长很缓慢,题目说的太绝对,也没有任何条件限制.(4)当a∈(0,1)时存在x 0,使ax 0<x a0<log a x 0. 题组二 走进教材2.(必修1P 107BT1改编)某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( D )A .收入最高值与收入最低值的比是3∶1B .结余最高的月份是7月C .1至2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元3.(必修1P 107A 组T1改编)在某个物理实验中,测量得变量x 和变量y 的几组数据,如下表:x 0.50 0.99 2.01 3.98 y-0.990.010.982.00则对x ,y 最适合的拟合函数是( D ) A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2x[解析] 根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B 、C ;将各数据代入函数y =log 2x ,可知满足题意,故选D .4.(必修1P 104例5改编)某种动物繁殖量y 只与时间x 年的关系为y =alog 3(x +1),设这种动物第2年有100只,到第8年它们将发展到( A )A .200只B .300只C .400只D .500只[解析] ∵繁殖数量y 只与时间x 年的关系为y =alog 3(x +1),这种动物第2年有100只, ∴100=alog 3(2+1),∴a=100,∴y=100log 3(x +1), ∴当x =8时,y =100log 3(8+1)=100×2=200.故选A .5.(必修1P 107AT2改编)生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C(x)=12x 2+2x +20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为18万件.[解析] 利润L(x)=20x -C(x)=-12(x -18)2+142,当x =18时,L(x)有最大值. 题组三 走向高考6.(2020·全国Ⅲ,4)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:I(t)=K1+e -0.23(t -53),其中K 为最大确诊病例数.当I(t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( C )A .60B .63C .66D .69[解析] 本题以Logistic 模型和新冠肺炎为背景考查指数、对数的运算.由题意可得I(t *)=K 1+e -0.23(t *-53)=0.95K ,化简得e -0.23(t *-53)=119,即0.23(t *-53)=ln 19,所以t *=ln 190.23+53≈30.23+53≈66.故选C .考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU 考点 函数模型及应用考向1 利用函数图象刻画实际问题的变化过程——自主练透例1 (1)(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( A )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳(2)(多选题)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述正确的是( ABC )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个(3)有一个盛水的容器,由悬在它的上空的一条水管均匀地注水,最后把容器注满,在注水过程中时间t与水面高度y之间的关系如图所示.若图中PQ为一线段,则与之对应的容器的形状是( B )[解析] (1)通过题图可知A 不正确,并不是逐月增加,但是每一年是递增的,所以B 正确.从图观察C 是正确的,D 也正确,1月至6月比较平稳,7月至12月波动比较大.故选A .(2)由图形可得各月的平均最低气温都在0 ℃以上,A 正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B 正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C 正确;平均最高气温高于20 ℃的月份只有2个,D 错误.故选A 、B 、C .(3)由函数图象可判断出该容器必定有不同规则的形状,且函数图象的变化先慢后快,所以容器下边粗,上边细.再由PQ 为线段,知这一段是均匀变化的,所以容器上端必是直的一段,故排除A 、C 、D ,选B .名师点拨 MING SHI DIAN BO 1.用函数图象刻画实际问题的解题思路将实际问题中两个变量间变化的规律(如增长的快慢、最大、最小等)与函数的性质(如单调性、最值等)、图象(增加、减少的缓急等)相吻合即可.2.判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象. (2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考向2 已知函数模型解决实际问题——师生共研例2 (2020·北京十一中月考)已知14C 的半衰期为5 730年(是指经过5 730年后,14C 的残余量占原始量的一半).设14C 的原始量为a ,经过x 年后的残余量为b ,残余量b 与原始量a 的关系为b =ae-kx,其中x 表示经过的时间,k 为一个常数.现测得湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始量的76.7%.请你推断一下马王堆汉墓修建距今约2_292年.(参考数据:log 20.767≈-0.4).[解析] 由题意可知,当x =5 730时,ae -5 730k=12a ,解得k =ln 25 730.现测得湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始量的76.7%.所以76.7%=e -ln 25 730x ,得ln 0.767=-ln 25 730x ,x =-5 730×ln 0.767ln 2=-5 730×log 2 0.767≈2 292.〔变式训练1〕(2020·山西太原模拟)某公司为了业务发展,制定了一项激励销售人员的奖励方案:销售额为8万元时,奖励1万元;销售额为64万元时,奖励4万元,若公司拟定的奖励模型为y =alog 4x +b(其中x 为销售额,y 为相应的奖金).某业务员要得到8万元奖励,则他的销售额应为1_024万元.[解析] 依题意得⎩⎪⎨⎪⎧alog 48+b =1,alog 464+b =4,即⎩⎪⎨⎪⎧32a +b =1,3a +b =4,解得⎩⎪⎨⎪⎧a =2,b =-2.所以y =2log 4x -2,当y =8时,有2log 4x -2=8,解得x =1 024. 考向3 构建函数模型解决实际问题——多维探究 角度1 一次函数、二次函数分段函数模型例3 某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散,设f(t)表示学生注意力指标.该小组发现f(t)随时间t(分钟)的变化规律(f(t)越大,表明学生的注意力越集中)如下: f(t)=⎩⎪⎨⎪⎧100a t10-60(0≤t≤10),340(10<t≤20),-15t +640(20<t≤40)(a>0且a≠1).若上课后第5分钟时的注意力指标为140,回答下列问题: (1)求a 的值;(2)上课后第5分钟和下课前第5分钟比较,哪个时间注意力更集中?并请说明理由; (3)在一节课中,学生的注意力指标至少达到140的时间能保持多长? [解析] (1)由题意得,当t =5时,f(t) =140, 即100·a 510-60=140,解得a =4.(2)因为f(5)=140,f(35)=-15×35+640=115,所以f(5)>f(35),故上课后第5分钟时比下课前第5分钟时注意力更集中.(3)①当0<t≤10时,由(1)知,f(t)=100·4t10-60≥140,解得5≤t≤10; ②当10<t≤20时,f(t) =340>140恒成立;③当20<t≤40时,f(t)=-15t +640≥140,解得20<t≤1003.综上所述,5≤t≤1003.故学生的注意力指标至少达到140的时间能保持1003-5=853分钟.名师点拨 MING SHI DIAN BO (1)分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值.(2)构造分段函数时,要力求准确、简洁,做到分段合理,不重不漏. (3)分段函数的最大(小)值是各段最大(小)值中的最大(小)值. 角度2 指数函数与对数函数模型例4 候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q 之间的关系为:v =a +blog 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位? [分析](1)根据已知列出方程组→解方程组求a ,b 的值 (2)由(1)列出不等式→解不等式求Q 的最小值[解析] (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,则a +blog 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s , 则a +blog 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1. (2)由(1)知,v =a +blog 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2 m/s ,则v ≥2,所以-1+log 3Q 10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.名师点拨 MING SHI DIAN BO指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.〔变式训练2〕(1)(角度1)某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R 元),若每年销售量为⎝⎛⎭⎪⎫30-52R 万件,要使附加税不少于128万元,则R 的取值范围是( A )A .[4,8]B .[6.10]C .[4%,8%]D .[6%,10%](2)(角度2)一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =ae-bt(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过16min ,容器中的沙子只有开始时的八分之一.[解析] (1)根据题意,要使附加税不少于128万元,需⎝ ⎛⎭⎪⎫30-52R ×160×R%≥128,整理得R 2-12R +32≤0,解得4≤R≤8,即R∈[4,8]. (2)当t =0时,y =a ,当t =8时,y =ae -8b=12a ,∴e -8b =12.令y =18a ,即ae -bt =18a ,e -bt =18=(e -8b )3=e-24b,则t =24,∴再经过16 min ,容器中的沙子只有开始时的八分之一.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG函数y =x +ax(a>0)模型及应用例5 (2021·烟台模拟)小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W(x)万元.在年产量不足8万件时,W(x)=13x 2+x(万元);在年产量不小于8万件时,W(x)=6x +100x -38(万元).每件产品售价为5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? [解析] (1)因为每件产品售价为5元,则x 万件产品的销售收入为5x 万元,依题意得: 当0<x<8时,L(x)=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3.当x≥8时,L(x)=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x .所以L(x)=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x<8,35-⎝ ⎛⎭⎪⎫x +100x ,x≥8.(2)当0<x<8时,L(x)=-13(x -6)2+9,此时,当x =6时,L(x)取得最大值L(6)=9(万元).当x≥8时,L(x)=35-⎝⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15(万元).此时,当且仅当x =100x,即x =10时,L(x)取得最大值15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元. 名师点拨 MING SHI DIAN BO (1)解决此类问题时一定要关注函数的定义域.(2)利用模型f(x)=ax +bx 求解最值时,注意取得最值时等号成立的条件.〔变式训练3〕某村计划建造一个室内面积为800 m 2的矩形蔬菜温室、在矩形温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为40_m ,20_m 时,蔬菜的种植面积最大?最大面积是648_m 2.[解析] 设矩形温室的左侧边长为x m ,则后侧边长为800x m ,所以蔬菜种植面积y =(x -4)·⎝ ⎛⎭⎪⎫800x -2=808-2⎝⎛⎭⎪⎫x +1 600x (4<x<400). 因为x +1 600x≥2x ·1 600x=80,所以y≤808-2×80=648.当且仅当x =1 600x ,即x =40时取等号,此时800x=20,y max =648.即当矩形温室的相邻边长分别为40 m ,20 m 时,蔬菜的种植面积最大,最大面积是648 m 2.。

二次函数十大解题模型汇总(模型+例题+练习题)

二次函数十大解题模型汇总(模型+例题+练习题)
(1)试写出 y 与 x 之间的函数表达式(不必写出 x 的取值范围);(2)试写出 z 与 x 之间的函数表达式(不 必写出 x 的取值范围);(3)计算销售单价为 160 元时的年获利,销售单价还可以定为多少元?相应的年 销售量分别为多少万件?(4)公司计划:在第一年按年获利最大确定的销售单价,进行销售;第二年年 获利不低于 1130 万元.请你借助函数的大致图象说明,第二年的销售单价 x(元)应确定在什么范围内?
角线 a 的关系.
2、已知:一等腰直角三角形的面积为 S,请写出 S 与其斜边长 a 的关系表达式,并分别求出 a=1,a= 2 ,
a=2 时三角形的面积.
1 3、在物理学内容中,如果某一物体质量为 m,它运动时的能量 E 与它的运动速度 v 之间的关系是 E= 2 mv2
(m 为定值).(1)若物体质量为 1,填表表示物体在 v 取下列值时,E 的取值:
例 2、如果人民币一年定期储蓄的年利率是 x,一年到期后,银行将本金和利息自动按一年定期储蓄转存, 到期支取时,银行将扣除利息的 20%作为利息税.请你写出两年后支付时的本息和 y(元)与年利率 x 的 函数表达式.
例 3、某商场将进价为 40 元的某种服装按 50 元售出时,每天可以售出 300 套.据市场调查发现,这种服 装每提高 1 元售价,销量就减少 5 套,如果商场将售价定为 x,请你得出每天销售利润 y 与售价的函数表 达式.
二次函数十大解题模型汇总(模型+例题+练习题)
模型 1:根据二次函数的定义求字母的值
例 1:函数 y=(m+2)x m2−2 +2x-1 是二次函数,则 m=

对象:y=(m+2)x m2−2 +2x-1 角度:二次函数的稀疏,次数

备战高考数学复习考点知识与题型讲解18---函数模型的应用

备战高考数学复习考点知识与题型讲解18---函数模型的应用

备战高考数学复习考点知识与题型讲解第18讲函数模型的应用考向预测核心素养考查根据实际问题建立函数模型解决问题的能力,常与函数图象、单调性、最值及方程、不等式交汇命题,各种题型均有可能,中档难度.数学建模一、知识梳理1.六种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0)对数函数模型f(x)=b logax+c(a,b,c为常数,a>0且a≠1,b≠0)幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)“对勾”函数模型y=x+ax(a为常数,a>0)2.三种函数模型性质比较y=a x(a>1)y=logax(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同3.用函数建立数学模型解决实际问题的基本过程常用结论1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.2.“对勾”函数f (x )=x +a x(a >0)在(0,+∞)上的性质:在(0,a ]上单调递减,在[a ,+∞)上单调递增,当x =a 时f (x )取最小值2a .二、教材衍化1.(人A 必修第一册P 152例6改编)某校拟用一种喷雾剂对宿舍进行消毒,需对喷雾完毕后空气中每立方米药物残留量y (单位:毫克)与时间x (单位:时)的关系进行研究,为此收集部分数据并做了初步处理,得到如图散点图.现拟从下列四个函数模型中选择一个估计y 与x 的关系,则应选用的函数模型是( )A .y =ax +bB.y =a ·⎝ ⎛⎭⎪⎫14x+b (a >0)C .y =x a +b (a >0) D.y =ax +b x(a >0,b >0)解析:选 B.由散点图可知,函数在(0,+∞)上单调递减,且散点分布在一条曲线附近,函数y =a ·⎝ ⎛⎭⎪⎫14x+b 的图象为一条曲线,且当a >0时,该函数单调递减,符合题意,故选B.2.(多选)(人A 必修第一册P 155习题4.5T 9改编)如图,某池塘里浮萍的面积y (单位:m 2)与时间t (单位:月)的关系为y =a t .关于下列说法中正确的是( )A .浮萍每月的增长率为1B .第5个月时,浮萍面积就会超过30 m 2C .浮萍每月增加的面积都相等D .若浮萍蔓延到2 m 2,3 m 2,6 m 2所经过的时间分别是t 1,t 2,t 3,则t 1+t 2=t 3 解析:选ABD.把(1,2)代入y =a t ,可得函数解析式为y =2t , 因为2t +1-2t2t =1,所以每月增长率为1,A 对;当t =5时,y =32>30,所以B 对;第2个月增加2 m 2,第3个月增加4 m 2,C 错; 由2t 1=2,2t 2=3,2t 3=6,所以2t 1·2t 2=2t 3,故t 1+t 2=t 3,D 对.3.(人A 必修第一册P 96习题3.4T 5改编)下表是弹簧伸长长度x (单位:cm)与拉力F (单位:N)的相关数据:x 14.2 28.8 41.3 57.5 70.2 F12345写出能反映这一变化现象的函数为________.(不唯一)解析:根据点的分布特征,可以考虑用函数x =kF +b (k ≠0)作为刻画弹簧伸长长度与拉力关系的函数模型.取两组数据(1,14.2),(4,57.5),则⎩⎨⎧k +b =14.2,4k +b =57.5,解得⎩⎨⎧k ≈14.4,b ≈-0.2,所以x =14.4F -0.2.将已知数据代入上述解析式,或作出函数图象,可以发现,这个函数模型与已知数据拟合程度较好.答案:x =14.4F -0.2一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.( )(2)函数y =2x的函数值比y =x 2的函数值大.( ) (3)不存在x 0,使ax 0<x n 0<log a x 0.( )(4)“指数爆炸”是指数型函数y =a ·b x +c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( )答案:(1)× (2)× (3)× (4)× 二、易错纠偏1.(函数模型选择易误)某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100x B.y =50x 2-50x +100 C .y =50×2xD.y =100log 2x +100解析:选C.根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证可知选C.2.(指数函数、对数函数性质不明致误)下面对函数f (x )=log 12x 与g (x )=⎝ ⎛⎭⎪⎫12x 在区间(0,+∞)上的衰减情况的说法中正确的为( )A .f (x )的衰减速度越来越慢,g (x )的衰减速度越来越快B .f (x )的衰减速度越来越快,g (x )的衰减速度越来越慢C .f (x )的衰减速度越来越慢,g (x )的衰减速度越来越慢D.f(x)的衰减速度越来越快,g(x)的衰减速度越来越快解析:选C.在同一平面直角坐标系中画出f(x)与g(x)的图象如图所示,由图象可判断出衰减情况为:f(x)衰减速度越来越慢;g(x)衰减速度越来越慢,故选C.3.(平均增长率概念不清致误)某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为________.解析:设年平均增长率为x,则(1+x)2=(1+p)(1+q),所以x=(1+p)(1+q)-1.答案:(1+p)(1+q)-1考点一用函数图象刻画变化过程(自主练透)复习指导:能将实际问题转化为数学问题,会应用函数图象对实际问题进行描述.1.一种叫万年松的树的生长时间t(年)与树高y(m)之间的散点图如图所示.请你据此判断,拟合这种树生长的年数与树高的关系式,选择的函数模型最好的是( ) A.y=2t B.y=log2tC.y=t3D.y=2t2解析:选B.由图知,函数的增长速度越来越慢,排除A,C,D.选B.2.(2022·广州市综合检测(一))如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T. 若鱼缸水深为h时,水流出所用时间为t,则函数h =f(t)的图象大致是( )解析:选B.水位由高变低,排除C,D.半缸前下降速度先快后慢,半缸后下降速度先慢后快,故选B.3.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为( )解析:选D.y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.4.(多选)(2022·福建厦门高三质检)某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y(单位:微克)与时间t(单位:小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则( )A.a=3B.注射一次治疗该病的有效时间长度为6小时C.注射该药物18小时后每毫升血液中的含药量为0.4微克D.注射一次治疗该病的有效时间长度为53132小时解析:选AD.当t =1时,y =4,即⎝ ⎛⎭⎪⎫121-a=4,解得a =3,所以y =⎩⎨⎧4t ,0≤t <1,⎝ ⎛⎭⎪⎫12t -3,t ≥1,故A 正确,药物刚好起效的时间,当4t =0.125,即t =132, 药物刚好失效的时间⎝ ⎛⎭⎪⎫12t -3=0.125,解得t =6,故药物有效时长为6-132=53132小时, 药物的有效时间不到6个小时,故B 错误,D 正确;注射该药物18小时后每毫升血液含药量为4×18=0.5微克,故C 错误.判断函数图象与实际问题变化过程相吻合的方法:(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考点二 已知或选择函数模型解决实际问题(综合研析)复习指导:1.已知函数模型,用待定系数法确定解析式; 2.根据几种常见函数的增长差异选择函数模型.(1)(2022·江西高三月考)果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知在一定时间内,某种水果失去的新鲜度y 与其采摘后时间t (小时)近似满足的函数关系式为y =k ·m t (k ,m 为非零常数),若采摘后20小时,这种水果失去的新鲜度为20%,采摘后30小时,这种水果失去的新鲜度为40%.那么采摘下来的这种水果大约经过多长时间后失去50%新鲜度(参考数据:lg 2≈0.3,结果取整数)( )A .33小时 B.23小时 C .35小时D.36小时(2)某地西红柿上市后,通过市场调查,得到西红柿的种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:时间t60100 180 种植成本Q 11684116根据上表数据,从下列函数中选取一个函数描述西红柿的种植成本Q 与上市时间t 的变化关系:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t . 利用你选取的函数,则①西红柿种植成本最低时的上市天数是________; ②最低种植成本是________元/100 kg. 【解析】 (1)由题意⎩⎨⎧k ·m 20=20%k ·m 30=40%,两式相除得m 10=2,m =2110,代入得k =5%,所以y =5%·2t10,由50%=5%·2t 10得2t10=10,取对数得t 10lg 2=1,t =10lg 2≈100.3≈33(小时). (2)由题意知,种植成本与上市时间的变化关系应该用二次函数Q =at 2+bt +c ,即Q =a (t -120)2+m 描述,将表中数据代入可得⎩⎨⎧a (60-120)2+m =116,a (100-120)2+m =84,解得⎩⎨⎧a =0.01,m =80, 所以Q =0.01(t -120)2+80,故当上市天数为120时,种植成本取到最低值80元/100 kg.【答案】 (1)A (2)①120 ②80已知或选择函数模型解决实际问题的注意点(1)已知模型的实际问题,根据待定系数法确定模型,再利用模型求解实际问题.(2)选择模型的问题可结合函数图象,函数值的增长特点(增减、增长快慢)等选用合适的函数模型.|跟踪训练|(多选)纪录片《垃圾围城》真实地反映了城市垃圾污染问题,目前中国城市中有超过23的城市处于垃圾的包围之中,且城市垃圾中的快递行业产生的包装垃圾正在逐年攀升,有关数据显示,某城市从2018年到2021年产生的包装垃圾量如下表:有下列函数模型:①y =a ·b x -2 018;②y =a sin πx2 018+b (参考数据:lg 2=0.301 0,lg 3=0.477 1),则( )A .选择模型①,函数模型解析式y =4·⎝ ⎛⎭⎪⎫32x -2 018,近似反映该城市近几年产生的包装垃圾y (万吨)与年份x 的函数关系B .选择模型②,函数模型解析式y =4sin πx2 018+2 018,近似反映该城市近几年产生的包装垃圾y (万吨)与年份x 的函数关系C .若不加以控制,任由包装垃圾如此增长下去,从2023年开始,该城市的包装垃圾将超过40万吨D .若不加以控制,任由包装垃圾如此增长下去,从2024年开始,该城市的包装垃圾将超过40万吨解析:选AD.若选y =4·⎝ ⎛⎭⎪⎫32x -2 018,计算可得对应数据近似为4,6,9,13.5,若选y =4sin πx2 018+2 018,计算可得对应数据近似值都大于2 014,显然A 正确,B 错误;按照选择函数模型y =4·⎝ ⎛⎭⎪⎫32x -2 018,令y >40,即4×⎝ ⎛⎭⎪⎫32x -2 018>40,所以⎝ ⎛⎭⎪⎫32x -2 018>10,所以x -2 018>log 3210,所以x -2 018>lg 10lg 32=1lg 3-lg 2≈5.678 6,所以x >2 023.678 6,即从2024年开始,该城市的包装垃圾将超过40万吨,故C 错误,D 正确.考点三 构建函数模型解决实际问题(多维探究)复习指导:1.分析题意,寻找实际问题中起决定作用的两个变量. 2.确定两个变量间的关系,选择合适的函数模型. 角度1 构建二次函数、分段函数、“对勾”函数模型(链接常用结论2)小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W (x )万元,在年产量不足8万件时,W (x )=13x 2+x (万元).在年产量不小于8万件时,W (x )=6x +100x-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?【解】 (1)因为每件商品售价为5元,则x 万件商品销售收入为5x 万元, 依题意得,当0<x <8时,L (x )=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3;当x ≥8时,L (x )=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x . 所以L (x )=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x <8,35-⎝ ⎛⎭⎪⎫x +100x ,x ≥8.(2)当0<x <8时,L (x )=-13(x -6)2+9.此时,当x =6时,L (x )取得最大值,为9万元. 当x ≥8时,L (x )=35-⎝ ⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15,当且仅当x =100x时等号成立,即x =10时,L (x )取得最大值,为15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.角度2 构建指数函数、对数函数模型(1)(2022·长春高三摸底考试)2018年5月至2019年春,在阿拉伯半岛和伊朗西南部,沙漠蝗虫迅速繁衍,呈现几何式的爆发,仅仅几个月,蝗虫数量增长了8 000倍,引发了蝗灾,到2020年春季蝗灾已波及印度和巴基斯坦,假设蝗虫的日增长率为5%,最初有N 0只,则达到最初的16 000倍只需经过(参考数据:ln 1.05≈0.048 8,ln 16 000≈9.680 3)( )A .191天 B.195天 C.199天D.203天(2)里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.【解析】(1)设过x天能达到最初的16 000倍,由已知可得,N0(1+0.05)x=16 000N0,所以x=ln 16 000ln 1.05≈198.4,又x∈N,故经过199天能达到最初的16 000倍.(2)M=lg 1 000-lg 0.001=3-(-3)=6.设9级地震的最大振幅和5级地震的最大振幅分别为A1,A2,则9=lg A1-lg A0=lg A1A,则A1A=109,5=lg A2-lg A0=lgA2A,则A2A=105,所以A1A2=104.即9级地震的最大振幅是5级地震最大振幅的10 000倍.【答案】(1)C (2)6 10 000(1)建模解决实际问题的三个步骤①建模:抽象出实际问题的数学模型.②推理、演算:对数学模型进行逻辑推理或数学演算,得到问题在数学意义上的解.③评价、解释:对求得的数学结果进行深入的讨论,作出评价、解释,返回到原来的实际问题中去,得到实际问题的解.(2)构建函数模型解决实际问题,充分体现了数学建模的核心素养.[提醒] (1)构建函数模型时不要忘记考虑函数的定义域.(2)利用模型f(x)=ax+bx求解最值时,注意取得最值时等号成立的条件.|跟踪训练|1.(多选)某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5 000册.要使该杂志销售收入不少于22.4万元,每册杂志可以定价为( )A .2.5元 B.3元 C.3.2元D.3.5元解析:选BC.依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,设每册杂志定价为x (x >2)元,则发行量为⎝ ⎛⎭⎪⎫10-x -20.2×0.5万册, 则该杂志销售收入为⎝ ⎛⎭⎪⎫10-x -20.2×0.5x 万元, 所以⎝ ⎛⎭⎪⎫10-x -20.2×0.5x ≥22.4,化简得x 2-6x +8.96≤0,解得2.8≤x ≤3.2,故选BC.2.某种茶水用100 ℃的水泡制,再等到60 ℃时饮用可产生最佳口感.已知茶水温度y (单位:℃)与经过时间t (单位:min)的函数关系是:y =ka t +y 0,其中a 为衰减比例,y 0是室温,t =0时,y 为茶水初始温度,若室温为20 ℃,a =⎝ ⎛⎭⎪⎫1218,茶水初始温度为100 ℃,则k =________,产生最佳口感所需时间是________min.解析:由题意,y =ka t +20,当t =0时,有y =ka t +20=k +20=100,k =80, 则y =80a t +20,当y =60时,即80a t +20=60,所以80a t =40,所以a t =12,即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1218t =12,所以t =8.答案:80 8[A 基础达标]1.某种细菌在培养过程中,每15 min 分裂一次(由1个分裂成2个),这种细菌由1个分裂成4 096个需经过的时间是( )A .12 h B.4 h C.3 hD.2 h解析:选C.设这种细菌由1个分裂成4 096个需经过x次分裂,则4 096=2x,解得x=12,故所需时间t=12×1560=3 h.2.“龟兔赛跑”讲述了这样的故事:兔子和乌龟赛跑,领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.S1,S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是( )解析:选B.选项A表示龟兔同时到达;选项C表示兔子没有追赶乌龟;选项D表示兔子先到达终点.3.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A.略有盈利 B.略有亏损C.没有盈利也没有亏损 D.无法判断盈亏情况解析:选B.设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.4.在固定电压差(电压为常数)的前提下,当电流通过圆柱形的电线时,其电流强度I与电线半径r的三次方成正比,若已知电流通过半径4毫米的电线时,电流强度为320安,则电流通过半径为3毫米的电线时,电流强度为( )A.60安 B.240安C.75安D.135安解析:选D.由已知,设比例常数为k,则I=k·r3.由题意,当r=4时,I=320,故有320=k×43,解得k=32064=5,所以I=5r3.故当r=3时,I=5×33=135(安).故选D.5.(2022·皖南八校联考)某购物网站在2021年11月开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为________.解析:为使花钱总数最少,需使每张订单满足“每张订单金额(6折后)满300元时可减免100元”,即每张订单打折前原金额不少于500元.由于每件原价48元,因此每张订单至少11件,又42=11×3+9,所以最少需要下的订单张数为3.答案:36.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为________升.解析:因为每次都把油箱加满,第二次加了48升油,说明这段时间总耗油量为48升,而行驶的路程为35 600-35 000=600(千米),故每100千米平均耗油量为48÷6=8(升).答案:87.一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=a e-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.解析:当t=0时,y=a;当t=8时,y=a e-8b=12a,故e-8b=12.当容器中的沙子只有开始时的八分之一时,即y=a e-bt=18a,e-bt=18=(e-8b)3=e-24b,则t=24,所以再经过16 min容器中的沙子只有开始时的八分之一.答案:168.某工厂因排污比较严重,决定着手整治,第一个月污染度为60,整治后前四个月的污染度如下表:污染度为0后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式:f (x )=20|x -4|(x ≥1),g (x )=203(x -4)2(x ≥1),h (x )=30|log 2x -2|(x ≥1),其中x 表示月数,f (x ),g (x ),h (x )分别表示污染度.(1)试问选用哪个函数模拟比较合理,并说明理由;(2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过60? 解:(1)用h (x )模拟比较合理,理由如下: 因为f (2)=40,g (2)≈26.7,h (2)=30;f (3)=20,g (3)≈6.7,h (3)≈12.5.由此可得h (x )更接近实际值,所以用h (x )模拟比较合理.(2)因为h (x )=30|log 2x -2|在x ≥4时是增函数,h (16)=60,所以整治后有16个月的污染度不超过60.9.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元,0.5万元.(1)分别写出两类产品的收益与投资额的函数关系;(2)若该家庭有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益是多少万元?解:(1)设两类产品的收益与投资额的函数关系分别为f (x )=k 1x ,g (x )=k 2x . 由已知得f (1)=18=k 1,g (1)=12=k 2,所以f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资股票类产品为x 万元, 则投资债券类产品为(20-x )万元.依题意得y =f (20-x )+g (x )=20-x 8+12x =-x +4x +208(0≤x ≤20). 所以当x =2,即x =4时,收益最大,y max =3万元.故投资债券类产品16万元,投资股票类产品4万元时获得最大收益,为3万元.[B 综合应用]10.在标准温度和大气压下,人体血液中氢离子物质的量的浓度(单位:mol/L ,记作[H +])和氢氧根离子物质的量的浓度(单位:mol/L ,记作[OH -])的乘积等于常数10-14.已知pH 值的定义为pH =-lg[H +],健康人体血液的pH 值保持在7.35~7.45之间,那么健康人体血液中的[H +][OH -]可以为(参考数据:lg 2≈0.30,lg 3≈0.48)( )A.12B.13C.16D.110解析:选C.因为[H +]·[OH -]=10-14,所以[H +][OH -]=[H +]2×1014,因为7.35<-lg[H+]<7.45,所以10-7.45<[H +]<10-7.35,所以10-0.9<[H +][OH -]=1014·[H +]2<10-0.7,10-0.9=1100.9>110,lg 100.7=0.7>lg 3>lg 2,所以100.7>3>2,10-0.7<13<12,所以110<[H +][OH -]<13.故选C.11.(2022·焦作温县一中10月月考)搭载神舟十二号载人飞船的长征二号F 遥十二运载火箭,在酒泉卫星发射中心点火发射成功.此次航天飞行任务中,火箭起到了非常重要的作用.在不考虑空气动力和地球引力的理想情况下,火箭在发动机工作期间获得速度增量v (单位:千米/秒)可以用齐奥尔科夫斯基公式v =ωln ⎝ ⎛⎭⎪⎫1+m M 来表示,其中,ω(单位:千米/秒)表示它的发动机的喷射速度,m (单位:吨)表示它装载的燃料质量,M (单位:吨)表示它自身(除燃料外)的质量.若某型号的火箭发动机的喷射速度为5千米/秒,要使得该火箭获得的最大速度v 达到第一宇宙速度(7.9千米/秒),则火箭的燃料质量m 与火箭自身质量M 之比mM约为( )A .e 1.58 B.e 0.58 C .e 1.58-1D.e 0.58-1解析:选C.由题设,5ln ⎝ ⎛⎭⎪⎫1+m M =7.9,则m M =e 7.95-1=e 1.58-1.12.(多选)小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图象,拟合了记忆保持量f (x )与时间x (天)之间的函数关系f (x )=⎩⎨⎧-720x +1,0<x ≤1,15+920x -12,1<x ≤30.则下列说法正确的是( )A .随着时间的增加,小菲的单词记忆保持量降低B .第一天小菲的单词记忆保持量下降最多C .9天后,小菲的单词记忆保持量低于40%D .26天后,小菲的单词记忆保持量不足20%解析:选ABC.由函数解析式可知f (x )随着x 的增加而减少,故A 正确;由图象可得B 正确;当1<x ≤30时,f (x )=15+920x -12,则f (9)=15+920×9-12=0.35,即9天后,小菲的单词记忆保持量低于40%,故C 正确;f (26)=15+920×26-12>15,故D 错误.13.燕子每年秋天都要从北方飞往南方过冬,研究燕子的科学家发现,两岁的燕子的飞行速度可以表示为函数v =5log 2Q 10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)燕子静止时的耗氧量是________个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是________.解析:(1)由题意知,当燕子静止时,它的速度为0,代入v =5log 2Q 10中可得0=5log 2Q10,解得Q =10.(2)将耗氧量Q =80代入v =5log 2Q 10中,得v =5log 28010=5log 28=15 (m/s). 答案:(1)10 (2)15 m/s14.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +(b -a )x .这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x =________.解析:由题意得x =c -ab -a ,(c -a )2=(b -c )(b -a ),因为b -c =(b -a )-(c -a ),所以(c -a )2=(b -a )2-(b -a )(c -a ), 两边同除以(b -a )2,得x 2+x -1=0, 解得x =-1±52.因为0<x <1,所以x =5-12. 答案:5-12[C 素养提升]15.某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系t (x )=⎩⎨⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃的保鲜时间是16小时. (1)该食品在8 ℃的保鲜时间是________小时;(2)已知甲在某日上午10时购买了该食品,并将其遗放在室外,且当日的室外温度随时间变化如图所示,那么到了当日13时,甲所购买的食品________保鲜时间.(填“过了”或“没过”)解析:(1)因为食品在4 ℃的保鲜时间是16小时,所以24k +6=16,解得k =-12.所以t (8)=2-4+6=4.(2)由图象可知在11时之前,温度已经超过了10 ℃,此时该食品的保鲜期少于21=2小时.而食品在11时之前已放了一段时间,所以到13时,该食品已过保鲜期.答案:(1)4 (2)过了16.(2022·上海高三月考)我国西部某省4A 级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好民俗文化基础设施后任何一个月内(每月按30天计算)每天的旅游人数f (x )与第x 天近似地满足f (x )=8+8x(千人),且参观民俗文化村的游客人均消费g (x )近似地满足g (x )=143-|x -22|(元).(1)求该村的第x 天的旅游收入p (x )(单位:千元,1≤x ≤30,x ∈N *);(2)若以最低日收入的20%作为每一天纯收入的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?(一年以365天计算)解:(1)依据题意,有p (x )=f (x )·g (x )=⎝ ⎛⎭⎪⎫8+8x ·(143-|x -22|)(1≤x ≤30,x∈N *)=⎩⎪⎨⎪⎧8x +968x +976(1≤x ≤22,x ∈N *),-8x +1 320x +1 312(22<x ≤30,x ∈N *).(2)①当1≤x ≤22,x ∈N *时,p (x )=8x +968x+976≥28x ·968x+976=1 152(当且仅当x =11时,等号成立),因此,p (x )min =p (11)=1 152(千元).②当22<x≤30,x∈N*时,p(x)=-8x+1 320x+1 312.求导可得p′(x)=-8-1 320x2<0,所以p(x)=-8x+错误!+1 312在(22,30]上单调递减,于是p(x)min=p(30)=1 116(千元).又1 152>1 116,所以日最低收入为1 116千元.该村两年可收回的投资资金为 1 116×20%×5%×365×2=8 146.8(千元)=814.68(万元),因为814.68万元>800万元,所以,该村在两年内能收回全部投资成本.21 / 21。

二次函数模型1

二次函数模型1

二、新知探索三、课堂练习观察图象并完成填空函数y=a x2的图象,当a>0时开口.当a<0时开口,对称轴是,顶点坐标是.| a | 越大,开口越.例1研讨二次函数f (x)=12x2+4 x+6的性质与图象.解 (1) 因为f (x)=12x2+4 x+6=12(x2+8 x+12)=12(x+4)2-2.由于对任意实数x,都有12(x+4)2≥0,所以 f (x)≥-2,并且,当x=-4时取等号,即f(-4)=-2.得出性质:x=-4时,取得最小值-2.记为 y min=-2.点(-4,-2)是这个图象的顶点.(2) 当y=0时,12x2+4 x+6=0,x2+8 x+12=0,解得x1=-6,x2=-2.故该函数图象与x 轴交于两点(-6,0),(-2,0).(a≠0),下面我们先来研究这类函数的性质.出示引例.学生在初中已经重点学过二次函数的作图,所以教师只讲述y=x2的图象画法,其余5个函数的图象,学生分组合作解答,教师巡回观察.最后通过屏幕演示,集体对照.教师总结二次函数的图像以及相关性质。

生:观察图象,小组合作讨论.然后每组选一名代表汇报各组的交流结果,最后师生一起汇总得出结论.师生共同解决例1,教师详细板书解题过通过引例,使学生进一步掌握二次函数图象的描点作图法,并根据所做图象来分析函数y=a x2中系数a 对图象的影响,提高学生读图能力.学生合作,集体回忆初中所学二次函数的知识.开口方向,对称轴,顶点坐标等性质应用。

通过对例1中二次三项式的代数分析,使学生对二次函数的直观感知上升到理性认识的高度,更重要的是使学生掌握数形结合研究函数的方法,初步培养学生的画图、识图能力.分析图象与x轴的交点,一方面为描点作图,另一方面为下节研究函数与方程,不等式的关系做铺垫.2xy=2xy-=22xy=23xy=22xy-=23xy-=四、课堂小结五、作业布置(3) 列表作图.以x=-4为中间值,取x 的一些值,列出这个函数的对应值表然后画出函数的图象.观察上表或图形回答:1.关于x=-4对称的两个自变量的值对应的函数值有什么特点?答:相同.2.-4-h 与-4+h (h>0) 关于x=-4对称吗?分别计算-4-h与-4+h的函数值,你能发现什么?答:f (-4-h)=f (-4+h).得出性质:直线x=-4为该函数的对称轴.函数在(-∞,-4]上是减函数,在[-4,+∞)上是增函数.小结例2中的函数性质:1.开口.2.最值.3.顶点.4.对称轴.5.单调性.总结:1.二次函数的性质.2.一元二次方程、一元二次不等式与二次函数的关系.3.数形结合研究二次函数的方法.1..对应作业本完成2.学有余力的同学做一下同步考卷程,带领学生仔细分析各个性质的由来.回顾总结函数单调性的相关性质以及证明。

二次函数模型

二次函数模型

函数模型一二次函数模型一价格竞争[问题提出]:甲乙两个加油站位于同一条公路旁,为在公路上行驶的汽车提供同样的汽油,彼此竞争激烈。

一天,甲站推出“降价销售”吸引顾客,结果造成乙站的顾客被拉走,影响了乙站的赢利。

我们知道,利润是受销售价和销售量的影响及控制的,乙站为挽回损失,必须采取降价销售这一对策来争取顾客。

那么,乙站如何决定汽油的价格,既可以同甲站竞争,又可以获取尽可能高的利润呢?[分析]:在这场“价格战”中,我们将站在乙站的立场上为其制定价格对策,因此需要组建一个模型来描述甲站汽油价格下调后乙站销售量的变化情况,从而得到乙站的销售利润。

[引入参数]:为描述汽油价格和销售量间的关系,引入指标:1)价格战前,甲、乙两站汽油的正常销售价格为P(元/升);2)降价前乙站的销售量均为L(升);3)汽油的成本价格为W(元/升);4)降价后乙站的销售价格为x(元/升),这是变量;5)降价后甲站的销售价格为y(元/升)。

[模型假设]:影响乙站汽油销售量的因素,主要有以下几个:1)甲站汽油降价的幅度;2)乙站汽油降价的幅度;3)甲乙两站之间汽油销售价格之差(x-y)。

我们知道,随着甲站汽油降价幅度的增加,乙站汽油销售量随之减小;而随着乙站汽油降价幅度的增加,乙站汽油销售量随之增大;同时,随着两站之间汽油销售价格之差(x-y)的增加,乙站汽油销售量也随之减小。

假设1:在这场价格战中,假设汽油的正常销售价格保持不变;假设2:以上各因素对乙加油站汽油销售量的影响是线性的,比例系数分别为a,b,c(均为正常数)。

[建立模型]:由假设2,乙站的汽油销售量为L-a(P-y)+b(P-x)-c(x-y),所以,乙站的利润函数R(x,y)=(x-W)[L-a(P-y)+b(P-x)-c(x-y)]。

[模型求解]:当y确定时,利润函数R(x,y)=(x-W)[L-a(P-y)+b(P-x)-c(x-y)]是关于x的二次函数。

求出R(x,y)的最大值点为x*=[L+(a+c)y-P(a-b)+W(b+c)]/2(b+c)。

二次函数知识点汇总(全)

二次函数知识点汇总(全)

二次函数知识点(第一讲)一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c=++〔a b ca≠〕的函数,叫做二次函数。

,,是常数,0这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的根本形式1. 二次函数根本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。

2. 2y ax c=+的性质:〔上加下减〕3. ()2y a x h =-的性质:〔左加右减〕4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的根底上“h 值正右移,负左移;k 值正上移,负下移〞.概括成八个字“左加右减,上加下减〞.方法二:⑴c bx ax y ++=2沿y 轴平移:向上〔下〕平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2〔或m c bx ax y -++=2〕⑵c bx ax y ++=2沿轴平移:向左〔右〕平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2〔或c m x b m x a y +-+-=)()(2〕四、二次函数()2y a x h k =-+与2y ax bx c =++的比拟从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,〔假设与x 轴没有交点,那么取两组关于对称轴对称的点〕.画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1.当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-. 七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕;2. 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;3. 两根式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标〕.注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1.二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边那么0>ab ,在y 轴的右侧那么0<ab ,概括的说就是“左同右异〞 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式确实定:根据条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 抛物线上三点的坐标,一般选用一般式;2. 抛物线顶点或对称轴或最大〔小〕值,一般选用顶点式;3. 抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 抛物线上纵坐标一样的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称〔即:抛物线绕顶点旋转180°〕2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原那么,选择适宜的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系〔二次函数与x 轴交点情况〕:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1'当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大〔小〕值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和一点对称的点坐标,或与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,提醒二次函数、二次三项式和一元二次方程之间的在联系:二次函数考察重点与常见题型1. 考察二次函数的定义、性质,有关试题常出现在选择题中,如:以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 那么m 的值是2. 综合考察正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系考察两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限,那么函数12-+=bx kx y 的图像大致是〔 〕y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考察用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

一次函数、二次函数、幂函数模型的应用举例 课件

一次函数、二次函数、幂函数模型的应用举例 课件

x2
300x
20
000 0
x
400,
60 000 100x x 400.
(2)当0≤x≤400时,f(x)=- 1(x-300)2+25 000,
【典例训练】
1.某企业生产一种机器的固定成本(即固定投入)为0.6万元,
但每生产100台时,又需可变成本(即另增加投入)0.25万元,
市场对该机器的需求量为1 000台,销售收入(单位:万元)函 数为:R(x)=5x- 1 x2(0≤x≤10),其中x是产品的数量(单位:
2
百台),则利润f(x)表示为产量的函数为________.
【解析】1.由已知投入广告费用为3万元时,药品利润为27万
元,代入y=xα中,即3α=27,解得α=3,故函数关系式为
y=x3.所以当x=5时,y=125.
答案:125
2.(1)由题意可得R=kr4(k>0);
(2)由r=3,R=400,可得krR=4
400,则流量速率R的表达式为
81R=400ຫໍສະໝຸດ .r42.某电脑公司在甲、乙两地各有一个分公司,甲分公司现有电 脑6台,乙分公司有同一型号的电脑12台.现A地某单位向该公 司购买该型号的电脑10台,B地某单位向该公司购买该型号的 电脑8台.已知甲地运往A、B两地每台电脑的运费分别是40元和 30元,乙地运往A、B两地每台电脑的运费分别是80元和50元. (1)设甲地调运x台至B地,该公司运往A地和B地两地的总运费 为y元,求y关于x的函数关系式; (2)若总运费不超过1 000元,问能有几种调运方案? (3)求总运费最低的调运方案及最低运费.
(2)若使y≤1 000,即20x+960≤1 000,得x≤2. 又0≤x≤6,x∈N,∴0≤x≤2,x∈N. ∴x=0,1,2,即有3种调运方案. (3)∵y=20x+960是R上的增函数,又0≤x≤6且x∈N, ∴当x=0时,y有最小值,为960. ∴总运费最低的调运方案为从甲地调运6台到A地,从乙地调运 8台至B地,调运4台到A地,运费最低为960元.

2.2二次函数模型及应用

2.2二次函数模型及应用

高教社
模型准备
(1)二次函数图像及函数的单调性 (2)月收益=月租金收益-租出车辆每月的维 护费-未租出车辆每月的维护费
高教社
模型假设
(1)每辆车的月租金定为x元,租赁公司的月 收益为y元; (2)租车过程中不产生其他费用。
高教社
模型构成
x 3000 未租出的车辆数 , 租出去的车辆 50 x 3000 x 3000 100 月租金收益 x(100 ) 50 50 x 3000 ) 租出去车辆每月的维护费 150 x(100 50 x 3000 未租出去车辆 50 x 50 租赁公司的月收益为 x 3000 x 3000 y ( x 150 )(100 ) 50 x 50 50
模型检验与应用
检验所得结果符合实际,可以解决类似问题。
高教社
问题2:某商场试销一种成本为60元的服装,规定试销 期间每件利润不得高于成本价的45%。经试销发现,销 售量与销售单价符合如下表所示的关系。
销售单 … 价(元) 销售量 (件) … 60 60 65 55 70 50 75 45 80 40 … …
高教社
模型准备
篮球飞行的数据是实际问题中的数量关系,平面直角坐 标系中点的坐标和函数关系是数学的表示方法。通过对函数
解析式和点的坐标的计算,将篮球能否入筐的实际问题就转
化为点(球筐)是否在抛物线(球的运动轨迹)上的数学问 题,发现篮筐对应的点在抛物线上,意味着投篮可以命中目 标。
高教社
模型假设
(1)乔丹投篮时身体、篮球、篮筐中心同在一 个竖直的平面内; (2)篮球视为一个点,运动轨迹为抛物线,球
高教社
模型解析
(1)当每辆车的月租金定为3600元,未租出的车辆 为 3600 3000 ,这时租出了88辆车; 12 50 1 2 (2)配方得 y 50 ( x 4050 ) 307050 ,所以,当 x=4050时,ymax=307050.即当每辆车的月租金定为 4050元时,租赁公司的月收益最大,最大收益为 307050元

基于核心素养的数学课堂教学——“二次函数中与角有关的存在性问题”专题教学设计与思考

基于核心素养的数学课堂教学——“二次函数中与角有关的存在性问题”专题教学设计与思考

㊀㊀㊀㊀㊀数学学习与研究㊀2023 04基于核心素养的数学课堂教学基于核心素养的数学课堂教学㊀㊀㊀ 二次函数中与角有关的存在性问题 专题教学设计与思考Һ陈煜舟㊀(苏州市沧浪中学校,江苏㊀苏州㊀215007)㊀㊀ʌ摘要ɔ‘义务教育数学课程标准(2022年版)“颁布后, 如何将核心素养真正落实到课堂教学中 成了诸多教师㊁学者热烈讨论的话题.本文通过 二次函数中与角有关的存在性问题 这节专题课的教学,以小见大,将数学思想渗透于学生的数学活动中,以培养学生的数学核心素养,让学生学有所得.文章应用新课标引领教育新生态,采用 巧设问题,体验由繁化简;对比探究,悟得方法优劣;变化局部,调动类比思维;探本寻源,发展建模素养;以编促学,统筹知识全局 等策略,旨在将核心素养真正落实到数学课堂,让学生在分析和思考问题的过程中感悟转化㊁对比㊁类比等数学思想方法,提炼出思维精华,发展建模素养,在开放性的问题中打破知识的壁垒,建立联系,从而通过教学活动实现数学教育的育人功能.ʌ关键词ɔ数学活动;数学思维;核心素养一㊁新课标引领教育新生态2022年4月21日,教育部颁布了‘义务教育数学课程标准(2022年版)“,标志着我国以核心素养为导向的新一轮课程改革拉开了序幕.从 双基 到 三维目标 ,再到现在以 核心素养 为本位,数学教学把核心素养的培育作为主要教学目标,使义务教育呈现出新的面貌,也使数学学科独特的育人价值不断地体现出来.初中阶段,学生的数学学习需要掌握很多显性的表层知识,如一些概念㊁性质㊁公式等.新课标更加关注数学思维的形成㊁活动经验的积累㊁理想信念和价值观的引领,让学生在与周围环境产生相互作用时具备良好的数学核心素养.接下来,笔者以 二次函数中与角有关的存在性问题 这节专题课的教学为例,阐述如何将核心素养的培养贯彻到数学教学中.这堂课重点解决下面的问题:如图1,已知抛物线y=-23x2+43x+2交x轴于A,B两点(点A在点B右边),交y轴于点C,点P在抛物线上运动.在抛物线上是否存在点P(在AC上方),使得øACP=45ʎ?若存在,求点P的坐标;若不存在,请说明理由.图1二㊁核心素养落地数学课堂(一)巧设问题,体验由繁化简首先,学生会画一个草图了解点P的大致位置(如图2),但经过尝试会发现直接求点P的坐标比较复杂.因此,教师抛出一个简单清晰的问题 点P的位置在哪里 ,以合适的问题引导学生观察点P的位置:点P在抛物线上,也在直线CP上.这便让学生意识到:要求点P的坐标,可以先求直线CP的解析式.这是解决该问题最关键的一步.图2教师鼓励学生将最终转化而成的问题写下来以明确解题目标,即解决该问题的第一步可以转化为:如图3,在平面直角坐标系中,已知一次函数y=-23x+2分别交x轴㊁y轴于A,C两点,将直线AC绕点C逆时针旋转45ʎ,求旋转后的直线l1的解析式.图3这一巧妙的设计开拓了学生的思路,使学生能通过观察点的位置主动推理出解决问题的方法.因此,教师应通过巧设问题引导学生分解㊁转化综合问题,为学生提供思维的阶梯.按照上述解题思路,大问题分解成了相对简单的小问题,由难到易,由繁化简.教师应有意识地向学生揭示这里利用了转化的数学思想,将数学思想加以明确.(二)对比探究,悟得方法优劣在求旋转后的直线解析式时可以发现只有一个点C的坐标是已知的,因此还需确定这条直线上另一点的坐标.那么如何选取这个点呢?教师让学生合作讨论后再分享各自的做法.有的小组提出:过点A向l1作垂线,交l1于点D(如图4),然后求垂足D的坐标;也有小组认为:过点A向AC作垂线,交l1于点D(如图5),然后求点D的坐标.还有一些㊀㊀㊀㊀数学学习与研究㊀2023 04类似的方法这里不一一赘述.图4㊀㊀㊀图5接着,教师引导学生回忆求点的坐标的常用方法:向x轴或y轴作垂线.学生马上联想到可通过构造 k型全等 求出点D的坐标.为了更好地让学生感受 构造 这一数学方法,教师请学生将解题方法进行对比,可以发现两种方法都构造了 k型全等 ,即把倾斜着的难以解决的线段转化为横平竖直的线段,从而转移了线段长度,求出了点的坐标,这是一种大家常用的化斜为直的构造方法.但两种方法有繁易之分,所以教师进一步请学生分析两种方法的不同之处:图4中的解题过程比较烦琐,需要设未知数,图5可直接求解.教师继续引导:造成这种区别的主要原因是什么呢?学生通过观察发现,图4中由于点D未知,RtәEDC与RtәFAD的直角边都是未知的,所以需要设未知数;而图5中点A是已知的,RtәAOC的两条直角边都已知,因此可以直接求解.两种思路的比较让学生感悟到:在解决此类问题时,应尽可能地选择以已知点为直角顶点构造 k型全等 .在这一过程中,学生由浅入深㊁由表及里,在对比中主动地 悟 出解决这个问题的好方法.教师的启发引导㊁小组的相互合作㊁班级的分享互动,改变了传统的 教师教,学生学 的教学模式,构建了以学生为中心的课堂.(三)变化局部,调动类比思维教师将 旋转45ʎ 改为 旋转一个正切值为12的角度,即tanøACP=12,其余条件及问题不变.虽然旋转角度不是特殊角,但正切值确定,øACP的度数相当于是已知的,因而这是一道与旋转角为45ʎ一脉相承的题目.考虑到正切值的利用应该放在直角三角形中,学生经过观察㊁分析能迅速类比得出此类问题的解决思路,依然可以作垂直构造 k型相似 ,并且模仿较简单的辅助线构造方法,即以点A为直角顶点构造 k型相似 .角度的一般化同时带来了 k型全等 到 k型相似 的变化,教师通过列举一个一般化的例子,调动起学生的类比思维,让学生在以后接触到其他一般化的角度时也能得心应手地解题,这为后续归纳解题步骤做好了铺垫.(四)探本寻源,发展建模素养此时,学生对本节课的第一个难点有了初步的理解,但是教师不需要急着展开后面的内容,应该给予学生充分的时间,小结解决问题的步骤,归纳图形的共同属性.教师引导学生观察图形中的已知信息:直线AC是已知的,点A,C为已知点,旋转角度α也是已知的.列举出已知信息之后,教师请学生思考要求的是什么,并将已知信息与所求内容用语言组织起来,进行口头完整叙述.问题是: 已知直线AC绕点C旋转一个角度α,其中点A,C是已知点,旋转角度α已知,如何求旋转后的直线解析式? 解法是: 应该尽可能以已知点A为直角顶点构造 k型相似 ,再求点D的坐标,最后求直线解析式.将思维的结果用文字语言表达出来,可以帮助学生梳理解题脉络,并锻炼他们的表达能力,也能辅助教师及时获得学情,让教师了解学生是否观点明确㊁条理清晰,是否具有丰富的数学语言系统,从而调整教学策略.为了将信息多方面地呈现给学生,教师请学生用图示的方法明确解题思路,进一步把抽象的文字语言转化为具体㊁直观的图示信息(如图6).图6接下来,教师带领学生 回头 看课堂开始时提出的问题.通过前后比较,学生能够很容易找出两幅图关联的地方,即有两条相同的直线,因此可将求二次函数上动点的坐标转化为求抛物线与直线的交点.至此,这个问题便迎刃而解.这时,教师就可顺势引出本节课研究的专题 二次函数中与角有关的存在性问题 .自然的过渡强化了学生的解题思路:对于这类二次函数中与角有关的存在性问题,需要先求旋转后的直线解析式.接下来,教师请学生完善图6的步骤(如图7).图7就如初中数学一开始先学习具体的有理数加减乘除㊁再学习用字母表示数一样,学生总能慢慢地从特殊的数据处理中得出具有普遍意义的结论.在本节课上,教师通过具体的语言归纳以及直观的图示两种策略,让学生对于这类问题的解决脉络逐渐清晰化,建立起这类题目的解题模型,达到对这类问题的深度认知目标,将知识尽快地转化为学生的能力.㊀㊀㊀㊀㊀数学学习与研究㊀2023 04(五)以编促学,统筹知识全局在应用部分,教师让学生模仿例题,合作编题,并讨论解决.具体过程如下:教师:这个角度可以为45ʎ,在相同的题目条件下,根据我们研究的内容,还可以怎样编题呢?生1:在抛物线上是否存在点P(在AC上方),使得øACP=30ʎ?若存在,求点P的坐标;若不存在,请说明理由.生2:在抛物线上是否存在点P(在AC上方),使得tanøACP=12?若存在,求点P的坐标;若不存在,请说明理由.生3:在抛物线上是否存在点P,使得tanøACP=12若存在,求点P的坐标;若不存在,请说明理由.如果学生很难提出问题,那么教师可以加以引导:在这个图像中,已经有一个特殊的角,是øBCO,它的正切值为12,你觉得这个问题还可以怎样变化?生4:问题也可以改成:在抛物线上是否存在点P,使得øACP=øBCO?若存在,求点P的坐标;若不存在,请说明理由.教师在此处可进行适当的停顿,并引导学生发现这是一道什么类型的题目,从而引导学生总结出:对于二次函数中一个角等于已知角的问题,也可以用类似的方法求解.由角相等也可以联想到相似,所以也会有学生做下面的联想.生5:在抛物线上是否存在点P,过点P作PDʅAC,垂足为D,使得әCPDʐәCBO?若存在,求点P的坐标;若不存在,请说明理由.生6:在抛物线上是否存在点P,过点P作PDʅAC,垂足为D,使得әCPD与әCBO相似?若存在,求点P的坐标;若不存在,请说明理由.思维比较发散的学生也能想到更换角的顶点.生7:在抛物线上是否存在点P,使得øCAP=øBCO?若存在,求点P的坐标;若不存在,请说明理由.生8:在抛物线上是否存在点P,使得øACP=øACO?若存在,求点P的坐标;若不存在,请说明理由.在这种情况下,AC是øOCP的平分线,所以也可以利用角平分线加平行推导出等腰三角形来解决.一题多解的具体方法可以留给学生课后思考.如果此时学生觉得提问题有难度,那么教师可以继续引导学生思考:两个角还可能有什么关系?是互余㊁互补或两倍角吗?生9:在抛物线上是否存在点P,使得øPCA与øCAO互余?若存在,求点P的坐标;若不存在,请说明理由.这一环节实际上检验的是学生对这类问题是否真正建立起了数学模型,即是否都能转化为今天课堂开始时提出的问题.开放性的编题活动促使学生全身心地参与课堂活动,让学生在自己创造性的思考以及聆听他人想法的过程中感受这类问题的特点,强化了对这类问题的认知,突破了 就题论题 的弊端.以后碰到类似的问题时,学生就能迅速将新问题转化为旧问题,自身的数学思维得以提升.教师的例题是一个 纲 ,学生通过讨论将一个问题进行发散,将已有的知识进行串联㊁积累㊁加工,主动地进行一种更高难度的思维活动,是一种立足于整体的学习.在这一过程中,教师只需要扮演点拨者的角色,在学生有困难的时候帮助其将知识点牵桥搭线,建立起宏观的数学观念.课堂最后,教师拓展布置了一道题: 在相同的条件下,在第四象限是否存在点P,点Q在PB的延长线上,满足øCBQ=øCAB+45ʎ?若存在,求点P的坐标;若不存在,请说明理由. 这道题也涉及两个角度之间的关系,改编自一道中考题.学生通过课后思考巩固本节课所学知识及思想方法,链接了中考.同时,教师可以通过这道题检验学生的习得情况,对学生今日所学做出评价.三㊁数学活动变革学科育人‘义务教育数学课程标准(2022年版)“坚持了以往课标中对于数学基本属性的描述,即 数学是研究数量关系和空间形式的科学 ,还明确提出: 数学源于对现实世界的抽象,通过对数量和数量关系㊁图形和图形关系的抽象,得到数学的研究对象及其关系;基于抽象结构,通过对研究对象的符号运算㊁形式推理㊁模型构建等,形成数学的结论和方法,帮助人们认识㊁理解和表达现实世界的本质㊁关系和规律.数学不仅是运算和推理的工具,还是表达和交流的语言.数学承载着思想和文化,是人类文明的重要组成部分.以这节专题课作为 数学 的典型代表,学生学会了如何解决这类问题,在分析图形的过程中感悟到了转化㊁对比㊁类比等数学思想方法,同时经历了文字语言㊁图形语言的抽象归纳过程,提炼出思维精华,发展了建模素养,最后在开放性的问题中打破了知识的壁垒,建立了联系.这些真实㊁深刻的数学活动让学生的学习变得更有价值,学生在潜移默化中感悟到数学是什么,具备了认识世界的一种 眼光 ㊁思考世界的一种 方式 ㊁表达世界的一种 语言能力 .正如著名的数学家波利亚所说, 完善的思想方法犹如北极星 ,许多人通过它找到了正确道路,从 解题 学会 解决问题 ,从 做题 学会 做人做事 ,以期学生之所学终身受用.ʌ参考文献ɔ[1]义务教育数学课程标准修订组.聚焦核心素养㊀指向学生发展:义务教育数学课程标准(2022年版)解读[J].基础教育课程,2022(10):12-18.[2]史宁中.核心素养统领的数学教育:‘义务教育数学课程标准(2022年版)“修订的理念与要点[J].小学教学(数学版),2022(07):4-12.[3]陈华忠.‘义务教育数学课程标准(2022年版)“ 新 在何处[J].课程教材教学研究(小教研究),2022(07):7-10.。

函数模型及其应用

函数模型及其应用

1.几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0) 对数函数模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0) 幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)2.三种函数模型性质比较y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同常用结论“对勾”函数的性质形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a)和(a,+∞)上单调递增,在[-a,0)和(0,a]上单调递减.(2)当x>0时,x=a时取最小值2a,当x<0时,x=-a时取最大值-2a.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)幂函数增长比直线增长更快.()(2)不存在x0,使a x0<x n0<log a x0.()(3)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y =x a (a >1)的增长速度.( )(4)“指数爆炸”是指数型函数y =a ·b x +c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( )答案:(1)× (2)× (3)√ (4)× 二、易错纠偏常见误区| (1)对三种函数增长速度的理解不深致错; (2)建立函数模型出错;(3)分段函数模型的分并把握不准.1.已知f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是 ( )A .f (x )>g (x )>h (x )B .g (x )>f (x )>h (x )C .g (x )>h (x )>f (x )D .f (x )>h (x )>g (x )解析:选B .由图象知,当x ∈(4,+∞)时,增长速度由大到小依次为g (x )>f (x )>h (x ).故选B .2.在某个物理实验中,测量得变量x 和变量y 的几组数据,如表,则对x ,y A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2x解析:选D .根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.3.某城市客运公司确定客票价格的方法是:如果行程不超过100 km ,票价是0.5元/km ,如果超过100 km ,超过100 km 的部分按0.4元/km 定价,则客运票价y (元)与行程千米数x (km)之间的函数关系式是________.解析:由题意可得y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >100.答案:y =⎩⎨⎧0.5x ,0<x ≤100,0.4x +10,x >100利用函数图象刻画实际问题(师生共研)(2020·高考北京卷)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为W =f (t ),用-f (b )-f (a )b -a的大小评价在[]a ,b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t 1,t 2]这段时间内,甲企业的污水治理能力比乙企业强; ②在t 2时刻,甲企业的污水治理能力比乙企业强; ③在t 3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t 1],[t 1,t 2],[t 2.t 3]这三段时间中,在[0,t 1]的污水治理能力最强.其中所有正确结论的序号是________. 【解析】 设y =-f (b )-f (a )b -a,由已知条件可得甲、乙两个企业在[t 1,t 2]这段时间内污水治理能力强弱的数值计算式为-f (t 2)-f (t 1)t 2-t 1,由题图易知y 甲>y 乙,即甲企业的污水治理能力比乙企业强,所以①对;由题意知在某一时刻企业污水治理能力的强弱由这一时刻的切线的斜率的绝对值表示,所以②对;在t3时刻,由题图可知甲、乙两企业的污水排放量都在污水达标排放量以下,所以③对;由计算式-f(b)-f(a)b-a可知,甲企业在[0,t1]这段时间内污水治理能力最弱,所以④错.【答案】①②③正确理解题目所给的信息,并把信息翻译成数学问题是解决本题的第一个关键;理解一段时间内企业污水治理能力的强弱的计算式,并把这个计算式与函数图象在某点处切线的斜率联系起来是正确解决本题的第二个关键.1.(2020·河南信阳质量检测)如图1是某条公共汽车线路收支差额y与乘客量x的图象.由于目前本条线路亏损,公司有关人员提出了两种扭亏为盈的建议,如图2,3所示.根据图象判断下列说法正确的是()①图2的建议为减少运营成本;②图2的建议可能是提高票价;③图3的建议为减少运营成本;④图3的建议可能是提高票价.A.①④B.②④C.①③D.②③解析:选A.根据题意和题图2知,两条直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0,但是支出变少了,说明此建议是降低成本而保持票价不变.由题图3知,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,也就是票价提高了,说明此建议是提高票价而保持成本不变,综上可得①④正确,②③错误.故选A.2.汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1 L汽油,乙车最多可行驶5 kmB.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80 km/h的速度行驶1 h,消耗10 L汽油D.某城市机动车最高限速80 km/h,相同条件下,在该市用丙车比用乙车更省油解析:选D.对于A选项,从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L,故乙车消耗1 L汽油的行驶路程可大于5 km,所以A错误,对于B选项,由图可知甲车消耗汽油最少.对于C选项,甲车以80 km/h 的速度行驶时的燃油效率为10 km/L,故行驶1 h的路程为80 km,消耗8 L汽油,所以C错误,对于D选项,当最高限速为80 km/h且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以D正确.已知函数模型解决实际问题(师生共研)(1)人们用分贝(dB)来划分声音的等级,声音的等级d(x)(单位:dB)与声音强度x(单位:W/m2)满足d(x)=9lgx1×10-13.一般两人小声交谈时,声音的等级约为54 dB,在有50人的课堂上讲课时,老师声音的等级约为63 dB,那么老师上课时声音强度约为一般两人小声交谈时声音强度的()A .1倍B .10倍C .100倍D .1 000倍(2)(2020·陇西咸阳二模)为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y (mg/m 3)与时间t (h)的函数关系式为y =⎩⎪⎨⎪⎧kt ,0<t <12,1kt ,t ≥12(如图所示),实验表明,当药物释放量y <0.75(mg/m 3)时对人体无害.求:①k =________;②为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间.【解析】 (1)设老师上课时声音强度,一般两人小声交谈时声音强度分别为x 1 W/m 2,x 2 W/m 2,根据题意得d (x 1)=9lg x 11×10-13=63,解得x 1=10-6, d (x 2)=9lg x 21×10-13=54, 解得x 2=10-7,所以x 1x 2=10,所以老师上课时声音强度约为一般两人小声交谈时声音强度的10倍,故选B .(2)①由题图可知,当t =12时,y =1,即1k ×12=1⇒k =2.②由题意可得⎩⎪⎨⎪⎧t ≥12,12t <0.75,解得t >23,故为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过23×60=40(分钟)人方可进入房间.【答案】 (1)B (2)2 40求解所给函数模型解决实际问题的关键点(1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.(2020·河南安阳模拟)5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝ ⎛⎭⎪⎫1+S N .它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中S N 叫做信噪比.按照香农公式,若不改变带宽W ,而将信噪比SN 从1 000提升至2 000,则C 大约增加了( )A .10 %B .30 %C .50 %D .100 %解析:选A .将信噪比SN 从 1 000提升至 2 000,C 大约增加了W log 2(1+2 000)-W log 2(1+1 000)W log 2(1+1 000)=log 22 001-log 21 001log 21 001≈10.967-9.9679.967≈10 %,故选A .构建函数模型解决实际问题(多维探究) 角度一 构造一次函数、二次函数模型(1)某航空公司规定,乘飞机所携带行李的质量x (kg)与其运费y (元)之间的关系由如图所示的一次函数图象确定,那么乘客可免费携带行李的质量最大为______kg.(2)将进货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个.为了赚得最大利润,每个售价应定为______元.【解析】 (1)由图象可求得一次函数的解析式为y =30x -570,令30x -570=0,解得x =19.(2)设每个售价定为x 元,则利润y =(x -80)·[400-(x -90)·20]=-20[(x -95)2-225].所以当x =95时,y 最大. 【答案】 (1)19 (2)95角度二 构建指数函数、对数函数模型某公司为激励创新,计划逐年加大研发资金投入.若该公司2021年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2023年 B .2024年 C .2025年D .2026年【解析】 根据题意,知每年投入的研发资金增长的百分率相同,所以,从2021年起,每年投入的研发资金组成一个等比数列{a n },其中,首项a 1=130,公比q =1+12%=1.12,所以a n =130×1.12n -1.由130×1.12n -1>200,两边同时取对数,得n -1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,则n >4.8,即a 5开始超过200,所以2025年投入的研发资金开始超过200万元,故选C .【答案】 C角度三构建函数y=ax+bx(a>0,b>0)模型某养殖场需定期购买饲料,已知该场每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管费与其他费用平均每千克每天0.03元,购买饲料每次支付运费300元.求该养殖场多少天购买一次饲料才能使平均每天支付的总费用最少.【解】设该养殖场x(x∈N*)天购买一次饲料可使平均每天支付的总费用最少,平均每天支付的总费用为y元.因为饲料的保管费与其他费用每天比前一天少200×0.03=6(元),所以x天饲料的保管费与其他费用共是6(x-1)+6(x-2)+…+6=3x2-3x(元).从而有y=1x(3x2-3x+300)+200×1.8=300x+3x+357≥417,当且仅当300x =3x,即x=10时,y有最小值.故该养殖场10天购买一次饲料才能使平均每天支付的总费用最少.角度四构建分段函数模型某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y=f(x)的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?【解】(1)当x≤6时,y=50x-115,令50x-115>0,解得x>2.3,因为x为整数,所以3≤x≤6,x∈Z.当x>6时,y=[50-3(x-6)]x-115=-3x2+68x-115.令-3x 2+68x -115>0, 有3x 2-68x +115<0,结合x 为整数得6<x ≤20,x ∈Z .所以y =f (x )=⎩⎪⎨⎪⎧50x -115(3≤x ≤6,x ∈Z ),-3x 2+68x -115(6<x ≤20,x ∈Z ).(2)对于y =50x -115(3≤x ≤6,x ∈Z ), 显然当x =6时,y max =185; 对于y =-3x 2+68x -115=-3⎝ ⎛⎭⎪⎫x -3432+8113(6<x ≤20,x ∈Z ),当x =11时,y max =270.因为270>185,所以当每辆自行车的日租金定为11元时,才能使一日的净收入最多.(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解.但应关注以下两点:①分段要简洁合理,不重不漏;②分段函数的最值是各段的最大(或最小)值中的最大(或最小)值.(2)指数函数、对数函数模型解题,关键是对模型的判断,先设定模型,将有关数据代入验证,确定参数,求解时要准确进行指、对数运算,灵活进行指数与对数的互化.1.(2020·四川绵阳模拟)2020年3月,国内新冠肺炎疫情得到有效控制,人们开始走出家门享受春光.某旅游景点为吸引游客,推出团体购票优惠方案如表:1 290元;若合并成一个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为( )A .20B .30C .35D .40解析:选B .设两个旅游团队的人数分别为a ,b 且a ,b ∈N *,不妨令a ≥b ,因为1 290不能被13整除,所以a +b ≥51.若51≤a +b ≤100,则11(a +b )=990,得a +b =90,①由分别购票共需支付门票费为1 290元可知,11a +13b =1 290,② 联立①②解得b =150,a =-60,不符合题意; 若a +b >100,则9(a +b )=990,得a +b =110,③由分别购票共需支付门票费为1 290元可知,1≤b ≤50,51≤a ≤100, 得11a +13b =1 290,④联立③④解得a =70,b =40. 所以这两个旅游团队的人数之差为70-40=30.故选B .2.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤______次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)解析:设至少过滤n 次才能达到市场要求, 则2%⎝ ⎛⎭⎪⎫1-13n ≤0.1%,即⎝ ⎛⎭⎪⎫23n ≤120,所以n lg 23≤-1-lg 2,所以n ≥7.39,所以n =8. 答案:83.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地,第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元,每年销售蔬菜的收入为26万元.设f (n )表示前n 年的纯利润,则从第________年开始盈利.[f (n )=前n 年的总收入—前n 年的总费用支出—投资额]解析:由题意知f (n )=26n -⎣⎢⎡⎦⎥⎤8n +n (n -1)2×2-60=-n 2+19n -60. 令f (n )>0,即-n 2+19n -60>0,解得4<n <15, 所以从第5年开始盈利. 答案:5高考新声音2 美育为魂,陶养身心“美”是景与情的交融,以美育人,让学生懂得爱、爱美,提高学生审美和人文素养,以美育为背景的考题,多以提高学生审美和人文素养为题材,常以图、文并用的方式表现,意在考查逻辑推理和数学运算等核心素养.(2019·高考全国卷Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12(5-12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cm【解析】 26+26÷0.618+(26+26÷0.618)÷0.618≈178(cm),故其身高可能是175 cm,故选B.【答案】 B本题涉及了“黄金比”和“断臂维纳斯”,并渗透了估值思想.以往高考试题中往往选择中国古代《九章算术》中的数学文化题,这一网红题选择大家熟悉的黄金分割为背景,通过设置真实情景,引导学生从“解题”到“解决问题”能力的培养,使学生能够灵活运用所学知识分析问题和解决问题.中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美.给出定义:能够将圆的周长和面积同时平分的图象对应的函数称为这个圆的“优美函数”,给出下列命题:①对于任意一个圆O,其“优美函数”有无数个;②函数f(x)=ln(x2+x2+1)可以是某个圆的“优美函数”;③函数y=1+sin x可以同时是无数个圆的“优美函数”;④函数y=2x+1可以同时是无数个圆的“优美函数”;⑤函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题是________.(填序号)解析:①对于任意一个圆O,其对称轴有无数条,所以其“优美函数”有无数个,①正确;②函数f(x)=ln(x2+x2+1)的定义域为R,值域为[0,+∞),其图象关于y轴对称,且在x轴及其上方,故不可以是某个圆的“优美函数”,②错误;③根据y=sin x的图象可知函数y=1+sin x的图象可以将圆的周长和面积平分,又y=1+sin x的图象可以延伸,所以可以同时是无数个圆的“优美函数”,③正确;④函数y =2x +1的图象只要过圆心,就可以同时是无数个圆的“优美函数”,④正确;⑤错误,有些中心对称图形对应的函数不一定是圆的“优美函数”,比如“双曲线”,故答案为①③④.答案:①③④[A 级 基础练]1.(2020·江西南昌模拟)衡东土菜辣美鲜香,享誉三湘.某衡东土菜馆为实现100万元年经营利润目标,拟制订员工的奖励方案:在经济利润超过6万元的前提下奖励,且奖金y (单位:万元)随经营利润x (单位:万元)的增加而增加,但奖金总数不超过3万元,同时奖金不能超过利润的20%.下列函数模型中,符合该要求的是( )(参考数据:1.015100≈4.432,lg 11≈1.041) A .y =0.04x B .y =1.015x -1 C .y =tan ⎝ ⎛⎭⎪⎫x 19-1D .y =log 11(3x -10)解析:选D .对于函数y =0.04x ,当x =100时,y =4>3,不符合题意;对于函数y =1.015x -1,当x =100时,y ≈3.432>3,不符合题意;对于函数y =tan ⎝ ⎛⎭⎪⎫x 19-1,不满足在x ∈(6,100]上单调递增,不符合题意;对于函数y =log 11(3x -10),满足在x ∈(6,100]上是增函数,且y ≤log 11(3×100-10)=log 11290<log 111 331=3,画出y =15x 与y =log 11(3x -10)的图象如图所示,符合题意,故选D .2.已知某服装厂生产某种品牌的衣服,销售量q (x )(单位:百件)关于每件衣服的利润x (单位:元)的函数解析式为q (x )=⎩⎨⎧1 260x +1,0<x ≤20,90-35x ,20<x ≤180,则当该服装厂所获效益最大时,x =( )A .20B .60C .80D .40解析:选C .设该服装厂所获效益为f (x )元, 则f (x )=100xq (x )=⎩⎪⎨⎪⎧126 000x x +1,0<x ≤20,100x (90-35x ),20<x ≤180.当0<x ≤20时,f (x )=126 000x x +1=126 000-126 000x +1, f (x )在区间(0,20]上单调递增, 所以当x =20时,f (x )有最大值120 000. 当20<x ≤180时,f (x )=9 000x -3005·x x , 则f ′(x )=9 000-4505·x ,令f ′(x )=0,得x =80,当20<x <80时,f ′(x )>0,f (x )单调递增,当80≤x ≤180时,f ′(x )≤0,f (x )单调递减,所以当x =80时,f (x )有极大值,也是最大值,为240 000.故选C . 3.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对于进价),则该家具的进价是( )A .118元B .105元C .106元D .108元解析:选D .设进价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.故选D .4.素数也叫质数,法国数学家马林·梅森是研究素数的数学家中成就很高的一位,因此后人将“2n -1”形式(n 是素数)的素数称为梅森素数.已知第20个梅森素数为P =24 423-1,第19个梅森素数为Q =24 253-1,则下列各数中与PQ 最接近的数为(参考数据:lg 2≈0.3)( )A .1045B .1051C .1056D .1059解析:选B .由题知P Q =24 423-124 253-1≈2170.令2170=k ,则lg 2170=lg k ,所以170lg2=lg k .又lg 2≈0.3,所以51=lg k ,即k =1051,所以与PQ 最接近的数为1051.故选B .5.车辆驾驶人员饮酒后或者醉酒后驾车血液中的酒精含量阈值见表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如图,且该图表示的函数模型为f (x )=⎩⎪⎨⎪⎧40sin ⎝ ⎛⎭⎪⎫π3x +13,0≤x <2,90e -0.5x +14,x ≥2,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:ln 15≈2.71,ln 30≈3.40)( )车辆驾驶人员血液酒精含量阈值 驾驶行为类型 阈值(mg/100 mL) 饮酒后驾车 ≥20,<80 醉酒后驾车≥80A .5 hB .6 hC .7 hD .8 h解析:选B .由题意可知当酒精含量阈值低于20时才可以开车,结合分段函数建立不等式90e -0.5x +14<20,解得x >5.42,取整数,故为6个小时.故选B .6.(2020·辽宁辽南协作校一模)考古学家经常利用碳14的含量来推断古生物死亡的时间.当有机体生存时,会持续不断地吸收碳14,从而其体内的碳14含量会保持在一定的水平;但当有机体死亡后,就会停止吸收碳14,其体内的碳14含量就会逐渐减少,而且每经过大约5 730年后会变为原来的一半.假设有机体生存时碳14的含量为1,如果用y 表示该有机体死亡x 年后体内碳14的含量,则y 与x 的关系可以表示为________.解析:依题意可设y =⎝ ⎛⎭⎪⎫12ax,当x =5 730时,y =12,即有12=⎝ ⎛⎭⎪⎫12 5 730a ,解得a=15 730,故答案为y =⎝ ⎛⎭⎪⎫12x5 730.答案:y =⎝ ⎛⎭⎪⎫12x5 7307.(2020·安徽滁州定远4月模拟)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P (毫克/升)与时间t (小时)的关系为P = P 0e -kt ,如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为________小时.解析:由题意可知,(1-0.1)P 0 =P 0e -5k ,即0.9=e -5k ,故-5k =ln 0.9,又(1-0.19)P 0=P 0e -kt ,即0.81=e -kt ,所以-kt =ln 0.81=2ln 0.9=-10k ,所以t =10.答案:108.为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图记录了样本树的生长时间t (年)与树高y (米)之间的关系.请你据此判断,在下列函数模型:①y =2t -a ;②y =a +log 2t ;③y =12t +a ;④y =t +a 中(其中a 为正的常实数),拟合生长年数与树高的关系最好的是________(填写序号),估计该树生长8年后的树高为________米.解析:由散点图的走势,知模型①不合适.曲线过点⎝ ⎛⎭⎪⎫4,73,则后三个模型的解析式分别为②y =13+log 2t ;③y =12t +13;④y =t +13,易知拟合最好的是②.将t =8代入②得8年后的树高为103米.答案:② 1039.声强级Y (单位:分贝)由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12给出,其中I 为声强(单位:W/m 2).(1)平常人交谈时的声强约为10-6W/m 2,求其声强级;(2)一般常人能听到的最低声强级是0分贝,求能听到最低声强为多少? (3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7W/m 2,问这两位同学是否会影响其他同学休息?解:(1)当声强为10-6W/m 2时, 由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12得Y =10lg ⎝ ⎛⎭⎪⎪⎫10-610-12=10lg 106=60(分贝). (2)当Y =0时,由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12得10lg ⎝ ⎛⎭⎪⎫I 10-12=0.所以I 10-12=1,即I =10-12W/m 2,则常人能听到的最低声强为10-12W/m 2. (3)当声强为5×10-7W/m 2时,声强级Y =10lg ⎝ ⎛⎭⎪⎪⎫5×10-710-12=10lg(5×105)=50+10lg 5, 因为50+10lg 5>50,所以这两位同学会影响其他同学休息.10.某书商为提高某套丛书的销售量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到(15-0.1x )万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问:(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元? (2)每套丛书售价定为多少元时,单套丛书的利润最大?解:(1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),此时每套丛书的供货价格为30+105=32(元),所以书商所获得的总利润为5×(100-32)=340(万元).(2)每套丛书售价定为x 元时,由⎩⎪⎨⎪⎧15-0.1x >0,x >0,解得0<x <150.依题意,设单套丛书的利润为P ,则P =x -⎝ ⎛⎭⎪⎫30+1015-0.1x =x -100150-x -30,=-⎣⎢⎡⎦⎥⎤(150-x )+100150-x +120. 因为0<x <150,所以150-x >0,则(150-x )+100150-x≥2(150-x )·100150-x=2×10=20,当且仅当150-x =100150-x,即x =140时等号成立, 此时,P max =-20+120=100.所以每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元.[B 级 综合练]11.某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100 ℃,水温y (℃)与时间t (min)近似满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度y (℃)与时间t (min)近似满足的函数关系式为y =80⎝ ⎛⎭⎪⎫12t -a10+b (a ,b为常数).通常这种热饮在40 ℃时口感最佳.某天室温为20 ℃时,冲泡热饮的部分数据如图所示,那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为( )A .35 minB .30 minC .25 minD .20 min解析:选C .由题意知,当0≤t ≤5时,函数图象是一条线段;当t ≥5时,函数的解析式为y =80⎝ ⎛⎭⎪⎫12t -a10+b .将点(5,100)和点(15,60)代入解析式可得⎩⎨⎧100=80⎝ ⎛⎭⎪⎫125-a10+b ,60=80⎝ ⎛⎭⎪⎫1215-a10+b ,解得a =5,b =20,故函数的解析式为y =80⎝ ⎛⎭⎪⎫12t -510+20,t≥5.令y =40,解得t =25,所以最少需要的时间为25 min.故选C .12.(2020·安徽淮北一中第五次月考)华罗庚是上世纪我国伟大的数学家,以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华王方法”等.他除了数学理论研究,还在生产一线大力推广了“优选法”和“统筹法”.“优选法”是指研究如何用较少的试验次数,迅速找到最优方案的一种科学方法.在当前防疫取得重要进展的时刻,为防范机场带来的境外输入,某机场海关在对入境人员进行检测时采用了“优选法”提高检测效率:每1 6人为一组,把每个人抽取的鼻咽拭子分泌物混合检查,如果为阴性则全部放行;若为阳性,则对该16人再次抽检确认感染者.某组16人中恰有一人感染(鼻咽拭子样本检验是阳性),若逐一检测可能需要15次才能确认感染者.现在先把这16人均分为2组,选其中一组8人的样本检查,若为阴性则认定在另一组;若为阳性则认定在本组.继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查……以此类推,最终从这16人中认定那名感染者需要检测的次数为()A.3 B.4C.6 D.7解析:选B.先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了1次检测.继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了2次检测.继续把认定的这组的4人均分两组,选其中一组2人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了3次检测.选认定的这组的2人中一人进行样本检查,若为阴性则认定是另一个人;若为阳性则认定为此人,此时进行了4次检测.所以,最终从这16人中认定那名感染者需要经过4次检测.故选B.13.某地下车库在排气扇发生故障的情况下测得空气中一氧化碳含量达到了危险状态,经抢修排气扇恢复正常.排气4分钟后测得车库内的一氧化碳浓度为64 ppm,继续排气4分钟后又测得浓度为32 ppm.由检验知该地下车库一氧化碳浓度y(ppm)与排气时间t(分钟)之间存在函数关系y=c(12)mt(c,m为常数).(1)mc的值为________;(2)若空气中一氧化碳浓度不高于0.5 ppm 为正常,则这个地下车库中的一氧化碳含量达到正常状态至少需排气________分钟.解析:(1)由题意可列方程组⎩⎪⎨⎪⎧64=c ⎝ ⎛⎭⎪⎫124m ,32=c ⎝ ⎛⎭⎪⎫128m ,两式相除,解得⎩⎨⎧c =128,m =14, 则mc =128×14=32.(2)由题意可列不等式128⎝ ⎛⎭⎪⎫1214t ≤0.5, 所以⎝ ⎛⎭⎪⎫1214t ≤⎝ ⎛⎭⎪⎫128,即14t ≥8,解得t ≥32. 故至少排气32分钟,这个地下车库中的一氧化碳含量才能达到正常状态. 答案:(1)32 (2)3214.某旅游景点预计2021年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似为p (x )=12x (x +1)·(39-2x )(x ∈N *,且x ≤12).已知第x个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧35-2x ,x ∈N *,且1≤x ≤6,160x,x ∈N * 且7≤x ≤12. (1)写出2021年第x 个月的旅游人数f (x )(单位:万人)与x 的函数关系式;(2)试问2021年第几个月的旅游消费总额最大?最大月旅游消费总额为多少元?解:(1)当x =1时,f (1)=p (1)=37,当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12x (x -1)(41-2x )=-3x 2+40x ,经验证x =1时也满足此式.所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12).(2)第x (x ∈N *)个月的旅游消费总额为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与角度模型
例题、已知在坐标系中,点P为抛物线y=x2上一动点,点A的坐标为(4,2),若∠AOP=45°,求点P的坐标
做法
①确定点,结合角的定义角是由两条具有公共端点的射线组成,故在射线OA上方的抛物线上存在点P满足∠AOP=45°;
②构造弦图,以定点A为直角顶点构造等腰直角三角形,借助弦图(一线三垂直结构),转化为两个直角三角形全等(或相似)求得点B得坐标为(2,6);
③联立方程求交点坐标,联立OP得解析式为y=3x和抛物线y=x2,求得交点P 坐标
模型应用
1. 如图,抛物线y=-x2-3x+4与x轴交于A,B两点(点A在点B右侧),与y 轴交于点C.D为抛物线上的一点,且D(-3,4),连接BD,点P为抛物线上一点.若∠DBP=45°,则点P的坐标为()。

相关文档
最新文档