方程、计数、最值、行程等问题中的数论综合(下)

合集下载

45.第四十五讲 方程、计数、最值、行程等问题中的数论综合

45.第四十五讲 方程、计数、最值、行程等问题中的数论综合

第四十五讲方程、计数、最值、行程等问题中的数
论综合
知识点汇总:
1.不定方程(组)
2.数论计数
3.数论最值
4.数论行程
例题练习:
1、解方程
96480
15
a b c
a b c
++=


++=

(其中a、b、c均为自然数 )
2、两个四位数ACCC和CCCB满足,
2
5
ACCC
CCCB
=请问A×B×C之值是什么?
3、如图,三条圆形跑道,每条跑道的长都是1千米,A、B、C三位运动员同时从交点O出
发,分别沿三条跑道跑步,他们的速度分别是每小时4
3
千米,每小时
6
5
千米,每小时
8
9
千米。

问:从出发到三人第一次相遇,他们共跑了多少千米?
4、2001个连续的自然数之和为a×b×c×d,若a、b、c、d都是质数,则a+b+c+d的最小
值是多少?
【本讲重要内容回顾】。

第20讲 数论综合二完整版

第20讲 数论综合二完整版

第20讲数论综合二兴趣篇1.有4个不同的正整数,它们中任意2个数的和都是2的倍数,任意3个数的和都是3的倍数,要使这4个数的和尽可能小,请问:这4个数应该分别是多少?答案:1、7、13、19解析:“任意2个数的和都是2的倍数”说明四个数奇偶性相同,“任意3个数的和都是3的倍数”说明四个数除以3的余数相同.若这四个数为奇数,第一个数为1,依次加6可得四个数为1、7、13、19.若这四个数为偶数,第一个数为2,依次加6可得四个数为2、8、14、20.显然第一组更小.2.已知算式(1+2+3+…+n)+ 2007的结果可表示为n(n>l)个连续自然数的和.请问:共有多少个满足要求的自然数n?答案:5个解析:1+2+3+…+n是项数为n的等差数列之和,我们考虑将2007平均分成n份,加到每一项上即可.2007=32×223,有6个约数,分别为1、3、9、223、669、2007。

其中1舍去,有5个满足要求的自然数。

3.有些自然数能够写成一个质数与一个合数之和的形式,并且在不计加数顺序的情况下,这样的表示方法至少有4种,请问:所有满足上述条件的自然数中最小的一个是多少?答案:11解析:因为有四种表示方法,至少涉及四个质数,最小的四个质数是2、3、5、7,最小的四个合数是4、6、8、9,恰好有11=7+4=5+6=3+8= 2+9.因此满足条件最小的数是11.4.甲、乙两个自然数的乘积比甲数的平方小2008.请问:满足上述条件的自然数有几组?答案:4组解析:由题目条件得,甲×甲-甲×乙=甲×(甲-乙)2008,将2008写成两个数乘积的形式,有如下几种:2008=2008×1=1004×2=502×4=251×8.因此满足条件的甲、乙数为(2008,2007)、(1004,1102)、(502,498)、(251,243),共有4组.5.两个不同两位数的乘积为完全平方数,请问:它们的和最大可能是多少?答案:170解析(1)两个数均为平方数,则它们的乘积仍为平方数,这种情况和最大为81+64=145.(2)两个数均不是平方数,则这两个数为a×m2,a×n2(其中m不等于n).对可能的情况进行讨论:当a=2时,这两个数最大是2×72、2×62,和为98+72=170.当a=3时,这两个数最大是3×25、3×16,和为75+48=123.当a=5时,这两个数最大是5×16、5×9,和为80+45=125.当a=6时,这两个数最大是6×16、6×9,和为96+54=150.……经讨论,和最大为170.6.n个自然数,它们的和乘以它们的平均数后得到2008.请问:n最小是多少?答案:502解析:由于2008=2008×1=1004×2=502×4=251×8,如果这挖个数的和为2008,平均数为1,那么n为2008.如果这n个数的和为1004,平均数为2,那么n为502.知果这n个数的和为502,平均数为4,那么这不可能,如果这n 个数的和为251,平均数为8,那么这不可能,因此n最小是502.7.一个正整数若能表示为两个正整数的平方差,则称这个数为“智慧数”,比如16=52-32,16就是一个“智慧数”,请问:从1开始的自然数列中,第2008个“智慧数”是多少?答案:2680解析:通过尝试可以发现如下规律:相邻两个平方数的差为3,5,7,9,11…即除1外,所有的奇数均为“智慧数’’.相邻两个奇数的平方差与相邻两个偶数的平方差为8,12,16,20,24,28…即除4之外,所有4的倍数的数是“智慧数”,所以1~2000的“智慧数”有2000÷2 +2000÷4-2=1498个.1~2500的“智慧数”有2500÷2+2500÷4-2=1873个.1~2700的“智慧数”有2700÷2+2700÷4-2=2023个.因此第2008个“智慧数”为2680.8.将1001-5分别除以2,3,4,…,100,可以得到99个余数(余数有可能为0).请问:这99个余数的和是多少?答案:4565解析:100!能够被2,3,4,…,100整除,100!-5除以100的余数为100-5=95,100!-5除以99的余数为99 -5=94,100! -5除以98的余数为98- 5=93,…,100!-5除以6的余数为6-5 =1,除以5余0,除以4余3,除以3余1,除以2余1(判断除以2、3、4的余数,只需用2、3、4的倍数减5即可).所以余数和为1+1+3+0+1+2+…+94+95=5+(1+95)×95÷2 = 4565.9.卡莉娅、小高和墨莫三人经常去电影院,卡莉娅每隔2天去一次,小高每隔4天去一次,墨莫每隔6天去一次.今天他们三人都去电影院,将来会有连续三天都有人去电影院.如果今天是第1天,那么最早出现的具有上述性质的连续三天是哪三天?答案:第6天、第7天和第8天解析:由题意知,卡莉娅将在第4天、第7天、第10天……去电影院.小高将在第6天、第11天、第16天……去电影院.墨莫将在第8天、第15天、第22天……去电影院.则最早出现的连续三天是第6天、第7天和第8天.10.有三个连续的自然数,它们的平方从小到大依次是10、9、8的倍数.请问:这三个数中最小的一个是多少?答案:50解析:三个连续自然数的平方从小到大依次是10、9、8的倍数,则三个连续自然数从小到大依次是10、3、4的倍数.由龀可推断出三个数中最小的数是10的倍数,并且除以3余2,除以4余2.满足上述条件最小的数是50.拓展篇1.有一个正整数,它加上100后是一个完全平方数,加上168后也是一个完全平方数.请问:这个正整数是多少?答案:156解析:设这个正整数为n ,则n+100=b 2,n+168=a 2,两式相减得a 2-b 2=68,而a 2-b 2=(a+b)×(a-b ),68=1×68 =2×34=4×17,由此可得⎩⎨⎧==+,,2b -a 34b a 解得⎩⎨⎧==,16b ,18a 所以n 为156.2.如果三个正整数a 、b 、c 满足a 2 +b 2=c 2,则称这三个数构成一个勾股数组(a ,b ,c).与5有关的勾股数组有两组:(3,4,5)和(5,12,13),请问:与13有关的勾股数组有哪些?答案:(5,12.13)、(13, 84, 85)解析:当c= 13时,则很显然(5,12,13)是一组勾股数.当a=13时,则132 +b 2=169+b 2=C 2,即c 2-b 2=(c+b)×(c-b)=169×1,由此可得⎩⎨⎧==+,1b -c ,169b c 解得⎩⎨⎧==84,b ,85c 因此(13, 84, 85)也是一组勾股数.3.小高往一个水池里扔石子.第一次扔1颗石子,第二次扔2颗石子,第三次扔3颗石子,第四次扔4颗石子……他准备扔到水池的石子总数是106的倍数,请问:小高最少需要扔多少次?答案:52次解析:小高扔的石子数为n ×(n+1)÷2,而106=2×53,因此,n 或n+1其中有一个应是53或53的倍数,当n=52时,满足石子数是106的倍数,因此小高最少需要扔52次.4.已知两个自然数的最大公约数是6,两数之和为1998.请问:满足上述条件的数一共有多少组?答案:108组解析:设甲、乙两数分别为6a、6b,其中a与b互质,且6a+6b=1998,即a+b=333=32×37,将333分成两数之和,共有166组分法,其中当两数是3或37的倍数时.两数不互质.同时166÷3=55……1,166÷37 =4……18,其中111被算了两次,因此满足条件的组数有166-55-4+1=108组.5.数学老师把一个两位数的约数个数告诉了墨莫,聪明的墨莫仔细思考了一下后算出了这个数,同学们,你们知道这个数可能是多少吗?答案:64或36解析:若约数个数为2个,是质数,这样的两位数有很多.若约数个数为3个,可以用a2来表示,也有很多.约数个数为4个的两位数也有很多.约数个数为5个的数可以表示为a4,有16和81,不唯一,约数个数为6个的两位数也不唯一,约数个数为7个的两位数表示为a6,只有26 =64,是唯一的,同样的,约数个数为9个的两位数也是唯一的,只有36.约数个数更多的两位数,或者不唯一,或者不存在,因此这个数可能为64或36.6.在一个正整数的所有约数中,个位数字为0,1,2,…,9的数都出现过,请问:这样的正整数最小是多少?答案:270解析:若约数的个位数字为0,则这个数应为10的倍数.若约数的个位数字为9,则这个数至少是9的倍数,这样个位数字为0、1、2、3、5、6、8、9都不用再考虑.再考虑个位数字为7,则至少是7的倍数,或者为27的倍数也可以,满足上述条件的数为630或270.两者都含有个位数字为4的约数.因此最小为270.7.甲、乙两个三位数的乘积是一个五位数,这个五位数的后四位数是3456.如果甲的数字和是8,乙的数字和是14,那么甲、乙两数之差是多少?答案:30解析:甲的数字和是8,乙的数字和是14,若没有进位,乘积的数字和应为112,除以9余4,若有进位,每进一位,数字和减少9,最终乘积酌数字和仍然除以9余4,因此这个五位数只能为43 456.分解质因数得43456=26×7×97,容易找到满足条件的数为224和194,差为30.8.A 求最小的正整数n ,使得2006+7n 是完全平方数,答案:29解析:452=2025,2025-2006=19不是7的倍数.462=2116,2116-2006=110不是7的倍数.472 =2209, 2209-2006=203是7的倍数,商为29.因此满足条件的最小的正整数n 为29.9.请写出由不同的两位数组成的最长的等比数列.答案:16、24、36、54、81解析:容易想到的结果为10、20、40、80,即公比为2.但实际上公比还可以更小,比如23,此时要求第一项应为24 =16的倍数,因此等比数列可以为16、24、36. 54.。

小学奥数七大模块详解(超详细结构图)

小学奥数七大模块详解(超详细结构图)

小学奥数七大模块详解(超详细结构图)本文介绍了小学奥数的七大模块,包括计算、数论、几何、行程、应用题、计数和杂题。

模块一:计算模块这个模块包括速算与巧算、分数小数四则混合运算及繁分数运算、循环小数化分数与混合运算、等差及等比数列、计算公式综合、分数计算技巧之裂项、换元、通项归纳、比较与估算、定义新运算和解方程。

模块二:数论模块这个模块包括质数与合数、因数与倍数、数的整除特征及整除性质、位值原理、余数的性质、同余问题、中国剩余定理(逐级满足法)、完全平方数、奇偶分析、不定方程、进制问题和最值问题。

模块三:几何模块这个模块包括直线型和曲线型两部分。

直线型包括长度与角度、格点与割补、三角形等积变换与一半模型、勾股定理与弦图和五大模型。

曲线型包括圆与扇形的周长与面积和图形旋转扫过的面积问题。

此外,还包括立体几何,包括立体图形的面积与体积、平面图形旋转成的立体图形问题、平面展开图和液体浸物问题。

模块四:行程模块这个模块包括简单相遇与追及问题、环形跑道问题、流水行船问题、火车过桥问题、电梯问题、发车间隔问题、接送问题、时钟问题、多人相遇与追及问题、多次相遇追及问题和方程与比例法解行程问题。

模块五:应用题模块这个模块包括列方程解应用题、分数、百分数应用题、比例应用题、工程问题、浓度问题、经济问题和牛吃草问题。

模块六:计数模块这个模块包括枚举法之分类枚举、标数法、树形图法、分类枚举之整体法、对应法、排除法、加乘原理、排列组合和容斥原理。

小学奥数七大模块详解模块一:从简单情况入手在解决问题时,我们可以从简单情况入手,逐步深入,找到规律,从而解决更复杂的问题。

模块二:对应与转化思想对应与转化思想是一种常用的解决问题的方法,通过将问题转化为另一种形式,或者与另一个问题进行对应,从而得出答案。

模块三:从反面与从特殊情况入手思想有时候,我们可以通过考虑问题的反面或特殊情况来解决问题。

这种思想可以帮助我们发现问题的本质,从而找到解决问题的方法。

小六数学第21讲:数论综合(学生版)

小六数学第21讲:数论综合(学生版)

第二十一讲数论综合数论是历年小升初的考试难点,各学校都把数论当压轴题处理。

由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。

数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。

作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。

基本公式1.已知b|c,a|c,则[a,b]|c,特别地,若(a,b)=1,则有ab|c。

2.已知c|ab,(b,c)=1,则c|a。

3.唯一分解定理:任何一个大于1的自然数n都可以写成质数的连乘积,即n= p11a× p22a×...×p k k a(#)其中p1<p2<...<p k为质数,a1,a2,....a k为自然数,并且这种表示是唯一的。

该式称为n的质因子分解式。

4.约数个数定理:设自然数n的质因子分解式如(#)那么n的约数个数为d(n)=(a1+1)(a2+1)....(a k+1)所有约数和:(1+P1+P12+…p11a)(1+P2+P22+…p22a)…(1+P k+P k2+…p k k a)5.用[a,b]表示a和b的最小公倍数,(a,b)表示a和b的最大公约数,那么有ab=[a,b]×(a,b)。

6.自然数是否能被3,4,25,8,125,5,7,9,11,13等数整除的判别方法。

7.平方数的总结:①平方差:A2-B2=(A+B)(A-B),其中我们还得注意A+B, A-B同奇偶性。

②约数:约数个数为奇数个的是完全平方数。

约数个数为3的是质数的平方。

③质因数分答案:把数字分答案,使他满足积是平方数。

④立方和:A3+B3=(A+B)(A2-AB+B2)。

8.十进制自然数表示法,十进制和二进制,八进制,五进制等的相互转化。

9.周期性数字:abab=ab×1011.全面掌握数论的几大知识点,能否在考试中取得高分,解出数论的压轴大题是关键。

高思数学_6年级下第四讲数论与方程.pdf

高思数学_6年级下第四讲数论与方程.pdf

数论是研究自然数规律的学科,至今我们已经学过了整除、同余、约数、倍数等许许多多的数论知识,了解了很多与自然数有关的现象与规律.这些规律都颇为优美而实用,帮我们解决了很多问题.为了进一步挖掘这些规律的本质,我们需要引进用字母表示数的想法,将数论与代数,尤其是方程结合起来.2的个位数字是多少,考虑数列2,22,32,42,…,用余数可替代性比如,求100结合找规律的想法,发现该数列每一项的个位数字组成的数列是以4为周期的:2,4,8,6,2,4,8,6,…,因而1002的个位数字与42的个位数字相同,故个位数字为6.那么为什么会有“4”这一个周期呢?用代数方法很容易说明:对任意正整数n ,由于()4422221215n n n n +−=−=×(其中15是5的倍数,2n 是2的倍数),故422n n +−一定是10的倍数,所以42n +与2n 个位数字相同.引入代数思想,能帮助我们很好地解释数论中存在的各种规律.当然,要熟练地应用代数思想来解释数论规律并不是一件容易的事情.在这一讲,我们只学习几个典型问题,目的在于实现小学数论到初中数论知识的过渡.分析 2n 可以用来表示所有偶数,21n −可以表示所有奇数,如n 取2时,22×是第2个正偶数,221×−是第二个正奇数.那么能否用一个类似的式子来表示出所给数列的每一项呢?练习1. 在数列5,10,15,20,25,…中,如果前n 个数的乘积的末尾0的个数比前2n +个数的乘积的末尾0的个数少5个,那么n 最小是多少?分析 要了解什么样的数是智慧数,不妨先计算一些智慧数,看看其中藏着什么玄机,有什么规律?的乘积的末尾最小是多少?练习2. 一只乌龟,它10年前的年龄是完全平方数,10年后的年龄也是完全平方数,这只乌龟今年几岁?分析 小高扔的石子总数与扔石子次数之间是什么关系呢?练习3. 卡莉娅天天吃零食,第一天吃了100颗巧克力豆,第二天吃了99颗,第三天吃了98颗,……,不到60天,所有巧克力豆都被吃光了.已知开始时,这些巧克力豆都是装在袋子里的,每个袋子30颗,那么卡莉娅共吃了多少袋巧克力豆?分析 设与4相邻的数为a ,则4a 要是4a +的倍数.这里的自然数a 有哪些可能取值?2颗石子,第三次扔子总数是练习4. 有甲、乙两个自然数,甲是乙的10倍,甲与乙的乘积能被甲与乙的和整除,那么甲数最小是多少?分析 不妨设小高、小娅分别胜了m 局和n 局,那么最后的得分之差怎么表示?它要是110的倍数,意味着什么?练习5. 墨莫和萱萱玩游戏,规则如下:开始每人都是1分,每局获胜的小朋友都可以把自己的分数乘以3,输的小朋友保持分数不变.最后墨莫获胜,他比萱萱多的分数是39的倍数,那么他们最少玩了多少局?每局获胜的小朋友都可以把自己的分数乘以最后小高获胜,连续自然数.现在设置指针第一秒转动的角度为的整数)如果指针在第一圈内恰好能指回出发位置,那么置方法?最小可以被设成多少?本讲知识点汇总一、复习所学过的各种数论知识,初步学会用代数思想来解释余数的周期性.二、学习用代数方法来表示数列的通项.三、用代数思想来处理一些特殊的不定方程问题:1. 平方差问题:两个正整数的平方差要么是奇数,要么是4的倍数; 2.二次不定方程及指数不定方程问题.这类问题常结合整除、余数知识来进行处理.作业1. 在数列2,5,8,11,14,17,20,…中,如果前n 个数的乘积的末尾0的个数比前1n +个数的乘积的末尾0的个数少2个,那么n 最小是多少?2.“勾三、股四、弦五”是一组勾股数,满足:222345+=且3、4、5都是正整数.当“勾七”时,股和弦各是多少?3. 太上老君炼仙丹,第一次炼一丹,第二次炼三丹,第三次炼五丹,第四次炼七丹, ,颗颗炼成不老长生丹.然后装入金葫芦,每个葫芦六十丹,恰装满葫芦若干.已知丹数不足千,问共炼多少仙丹?4. 请你在5与6之间插入两个非零自然数,使得其中每相邻两个数的和可以整除它们的乘积.5. 一只怪兽的现在的攻击力是1点.该怪兽带着一枚硬币,硬币有正反两面.每次投掷硬币,如果投到正面,则现有攻击力翻倍;如果投到反面,则现有攻击力减11,如果不够减,则怪兽死亡.已知这只怪兽投掷了若干次(至少一次)硬币之后,依然活着,而且攻击力依然为1点,那么它最少掷了多少次硬币?。

小学数学六年级下册数论之数论综合六年级小升初讲课上课PPT教学课件

小学数学六年级下册数论之数论综合六年级小升初讲课上课PPT教学课件
例题1:在1~100这100个自然数中,所有不能被8整除的数的和是多少?
练习1:有一些长6厘米,宽4厘米,高8厘米的长方体木块,如 果用这些木块组成一个正方体,则至少需要这种木块( )块 。
例题1:在1~100这100个自然数中,所有不能被8整除的数的和是多少?
练习2:用长为45厘米、宽为30厘米的一批瓷砖,铺成一个正 方形,至少需要瓷砖的块数为( )。
例题1:在1~100这100个自然数中,所有不能被8整除的数的和是多少?
练习2:某个两位数加上3后被3除余1,加上4后被4除余1,加 上5后被5除余1,这个两位数是______.
例题1:在1~100这100个自然数中,所有不能被8整除的数的和是多少?
4、位值原理 技巧:
数论基础
例题1:如果在一个两位数的两个数字之间添写一个零,那么所 得的三位数是原来的数的9倍,问这个两位数是__。
例题1:在1~100这100个自然数中,所有不能被8整除的数的 和是多少?
例题1:在1~100这100个自然数中,所有不能被8整除的数的和是多少?
例题2:某班学生不超过60人,在一次数学测验中,分数不低 于90分的人数占1/7,得80~89分的人数占1/2,得70~79分得 人数占1/3.那么得70分以下的有________人。
例题3: a、b、c为三个自然数,且a>b>c,它们除以13的余 数分别是2,9,11,那么(a+b+c)(a-b)(b-c)除以13的余数 是_______
例题1:在1~100这100个自然数中,所有不能被8整除的数的和是多少?
练习1:有3个吉利数888,518,666,用它们分别除以同一个 自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.

数学六年级 第22讲 数论综合三(教师版+学生版,含详细解析)

数学六年级 第22讲 数论综合三(教师版+学生版,含详细解析)

第22讲 数论综合三典型问题◇ ◇ 兴趣篇 ◇ ◇1.(1)求所有满足下列条件的三位数:在它左边写上40后所得的五位数是完全平方数。

(2)求满足下列条件的最小自然数:在它左边写上80后所得的数是完全平方数。

【分析】 (1)设这个三位数为abc 根据题意有240abc n =,即240000abc n +=,22200(200)(200)abc n n n =-=+-当201n =时,401abc =,五位数是220140401=当202n =时,804abc =,五位数是220240804=当203n =时,abc 不是三位数(舍去)所以满足条件的三位数是401,804(2)当这个自然数是一位数时,有280a n =,229841=,228784=,因此一位数不存在,同理两位数不存在 当这个自然数是三位数时,有280abc n =,280000abc n =-,228480656=,所以最小自然数是6562. 已知!n 3是一个完全平方数,试确定自然数n 的值。

(n n !123) 【分析】 当6n ≥时,!()n m 3331,不可能是完全平方数,因此n 只能取1到5间的数,经试验1n =或33. 一个完全平方数是四位数,且它的各位数字均小于7。

如果把组成它的每个数字都加上3,便得到另外一个完全平方数。

求原来的四位数。

【分析】 根据题意有2abcd m =,2(3)(3)(3)(3)a b c d n ++++=,因此223333n m -=,即()()311101n m n m +-=⨯⨯,且,n m 都是两位数,因此()()33101n m n m +-=⨯,所以67,34n m ==,原来的四位数是2341156=4. 请写出所有各位数字互不相同的三位奇数,使得它能被它的每一个数位上的数字整除。

【分析】 根据题意是三位奇数,因此各位数字不能取偶数,当有一个数字是9时,必然另外两个数字有一个是偶数,因此三个数字只能是1,3,5,7,所以满足条件的三位奇数为135,315,175,7355. 在一个两位数的十位与个位数字之间插入一个数字0,得到一个三位数(例如21变成了201),结果这个三位数恰好能被原来的两位数整除。

10_数论综合(一)

10_数论综合(一)

涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.1.如果把任意n个连续自然数相乘,其积的个位数字只有两种可能,那么n是多少?【分析与解】我们知道如果有5个连续的自然数,因为其内必有2的倍数,也有5的倍数,则它们乘积的个位数字只能是0。

所以n小于5.:当n为4时,如果其内含有5的倍数(个位数字为O或5),显然其内含有2的倍数,那么它们乘积的个位数字为0;如果不含有5的倍数,则这4个连续的个位数字只能是1,2,3,4或6,7,8,9;它们的积的个位数字都是4;所以,当n为4时,任意4个连续自然数相乘,其积的个位数字只有两科可能.:当n为3时,有1×2×3的个位数字为6,2×3×4的个位数字为4,3×4×5的个位数字为0,……,不满足.:当n为2时,有1×2,2×3,3×4,4×5的个位数字分别为2,6,4,0,显然不满足.至于n取1显然不满足了.所以满足条件的n是4.2.如果四个两位质数a,b,c,d两两不同,并且满足,等式a+b=c+d.那么,(1)a+b的最小可能值是多少?(2)a+b的最大可能值是多少?【分析与解】两位的质数有11,13,17,19,23,29,3l,37,41,43,47,53,59,6l,67,71,73,79,83,89,97.可得出,最小为11+19=13+17=30,最大为97+71=89+79=168.所以满足条件的a+b最小可能值为30,最大可能值为168.3.如果某整数同时具备如下3条性质:①这个数与1的差是质数;②这个数除以2所得的商也是质数;③这个数除以9所得的余数是5.那么我们称这个整数为幸运数.求出所有的两位幸运数.【分析与解】条件①也就是这个数与1的差是2或奇数,这个数只能是3或者偶数,再根据条件③,除以9余5,在两位的偶数中只有14,32,50,68,86这5个数满足条件.其中86与50不符合①,32与68不符合②,三个条件都符合的只有14.所以两位幸运数只有14.4.在555555的约数中,最大的三位数是多少?【分析与解】555555=5×111×1001=3×5×7×11×13×37显然其最大的三位数约数为777.5.从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形.按照上面的过程不断地重复,最后剪得正方形的边长是多少毫米?【分析与解】从长2002毫米、宽847毫米的长方形纸板上首先可剪下边长为847毫米的正方形,这样的正方形的个数恰好是2002除以847所得的商.而余数恰好是剩下的长方形的宽,于是有:2002÷847=2……308,847÷308=2……231,308÷231=1……77.231÷77=3.不难得知,最后剪去的正方形边长为77毫米.6.已知存在三个小于20的自然数,它们的最大公约数是1,且两两均不互质.请写出所有可能的答案.【分析与解】设这三个数为a、b、c,且a<b<c,因为两两不互质,所以它们均是合数.小于20的合数有4,6,8,9,10,12,14,15,16,18.其中只含1种因数的合数不满足,所以只剩下6,10,12,14,15,18这6个数,但是14=2×7,其中质因数7只有14含有,无法找到两个不与14互质的数.所以只剩下6,10,12,15,18这5个数存在可能的排列.所以,所有可能的答案为(6,10,15);(10,12,15);(10,15,18).7.把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的最大公约数是1.那么最少要分成多少组?【分析与解】26=2×13,33=3×11,34=2×17,35=5×7,63=23×7,85=5×17,91=7×13,143=11×13.由于质因数13出现在26、91、143三个数中,故至少要分成三组,可以分成如下3组:将26、33、35分为一组,91、34、33分为一组,而143、63、85分为一组.所以,至少要分成3组.8.图10-1中两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米.两只甲虫同时从A出发,按箭头所指的方向以相同的速度分别爬了几圈时,两只甲虫首次相距最远?【分析与解】圆内的任意两点,以直径两端点得距离最远.如果沿小圆爬行的甲虫爬到A点,沿大圆爬行的甲虫恰好爬到B点,两甲虫的距离便最远.小圆周长为π×30=307r,大圆周长为48π,一半便是24π,30与24的最小公倍数时120.120÷30=4.120÷24=5.所以小圆上甲虫爬了4圈时,大圆上甲虫爬了5个12圆周长,即爬到了过A的直径另一点B.这时两只甲虫相距最远.9.设a与b是两个不相等的非零自然数.(1)如果它们的最小公倍数是72,那么这两个自然数的和有多少种可能的数值?(2)如果它们的最小公倍数是60,那么这两个自然数的差有多少种可能的数值?【分析与解】 (1)a与b的最小公倍数72=2×2×2×3×3,有12个约数:1,2,3,4,6,8,9,12,18,24,36,72.不妨设a>b.:当a=72时,b可取小于72的11种约数,a+b≥72+1=73;:当a=36时,b必须取8或24,a+b的值为44或60,均不同第一种情况中的值;:当a=24时,b必须取9或18,a+b的值为33或42,均不同第一、二种情况中的值;当a=18时,b必须取8,a+b=26,不同于第一、二、三种情况的值;:当a=12时,b无解;:当a=9时,b必须取8,a+b=17,不同于第一、二、三、四情况中的值.总之,a+b可以有ll+2+2+1+1=17种不同的值.(2)60=2×2×3×5,有12个约数:1,2,3,4,5,6,10,12,15,20,30,60.a、b为60的约数,不妨设a>b.:当a=60时,b可取60外的任何一个数,即可取11个值,于是a-b可取11种不同的值:59,58,57,56,55,54,50,48,45,40,30;.当a=30时,b可取4,12,20,于是a-b可取26,18,10;:当a=20时,b可取3,6,12,15,所以a-b可取17,14,8,5;当a=15时,b可取4,12,所以a-b可取11,3;: 当a=12时,b可取5,10,所以a-b可取7,2.总之,a-b可以有11+3+4+2+2=22种不同的值.10.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳142米,黄鼠狼每次跳324米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔3128米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?【分析与解】由于3128÷142=114,3128÷324=92.所以狐狸跳4个3128米的距离时将掉进陷阱,黄鼠狼跳2个3128米的距离时,将掉进陷阱.又由于它们都是一秒钟跳一次,因此当狐狸掉进陷阱时跳了11秒,黄鼠狼掉进陷阱时跳了9秒,因此黄鼠狼先掉进陷阱,此时狐狸跳了9秒.距离为9×142=40.5(米).11.在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)【分析与解】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.1~198之间只有1,2,3,…,17,198(余O)这18个数除以18及33所得的余数相同,而999÷198=5……9,所以共有5×18+9=99个这样的数.12.甲、乙、丙三数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A 除乙数所得余数是A除丙数所得余数的2倍.求A等于多少?【分析与解】由题意知4倍393除以A的余数,等于2倍939除以A的余数,等于甲603除以A的余数.即603÷A=a……k;(2×939)÷A=b……k;(4×393)÷A=c……k.于是有(1878-603)÷A=b-a;(1878-1572)÷A=b-c;(1572-603)÷A=c-a.所以A为1275,306,969的约数,(1275,306,969)=17×3=51.于是,A可能是51,17(不可能是3,因为不满足余数是另一余数的4倍).当A为51时,有603÷51=11……42;939÷51=18……21;393÷51=7……36.不满足;当A为17时,有603÷17=35……8;939÷17=55……4;393÷17=23……2;满足.所以,除数4为17.13.证明:形如11,111,1111,11111,…的数中没有完全平方数.【分析与解】我们知道奇数的完全平方数是奇数,偶数的完全平方数为偶数,而奇数的完全平方数除以4余1,偶数的完全平方数能被4整除.现在这些数都是奇数,它们除以4的余数都是3,所以不可能为完全平方数.4n+4n+1,显然除以4余1.评注:设奇数为2n+1,则它的平方为214.有8个盒子,各盒内分别装有奶糖9,17,24,28,30,31,33,44块.甲先取走一盒,其余各盒被乙、丙、丁3人所取走.已知乙、丙取到的糖的块数相同且为丁的2倍.问:甲取走的一盒中有多少块奶糖?【分析与解】我们知道乙、丙、丁三人取走的七盒中,糖的块数是丁所取糖块数的5倍.八盒糖总块数为9+17+24+28+30+31+33+44=216.从216减去5的倍数,所得差的个位数字只能是1或6.观察各盒糖的块数发现,没有个位数字是6的,只有一个个位数字是1的数31.因此甲取走的一盒中有3l块奶糖.15.在一根长木棍上,有三种刻度线.第一种刻度线将木棍分成10等份;第二种将木棍分成12等份;第三种将木棍分成15等份.如果沿每条刻度线将木棍锯断,那么木棍总共被锯成多少段?【分析与解】 10,12,15的最小公倍数[10,12,15]=60,把这根木棍的160作为一个长度单位,这样,木棍10等份的每一等份长6个单位;12等份的每等份长5个单位;15等份的每等份长4单位.不计木棍的两个端点,木棍的内部等分点数分别是9,11,14(相应于10,12,15等份),共计34个.由于5,6的最小公倍数为30,所以10与12等份的等分点在30单位处相重,必须从34中减1.又由于4,5的最小公倍数为20,所以12与15等份的等分点在20单位和40单位两处相重,必须再减去2.同样,6,4的最小公倍数为12,所以15与10等份的等分点在12,24,36,48单位处相重,必须再减去4.由于这些相重点各不相同,所以从34个内分点中减去1,再减去2,再减去4,得27个刻度点.沿这些刻度点把木棍锯成28段.。

六年级数学专题思维训练—数论综合(含答案及解析)

六年级数学专题思维训练—数论综合(含答案及解析)

六年级数学专题思维训练—数论综合1 公元前后,居住在墨西哥东部尤卡坦半岛的玛雅人的记数法是二十进制,他们基本的数字符号仅有两个:“.”和“一”,“.”来自玉米、豆子或卵石的形状,表示1;“一”是豆荚的形状,表示5.用这两个符号的上、下排列,组成了1~19各个数字(如下图所示).2 一个五位数恰好等于它各位数字和的2007倍,则这个五位数是——.3 (1)从1到3998这3998个自然数中,有多少个数能被4整除?(2)从1到3998这3998个自然数中,有多少个数的各位数字之和能被4整除?4 如下图所示,摆放2×2的“4宫格”要用12根火柴棒;摆放3×3的“9宫格”要用24根火柴棒.小明用1300根火柴棒,恰好摆放成一个m×m的“m-宫格”,问m =?4宫格 9宫格5 二十多位小朋友围成一圈做游戏,他们依顺时针顺序从小赵报1开始连续报数,但7的倍数或带有数字7的数都要跳过去不报;报错的人表演一个节目.小明是第一个报错的人,当他右边的同学报90时他错报了91.如果他第一次报数报的是19,那么这群小朋友共有——人.6 从1至9这九个数字中挑出六个不同的数填在下图的六个圆圈内,使任意相邻两个圆圈内数字之和都是质数,那么最多能找出种不同的挑法来(六个数字相同、排列次序不同的都算同一种).7 能被3整除且至少有一个数字是6的四位数有 个8 不大于2009的自然数中,被3整除且恰有一个数码是6的有 个9 试说明,将1+21+31+。

+401的和写成一个最简分数nm 时,m 不会是5的倍数10 数89之数码和为17.请问1、2、3、…、2008这2008个数之数码和的总和为多少?11 21ab 是一个四位数,由四个阿拉伯数字a 、b ,1,2组成的其他23个四位数的和等于 90669,求a 和6的值.12 N是一个各位数字互不相等的自然数,它能被它的每个数字整除.N的最大值是13 在3和5之间插入6、30、20这三个数,得到3、6、30、20、5这样一串数.其中每相邻两个数的和可以整除它们的积(例如,3_』-6=9,9可以整除3×6;再如,6__-30=36,36可以整除6×30).请你在4与3这两数之间的三个空中各填入一个非零的整数,使得其中每相邻两个数的和可以整除它们的积.4、_ ___、____、____、314 N为自然数,且N+l、N+2、…、N+9与690都有大于1的公因数.N的最小值为15 写一个首位数字比末位数字大2的n位数(n大于或等于3)A,交换首位数字和末尾数字,得n位数B,A、B相减(大数减小数),所得的差为n位数C,把C的首位数字和末尾数字互换得D,C和D的和是S,不论写怎样的符合要求的数A,所得S都是一个常数K的倍数,则K的最大值是参考答案及解析1 公元前后,居住在墨西哥东部尤卡坦半岛的玛雅人的记数法是二十进制,他们基本的数字符号仅有两个:“.”和“一”,“.”来自玉米、豆子或卵石的形状,表示1;“一”是豆荚的形状,表示5.用这两个符号的上、下排列,组成了1~19各个数字(如下图所示).【答案】68097【分析】17+4×20+10×202+8×203=680972 一个五位数恰好等于它各位数字和的2007倍,则这个五位数是——.【答案】36126或54189【分析】这个五位数为abcde,由题意abcde= 2007 (a+b+c+d +e)由于9¦ 2007,可得9¦abcde,则有9¦(a+b+c+d+e), 2007×9=18063,这个五位数是18063的倍数,只可能为:18063,36126,54189,7225290315.经检验,36126和54189符合题意.3 (1)从1到3998这3998个自然数中,有多少个数能被4整除?(2)从1到3998这3998个自然数中,有多少个数的各位数字之和能被4整除?【答案】 (1)999个,(2)999个.【分析】(l)由于每连续4个自然数中必有一个能被4整除,3998÷4=999……2.因此从1到3998这3998个自然数中能被4整除的一共有999个‘(2)为了方便,将0到3999这4000个整数都看成四位数abcd(不是四位则在前面补零,如12=0012).由于b.c,d各有10种数字可任意选择,而且当b.c.d选定后.为满足a+b+c+d 能被4整除,千位数字“必唯一确定.事实上,若b+c+d=4K时,则a=o;若b+c+d=4K+l 时.则a=3 :若b+c+d=4K+2时,则a=2;若b+C+d=4K+3,则a=1.(K为整数)综上所述,在o到3999这4000个整数中有1×10 ×10×10=1000(个)数的各位数字之和能被4整除.因此,从1到3998这3998个自然数中有1ooo-1=999(个)数的各位数字之和能被4整除,4 如下图所示,摆放2×2的“4宫格”要用12根火柴棒;摆放3×3的“9宫格”要用24根火柴棒.小明用1300根火柴棒,恰好摆放成一个m×m的“m-宫格”,问m =?76田4宫格 9宫格【答案】25【分析】m2向的火柴棒有m+1列,每列有m根,也共有m(m+1)根.所以,摆放”,m2宫格”共用了2m( m+1) 根火柴棒.由2m(m+ l) =1300,得到m(m+1)=650=2×52×13=25×26.因此m=25 .5 二十多位小朋友围成一圈做游戏,他们依顺时针顺序从小赵报1开始连续报数,但7的倍数或带有数字7的数都要跳过去不报;报错的人表演一个节目.小明是第一个报错的人,当他右边的同学报90时他错报了91.如果他第一次报数报的是19,那么这群小朋友共有——人.【答案】24【分析】情况一:..跳过去不报”指一个小朋友报了6,下一个小朋友不报数而是拍手.再下一个小朋友报8.此时,每个人应当轮到的数和上一次轮到的数(报出来或者拍手跳过)之间的差等于总人数.小明本次应当拍手,而不是报出91.所以”总人数是91—19=72的约数.有72.36.24,18,……,其中是“二十多”的只有24.情况二:,.跳过去不报”指一个小朋友报了6,下一个小朋友直接报8.此时.把所有i 的倍数和带有数字7的数去掉之后,剩余的数排成一列,每个人应当轮到的数和上一次轮到的数在这个数列中的位置号之差等于总人数.从19到90这72个数中,含有数字7的有27,37,47,57,67,70到79.87.共16个.是i 的倍数且不含有数字7的有21,28,35,42,49,56,63,84共8令,所以排除掉之后剩下48个.总人数应当是48的约数,有48,24,16,……,其中是“二十多”的也只有24。

小学奥数七大模块详解(超详细结构图)

小学奥数七大模块详解(超详细结构图)

重点小学内部奥数复习材料七大模块详解(七大模块:计算、数论、几何、行程、应用题、计数和杂题)模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独。

02数论综合2教师版

02数论综合2教师版

数论综合2【整除问题】(1)某个七位数1993□□□能够同时被2,3,4,5,6,7,8,9整除,那么它的最后三位数字依次是 。

【答案】320【解析】若使得7位数能够同时被2,3,4,5,6,7,8,9整除,只要让七位数是2,3,4,5,6,7,8,9最小公倍数的倍数即可。

[2,3,4,5,6,7,8,9]=2520.用1993000试除,1993000÷2520=790……2200,余2200可以看成不足2520-2200=320,所以在末三位的方格内填入320即可。

(2)已知六位数□9786□是99的整数倍,这个六位数除以99的商是________。

【答案】6039【分析】设B A 9786|99,则)6789(|99B A ++,即)7896(|99AB ++, 解得51=AB ,所以603999597861=÷。

(3)一个四位数是25的整数倍,其各位数字和是25,这个四位数是__________。

【答案】6【分析】设这个四位数是abcd ,由abcd 25,得到cd=00,25,50或75,由已知可验证cd=25或75,当cd=25时,a+b=18,a=9,b=9;四位数是9925.当cd=75时,a+b=13,四位数为4975,9475,5875,8575,6775,7675。

(4)两个四位数365A 和B 375相乘,要使它们的乘积能被72整除,A=_______,B=______。

【答案】4 ;2【分析】因为72=8×9,因为365A 不是8的倍数,所以B 375是8的倍数,求得B=2,所以其中一个四位数为3752 ,且数字之和为17,不是9的倍数,所以365A 是9的倍数,所以A=4。

(5)有一种四位数,这种四位数能被7整除,把它前后分成两部分,前两位数可以被3整除,后两位可以被5整除。

这种四位数最小的是( )。

【答案】1225【解析】1)能被3整除的最小两位数是12,2)接下来考虑后两位,如果末位是0,那么十位是6;如果末位是5,那么十位是2, 3)其中最小的四位数是1225 【余数问题】(6)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113, 则被除数是 。

第七讲数论综合-小学数学五年级下册-竞赛试题及答案-人教版---

第七讲数论综合-小学数学五年级下册-竞赛试题及答案-人教版---

第七讲数论综合小学数学五年级下册竞赛试题及答案人教版基础班练习七1.有算式□□×□□+□×□。

将数字1~6填入到前面的算式的6个方框中, 能得到的最大结果是多少?分析:原式可得最大结果。

2.用1, 2, 3, 4, 5, 6, 7, 8这八个数字组成两个四位数, 使它们的乘积最大, 这两个数是多少?分析:7642和8531。

3.求满足下列条件的最小的自然数:用3除余2, 用5除余1, 用7除余1分析:71。

4.(第五届希望杯培训题)布袋里装有玻璃弹子若干个, 如果每次取2个, 最后剩下1个;如果每次取3个, 最后剩下1个;如果每次取7个, 最后剩下3个.这个黑布袋中至少有个玻璃弹子.分析:我们不妨设黑布袋中至少有x个玻璃弹子, 那么x要满足的条件是:(1)x除以2余1, (2)x除以3余1, (3)x除以7余3。

我们先找到满足条件(2)、(3)的数字, 满足条件(3)的数字:10、17、24、31、38、45…, 在这其中满足条件(2)的数字是:10、31、…, 其中31也满足条件(1), 那么这个黑布袋中至少有31个玻璃弹子.5.证明当a大于b时, (-)必是9的整倍, (+)必是11的整数倍。

分析:=10a+b, =10b+a, (-)=9(b+a), (+)=11(b+a)。

6.有一个两位数, 如果把数码1加写在它的前面, 那么可得到一个三位数, 如果把1加写在它的后面, 那么也可以得到一个三位数, 而且这两个三位数相差414, 求原来的两位数。

分析:设原来的两位数为x, 则有(10x+1)-(100+x)=414, 解得X=57。

提高班练习七1.用1, 2, 3, 4, 5, 6, 7, 8这八个数字组成两个四位数, 使它们的乘积最大, 这两个数是多少?分析:7642和8531。

2.把50拆成若干个自然数的和, 要求这些自然数的乘积尽量大, 应如何拆?分析:16个3, 1个2。

数论综合(一)

数论综合(一)

谈到数论,顾名思义是和数有关的理论,具体地说是和整数有关的理论,小学奥数中的数论问题包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。

作为一个理论性比较强的专题,数论在各种考试中都会占很大的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。

对整数a和b(b不为0),如果存在一个整数q,使a=b×q,则a能被b整除,也可以说b整除a,否则就说a不能被b整除。

例如:72=8×9,所以72能被8(或9)整除。

整除有许多性质,下面列出最常用的几个:1. 如果b整除a,则b整除a的倍数;2. 如果b整除a与c,则b整除(a c);3. 如果b整除a,a又整除c,则b一定能整除c;4. 如果a整除c,b也整除c,并且a与b互质,则ab整除c。

在整除问题中,能被2、3、4、5、7、8、9、11、13、25等数整除的数有如下特征:1. 能被2整除的数的特征:个位数字是0、2、4、6、8的整数必能被2整除;2. 能被5整除的数的特征:个位是0或5;3. 能被3(或9)整除的数的特征:各数位上的数字之和能被3(或9)整除;4. 能被4(或25)整除的数的特征:末两位数能被4(或25)整除;5. 能被8(或125)整除的数的特征:末三位数能被8(或125)整除;6. 能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(以大减小)是11的倍数;7. 能被7(11或13)整除的数的特征:这个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除例1. 一个五位数382□□,如果它是3和5的倍数,则□□里最大可以填几?【分析与解】这个五位数382□□能被5整除,则它的个位数字是0或5;又因五位数382□□能被3整除,那么3+8+2+□+□的和能被3整除,即13+□+□的和能被3整除。

(1)当这个五位数为382□0时,各位数字之和13+□能被3整除,□里可填2、5、8;(2)当这个五位数为382□5时,各位数字之和18+□能被3整除,□里可填0、3、6、9。

有史以来最全的华杯赛解析

有史以来最全的华杯赛解析

有史以来最全的华杯赛解析(介绍、分析、建议、难度分析一网打尽)华杯赛介绍华杯赛,全称“全国华罗庚金杯少年数学邀请赛”,是1986年创办的全国性大型少年数学竞赛活动,至今已举办了21届。

全国已有近100个城市,3000多万名少年儿童参加了比赛,是目前全国最权威的小学数学比赛。

华杯赛的分组:华杯赛分为小学中、高年级组和初一、初二组,其中小中组参赛要求为不高于4年级,小高组参赛要求为不高于6年级。

(此文均为小高组内容)华杯赛的奖项分配:初赛的前30%进入决赛,获决赛个人一、二、三等奖比例为本市参加决赛人数的36%。

其中:一等奖为参加决赛人数的6%,二等奖为12%,三等奖为18%。

试题分析初赛决赛的试题分析我们通常参加的华杯赛分为初赛与决赛两个部分。

通过对近十年分真题的分析和研究我们会发现:虽然初、复赛的题量,分值都不尽相同,但其所考查的知识点基本没有太大变化,归结起来依然是:计算,计数,几何,应用题,行程问题,数论以及组合杂题这七大模块。

但是由于所针对的孩子程度不同,所以初赛和决赛在侧重点和难易程度上也有所不同。

下面我将为大家分别详细介绍初赛和复赛的题型以及考点。

初赛部分:初赛总共有10道题(6选择+4填空)都只需写答案,不需要过程。

每道题10分共100分,考试时间60分钟。

研究近四年的初赛真题,我们能得到近四年的初赛考点分布情况:再将这些考点进行简单的难易区分,由简到难依次是(后面括号数字代表其近四年题量):计算(3),应用题(3),几何(6),行程(4),计数(6),数论(8),组合杂题(9)所以我们可以发现,从初赛起,华杯赛就对7大模块开始了全面的考察,而且在更考验思维能力、相对不容易的考点上更加侧重。

初赛主要的目的还是考察孩子们的奥数思维,起到一个“选优”的选拔作用。

决赛部分:到了决赛,题量会有所增加,共有14道题(8填空+4简答+2解答),其中选择题每道10分,简答题每道10分,解答题每道15分,总分150分,考试时间90分钟。

2数论综合(学生)

2数论综合(学生)

一、 奇数与偶数的运算性质1.偶数±偶数=偶数,奇数±奇数=偶数。

2.偶数±奇数=奇数。

3.偶数个奇数的和或差是偶数。

4.奇数个奇数的和或差是奇数。

5.偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数。

6.加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。

7.对于任意两个整数a、b ,有a+b 与a-b 同奇或同偶。

二、 常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除。

2. 一个数各位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除。

3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除。

4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除。

三、 整除的性质1. 如果数a 和数b 都能被数c 整除,那么它们的和或差也能被c 整除。

2. 如果数a 能被数b 整除,b 又能被数c 整除,那么a 也能被c 整除。

第二讲数论综合知识概述3. 如果数a 能被数b 与数c 的积整除,那么a 也能被b 或c 整除。

4. 如果数a 能被数b 整除,也能被数c 整除,且数b 和数c 互质,那么a 一定能被b 与c 的乘积整除。

5. 如果数a 能被数b 整除,那么am 也能被bm 整除。

(m 为非0整数)6. 如果数a 能被数b 整除,数c 能被数d 整除,那么bd 也能被ac 整除。

四、 质数与合数1. 质数:一个数除了1和本身没有其他的约数,这个数就称为一个质数,也叫做素数。

2. 合数:一个数除了1和本身还有其他的约数,这个数就称为一个合数。

初二数学下册综合算式专项练习题数论问题的解决方法

初二数学下册综合算式专项练习题数论问题的解决方法

初二数学下册综合算式专项练习题数论问题的解决方法数论问题是数学中的一个重要分支,研究整数的性质和相互关系。

在初二数学下册的综合算式专项练习题中,数论问题常常是考点之一。

深入理解数论问题的解决方法对于解题能力的提升至关重要。

本文将介绍一些数论问题的解决方法,以帮助同学们更好地解决这类综合算式题目。

1. 质数的判断及性质利用质数是只能被1和自身整除的自然数,我们可以通过以下方法判断一个数是否为质数:- 用2到根号n的所有自然数依次去除n,如果都无法整除,则n是质数;- 除了2以外,所有的质数都是奇数,因此,我们可以先判断一个数是否为2,再进行奇数的判断。

在解决综合算式练习题时,质数的一些性质也是常常会被使用到,比如:- 任意两个质数的和是偶数,且不可能是质数;- 任意一个大于2的整数都可以表示成两个质数的和;- 奇数可以表示成连续奇数的和。

2. 互质和最大公约数在数论问题中,互质表示的是两个数的最大公约数为1。

求两个数的最大公约数有多种方法,常用的有欧几里得算法和因式分解法。

当求得两个数的最大公约数为1时,这两个数就是互质数。

在解决综合算式练习题时,互质和最大公约数的概念常常会被用到。

例如,可以利用互质性质求两个数之和或差的最大公约数为1来推导题目的解答。

3. 奇偶性的利用在数论问题中,奇数和偶数的性质也常常被应用到解题当中。

常见的奇偶性质有:- 一个奇数乘以任何一个整数的积仍为奇数;- 两个奇数之间的和是偶数;- 两个偶数之间的和是偶数,乘积是偶数。

在解决综合算式练习题时,可以通过奇偶性的判断解决问题。

例如,判断一个数除以另一个数的余数是奇数还是偶数,就可以考虑被除数和除数的奇偶性。

4. 数列的求和数论问题中经常涉及到数列的求和。

对于等差数列,求和公式为:Sn = (a1 + an) * n / 2,其中a1为首项,an为末项,n为项数。

在解决综合算式练习题时,可以利用数列的求和公式来快速求得数列的和,从而简化计算过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

200以内除以3余1,除以4余2,除以5余3的自然数有多少个?分别是多少?
一个大于10的数,除以3余1,除以5余2,除以11余7,问满足条件的最小自然数是多少?
某数除以11余8,除以13余10,除以17余12,那么这个数的最小可能值是______。

101个连续的非零自然数的和恰好是四个不同的质数的积,那么这个最小的和应该是______。

小明打算做一个两位数乘以三位数的乘法,但粗心的他在计算时遗留掉了乘号,从而将两位数直接放在三位数的左边,形成了一个五位数,该五位数恰好为应得的乘积的9倍,问:原来的两个数的乘积是多少?
方程、计数、最值、行程等
问题中的数论综合(下)
(★★)
(★★) (★★★)(小学数学奥林匹克预赛)
(★★★) (★★★★)
某单位的职工到郊外植树,其中有男职工也有女职工,并且有13
的职工各带一个孩子参加。

男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树,那么其中有多少名男职工?
A 、
B 两地相距20.3千米,甲、乙、丙的速度分别是4米/秒,6米/秒,5米/秒。

如果甲、乙从A ,丙从B 地同时出发相向而行,那么,在多长时间之后,丙与乙的距离是丙与甲距离的2倍?
(★★★★) (★★★★★)。

相关文档
最新文档