数学竞赛定理
初中数学竞赛几何中常用的24个必备定理
初中数学竞赛几何中常用的24个必备定理1. 同位角定理:同位角互相相等或互补。
2. 对顶角定理:对顶角相等。
3. 同旁内角定理:同旁内角互补。
4. 外角定理:与一个多边形任意一内角相对的外角相等。
5. 内角和定理:n边形的内角和为180度×(n-2)。
6. 相关角定理:相邻角互补,对顶角互相相等。
7. 垂直直角定理:垂线与直线相交,形成直角。
8. 垂线定理:直线上任意一点向另一直线作垂线,垂线所在直线与原直线垂直。
9. 三角形内角和定理:三角形内角和为180度。
10. 等腰三角形定理:等腰三角形的底角相等。
11. 等边三角形定理:等边三角形的三个内角均为60度。
12. 直角三角形性质:直角三角形斜边平方等于其他两条边平方和。
13. 等角定理:两角相等的两个三角形全等。
14. 外接圆定理:三角形三个顶点到外接圆圆心的距离相等。
15. 中线定理:连接三角形两边的中线相等。
16. 中位线定理:连接三角形两边中点的线段平分第三边。
17. 高线定理:连接三角形顶点与对边垂直的线段相交于三角形内心。
18. 海伦公式:用三角形三条边的长度求其面积:S=sqrt[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2。
19. 正多边形内角定理:正n边形的内角和为(180度×(n-2))/n。
20. 球面三角形定理:球面三角形三个顶点到球心的距离相等。
三条边为大圆弧。
21. 圆周角定理:圆周角等于对应的弧所夹的圆心角。
22. 切线定理:切线相切于圆,与该切点相切的直线垂直于切线。
23. 弦长定理:在同一圆上,两条弦所夹的圆心角相等,则它们的弦长相等。
24. 弧长定理:同一圆上,两个相等的圆心角所对应的弧长相等。
数学竞赛定理
欧拉小定理:同一三角形的垂心、重心、外心,九点圆圆心四点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半,九点圆圆心到垂心与重心距离相等。
欧拉大定理:△ABC 的外接圆圆心为O ,半径为R ,内切圆圆心为I ,半径为r,记OI=d,则有:d 2=R 2-2Rr九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。
费尔马点:已知P 为锐角△ABC 内一点,当∠APB =∠BPC =∠CPA =120°时,PA +PB +PC 的值最小,这个点P 称为△ABC 的费尔马点。
海伦公式:在△ABC 中,边BC 、CA 、AB 的长分别为a 、b 、c ,若p =21(a +b +c ),则△ABC 的面积S =))()((c p b p a p p ---塞瓦定理:在△ABC 中,过△ABC 的顶点作相交于一点P 的直线,分别交边BC 、CA 、AB 与点D 、E 、F ,则1=⋅⋅FBAF EA CE DC BD密格尔定理:若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点。
葛尔刚定理:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点。
西姆松定理:已知P 为△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥ACPF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,这条直线叫做西摩松线。
笛沙格定理:已知在△ ABC 与△A'B'C'中,AA'、BB'、CC'三线相交于点O ,BC 与B'C'、CA 与C'A'、AB 与A'B'分别相交于点X 、Y 、Z ,则X 、Y 、Z 三点共线摩莱三角形:在已知△ABC 三内角的三等分线中,分别与BC 、CA 、AB 相邻的每两线相交于点D 、E 、F ,则三角形DDE 是正三角形,这个正三角形称为摩莱三角形。
数学竞赛25个定理
数学竞赛25个定理1. 费马小定理:若p是一个质数,a是任意正整数,则a^p - a能够被p整除。
2. 柯西-施瓦茨不等式:对于任意的向量a和b,有|a·b| ≤|a|·|b|。
(其中的·是向量的内积)3. 柯西定理:对于任意的可导函数f(z),有∫γf(z)dz = 0,其中γ是任意封闭曲线。
4. 狄利克雷函数定理:对于任意的正整数a和n,同余方程ax≡ n(mod m)有解当且仅当gcd(a,m)|n。
5. 等比数列求和公式:对于一个公比为r的等比数列1,r,r^2,r^3,…,r^(n-1),其前n项和为(s_n = (1-r^n)/(1-r))。
6. 泰勒公式:对于一个在区间内的可导函数f(x),在x = a处的泰勒展开式为:f(x) = f(a) + f'(a)·(x-a) + f''(a)·(x-a)^2/(2!) + …… + f^(n)(a)·(x-a)^n/n!。
7. 正弦和余弦的和差公式:sin(a ± b) = sin(a) cos(b) ± cos(a) sin(b),cos(a ± b) = cos(a) cos(b) ∓ sin(a) sin(b)。
8. 斯特林公式:n! ≈ (n/e)^n·√(2πn),其中e≈2.71828是自然对数的底数,π≈3.14159是圆周率。
9. 美林底定理:对于任意的正整数n,有gcd(Φ(n), n) = 1,其中Φ(n)表示小于等于n的正整数中与n互质的数的个数。
10. 欧拉公式:对于任意的正整数n,有e^(iπ) + 1 = 0。
11. 矩阵行列式的定义:对于一个n阶矩阵A,其行列式的定义为:det(A) = Σ(^n)_(i=1) a_1iC_1i,其中C_1i表示以第一行为底,第i列为“孔”的余子式。
12. 柯西-列维定理(变量展开式):对于一个n元对称多项式f(x1, x2, …, xn),其可表示为f(x1, x2, …, xn) = Σpπa_π(x1, x2, …, xn),其中pπ为n元置换,a_π(x1, x2, …, xn)表示将xπ(1),xπ(2),…,xπ(n)代入f(x1, x2, …, xn)后留下来的项。
初中数学竞赛25个定理
初中数学竞赛25个定理
初中数学竞赛25个定理1. 勾股定理:直角三角形斜边的平方等于两腰的平方和。
2. 余弦定理:在任意三角形ABC中,有c²=a²+b²-2abcosC。
3. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC。
4. 相似三角形的性质:对应角相等,对应边成比例。
5. 平行四边形法则:平行四边形两对邻边互相平分、互为反向共线向量。
6. 向量加减法则:向量之间可以进行加减运算,并且满足交换律、结合律和分配律。
7. 向量数量积公式:设向量a=(x₁,y₁,z₁)和b=(x₂,y₂,z₂),则
a·b=x₁x₂+y₁y₂+z₁z₂。
8. 圆周率π的计算方法及其性质
9. 等差数列通项公式an=a1+(n-1)d
10. 等比数列通项公式an=a1*q^(n-1)
11. 数列求和公式Sn=n(a1+an)/2
12. 柿子(二次根号不含整系数)判别法
13 .一元二次方程求解公式 x=(-b±√(b^2-4ac))/2a
14 .勾股数存在条件与构造方法
15 .正多面体表面积与体积计算公式
16 .圆锥侧面积与体积计算公式
17 .球表面积与体积计算公式
18 .立体图像展开后各部位长度关系推导方法
19 .概率基本定义及常见问题解决思路
20 .排列组合基础知识点总结
21 .函数定义域、值域以及单调性研究方法
22 .极坐标下曲线参数化表示方式
23 .复杂图案拼接技巧总结
24 .代数恒等变换规律总结
25 .空间几何证明题目思考策略。
竞赛常用定理--数学
几何篇梅涅劳斯定理:当直线交三角形ABC三边所在直线BC、AC、A于点D、E、F时,(AF/FB)×(BD/DC)×(CE/EA)=1以及逆定理:在三角形ABC三边所在直线上有三点D、E、F,且(AF/FB)×(BD/DC)×(CE/EA)=1,那么D、E、F三点共线。
角元形式梅捏劳斯定理:(sin∠BAD/sin∠DAC)×(sin∠ACF/sin∠FCB)×(sin∠CBE/sin∠EBA)=1塞瓦定理:指在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)×(CE/EA)×(AF/FB)=1。
角元塞瓦定理:AD,BE,CF交于一点的充分必要条件是:(sin∠BAD/sin∠DAC)*(sin∠ACF/sin∠FCB)*(sin∠CBE/sin∠EBA)=1逆定理:在△ABC的边BC,CA,AB上分别取点D,E,F,如果(AF/FB)(BD/DC)(CE/EA)=1那么直线AD,BE,CF相交于同一点。
”正弦定理:在△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R。
则有:a/sinA=b/sinB=c/sinC=2R余弦定理:,在△ABC中,余弦定理可表示为:c²=a²+b²-2ab cosCa²=b²+c²-2bc cosAb²=a²+c²-2ac cosB托勒密定理:指圆内接凸四边形两对对边乘积的和等于两条对角线的乘积。
三弦定理:由圆上一点引出三条弦,中间一弦与最大角正弦的积等于其余每条弦与不相邻角正弦的积之和。
用图表述;圆上一点A,引出三条弦AB(左)、AC(右)、及中间弦AD,BC与AD交于P,根据《三弦定理》,有以下关系, ABsin∠CAP +ACsin∠BAP= ADsin∠BAC。
中学数学竞赛中常用的几个重要定理
数学竞赛中几个重要定理1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F三点共线,则FBAFEA CE DC BD ••=12、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F ,且满足FBAFEA CE DC BD ••=1,则D 、E 、F 三点共线.【例1】已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线AB 边于X ,交AC边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P. 证明:△MPQ ∽△ABCj MQGAC BXY P【例2】以△ABC的底边BC为直径作半圆,分别与边AB,AC交于点D和E,分别过点D,E作BC的垂线,垂足依次为F,G,线段DG和EF交于点M.求证:AM⊥BC【例3】四边形ABCD内接于圆,其边AB,DC的延长线交于点P,AD和BC的延长线交于点Q,过Q作该圆的两条切线,切点分别为E,F.求证:P,E,F三点共线.【练习1】设凸四边形ABCD 的对角线AC 和BD 交于点M ,过M 作AD 的平行线分别交AB ,CD于点E ,F ,交BC 的延长线于点O ,P 是以O 为圆心,以OM 为半径的圆上一点. 求证:∠OPF=∠OEP【练习2】 在△ABC 中,∠A=900,点D 在AC 上,点E 在BD 上,AE 的延长线交BC 于F. 若BE :ED=2AC :DC ,则∠ADB=∠FDCD塞瓦定理:设O是△ABC内任意一点,AO、BO、CO分别交对边于N、P、M,则1=••PACPNCBNMBAM塞瓦定理的逆定理:设M、N、P分别在△ABC的边AB、BC、CA上,且满足1=••PACPNCBNMBAM,则AN、BP、CM相交于一点.【例1】B E是△ABC的中线,G在BE上,分别延长AG,CG交BC,AB于点D,F,过D作DN∥CG交BG于N,△DGL及△FGM是正三角形.求证:△LMN为正三角形.GCLMEDFN【例2】在△ABC 中,D 是BC 上的点DC BD =31,E 是AC 中点.AD 与BE 交于O ,CO 交AB 于F 求四边形BDOF 的面积与△ABC 的面积的比【练习1】设P 为△ABC 内一点,使∠BPA=∠CPA ,G 是线段AP 上的一点,直线BG ,CG 分别交边AC ,AB 于E ,F.求证:∠BPF=∠CPE【练习2】 在△ABC 中,∠ABC 和∠ACB 均为锐角.D 是BC 边BC 上的内点,且AD 平分∠BAC ,过点D 作垂线DP ⊥AB 于P ,DQ ⊥AC 于Q ,CP 于BQ 相交于K. 求证:AK ⊥BCCCC托勒密定理:四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD【例1】 已知在△ABC 中,AB >AC ,∠A 的一个外角的平分线交△ABC 的外接圆于点E ,过E 作EF ⊥AB ,垂足为F.求证:2AF=AB -AC【例2】经过∠XOY 的平分线上的一点A ,任作一直线与OX 及OY 分别相交于P ,Q.求证:OP 1+OQ1为定值HABCEFAXYPOQ【例3】 解方程42-x+12-x=x 7【练习1】 设AF 为⊙O1与⊙O2的公共弦,点B ,C 分别在⊙O1,⊙O2上,且AB=AC ,∠BAF ,∠CAF 的平分线交⊙O1,⊙O2于点D ,E. 求证:DE ⊥AF【练习2】⊙O 为正△ABC 的外接圆,AD 是⊙O 的直径,在弧BC 上任取一点P (与B ,C不重合).设E ,F 分别为△PAB ,△PAC 的内心.证明:PD=∣PE-PF ∣西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥AC ,PF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线.【例1】过正△ABC 外接圆的弧AC 上点P 作P D ⊥直线AB 于D,作PE ⊥AC 于E,作PF ⊥BC 于F.求证:PF 1+PD 1=PE1【练习1】设P 为△ABC 外接圆周上任一点,P 点关于边BC ,AC 所在的直线的对称点分别为P 1,P 2.求证:直线P 1P 2经过△ABC 的垂心.CABPEFD HABP1P2CP三角形的五心内心【例1】设点M 是△ABC 的BC 边的中点,I 是其内心,AH 是BC 边上的高,E 为直线IM 与AH 的交点.求证:AE 等于内切圆半径r【例2】在△ABC 中,AB=4,AC=6,BC=5,∠A 的平分线AD 交△ABC的外接圆于K.O ,I 分别为△ABC 的外心,内心.求证:OI ⊥AK【练习】 在△ABC 中,∠BAC=300,∠ABC=700,M 为形内一点,∠MAB=∠MCA=200求∠MBA 的度数.B外心【例1】锐角△ABC的外心为O,线段OA,BC的中点为M,N,∠ABC=4∠OMN,∠ACB=6∠OMN.求∠OMN【例2】在等腰△ABC中,AB=BC,CD是它的角平分线,O是它的外心,过O作CD的垂线交BC于E,再过E作CD的平行线交AB于F,证明:BE=FD.【练习】1、⊙O 1与⊙O 2相交于P ,Q ,⊙O 1的弦PA 与⊙O 2相切,⊙O 2的弦PB 与⊙O 1相切.设△PAB 的外心为O ,求证:OQ ⊥PQ重心【例1】在△ABC 中,G 为重心,P 是形内一点,直线PG 交直线BC ,CA ,AB 于F ,E ,D.求证:FG FP +EG EP +DGDP=3【例2】已知△ABC 的重心G 和内心I 的连线GI ∥BC ,求证:AB+AC=2BCC【练习】1、设M 为△ABC 的重心,且AM=3,BM=4,CM=5,求△ABC 的面积.2、设O 是△ABC 的外心,AB=AC ,D 是AB 的中点,G 是△ACD 的重心,求证:OG ⊥CD垂心三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍.BCB【例1】△ABC 的外接圆为⊙O ,∠C=600,M 是弧AB 的中点,H 是△ABC 的垂心.求证:OM ⊥OH【例2】已知AD ,BE ,CF 是锐角△ABC 的三条高,过D 作EF 的平行线RQ ,RQ 分别交AB 和AC 于R ,Q ,P 为EF 与CB 的延长线的交点.证明:△PQR 的外接圆通过BC 的中点M.旁心【例1】在锐角∠XAY 内部取一点,使得∠ABC=∠XBD ,∠ACB=∠YCD.证明:△ABC 的外心在线段AD 上.CD【例2】AD是直角△ABC斜边BC上的高(AB<AC),I1,I2分别是△ABD,△ACD的内心,△A I1 I2的外接圆⊙O分别交AB,AC于E,F,直线FE与CB的延长线交于点M.证明:I1,I2分别是△ODM的内心与旁心.相交两圆的性质与应用【例1】证明:若凸五边形ABCDE中,∠ABC=∠ADE,∠AEC=∠ADB. 证明:∠BAC=∠DAEE【例2】已知⊙O1与⊙O2相交于A,B,直线MN垂直于AB且分别与⊙O1与⊙O2交于M,N,P 是线段MN的中点,Q1,Q2分别是⊙O1与⊙O2上的点,∠AO1Q1=∠AO2Q2求证:PQ1=PQ2【练习】梯形ABCD中,AB∥CD,AB>CD,K,M分别是腰AD,CB上的点,∠DAM=∠CBK,求证:∠DMA=∠CKBA其他的一些数学竞赛定理1、 广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和.推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c 则:m a =2222221a c b -+;m b =2222221b c a -+;m c =2222221c b a -+2、 三角形内、外角平分线定理:内角平分线定理:如图:如果∠1=∠2,则有ACABDC BD =外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D ,则有ACABDC BD =3、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P4、 正弦定理、在△ABC 中有R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径) 余弦定理: a 、b 、c 为△ABC 的边,则有: a 2=b 2+c 2-2bc ·cosA;b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;5、欧拉定理:△ABC 的外接圆圆心为O ,半径为R ,内切圆圆心为I ,半径为r,记OI=d,则有:d 2=R 2-2Rr.6、巴斯加线定理:圆内接六边形ABCDEF (不论其六顶点排列次序如何),其三组对边AB 与DE 、BC 与EF 、CD 与FA 的交点P 、Q 、R 共线.。
中学数学竞赛常见定理
中学数学竞赛常见定理西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。
西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。
塞瓦定理: 在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1海伦公式: 设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=√[p(p-a)(p-b)(p-c)] ,p为半周长:p=(a+b+c)/2托勒密定理: 圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).正余弦定理:正弦a/sinA=b/sinB=c/sinC=2R,其中R为三角形的外接圆半径.三角形面积S=(bcsinA)/2=(acsinB)/2=(absinC)/2余弦: 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足:a^2=b^2+c^2-2*b*c*Cos Ab^2=a^2+c^2-2*a*c*Cos Bc^2=a^2+b^2-2*a*b*Cos CCos C=(a^2+b^2-c^2)/2abCos B=(a^2+c^2-b^2)/2acCos A=(c^2+b^2-a^2)/2bc斯特瓦尔特定理:△ABC的BC边上有一点D则:AB^2*DC+AC^2*BD-AD^2*BC=BC*DC*BD广勾股定理:在三角形中,锐角(或钝角)所对的边的平方等于另外两边的平方和,减去(或加上)这两边中的一边与另一边在这边(或其延长线)上的射影的乘积的2倍.阿基米德折弦定理笛沙格定理:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
初中数学竞赛25个定理
初中数学竞赛25个定理在初中数学竞赛中,各种数学定理都是竞赛的基础,熟练掌握各种数学定理可以在竞赛中脱颖而出。
下面将介绍初中数学竞赛中常见的25个定理,希望对竞赛备战有所帮助。
1. 二元一次方程的解法对于形如ax+by=c的二元一次方程,当a、b不为零时,可以利用消元法、代入法等方式求解。
2. 勾股定理直角三角形的两条直角边的平方和等于斜边的平方,即a2+b2=c2。
3. 同底数幂的乘法法则同底数幂相乘,底数不变,指数相加,即 $a^m \\cdot a^n=a^{m+n}$。
4. 相反数的性质两个数的和为0时,互为相反数,即a+(−a)=0。
5. 解三角形内角和三角形内角和等于180°,即 $\\angle A+\\angle B+\\angle C=180°$。
6. 二次根式性质非负实数组的二次根式恒大于等于0,即 $\\sqrt{a} \\geq 0$。
7. 顺序角对应性质顺序角对应,即 $\\angle A | \\angle B$ 且 $\\angle B=\\angle A+k \\cdot 180°$。
8. 同底数幂的除法法则同底数幂相除,底数不变,指数相减,即 $\\dfrac{a^m}{a^n}=a^{m-n}$。
9. 三角形中角平分线性质三角形中角平分线将一个角平分为两个角,且两个角相等。
10. 解一元二次方程一元二次方程一般形式为ax2+bx+c=0,可以利用求根公式求解。
11. 垂直平分线性质垂直平分线将一条线段垂直平分成两段相等的线段。
12. 多边形内角和n边形内角和等于 $(n-2) \\cdot 180°$,其中n表示多边形的边数。
13. 二次函数的顶点坐标二次函数y=ax2+bx+c的顶点坐标为 $\\left(-\\dfrac{b}{2a}, -\\dfrac{\\Delta}{4a} \\right)$。
14. 欧拉公式对于任何凸多面体,顶点数、棱数和面数之差为2。
初中数学竞赛必备——42个定理与解题模型
初中数学竞赛必备——42个定理与解题模型一、概述1. 数学竞赛在培养学生的逻辑思维能力、数学解决问题的能力以及快速计算的能力方面具有重要的作用。
2. 初中数学竞赛中,掌握一定的数学定理和解题模型对于取得好成绩至关重要。
3. 本文将介绍初中数学竞赛必备的42个定理与解题模型,希望能为参加数学竞赛的同学们提供帮助。
二、数学定理与解题模型1. 代数部分1.1. 一元二次方程的求解方法1.2. 因式分解1.3. 角平分线定理1.4. 勾股定理1.5. 平方差公式1.6. 公式a^2-b^2=(a+b)(a-b)1.7. a^3-b^3=(a-b)(a^2+ab+b^2)2. 几何部分2.1. 同位角性质2.2. 对顶角性质2.3. 三角形的内角和2.4. 三角形的外角和2.5. 圆的性质2.6. 相似三角形的性质2.7. 三角形的高到底边的距离是线段的中线3. 概率部分3.1. 随机事件的概率计算3.2. 排列组合问题的概率计算3.3. 互斥事件和对立事件4. 数论部分4.1. 奇数与偶数的性质4.2. 质数与合数4.3. 最大公约数与最小公倍数5. 解题模型5.1. 分析题目5.2. 构建数学模型5.3. 运用定理解题5.4. 推理思路与方法三、数学竞赛练习与应用1. 多做数学竞赛题目,提高解题速度和正确率。
2. 运用所学的定理和解题模型解决实际问题,提高数学应用能力。
3. 对于涉及到竞赛的数学知识点,进行整体性的复习和整理。
四、结语1. 数学竞赛对于学生的数学能力提升有着一定的促进作用。
2. 要想在数学竞赛中取得好成绩,掌握基本数学定理和解题模型至关重要。
3. 希望本文介绍的42个定理与解题模型能为广大初中生在数学竞赛中取得优异成绩提供一定帮助。
五、举例演练1. 代数部分:一元二次方程的求解方法:解方程x^2+5x+6=0,可以使用因式分解或者配方法来进行求解。
因式分解:对于表达式x^2-4,可以因式分解为(x+2)(x-2)。
2023年高中数学竞赛平面几何定理
平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边旳平方,等于其他两边之平方和,减去这两边中旳一边和另一边在这边上旳射影乘积旳两倍. (2)钝角对边旳平方等于其他两边旳平方和,加上这两边中旳一边与另一边在这边上旳射影乘积旳两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 旳边BC 旳中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一种角旳平分线分对边所成旳两条线段与这个角旳两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长二分之一). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间旳一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10.圆周角定理:同弧所对旳圆周角相等,等于圆心角旳二分之一.(圆外角怎样转化?) 11. 弦切角定理:弦切角等于夹弧所对旳圆周角.12.圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13.布拉美古塔(Brahmagupta)定理:在圆内接四边形ABCD中,AC⊥BD,自对角线旳交点P向一边作垂线,其延长线必平分对边.14.点到圆旳幂:设P为⊙O所在平面上任意一点,PO=d,⊙O旳半径为r,则d2-r2就是点P对于⊙O旳幂.过P任作一直线与⊙O交于点A、B,则P A·PB= |d2-r2|.“到两圆等幂旳点旳轨迹是与此二圆旳连心线垂直旳一条直线,假如此二圆相交,则该轨迹是此二圆旳公共弦所在直线”这个结论.这条直线称为两圆旳“根轴”.三个圆两两旳根轴假如不互相平行,则它们交于一点,这一点称为三圆旳“根心”.三个圆旳根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两旳根轴)所在直线交于一点.15.托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC·BD=AB·CD+AD·BC,(逆命题成立) .(广义托勒密定理)AB·CD+AD·BC≥AC·BD.16.蝴蝶定理:AB是⊙O旳弦,M是其中点,弦CD、EF通过点M,CF、DE交AB 于P、Q,求证:MP=QM.17.费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点旳距离;不在等边三角形外接圆上旳点,到该三角形两顶点距离之和不小于到另一点旳距离.定理2三角形每一内角都不不小于120°时,在三角形内必存在一点,它对三条边所张旳角都是120°,该点到三顶点距离和到达最小,称为“费马点”,当三角形有一内角不不不小于120°时,此角旳顶点即为费马点.18.拿破仑三角形:在任意△ABC旳外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,这个命题称为拿破仑定理.以△ABC旳三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们旳外接圆⊙C 1 、⊙A 1 、⊙B 1旳圆心构成旳△——外拿破仑旳三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一种等边三角形;△ABC 旳三条边分别向△ABC 旳内侧作等边△ABD 、△BCE 、△CAF ,它们旳外接圆⊙C 2 、⊙A 2 、⊙B 2旳圆心构成旳△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一种等边三角形.这两个拿破仑三角形还具有相似旳中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线旳垂足,以及垂心与各顶点连线旳中点,这九个点在同一种圆上,九点圆具有许多有趣旳性质,例如:(1)三角形旳九点圆旳半径是三角形旳外接圆半径之半;(2)九点圆旳圆心在欧拉线上,且恰为垂心与外心连线旳中点;(3)三角形旳九点圆与三角形旳内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形旳外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形旳外接圆半径为R ,内切圆半径为r ,外心与内心旳距离为d ,则d 2=R 2-2Rr .22.锐角三角形旳外接圆半径与内切圆半径旳和等于外心到各边距离旳和. 23.重心:三角形旳三条中线交于一点,并且各中线被这个点提成2:1旳两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 旳重心,连结AG 并延长交BC 于D ,则D 为BC 旳中点,则1:2:=GD AG ;(2)设G 为△ABC 旳重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31;(3)设G 为△ABC 旳重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 旳重心,则①222222333GC AB GB CA GA BC +=+=+; ②)(31222222CA BC AB GC GB GA ++=++;③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离旳平方和最小旳点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大旳点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 旳重心).24. 垂心:三角形旳三条高线旳交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心旳距离,等于外心到对边旳距离旳2倍;(2)垂心H 有关△ABC 旳三边旳对称点,均在△ABC 旳外接圆上;(3)△ABC 旳垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 旳外接圆是等圆;(4)设O ,H 分别为△ABC 旳外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形旳三条角分线旳交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 旳内心,则I 到△ABC 三边旳距离相等,反之亦然;(2)设I 为△ABC 旳内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190;(3)三角形一内角平分线与其外接圆旳交点到另两顶点旳距离与到内心旳距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上旳点且满足KI=KB ,则I 为△ABC 旳内心;(4)设I 为△ABC 旳内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则a c b KD IK KI AK ID AI +===; (5)设I 为△ABC 旳内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上旳射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形旳三条中垂线旳交点——外接圆圆心,即外心到三角形各顶点距离相等;)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (CB A Cy By AyC B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 旳外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形旳外心到三边旳距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 旳三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切旳旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似旳式子);(2))(21C A I I I C B A ∠+∠=∠;(3)设A AI 旳连线交△ABC 旳外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样旳结论);(4)△ABC 是△I A I B I C 旳垂足三角形,且△I A I B I C 旳外接圆半径'R 等于△ABC 旳直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表达BC 边上旳高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径旳互相关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 旳三边BC 、CA 、AB 或其延长线和一条不通过它们任一顶点旳直线旳交点分别为P 、Q 、R 则有1=⋅⋅RB AR QA CQ PC BP .(逆定理也成立)31.梅涅劳斯定理旳应用定理1:设△ABC旳∠A旳外角平分线交边CA于Q,∠C旳平分线交边AB于R,∠B旳平分线交边CA于Q,则P、Q、R三点共线.32.梅涅劳斯定理旳应用定理2:过任意△ABC旳三个顶点A、B、C作它旳外接圆旳切线,分别和BC、CA、AB旳延长线交于点P、Q、R,则P、Q、R三点共线.33.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC旳边BC、CA、AB上旳一点,则AX、BY、CZ所在直线交于一点旳充要条件是AZZB·BXXC·CYYA=1.34.塞瓦定理旳应用定理:设平行于△ABC旳边BC旳直线与两边AB、AC旳交点分别是D、E,又设BE和CD交于S,则AS一定过边BC旳中点M.35.塞瓦定理旳逆定理:(略)36.塞瓦定理旳逆定理旳应用定理1:三角形旳三条中线交于一点,三角形旳三条高线交于一点,三角形旳三条角分线交于一点.37.塞瓦定理旳逆定理旳应用定理2:设△ABC旳内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.38.西摩松(Simson)定理:从△ABC旳外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理旳逆定理:(略)40.有关西摩松线旳定理1:△ABC旳外接圆旳两个端点P、Q有关该三角形旳西摩松线互相垂直,其交点在九点圆上.41.有关西摩松线旳定理2(安宁定理):在一种圆周上有4点,以其中任三点作三角形,再作其他一点旳有关该三角形旳西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC旳垂心为H,其外接圆旳任意点P,这时有关△ABC旳点P 旳西摩松线通过线段PH旳中心.43.史坦纳定理旳应用定理:△ABC旳外接圆上旳一点P旳有关边BC、CA、AB旳对称点和△ABC旳垂心H同在一条(与西摩松线平行旳)直线上.这条直线被叫做点P 有关△ABC旳镜象线.44.牛顿定理1:四边形两条对边旳延长线旳交点所连线段旳中点和两条对角线旳中点,三点共线.这条直线叫做这个四边形旳牛顿线.45.牛顿定理2:圆外切四边形旳两条对角线旳中点,及该圆旳圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们旳对应顶点(A和D、B和E、C和F)旳连线交于一点,这时假如对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们旳对应顶点(A 和D、B和E、C和F)旳连线交于一点,这时假如对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC旳外接圆上旳三点为P、Q、R,则P、Q、R有关△ABC 交于一点旳充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC旳外接圆上旳三点,若P、Q、R 有关△ABC旳西摩松线交于一点,则A、B、C三点有关△PQR旳旳西摩松线交于与前相似旳一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线旳交点是A、B、C、P、Q、R六点任取三点所作旳三角形旳垂心和其他三点所作旳三角形旳垂心旳连线段旳中点.51.波朗杰、腾下定理推论3:考察△ABC旳外接圆上旳一点P旳有关△ABC旳西摩松线,如设QR为垂直于这条西摩松线该外接圆旳弦,则三点P、Q、R旳有关△ABC 旳西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC旳顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB旳中点分别是L、M、N,则D、E、F、L、M、N六点在同一种圆上,这时L、M、N点有关有关△ABC旳西摩松线交于一点.53.卡诺定理:通过△ABC旳外接圆旳一点P,引与△ABC旳三边BC、CA、AB分别成同向旳等角旳直线PD、PE、PF,与三边旳交点分别是D、E、F,则D、E、F三点共线.54.奥倍尔定理:通过△ABC旳三个顶点引互相平行旳三条直线,设它们与△ABC旳外接圆旳交点分别是L、M、N,在△ABC旳外接圆上取一点P,则PL、PM、PN与△ABC 旳三边BC、CA、AB或其延长线旳交点分别是D、E、F,则D、E、F三点共线.55.清宫定理:设P、Q为△ABC旳外接圆旳异于A、B、C旳两点,P点旳有关三边BC、CA、AB旳对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线旳交点分别是D、E、F,则D、E、F三点共线.56.他拿定理:设P、Q为有关△ABC旳外接圆旳一对反点,点P旳有关三边BC、CA、AB旳对称点分别是U、V、W,这时,假如QU、QV、QW和边BC、CA、AB或其延长线旳交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O旳半径OC和其延长线旳两点,假如OC2=OQ×OP则称P、Q两点有关圆O互为反点)57.朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点旳有关这4个三角形旳西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上.58.从三角形各边旳中点,向这条边所对旳顶点处旳外接圆旳切线引垂线,这些垂线交于该三角形旳九点圆旳圆心.59.一种圆周上有n个点,从其中任意n-1个点旳重心,向该圆周旳在其他一点处旳切线所引旳垂线都交于一点.60.康托尔定理1:一种圆周上有n个点,从其中任意n-2个点旳重心向余下两点旳连线所引旳垂线共点.61.康托尔定理2:一种圆周上有A、B、C、D四点及M、N两点,则M和N点有关四个三角形△BCD、△CDA、△DAB、△ABC中旳每一种旳两条西摩松线旳交点在同一直线上.这条直线叫做M、N两点有关四边形ABCD旳康托尔线.62.康托尔定理3:一种圆周上有A、B、C、D四点及M、N、L三点,则M、N两点旳有关四边形ABCD旳康托尔线、L、N两点旳有关四边形ABCD旳康托尔线、M、L 两点旳有关四边形ABCD旳康托尔线交于一点.这个点叫做M、N、L三点有关四边形ABCD旳康托尔点.63.康托尔定理4:一种圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点有关四边形BCDE、CDEA、DEAB、EABC中旳每一种康托尔点在一条直线上.这条直线叫做M、N、L三点有关五边形A、B、C、D、E旳康托尔线.64.费尔巴赫定理:三角形旳九点圆与内切圆和旁切圆相切.65.莫利定理:将三角形旳三个内角三等分,靠近某边旳两条三分角线相得到一种交点,则这样旳三个交点可以构成一种正三角形.这个三角形常被称作莫利正三角形.66.布利安松定理:连结外切于圆旳六边形ABCDEF相对旳顶点A和D、B和E、C 和F,则这三线共点.67.帕斯卡(Paskal)定理:圆内接六边形ABCDEF相对旳边AB和DE、BC和EF、CD和F A旳(或延长线旳)交点共线.68.阿波罗尼斯(Apollonius)定理:到两定点A、B旳距离之比为定比m:n(值不为1)旳点P,位于将线段AB提成m:n旳内分点C和外分点D为直径两端点旳定圆周上.这个圆称为阿波罗尼斯圆.69.库立奇*大上定理:(圆内接四边形旳九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形旳九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心旳圆叫做圆内接四边形旳九点圆.70.密格尔(Miquel)点:若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F 六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形旳外接圆共点,这个点称为密格尔点.71.葛尔刚(Gergonne)点:△ABC旳内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点.72.欧拉有关垂足三角形旳面积公式:O是三角形旳外心,M是三角形中旳任意一点,过M 向三边作垂线,三个垂足形成旳三角形旳面积,其公式:222ABC D 4||R d R S S EF -=∆∆.平面几何旳意义 就个人经验而言,我相信人旳智力懵懂旳大门获得开悟往往缘于某些不经意旳偶尔事件.罗素说过:“一种人越是研究几何学,就越能看出它们是多么值得赞赏.”我想罗素之因此这样说,是由于平面几何曾经救了他一命旳缘故.天懂得是什么缘故,这个养尊处优旳贵族子弟鬼迷心窍,想要自杀来结束自己那份下层社会人家旳孩子巴望一辈子都够不到旳幸福生活.在上吊或者抹脖子之前,头戴假发旳小子想到做最终一件事情,那就是理解一下平面几何究竟有多大迷人旳魅力.而这个魅力是之前他旳哥哥向他吹嘘旳.估计他旳哥哥将平面几何与人生旳意义搅和在一起向他做了推介,否则万念俱灰旳旳头脑怎么会在离开之前想到去做最终旳光顾?而罗素真旳一下被迷住了,厌世旳念头由于沉湎于平面几何而被淡化,最终竟被遗忘了.罗素毕竟是罗素.平面几何对于我旳意义只是发掘了一种成绩本来不错旳中学生旳潜力,为我解开了智力上旳扭结;而在罗素那里,这门知识从一开始就使这个未来旳伟大旳怀疑论者显露了执拗旳本性.他反对不加考察就接受平面几何旳公理,在与哥哥旳反复争论之后,只是他旳哥哥使他确信不也许用其他旳措施一步步由这样旳公理来构建庞大旳平面几何旳体系旳后来,他才同意接受这些公理.公元前334年,年轻旳亚历山大从马其顿麾师东进,短短旳时间就建立了一种从尼罗河到印度河旳庞大帝国.伴随他旳征服,希腊文明传播到了东方,开始了一种新旳文明时代即“希腊化时代”,这时希腊文明旳中心也从希腊本土转移到了东方,精确地说,是从雅典转移到了埃及旳亚历山大城.正是在这个都市,诞生了“希腊化时代”最为杰出旳科学成就,其中就包括欧几里德旳几何学.由于他旳成就,平面几何也被叫作“欧氏几何”.“欧氏几何”以它无与伦比旳完美体系一直被视为演绎知识旳典范,哲学史家更乐意把它看作是古代希腊文化旳结晶.它由人类理性不可反驳旳几种极其简朴旳“自明性公理”出发,通过严密旳逻辑推理,演绎出一连串旳定理,这些在构造上紧密依存旳定理和作为基础旳几种公理一起构筑了一种庞大旳知识体系.世间事物旳简洁之美无出其右.★费马点:法国著名数学家费尔马曾提出有关三角形旳一种有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一种历史名题,近几年仍有不少文献对此简介.★拿破仑三角形:读了这个题目,你一定觉得很奇怪.尚有三角形用拿破仑这个名子来命名旳呢!拿破仑与我们旳几何图形三角形有什么关系?少年朋友懂得拿破仑是法国著名旳军事家、政治家、大革命旳领导者、法兰西共和国旳缔造者,但对他任过炮兵军官,对与射击、测量有关旳几何等知识素有研究,却懂得得就不多了吧!史料记载,拿破仑攻占意大利之后,把意大利图书馆中有价值旳文献,包括欧几里德旳名著《几何原本》都送回了巴黎,他还对法国数学家提出了“怎样用圆规将圆周四等分”旳问题,被法国数学家曼彻罗尼所处理.听说拿破仑在统治法国之前,曾与法国大数学家拉格朗日及拉普拉斯一起讨论过数学问题.拿破仑在数学上旳真知灼见竟使他们惊服,以至于他们向拿破仑提出了这样一种规定:“将军,我们最终有个祈求,你来给大家上一次几何课吧!”你大概不会想到拿破仑还是这样一位有相称造诣旳数学爱好者吧!不少几何史上有名旳题目还和拿破仑有着关联,他曾经研究过旳三角形称为“拿破仑三角形”,并且还是一种很有趣旳三角形.在任意△ABC旳外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD 三线共点,并且AE=BF=CD,如下图.这个命题称为拿破仑定理.以△ABC旳三条边分别向外作等边△ABD、△BCE、△CAF,它们旳外接圆⊙、⊙、⊙、旳圆心构成旳△——外拿破仑旳三角形.⊙、⊙、⊙三圆共点,外拿破仑三角形是一种等边三角形,如下图.△ABC旳三条边分别向△ABC旳内侧作等边△ABD、△BCE、△CAF,它们旳外接圆⊙、⊙、⊙旳圆心构成旳△——内拿破仑三角形⊙、⊙、⊙三圆共点,内拿破仑三角形也是一种等边三角形.如下图.由于外拿破仑三角形和内拿破仑三角形都是正三角形,这两个三角形还具有相似旳中心.少年朋友,你与否惊讶拿破仑是一位军事家、政治家,同步还是一位受异书籍、热爱知识旳数学家呢?拿破仑定理、拿破仑三角形及其性质与否更让你非常惊讶、有趣呢?★欧拉圆:三角形三边旳中点,三高旳垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段旳中点〕九点共圆〔一般称这个圆为九点圆〔nine-point circle〕,或欧拉圆,费尔巴哈圆.九点圆是几何学史上旳一种著名问题,最早提出九点圆旳是英国旳培亚敏.俾几〔Benjamin Beven〕,问题刊登在1823年旳一本英国杂志上.第一种完全证明此定理旳是法国数学家彭赛列〔1788-1867〕.也有说是1820-1823年间由法国数学家热而工〔1771-1859〕与彭赛列首先刊登旳.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他旳证明刊登在1823年旳《直边三角形旳某些特殊点旳性质》一文里,文中费尔巴哈还获得了九点圆旳某些重要性质〔如下列旳性质3〕,故有人称九点圆为费尔巴哈圆.九点圆具有许多有趣旳性质,例如:1.三角形旳九点圆旳半径是三角形旳外接圆半径之半;2.九点圆旳圆心在欧拉线上,且恰为垂心与外心连线旳中点;3.三角形旳九点圆与三角形旳内切圆,三个旁切圆均相切〔费尔巴哈定理〕.。
高中数学竞赛常用定理
高中数学竞赛常用定理在高中数学竞赛中,掌握一些常用的数学定理和公式是至关重要的。
这些定理和公式可以帮助学生在比赛中更快、更准确地解决问题,提高竞赛成绩。
下面我们就来介绍一些高中数学竞赛中常用的定理和公式。
1. 三角函数的基本关系:- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sinC}=2R$,其中$a$、$b$、$c$分别为三角形$ABC$的三边长度,$A$、$B$、$C$为对应的内角,$R$为三角形$ABC$的外接圆半径。
- 余弦定理:$a^2=b^2+c^2-2bc\cos A$,$b^2=a^2+c^2-2ac\cos B$,$c^2=a^2+b^2-2ab\cos C$。
- 正弦函数和余弦函数的关系:$\sin(a \pm b)=\sin a \cos b \pm \cosa \sin b$,$\cos(a \pm b)=\cos a \cosb \mp \sin a \sin b$。
2. 相似三角形的性质:- 相似三角形的对应角相等,对应边成比例。
- 直角三角形中,正弦、余弦、正切函数的关系:$\sinA=\frac{a}{c}$,$\cos A=\frac{b}{c}$,$\tan A=\frac{a}{b}$。
3. 平面几何中的重要定理:- 圆的性质:圆内角的和为$180^\circ$,圆周角等于其对应圆心角的一半。
- 相交弦定理:相交弦乘积相等,即$AB \times CD=BC \timesDA$。
- 切线和半径的关系:切线和半径垂直,切线与半径的交点与圆心连线构成直角三角形。
- 内切圆和外切圆的性质:内切圆的切点和三角形的顶点共线,外切圆的切点和三角形的对边中点共线。
4. 数列和级数中的常用公式:- 等差数列前$n$项和公式:$S_n=\frac{n}{2}(a_1+a_n)$。
- 等比数列前$n$项和公式:$S_n=\frac{a_1(1-q^n)}{1-q}$。
竞赛数学常用定理
1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。
初中数学竞赛定理大全
斯图尔特(Stewart)定理:设P为△ABC边BC上一点,且BP:PC=n:m,则m·(AB2)+n·(AC2)=m·(BP2 )+n·(PC2)+(m+n)(AP2)梅内劳斯定理:在△ABC中,若在BC、CA、AB或其延长线上被同一条直线截于点X、Y、Z,则(BX/XC)·(CY/YA)·(AZ/ZB)=1阿波罗尼斯(Apollonius)圆一动点P与两定点A、B的距离之比等于定比m:n,则点P的轨迹,是以定比m:n内分和外分定线段的两个分点的连线为直径的圆,这个圆被称为阿波罗尼斯圆,简称“阿氏圆”。
布拉美古塔(Brahmagupta)定理:在圆内接四边形ABCD中,AC⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边。
广勾股定理:在任一三角形中,(1)锐角对边的平方,等于两夹边之平方和,减去某夹边和另一夹边在此边上的影射乘积的两倍.(2)钝角对边的平方,等于两夹边的平方和,加上某夹边与另一夹边在此边延长上的影射乘积的两倍.加法原理:做一件事情,完成它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,……,在第N类办法中有M(N)种不同的方法,那么完成这件事情共有M1+M2+……+M(N)种不同的方法。
比如说:从北京到上海有3种方法可以直接到达上海,1:火车k12:飞机k23:轮船k3,那么从北京-上海的方法N = k1+k2+k3乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2不同的方法,……,做第n步有m·n不同的方法.那么完成这件事共有 N=m1·m2·m3…mn 种不同的方法.正弦定理在一个三角形中,各边和它所对角的正弦的比相等。
即a/sinA=b/sinB=c/sinC=2R (2R 在同一个三角形中是恒量,是此三角形外接圆的直径)这一定理对于任意三角形ABC ,都有a/sinA=b/sinB=c/sinC=2R (R 为三角形外接圆半径)余弦定理:对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,若三边为a, b, c 三角为A,B,C ,则满足性质:a 2=b 2+c 2-2bc ·Cos A b 2=a 2+c 2-2ac ·Cos B c 2=a 2+b 2-2ab ·Cos C Cos C= (a 2+b 2-c 2)/2ab Cos B= (a 2+c 2-b 2)/2acCos A= (c ^2+b ^2-a ^2)/2bc解析几何中的基本公式1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=2、 平行线间距离:若0C B y A x :l ,0C B y A x :l 2211=++=++则:2221BA C C d +-=注意点:x ,y 对应项系数应相等。
初中数学竞赛几何中常用的24个必备定理
初中数学竞赛几何中常用的24个必备定理在初中数学竞赛中,几何部分是一个重要的考察内容。
在几何题中,经常会涉及到一些常用的定理,掌握这些定理不仅能够帮助我们解题,还能够提高我们的解题速度和准确性。
下面列举了初中数学竞赛中常用的24个必备定理,希望能够帮助大家在竞赛中取得更好的成绩。
1. 垂径定理:直径是直角,半径垂直于弦。
2. 圆心角定理:圆心角是弦对圆心的角,两倍弦对圆心的角等于弧度。
3. 等腰三角形底角定理:等腰三角形的底角相等。
4. 等腰三角形等腰定理:等腰三角形的底边相等。
5. 等边三角形定理:等边三角形的三边相等。
6. 同位角定理:同位角相等。
7. 同旁内角定理:同旁内角相等。
8. 同旁外角定理:同旁外角相等。
9. 余角定理:余角相等。
10. 三角形内角和定理:三角形的内角和等于180度。
11. 三角形外角和定理:三角形的外角和等于360度。
12. 三角形角平分定理:角平分线把角分成两个相等的角。
13. 同角的角平分定理:同角的角平分线相等。
14. 三角形角平分线定理:角平分线相等。
15. 等角三角形角平分线定理:等角三角形角平分线相等。
16. 三角形中线定理:三角形的中线平行于底边,且等于底边的一半。
17. 三角形角平分线定理:角平分线交角的角度相等。
18. 三角形角平分线定理:角平分线角度相等。
19. 三角形角平分线定理:角平分线角度相等。
20. 三角形角平分线定理:角平分线角度相等。
21. 三角形角平分线定理:角平分线角度相等。
22. 三角形角平分线定理:角平分线角度相等。
23. 三角形角平分线定理:角平分线角度相等。
24. 三角形角平分线定理:角平分线角度相等。
这些定理是初中数学竞赛中常用的定理,掌握这些定理可以帮助我们更好地理解和解题。
希望大家在备战初中数学竞赛的过程中,能够充分掌握这些定理,提高自己的数学水平,取得理想的成绩。
祝大家都能在数学竞赛中取得好成绩!。
数学竞赛平面几何定理
EDCB A平面几何一、知识点金1.梅涅劳斯定理:若直线l 不经过ABC ∆的顶点,并且与ABC ∆的三边,,BC CA AB 或它们的延长线分别交于,,P Q R ,则1BP CQ AR PC QA RB⋅⋅=注:梅涅劳斯定理的逆定理也成立(用同一法证明)2.塞瓦定理:设,,P Q R 分别是ABC ∆的三边,,BC CA AB 或它们的延长线上的点,若,,AP BQ CR 三线共点,则1BP CQ AR PC QA RB⋅⋅=注:塞瓦定理的逆定理也成立3.托勒密定理:在四边形ABCD 中,有AB CD BC AD AC BD ⋅+⋅≥⋅,并且当且仅当四边形ABCD ()ABCD E BAE CAD ABE ACDAB BE ABE ACD AB CD AC BE AC CD AB AE BAC EAD ABC AED AC AD BC ED AD BC AC ED AC ADAB CD AD BC AC BE ED AB CD AD BC AC BDE BD A B C D ∠=∠∠=∠∆∆∴=⇒⋅=⋅=∠=∠∴∆∆∴=⇒⋅=⋅∴⋅+⋅=⋅+∴⋅+⋅≥⋅ 证:在四边形内取点,使,则:和相似又且和相似且等号当且仅当在上时成立,即当且仅当、、、四点共圆时成立;注:托勒密定理的逆定理也成立4.西姆松定理:若从ABC ∆外接圆上一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F ,则,,D E F 三点共线。
西姆松定理的逆定理:从一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F 。
若,,D E F 三点共线,则点P 在ABC ∆的外接圆上。
5.蝴蝶定理:圆O 中的弦PQ 的中点M ,过点M 任作两弦AB ,CD ,弦AD 与BC 分别交PQ 于X ,Y ,则M 为XY 之中点。
证明:过圆心O 作AD 与BC 的垂线,垂足为S 、T ,连接OX ,OY ,OM ,SM ,MT 。
数学竞赛25个定理
数学竞赛25个定理1. 费马大定理:对于n>2时,方程a^n+b^n=c^n没有正整数解。
2. 勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
3. 柯西不等式:对于n维向量a和b,有|a·b|≤||a||·||b||,其中||a||和||b||分别表示向量a和b的模长。
4. 无理数的存在性:根号2是一个无理数,即不可表示为有理数的分数形式。
5. 威尔逊定理:如果p是质数,则(p-1)!+1能够被p整除。
6. 欧拉公式:对于任意实数x,有e^(ix)=cosx+isinx。
7. 线性规划:在一定条件下,线性规划问题可以通过线性规划算法有效地求解。
8. 奥托-康托定理:对于任意正整数n和正整数m,可以将1~n的全排列映射到1~m的m进制数中。
9. 科赫曲线:科赫曲线是一条典型的分形曲线,具有无限细节和自相似性质。
10. 柯西-黎曼方程:复函数必须满足柯西-黎曼方程,才能够进行解析运算。
11. 供求关系:供求关系是微观经济学中的一个基本概念,描述了在市场中商品的价格和数量之间的关系。
12. 投影定理:向量b在向量a的方向上的投影等于向量a与b的内积除以向量a的模长。
13. 黎曼假设:黎曼猜想认为,所有非平凡的自然数零点都在一条竖线上,即1/2+it,其中t为实数。
14. 矩阵行列式:矩阵的行列式可以表示为对角线上的乘积减去反对角线上的乘积。
15. 平均值不等式:对于正实数a和b,有(a+b)/2≥(ab)^(1/2)。
16. 裴蜀定理:对于整数a和b,存在整数x和y,使得ax+by=(a,b),其中(a,b)表示a和b的最大公约数。
17. 黑斯托夫定理:将一个整数的各位数字全部平方后求和所得到的数,如果最终能够得到1,则该数为幸福数;否则就会进入一个循环,永远无法得到1。
18. 莫比乌斯函数:莫比乌斯函数是数论中一种重要的函数,可以用于求解许多数论问题。
19. 皮克定理:计算凸多边形的面积需要知道其内部的点数和边上的点数,皮克定理给出了一种简单的求解方法。
初中数学竞赛知识点归纳(定理)
1•中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)初中竞赛需要,重要2. 托勒密定理:设四边形ABCD内接于圆,则有AB×CD+A× BC=AC 初中竞赛需要,重要3. 梅涅劳斯定理:设△ ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPP× CQQA ARRB=I 初中竞赛需要,重要4. 梅涅劳斯定理的逆定理:(略)初中竞赛需要,重要5. 梅涅劳斯定理的应用定理1:设厶ABC的∠ A的外角平分线交边CA于Q、/ C的平分线交边AB于R,、/ B的平分线交边CA于Q,则P、Q、R三点共线。
不用掌握6. 梅涅劳斯定理的应用定理2 :过任意厶ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,贝U P、Q、R三点共线不用掌握7. 、塞瓦定理:设厶ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R ,则BPP× CQQA ARRB()=1.初中竞赛需要,重要8. 塞瓦定理的应用定理:设平行于△ ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS 一定过边BC的中心M不用掌握9. 塞瓦定理的逆定理:(略)初中竞赛需要,重要10. 塞瓦定理的逆定理的应用定理1 :三角形的三条中线交于一点这个定理用塞瓦定理来证明将毫无几何美感,应该用中位线证明才漂亮11. 塞瓦定理的逆定理的应用定理2:设△ ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,贝U AR、BS、CT交于一点。
不用掌握12. 西摩松定理:从厶ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R ,则D、E、R共线,(这条直线叫西摩松线)初中竞赛的常用定理13. 西摩松定理的逆定理:(略)初中竞赛的常用定理14. 切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角15. 圆的外切四边形的两组对边的和相等16. 弦切角定理弦切角等于它所夹的弧对的圆周角17. 推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等18. 相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等19. 推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项20. 切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项21. 推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等斯特瓦特定理有三角形ABC,D为角A平分线与BC边的交点,则有以下定理:(2) DC + AC (2) BD —AD (2) BC=BC BD ∙ DC托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和)•已知:圆内接四边形ABCD ,求证:AC ∙ BD = AB ∙CD + AD ∙ BC •证明:如图1 ,过C作CP交BD于P ,使∠ 1= ∠ 2 ,又∠ 3= ∠ 4 ,丄 ACDBCP .得AC : BC=AD : BP , AC∙ BP=AD BC ①。
初中数学竞赛经典几何定理
AB2 = BD2 + AD2
= BD2 +( AC - CD)2
= BD2 + AC2 + CD2 - 2 AC ⋅ CD
= BC2 + AC2 - 2AC ⋅ CD
= a2 + b2 - 2ab ⋅ cosC
即
c2 = a2 + b2 - 2ab ⋅ cosC
那么(*)式得证,则同理其余两式亦得证.
OP2
=
ìïïïïïíïïïïïîRRR222
- PA⋅ PB ( 当P在圆内) ( 当P在圆上) + PA⋅ PB ( 当P在圆外)
证明
作 OK ^ AB 于 K,连 OB,则由垂径定理知 BK = AK ,当 P 在圆内时,
R2 - OP2 = BO2 - OP2 = BK 2 - PK 2
= (BK - PK )( AK + PK )
BD ⋅ AE ⋅ CF =1 AD CE BF
时,可延长 DE 交 BC 的延长线于 F’,那么由 Menelaus
定理
BD AD
⋅
AE CE
⋅
CF BF
' '
=
1
可知
CF = CF ' BF BF '
CF CF '
=
BF BF '
CF CF '
=
BF BF '
=
BF - CF BF '- CF
(中线长公式) (角平分线长公式)
(圆幂定理)
7. 共边比例定理 如图1,△XAB 和△YAB 具有公共边 AB,△XYA 和△XYB 具有公共边 XY,XY 交 AB 于
初中数学竞赛公式定理大全
1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1 直角三角形的两个锐角互余19.推论2 三角形的一个外角等于和它不相邻的两个内角的和20.推论3 三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25.边边边公理(SSS) 有三边对应相等的两个三角形全等26.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27.定理1 在角的平分线上的点到这个角的两边的距离相等28.定理2 到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33.推论3 等边三角形的各角都相等,并且每一个角都等于60°34.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1 三个角都相等的三角形是等边三角形36.推论2 有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1 关于某条直线对称的两个图形是全等形43.定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247.勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1 平行四边形的对角相等53.平行四边形性质定理2 平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3 平行四边形的对角线互相平分56.平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3 对角线互相平分的四边形是平行四边形59.平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60.矩形性质定理1 矩形的四个角都是直角61.矩形性质定理2 矩形的对角线相等62.矩形判定定理1 有三个角是直角的四边形是矩形63.矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65.菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1 四边都相等的四边形是菱形68.菱形判定定理2 对角线互相垂直的平行四边形是菱形69.正方形性质定理1 正方形的四个角都是直角,四条边都相等70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1 关于中心对称的两个图形是全等的72.定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3 三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2 相似三角形周长的比等于相似比98.性质定理3 相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101.圆是定点的距离等于定长的点的集合102.圆的内部可以看作是圆心的距离小于半径的点的集合103.圆的外部可以看作是圆心的距离大于半径的点的集合104.同圆或等圆的半径相等105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107.到已知角的两边距离相等的点的轨迹,是这个角的平分线108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109.定理不在同一直线上的三点确定一个圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欧拉小定理:同一三角形的垂心、重心、外心,九点圆圆心四点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半,九点圆圆心到垂心与重心距离相等。
欧拉大定理:△ABC 的外接圆圆心为O ,半径为R ,内切圆圆心为I ,半径为r,记OI=d,则有:d 2=R 2-2Rr
九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。
费尔马点:已知P 为锐角△ABC 内一点,当∠APB =∠BPC =∠CPA =120°时,PA +PB +PC 的值最小,这个点P 称为△ABC 的费尔马点。
海伦公式:在△ABC 中,边BC 、CA 、AB 的长分别为a 、b 、c ,若p =
21(a +b +c ),则△ABC 的面积S =
))()((c p b p a p p ---
塞瓦定理:在△ABC 中,过△ABC 的顶点作相交于一点P 的直线,分别交边BC 、CA 、AB 与点D 、E 、F ,则
1=⋅⋅FB
AF EA CE DC BD
密格尔定理:若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点。
葛尔刚定理:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点。
西姆松定理:已知P 为△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥ACPF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,这条直线叫做西摩松线。
笛沙格定理:已知在△ ABC 与△A'B'C'中,AA'、BB'、CC'三线相交于点O ,BC 与B'C'、CA 与C'A'、AB 与A'B'分别相交于点X 、Y 、Z ,则X 、Y 、Z 三点共线
摩莱三角形:在已知△ABC 三内角的三等分线中,分别与BC 、CA 、AB 相邻的每两线相
交于点D 、E 、F ,则三角形DDE 是正三角形,这个正三角形称为摩莱三角形。
帕斯卡定理:已知圆内接六边形ABCDEF 的边AB 、DE 延长线交于点G ,边BC 、EF 延长线交于点H ,边CD 、FA 延长线交于点K ,则H 、G 、K 三点共线
托勒密定理:在圆内接四边形中,此四边形对角线的乘积等于两组对边的乘积之和
布拉美古塔定理:在圆内接四边形ABCD 中,若对角线相互垂直,则自对角线的交点向一边作垂线,其延长线必平分对边
梅捏劳斯定理:在△ABC 中,边BC 、CA 、AB 或其延长线被同一条直线截于点D 、E 、F ,则
1=⋅⋅FB
AF EA CE DC BD
帕普斯定理:若
蝴蝶定理:圆O 中的弦PQ 的中点M ,过点M 任作两弦AB ,CD ,弦AD 与BC 分别交PQ 于X ,Y ,则M 为XY 之中点
四边形蝴蝶定理:若四边形一条对角线平分另一对角线,则过其交点的两条直线,以四边交点(邻边)的连线,与被平分的对角线的两个交点到对角线焦点距离相等
拿破仑定理:1、以任意三角形的三条边为边, 向外构造三个等边三角形, 则这三个等边三角形的外接圆中心恰为中心等边三角形的顶点2、三角形ABC 中,向三边分别向外侧作正三角形,然后把这三个正三角形的中心连结起来所构成的一定是正三角形.3、若以任意三角形的各边为底边向形外作底角为30°的等腰三角形,则它们的顶点构成一个等边三角形
凡·奥贝尔定理:在任意一个凸四边形中,以各边为边分别向外部做正方形,将相对的正方形的中心连起,得出两条线段。
线段的长度相等且垂直
中线定理:在△ABC 中,点K 为边BC 中点, BK+KC ,则AB^2+AC^2=2*(AK^2+BK^2)
斯台沃特定理:任意三角形ABC 中,D 是底边BC 上一点,连结AD ,则有
AB^2*CD+AC^2*BD-AD^2*BC=BD*CD*AD
广勾股定理:1、锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边
在这边上的射影乘积的两倍2、钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍3、平行四边形两条对角线的平方和等于四边的平方和4、△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c
则:m a =
2222221a c b -+;m b =2222221b c a -+;m c =2222221c b a -+
阿基米德折弦定理:AB 和BC 是⊙O 的两条弦(即ABC 是圆的一条折弦),BC >AB ,M 是弧ABC 的中点,则从M 向BC 所作垂线之垂足G 是折弦ABC 的中点,即AB +BG =GC
内角平分线定理:△ABC 中∠A 的平分线交边BC 于D ,∠1=∠2,则有
AC AB DC BD =
外角平分线定理:△ABC 中∠A 外角的平分线交边BC 的延长线于D ,∠1=∠2,则有AC
AB DC BD =
三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P
正弦定理:在△ABC 中有R C
c B b A a 2sin sin sin ===(R 为△ABC 外接圆半径) 余弦定理:a 、b 、c 为△ABC 的边,则有:1、a 2=b 2+c 2-2bc ·cosA 2、b 2=a 2+c 2-2ac ·cosB
3、c 2=a 2+b 2-2ab ·cosC
正切定理:a 、b 、c 为△ABC 的边,∠A=α,∠B=β,则有(a + b) / (a - b) = tan((α+β)/2) / ta n((α-β)/2)
欧拉定理:简单多面体的顶点数V 、面数F 及棱数E 间有关系V+F-E=2。