数值分析复习---第八章 常微分方程数值解法

合集下载

08常微分方程数值解法(工程数学)

08常微分方程数值解法(工程数学)
1 i i i
k2为 x i + ph 点处的切线斜率值,对照改进的欧拉 法,将
x i + p 视为 x i +1,即可得 k 2 = f ( x i + ph, y i + phk1 )
21
对常微分方程初值问题的解 y=y(x),根据微分中值定 理,存在点 ξ ∈ ( x i , x i + 1 ) ,使得
0.96 0.8523 0.7003 0.5325 0.3750
0.9616 0.8549 0.7025 0.5327 0.3725
0.9615 0.8549 0.7022 0.5327 0.3730
0.9608 0.8521 0.6977 0.5273 0.3679
3.1、龙格-库塔法
考虑用函数f(x,y)在若干点上的函数值的线性组合 来构造近似公式,构造时要求近似公式在(xi,yi)处的 Taylor展开式与解y(x)在xi处的Taylor展开式的前面几项 重合,从而使近似公式达到所需要的阶数。既避免求偏 导,又提高了计算方法精度的阶数。或者说,在[xi,xi+1]这 一步内多预报几个点的斜率值,然后将其加权平均作为 平均斜率,则可构造出更高精度的计算格式,这就是龙 格—库塔(Runge-Kutta)法的基本思想。
20
1 二阶龙格—库塔法 在 [x , x ] 上取两点xi和 xi+ p = xi + ph,以该两点处
i i +1
的斜率值k1和k2的加权平均(或称为线性组合)来求取 平均斜率k*的近似值K,即
K = λ 1k 1 + λ 2k 2
式中:k1为xi点处的切线斜率值,k = f ( x , y ) = y ′ ( x )

数值分析常微分方程数值解法

数值分析常微分方程数值解法
7
第8页/共105页
➢ 数值积分方法(Euler公式)
设将方程 y=f (x, y)的两端从 xn 到xn+1 求积分, 得
y( xn1) y( xn )
xn1 f ( x, y( x))dx :
xn
xn1 F ( x)dx
xn
用不同的数值积分方法近似上式右端积分, 可以得到计算 y(xn+1)的不同的差分格 式.
h2 2
y''( )
Rn1
:
y( xn1)
yn1
h2 2
y''( )
h2 2
y''( xn ) O(h3 ).
局部截断误差主项
19
第20页/共105页
➢ 向后Euler法的局部截断误差
向后Euler法的计算公式
yn1 yn hf ( xn1, yn1 ), n 0, 1, 2,
定义其局部截断误差为
y 计算 的n递1 推公式,此类计算格式统称为差分格式.
3
第4页/共105页
数值求解一阶常微分方程初值问题
y' f ( x, y), a x b,
y(a)
y0
难点: 如何离散 y ?
➢ 常见离散方法
差商近似导数 数值积分方法 Taylor展开方法
4
第5页/共105页
➢ 差商近似导数(Euler公式)
(0 x 1)
y(0) 1.
解 计算公式为
yn1
yn
hfn
yn
h( yn
2xn ), yn
y0 1.0
n 0, 1, 2,
取步长h=0.1, 计算结果见下表
13

第八章常微分方程的数值解法

第八章常微分方程的数值解法

y( xn1 )
15
Euler法的收敛性
称初值问题(8.1.1)的数值解法是收敛的,如:
h0 ( n )
lim yn y ( x)
其中: x xn x0 nh , x [ x0 , b]
16
例考察以下初值问题Euler法的收敛性
dy y dx y (0)=y0 ( 0)

可得: h (k ) ( k 1) y y | f ( xn 1 , yn ) f ( x , y 1 n 1 n 1 ) | 2 hL ( k ) hL k 1 (1) ( k 1) (0) | yn 1 yn 1 | ( ) | yn 1 yn 1 | 2 2 hL k 1 ( k 1) 从而 : lim( ) 0 , 故有 lim yn 1 y n 1 。 k 2 k

由y0=y( x0 ), 假定yn=y( xn ), 往证:
y0 yn 1 y ( xn 1 ) xn 1; x0
14
证明
yn yn1 yn hf ( xn , yn ) yn h xn 1 1 yn (1 h ) y( xn )(1 h ) xn xn y0 y0 1 xn (1 h ) ( xn h) x0 xn x0 y0 xn 1 x0
8
局部截断误差
假设第n步在点xn的值计算没有误差,即yn y( xn ), 由单步法计算出yn1 , 则
Tn1 y( xn1 ) yn1 称为点xn1上的局部截断误差.
从初值y( x0 ) y0出发,由单步法显式或隐式 逐步计算,得xn 1的值yn 1 , 则
n1 y( xn1 ) yn1

常微分方程数值解法5262115页PPT文档

常微分方程数值解法5262115页PPT文档
x 1 ( t ) 表示时刻 t 食饵的密度,x 2 ( t ) 表示捕食者的密度;
r 表示食饵独立生存时的增长率;
d 表示捕食者独立生存时的死亡率;
a 表示捕食者的存在对食饵增长的影响系数,反映捕
食者对食饵的捕获能力;
b 表示食饵的存在对捕食者增长的促进系数,反映食
饵对捕食者的喂养能力
150 100
令 y 1 y ,y 2 y ',y 3 y '', ,y n y ( n 1 )
可以将以上高阶微分方程化为如下一阶常微分方程组
y1 ' y2 y2 ' y3 yn ' an(x)y1
a1(x)yn f (x)
例:P120,1(a),Bessel方程
常微分方程的数值解
一般地,凡表示未知函数,未知函数的导 数与自变量之间的关系的方程叫做微分方 程.未知函数是一元函数的,叫常微分方 程;未知函数是多元函数的,叫做偏微分方 程.

y ' x y'x2y2 y''y'xy
Matlab实现 [t,x]=ode45(f,ts,x0,options,p1,p2,......)
50 0 0
30 20 10
0 0
10
20
50
30
20
10

0
30
0
10
8
6
4
2
100
0
50
100
150
50
100
高阶常微分方程的解法
高阶常微分方程
y ( n ) a 1 ( x ) y ( n 1 ) a ( n 1 ) ( x ) y ' a n ( x ) y f( x )

常微分方程的数值解法

常微分方程的数值解法

常微分方程的数值解法1. 引言常微分方程是自变量只有一个的微分方程,广泛应用于自然科学、工程技术和社会科学等领域。

由于常微分方程的解析解不易得到或难以求得,数值解法成为解决常微分方程问题的重要手段之一。

本文将介绍几种常用的常微分方程的数值解法。

2. 欧拉方法欧拉方法是最简单的一种数值解法,其具体步骤如下:- 将自变量的区间等分为n个子区间;- 在每个子区间上假设解函数为线性函数,即通过给定的初始条件在每个子区间上构造切线;- 使用切线的斜率(即导数)逼近每个子区间上的解函数,并将其作为下一个子区间的初始条件;- 重复上述过程直至达到所需的精度。

3. 改进的欧拉方法改进的欧拉方法是对欧拉方法的一种改进,主要思想是利用两个切线的斜率的平均值来逼近每个子区间上的解函数。

具体步骤如下: - 将自变量的区间等分为n个子区间;- 在每个子区间上构造两个切线,分别通过给定的初始条件和通过欧拉方法得到的下一个初始条件;- 取两个切线的斜率的平均值,将其作为该子区间上解函数的斜率,并计算下一个子区间的初始条件;- 重复上述过程直至达到所需的精度。

4. 二阶龙格-库塔方法二阶龙格-库塔方法是一种更为精确的数值解法,其基本思想是通过近似计算解函数在每个子区间上的平均斜率。

具体步骤如下: - 将自变量的区间等分为n个子区间;- 在每个子区间上计算解函数的斜率,并以该斜率的平均值近似表示该子区间上解函数的斜率;- 利用该斜率近似值计算下一个子区间的初始条件,并进一步逼近解函数;- 重复上述过程直至达到所需的精度。

5. 龙格-库塔法(四阶)龙格-库塔法是目前常用的数值解法之一,其精度较高。

四阶龙格-库塔法是其中较为常用的一种,其具体步骤如下:- 将自变量的区间等分为n个子区间;- 在每个子区间上进行多次迭代计算,得到该子区间上解函数的近似值;- 利用近似值计算每个子区间上的斜率,并以其加权平均值逼近解函数的斜率;- 计算下一个子区间的初始条件,并进一步逼近解函数;- 重复上述过程直至达到所需的精度。

常微分方程数值解法

常微分方程数值解法

欧拉方法
总结词
欧拉方法是常微分方程数值解法中最基础的方法之一,其基本思想是通过离散化时间点上的函数值来 逼近微分方程的解。
详细描述
欧拉方法基于微分方程的局部线性化,通过在时间点上逐步逼近微分方程的解,得到一系列离散点上 的近似值。该方法简单易行,但精度较低,适用于求解初值问题。
龙格-库塔方法
总结词
影响
数值解法的稳定性对计算结果的精度和可靠 性有重要影响。
判断方法
通过分析数值解法的迭代公式或离散化方法, 判断其是否具有稳定性和收敛性。
数值解法的收敛性
定义
数值解法的收敛性是指随着迭代次数的增加, 数值解逐渐接近于真实解的性质。
影响
数值解法的收敛性决定了计算结果的精度和 计算效率。
分类
根据收敛速度的快慢,可以分为线性收敛和 超线性收敛等。
判断方法
通过分析数值解法的迭代公式或离散化方法, 判断其是否具有收敛性。
误差分析
定义
误差分析是指对数值解法计算过程中 产生的误差进行定量分析和估计的过 程。
分类
误差可以分为舍入误差、截断误差和 初始误差等。
影响
误差分析对于提高计算精度和改进数 值解法具有重要意义。
分析方法
通过建立误差传递公式或误差估计公 式,对误差进行定量分析和估计。
生物学
生态学、生物种群动态和流行病传播 等问题可以通过常微分方程进行建模
和求解。
化学工程
化学反应动力学、化学工程流程模拟 等领域的问题可以通过常微分方程进 行描述和求解。
经济学
经济系统动态、金融市场模拟和预测 等问题可以通过常微分方程进行建模 和求解。
02 常微分方程的基本概念
常微分方程的定义

常微分方程的数值解法

常微分方程的数值解法

常微分方程的数值解法常微分方程是研究变量的变化率与其当前状态之间的关系的数学分支。

它在物理、工程、经济等领域有着广泛的应用。

解常微分方程的精确解往往十分困难甚至不可得,因此数值解法在实际问题中起到了重要的作用。

本文将介绍常见的常微分方程的数值解法,并比较其优缺点。

1. 欧拉方法欧拉方法是最简单的数值解法之一。

它基于近似替代的思想,将微分方程中的导数用差商近似表示。

具体步骤如下:(1)确定初始条件,即问题的初值。

(2)选择相应的步长h。

(3)根据微分方程的定义使用近似来计算下一个点的值。

欧拉方法的计算简单,但是由于误差累积,精度较低。

2. 改进欧拉方法为了提高欧拉方法的精度,改进欧拉方法应运而生。

改进欧拉方法通过使用两个点的斜率的平均值来计算下一个点的值。

具体步骤如下:(1)确定初始条件,即问题的初值。

(2)选择相应的步长h。

(3)根据微分方程的定义使用近似来计算下一个点的值。

改进欧拉方法相较于欧拉方法而言,精度更高。

3. 龙格-库塔法龙格-库塔法(Runge-Kutta)是常微分方程数值解法中最常用的方法之一。

它通过迭代逼近精确解,并在每一步中计算出多个斜率的加权平均值。

具体步骤如下:(1)确定初始条件,即问题的初值。

(2)选择相应的步长h。

(3)计算各阶导数的导数值。

(4)根据权重系数计算下一个点的值。

与欧拉方法和改进欧拉方法相比,龙格-库塔法的精度更高,但计算量也更大。

4. 亚当斯法亚当斯法(Adams)是一种多步法,它利用之前的解来近似下一个点的值。

具体步骤如下:(1)确定初始条件,即问题的初值。

(2)选择相应的步长h。

(3)通过隐式或显式的方式计算下一个点的值。

亚当斯法可以提高精度,并且比龙格-库塔法更加高效。

5. 多步法和多级法除了亚当斯法,还有其他的多步法和多级法可以用于解常微分方程。

多步法通过利用多个点的值来逼近解,从而提高精度。

而多级法则将步长进行分割,分别计算每个子问题的解,再进行组合得到整体解。

常微分方程数值解法课件

常微分方程数值解法课件
使用龙格-库塔公式计算 下一个时间点的数值解的 近似值。
根据选择的步长,确定当 前时刻的数值解的近似值 。
重复上述步骤,直到达到 所需的时间积分区间终止 点。
龙格-库塔方法的误差分析
误差主要来源于时间步长 的离散化,步长越小,误 差越小。
龙格-库塔方法的收敛性 和稳定性取决于所选步长 和步数。
ABCD
机械工程
在机械工程中,机构的动力学行为可以用常微分方程来描 述,如机器人的运动轨迹、机械臂的姿态等,通过数值解 法可以模拟这些机构的运动。
在金融问题中的应用
股票价格模拟
股票价格的变化可以用常微分方程来描述,通过数值解法可以模 拟股票价格的走势,预测未来的股票价格。
期货价格模拟
期货价格的变化也可以用常微分方程来描述,通过数值解法可以 模拟期货价格的走势,预测未来的期货价格。
可以通过增加步数来减小 误差,但会增加计算量。
在实际应用中,需要根据 具体问题选择合适的步长 和步数,以达到精度和计 算效率的平衡。
05
数值解法的应用
在物理问题中的应用
计算物体运动轨迹
通过数值解法求解常微分方程,可以模拟物体的运动轨迹,如行星 运动轨迹、炮弹弹道等。
模拟振动系统
在物理中,许多系统可以用常微分方程来描述,如弹簧振荡器、电 磁振荡器等,通过数值解法可以模拟这些系统的振动行为。
终止条件
当达到预设的精度或迭代次数时,停止迭代并输出结果。
欧拉方法的误差分析
截断误差
由于欧拉方法使用离散化近似 ,因此存在截断误差。这种误 差的大小取决于步长$h$的选
择。
稳定性
欧拉方法对于某些微分方程可 能是不稳定的,这意味着随着 迭代的进行,解可能会发散或

常微分方程的数值解法全文

常微分方程的数值解法全文

第8章常微分方程的数值解法8.4单步法的收敛性与稳定性8.4.1相容性与收敛性上面所介绍的方法都是用离散化的方法,将微分方程初值问题化为差分方程初值问题求解的.这些转化是否合理?即当h →∞时,差分方程是否能无限逼近微分方程,差分方程的解n y 是否能无限逼近微分方程初值问题的准确解()n y x ,这就是相容性与收敛性问题.用单步法(8.3.14)求解初值问题(8.1.1),即用差分方程初值问题100(,,)()n n n n y y h x y h y x y ϕ+=+⎧⎨=⎩(8.4.1)的解作为问题(8.1.1)的近似解,如果近似是合理的,则应有()()(,(),)0 (0)y x h y x x y x h h hϕ+--→→(8.4.2)其中()y x 为问题(8.1.1)的精确解.因为0()()lim ()(,)h y x h y x y x f x y h→+-'==故由(8.4.2)得lim (,,)(,)h x y h f x y ϕ→=如果增量函数(,(),)x y x h ϕ关于h 连续,则有(,,0)(,)x y f x y ϕ=(8.4.3)定义8.3如果单步法的增量函数(,,)x y h ϕ满足条件(8.4.3),则称单步法(8.3.14)与初值问题(8.1.1)相容.通常称(8.4.3)为单步法的相容条件.满足相容条件(8.4.3)是可以用单步法求解初值问题(8.1.1)的必要条件.容易验证欧拉法和改进欧拉法均满足相容性条件.一般地,如果单步法有p 阶精度(1p ≥),则其局部截断误差为[]1()()(,(),)()p y x h y x h x y x h O h ϕ++-+=上式两端同除以h ,得()()(,,)()p y x h y x x y h O h hϕ+--=令0h →,如果(,(),)x y x h ϕ连续,则有()(,,0)0y x x y ϕ'-=所以1p ≥的单步法均与问题(8.1.1)相容.由此即得各阶龙格-库塔法与初值问题(8.1.1)相容.定义8.4一种数值方法称为是收敛的,如果对于任意初值0y 及任意固定的(,]x a b ∈,都有lim () ()n h y y x x a nh →==+其中()y x 为初值问题(8.1.1)的精确解.如果我们取消局部化假定,使用某单步法公式,从0x 出发,一步一步地推算到1n x +处的近似值1n y +.若不计各步的舍入误差,而每一步都有局部截断误差,这些局部截断误差的积累就是整体截断误差.定义8.5称111()n n n e y x y +++=-为某数值方法的整体截断误差.其中()y x 为初值问题(8.1.1)的精确解,1n y +为不计舍入误差时用某数值方法从0x 开始,逐步得到的在1n x +处的近似值(不考虑舍入误差的情况下,局部截断误差的积累).定理8.1设单步法(8.3.14)具有p 阶精度,其增量函数(,,)x y h ϕ关于y 满足利普希茨条件,问题(8.1.1)的初值是精确的,即00()y x y =,则单步法的整体截断误差为111()()p n n n e y x y O h +++=-=证明由已知,(,,)x y h ϕ关于y 满足利普希茨条件,故存在0L >,使得对任意的12,y y 及[,]x a b ∈,00h h <≤,都有1212(,,)(,,)x y h x y h L y y ϕϕ-≤-记1()(,(),)n n n n y y x h x y x h ϕ+=+,因为单步法具有p 阶精度,故存在0M >,使得1111()p n n n R y x y Mh ++++=-≤从而有111111111()()()(,(),)(,,)()(,(),)(,,)n n n n n n n p n n n n n n p n n n n n n e y x y y x y y y Mh y x h x y x h y h x y h Mh y x y h x y x h x y h ϕϕϕϕ+++++++++=-≤-+-≤++--≤+-+-1(1)p nMh hL e +≤++反复递推得11111101110(1)(1)1(1)(1)(1)(1)1(1)p p n n n p n n p n e Mh hL Mh hL e hL hL Mh hL e hL Mh hL e hL+++-+++++⎡⎤≤++++⎣⎦⎡⎤≤+++++++⎣⎦+-≤++因为00()y x y =,即00e =,又(1)n h b a +≤-,于是ln(1)1()(1)(1)b a b a hL n L b a h h hL hL e e --++-+≤+=≤所以()11()p L b a p n M e h e O h L -+⎡⎤≤-=⎣⎦推论设单步法具有p (1p ≥)阶精度,增量函数(,,)x y h ϕ在区域G :, , 0a x b y h h ≤≤-∞<<+∞≤≤上连续,且关于y 满足利普希茨条件,则单步法是收敛的.当(,)f x y 在区域:,D a x b y ≤≤-∞<<+∞上连续,且关于y 满足利普希茨条件时,改进欧拉法,各阶龙格-库塔法的增量函数(,,)x y h ϕ在区域G 上连续,且关于y 满足利普希茨条件,因而它们都是收敛的.关于单步法收敛的一般结果是:定理8.2设增量函数(,,)x y h ϕ在区域G 上连续,且关于y 满足利普希茨条件,则单步法收敛的充分必要条件是相容性条件(8.4.3).8.4.2稳定性稳定性与收敛性是两个不同的概念,收敛性是在假定每一步计算都准确的前提下,讨论当步长0h →时,方法的整体截断误差是否趋于零的问题.而稳定性则是讨论舍入误差的积累能否对计算结果有严重影响的问题.定义8.6若一种数值方法在节点值n y 上有一个大小为δ的扰动,于以后各节点()m y m n >上产生的偏差均不超过δ,则称该方法是稳定的.我们以欧拉法为例进行讨论.假设由于舍入误差,实际得到的不是n y 而是n n n y y δ=+,其中n δ是误差.由此再计算一步,得到1(,)n n n n y y hf x y +=+把它与不考虑舍入误差的欧拉公式相减,并记111n n n y y δ+++=-,就有[]1(,)(,)1(,)n n n n n n y n nh f x y f x y hf x δδηδ+⎡⎤=+-=+⎣⎦其中y f f y∂=∂.如果满足条件1(,)1y n hf x η+≤,(8.4.4)则从n y 到1n y +的计算,误差是不增的,可以认为计算是稳定的.如果条件(8.4.4)不满足,则每步误差将增大.当0y f >时,显然条件(8.4.4)不可能满足,我们认为问题本身具有先天的不稳定性.当0y f <时,为了满足稳定性要求(8.4.4),有时h 要很小.一般的,稳定性与方法有关,也与步长h 的大小有关,当然也与方程中的(,)f x y 有关.为简单起见,通常只考虑数值方法用于求解模型方程的稳定性,模型方程为y y λ'=(8.4.5)其中λ为复数.一般的方程可以通过局部线性化转化为模型方程,例如在(,)x y 的邻域(,)(,)(,)()(,)()x y y f x y f x y f x y x x f x y y y '==+-+-+略去高阶项,再作变量替换就得到u u λ'=的形式.对于模型方程(8.4.5),若Re 0λ>,类似以上分析,可以认为方程是不稳定的.所以我们只考虑Re 0λ<的情形,这时不同的数值方法可能是数值稳定的或者是数值不稳定的.当一个单步法用于试验方程y y λ'=,从n y 计算一步得到1()n n y E h y λ+=(8.4.6)其中()E h λ依赖于所选的方法.因为通过点(,)n n x y 试验方程的解曲线(它满足,()n n y y y x y λ'==)为[]exp ()n n y y x x λ=-,而一个p 阶单步法的局部截断误差在()n n y x y =时有1111()()p n n n T y x y O h ++++=-=,所以有1exp()()()p n n y h E h y O h λλ+-=(8.4.7)这样可以看出()E h λ是h e λ的一个近似值.由(8.4.6)可以看到,若n y 计算中有误差ε,则计算1n y +时将产生误差()E h λε,所以有下面定义.定义8.7如果(8.4.6)式中,()1E h λ<,则称单步法(8.3.14)是绝对稳定的.在复平面上复变量h λ满足()1E h λ<的区域,称为方法(8.3.14)的绝对稳定区域,它与实轴的交称为绝对稳定区间.在上述定义中,规定严格不等式成立,是为了和线性多步法的绝对稳定性定义一致.事实上,()1E h λ=时也可以认为误差不增长.(1)欧拉法的稳定性欧拉法用于模型方程(8.4.5),得1(1)n n y h y λ+=+,所以有()1E h h λλ=+.所以绝对稳定条件是11h λ+<,它的绝对稳定区域是h λ复平面上以(1,0)-为中心的单位圆,见图8.3.而λ为实数时,绝对稳定区间是(2,0)-.Im()h λRe()h λ2-1-O 图8.3欧拉法的绝对稳定区域(2)梯形公式的稳定性对模型方程,梯形公式的具体表达式为11()2n n n n h y y y y λλ++=++,即11212n nh y y h λλ++=-,所以梯形公式的绝对稳定区域为12112h h λλ+<-.化简得Re()0h λ<,因此梯形公式的绝对稳定区域为h λ平面的左半平面,见图8.4.特别地,当λ为负实数时,对任意的0h >,梯形公式都是稳定的.Im()h λRe()h λO 图8.4梯形公式的绝对稳定区域(3)龙格-库塔法的稳定性与前面的讨论相仿,将龙格-库塔法用于模型方程(8.4.5),可得二、三、四阶龙格-库塔法的绝对稳定区域分别为211()12h h λλ++<23111()()126h h h λλλ+++<2341111()()()12624h h h h λλλλ++++<当λ为实数时,二、三、四阶显式龙格-库塔法的绝对稳定区域分别为20h λ-<<、2.510h λ-<<、 2.780h λ-<<.例8.5设有初值问题21010101(0)0xy y x x y ⎧'=-≤≤⎪+⎨⎪=⎩用四阶经典龙格-库塔公式求解时,从绝对稳定性考虑,对步长h 有何限制?解对于所给的微分方程有2100,(010)1f x x y xλ∂==-<≤≤∂+在区间[0,10]上,有201010max ||max51t x x λ<<==+由于四阶经典龙格-库塔公式的绝对稳定区间为 2.7850h λ-<<,则步长h 应满足00.557h <<.。

第8章常微分方程边值问题的数值解法

第8章常微分方程边值问题的数值解法

第8章常微分方程边值问题的数值解法8.1 引言第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。

只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为例介绍常用的数值方法。

一般的二阶常微分方程边值问题(boundary-value problems for second-order ordinary differential equations)为, (8.1.1)其边界条件为下列三种情况之一:(1) 第一类边界条件 (the first-type boundary conditions):(2) 第二类边界条件 (the second-type boundary conditions):(3) 第三类边界条件 (the third-type boundary conditions):定理8.1.1 设(8.1.1)中的函数及其偏导数在上连续. 若(1) 对所有,有;(2) 存在常数,对所有,有,则边值问题(8.1.1)有唯一解。

推论若线性边值问题(8.1.2)满足(1)和上连续;(2) 在上,,则边值问题(8.1.1)有唯一解。

求边值问题的近似解,有三类基本方法:(1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解;(2) 有限元法(finite element method);(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。

8.2 差分法8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法设二阶线性常微分方程的边值问题为其中在上连续,且用差分法解微分方程边值问题的过程是:(i) 把求解区间分成若干个等距或不等距的小区间,称之为单元;(ii) 构造逼近微分方程边值问题的差分格式. 构造差分格式的方法有差分法, 积分插值法及变分插值法;本节采用差分法构造差分格式;(iii) 讨论差分解存在的唯一性、收敛性及稳定性;最后求解差分方程.现在来建立相应于二阶线性常微分方程的边值问题(8.2.1), (8.2.2)的差分方程.( i ) 把区间等分,即得到区间的一个网格剖分:,其中分点,并称之为网格节点(grid nodes);步长.( ii ) 将二阶常微分方程(8.2.2)在节点处离散化:在内部节点处用数值微分公式(8.2.3)代替方程(8.2.2)中,得, (8.2.4)其中.当充分小时,略去式(8.2.4)中的,便得到方程(8.2.1)的近似方程, (8.2.5)其中,分别是的近似值, 称式(8.2.5)为差分方程(difference equation),而称为差分方程(8.2.5)逼近方程(8.2.2)的截断误差(truncation error). 边界条件(8.7.2)写成(8.2.6)于是方程(8.2.5), (8.2.6)合在一起就是关于个未知量,以及个方程式的线性方程组:(8.2.7)这个方程组就称为逼近边值问题(8.2.1), (8.2.2)的差分方程组(system of difference equations)或差分格式(difference scheme),写成矩阵形式. (8.2.8)用第2章介绍的解三对角方程组的追赶法求解差分方程组(8.2.7)或(8.2.8), 其解称为边值问题(8.2.1), (8.2.2)的差分解(difference solution). 由于(8.2.5)是用二阶中心差商代替方程(8.2.1)中的二阶微商得到的,所以也称式(8.2.7)为中心差分格式(centered-difference scheme).( iii ) 讨论差分方程组(8.2.7)或(8.2.8)的解是否收敛到边值问题(8.2.1), (8.2.2)的解,估计误差.对于差分方程组(8.2.7),我们自然关心它是否有唯一解;此外,当网格无限加密,或当时,差分解是否收敛到微分方程的解. 为此介绍下列极值原理:定理8.2.1 (极值原理) 设是给定的一组不全相等的数,设. (8.2.9)(1) 若, 则中非负的最大值只能是或;(2) 若, 则中非正的最小值只能是或.证只证(1)的情形,而(2)的情形可类似证明.用反证法. 记,假设, 且在中达到. 因为不全相等,所以总可以找到某个,使,而和中至少有一个是小于的. 此时因为,所以, 这与假设矛盾,故只能是或. 证毕!推论差分方程组(8.2.7)或(8.2.8)的解存在且唯一.证明只要证明齐次方程组(8.2.10)只有零解就可以了. 由定理8.7.1知,上述齐次方程组的解的非负的最大值和非正的最小值只能是或. 而,于是证毕!利用定理8.2.1还可以证明差分解的收敛性及误差估计. 这里只给出结果:定理8.2.2 设是差分方程组(8.2.7)的解,而是边值问题(8.2.1), (8.2.2)的解在上的值,其中. 则有(8.2.11)其中.显然当时,. 这表明当时,差分方程组(8.2.7)或(8.2.8)的解收敛到原边值问题(8.7.1), (8.7.2)的解.例8.2.1 取步长,用差分法解边值问题并将结果与精确解进行比较.解因为,, 由式(8.2.7)得差分格式,, 其结果列于表8.2.1.表8.2.1准确值0 1 0 01 0.1 -0. 0332923 -0.03336562 0.2 -0. 0649163 -0.06506043 0.3 -0. 0931369 -0.09334614 0.4 -0. 1160831 -0.11634825 0.5 -0. 1316725 -0.13197966 0.6 -0. 1375288 -0.13785787 0.7 -0. 1308863 -0.13120878 0.8 -0. 1084793 -0.10875539 0.9 -0. 0664114 -0.066586510 1.0 0 0从表8.2.1可以看出, 差分方法的计算结果的精度还是比较高的. 若要得到更精确的数值解,可用缩小步长的方法来实现.8.2.2 一般二阶线性常微分方程边值问题的差分法对一般的二阶微分方程边值问题(8.2.12)假定其解存在唯一.为求解的近似值,类似于前面的做法,( i ) 把区间等分,即得到区间的一个网格剖分:,其中分点,步长.( ii ) 对式(8.2.12)中的二阶导数仍用数值微分公式代替,而对一阶导数,为了保证略去的逼近误差为,则用3点数值微分公式;另外为了保证内插,在2个端点所用的3点数值微分公式与内网格点所用的公式不同,即(8.2.13)略去误差,并用的近似值代替,,便得到差分方程组(8.2.14)其中,是的近似值. 整理得(8.2.15)解差分方程组(8.2.15),便得边值问题(8.2.12)的差分解.特别地, 若,则式(8.2.12)中的边界条件是第一类边值条件:此时方程组(7.7.16)为(8.2.16)方程组(8.2.16)是三对角方程组,用第2章介绍的解三对角方程组的追赶法求解差分方程组(8.2.16),便得边值问题(8.2.12)的差分解.( iii ) 讨论差分方程组(8.2.16)的解是否收敛到微分方程的解,估计误差. 这里就不再详细介绍.例8.2.2 取步长,用差分法求下列边值问题的近似解,并将结果与精确解进行比较.精确解是.解因为,, 由式(8.2.17)得差分格式,, 其结果列于表8.2.2.表8.2.2准确值0 0 -0.3 -0.31 /16 -0.3137967 -0.31374462-0.3154982 -0.3154322 2/163-0.3050494 -0.3049979 3/1644-0.2828621 -0.2828427/1655-0.2497999 -0.2498180/1666-0.2071465 -0.2071930/167-0.1565577 -0.15660567/168 /2 -0.1000000 -0.10000008.3 有限元法有限元法(finite element method)是求解微分方程定解问题的有效方法之一,它特别适用在几何、物理上比较复杂的问题. 有限元法首先成功地应用于结构力学和固体力学,以后又应用于流体力学、物理学和其他工程科学. 为简明起见,本节以线性两点边值问题为例介绍有限元法.考虑线性两点边值问题其中,.此微分方程描述了长度为的可变交叉截面(表示为)的横梁在应力和下的偏差.8.3.1 等价性定理记, 引进积分. (8.3.3)任取,就有一个积分值与之对应,因此是一个泛函(functional),即函数的函数. 因为这里是的二次函数,因此称为二次泛函.对泛函(8.3.3)有如下变分问题(variation problem):求函数,使得对任意, 均有, (8.3.4) 即在处达到极小, 并称为变分问题(8.3.4)的解.可以证明:定理8.3.1(等价性定理)是边值问题(8.3.1), (8.3.2)的解的充分必要条件是使泛函在上达到极小,即是变分问题(8.3.4)在上的解.证 (充分性) 设是变分问题的解;即使泛函在上达到极小,证明必是边值问题(8.3.1), (8.3.2)的解.设是任意一个满足的函数,则函数,其中为参数. 因为使得达到极小,所以,即积分作为的函数,在处取极小值,故. (8.3.5)计算上式,得利用分部积分法计算积分代入式(8.3.6),得因为是任意函数,所以必有. (8.3.8) 否则,若在上某点处有,不妨设,则由函数的连续性知,在包含的某一区间上有.作显然,且,但,这与式(8.3.7)矛盾. 于是式(8.3.8)成立,即变分问题(8.3.4)的解满足微分方程(8.3.1), 且故它是边值问题(8.3.1), (8.3.2)的解.。

数值分析中的常微分方程数值求解

数值分析中的常微分方程数值求解

数值分析中的常微分方程数值求解常微分方程是自然科学中一类最为普遍的数学模型,涉及到热力学、物理、化工等多个领域。

然而,解常微分方程并非易事。

尤其是当我们面对一些复杂、非线性、多维的方程组时,常微分方程数值求解成为了一个十分关键的问题。

因此,数值求解方法成为了常微分方程研究中的重要组成部分。

本文将介绍一些数值解常微分方程的常见方法和应用。

1. 一般线性方法一般线性方法(general linear methods)是经典的常微分方程数值解法之一。

它以一种特殊的形式给出步进公式:$$ y_{n+1}=\sum_{i=0}^{s-1}\alpha_i y_{n-i}+h\sum_{i=0}^{s-1}\beta_i f(t_{n-i},y_{n-i}) $$ 其中,$y_{n}$为第$n$步的项值,$f(t_n,y_n)$为时间$t_n$处函数$y(t)$的导数。

$\alpha_i$和$\beta_i$是常数,可以通过确定如下特征方程来选择:$$ \sum_{i=0}^{s-1}\alpha_i\ lambda^{i}=0,~(\lambda\in C) $$ 与此同时,也可以通过选择$\beta_i$来使方法达到一定的准确性和稳定性。

2. Runge-Kutta方法比一般线性方法更为流行的方法是Runge-Kutta方法。

通常附加一个或多个修正以获得更好的数值稳定性和误差控制。

第1阶Runge-Kutta方法仅使用导数$f(t_n,y_n)$估算下一个项的值:$$y_{n+1}=y_n+hf(t_n,y_n)$$ 许多高阶方法可以使用中间的“插值”来更准确地估计下一个步骤:$$y_{n+1}=y_n+h\sum_{i=1}^kb_ik_i$$$$k_i=f(t_n+c_ih,y_n+h\sum _{j=1}^{i-1}a_{ij}k_j)$$ $k_i$是第$i$台车的估计值,$a_{ij}$和$b_i$在经典Runge-Kutta方法和其他变体中具有不同的取值。

计算方法课件第八章常微分方程初值问题的数值解法

计算方法课件第八章常微分方程初值问题的数值解法

整体截断误差与局部截断误差的关系
定理:如果f(x,y)满足李普希兹(Lipschitz)条件
f(x ,y 1 )f(x ,y 2) L y 1y 2
且局部截断误差有界:
|R n|1 2h2M 2
(n1,2, )
则Euler法的整体截断误差n满足估计式:
ne(ba)L 0h 2L M 2(e(ba)L1)
分光滑。初值问题的解析解(理论解)用 y(x表n ) 示, 数值解法的精确解用 y表n 示。
常微分方程数值解法一般分为:
(1)一步法:在计算y n 1 时,只用到x n 1 ,x n和 y,n 即前一步的值。
(2)多步法:计算 y n 1 时,除用到 x n 1 ,x n 和 y n 以外,还要用 x n p 和 y n p (p1 ,2 k;k0) ,即前
其中L为李普希兹常数,b-a为求解区间长度,
M2 mayx(x) 。 axb
证明参见教材。
Remark:该定理表明,整体截断误差比局部截 断误差低一阶。对其它方法,也有类似的结论。
收敛性与稳定性
收敛性定义:如果某一数值方法对于任意固定的
xn=x0+nh,当h0(同时n )时有yn y(xn),
则称该方法收敛。 稳定性定义 定义 用一个数值方法,求解微分方程初值问 题时,对给定的步长h>0,若在计算 y n 时引入 误差 (n 也称扰动),但由此引起计算后面的 ynk(k1,2, )时的误差按绝对值均不增加,则 称这个数值方法是稳定的。
一般的显式rk方法可以写成型钢截面只需少量加工即可用作构件省工省时成本低但型钢截面受型钢种类及型钢号限制难于完全与受力所需的面积相对应用料较多其中为常数选取这些常数的原则是要求第一式的右端在处泰勒展开后按h型钢截面只需少量加工即可用作构件省工省时成本低但型钢截面受型钢种类及型钢号限制难于完全与受力所需的面积相对应用料较多上述公式叫做n级的rungekutta方法其局部截断误差为显然euler法是一级一阶rk方法

常微分方程数值解法

常微分方程数值解法

第八章 常微分方程的数值解法一.内容要点考虑一阶常微分方程初值问题:⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy微分方程的数值解:设微分方程的解y (x )的存在区间是[a,b ],在[a,b ]内取一系列节点a= x 0< x 1<…< x n =b ,其中h k =x k+1-x k ;(一般采用等距节点,h=(b-a)/n 称为步长)。

在每个节点x k 求解函数y(x)的近似值:y k ≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分方程的数值解。

用数值方法,求得f(x k )的近似值y k ,再用插值或拟合方法就求得y(x)的近似函数。

(一)常微分方程处置问题解得存在唯一性定理对于常微分方程初值问题:⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy如果:(1) 在B y y A x x 00≤-≤≤,的矩形内),(y x f 是一个二元连续函数。

(2) ),(y x f 对于y 满足利普希茨条件,即2121y y L y x f y x f -≤-),(),(则在C x x 0≤≤上方程⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解存在且唯一,这里C=min((A-x 0),x 0+B/L),L 是利普希茨常数。

定义:任何一个一步方法可以写为),,(h y x h y y k k k 1k Φ+=+,其中),,(h y x k k Φ称为算法的增量函数。

收敛性定理:若一步方法满足: (1)是p 解的.(2) 增量函数),,(h y x k k Φ对于y 满足利普希茨条件.(3) 初始值y 0是精确的。

则),()()(p h O x y kh y =-kh =x -x 0,也就是有0x y y lim k x x kh 0h 0=--=→)((一)、主要算法 1.局部截断误差局部截断误差:当y(x k )是精确解时,由y(x k )按照数值方法计算出来的1~+k y 的误差y (x k+1)- 1~+k y 称为局部截断误差。

数值分析常微分方程数值解法

数值分析常微分方程数值解法
10定义若某算法在计算过程中任一步产生的误差在以后的计算中都逐步衰减则称该算法是绝对稳定的absolutelystable常数可以一般分析时为简单起见只考虑试验方程test是复数equation时将某算法应用于上式幵假设只在初值产生误差
(Numerical Methods for Ordinary Differential Equations )
中心差商近似导数
y( x1 )
y( x2 ) y( x0 ) 2h
y( x2 ) y( x0 ) 2h f ( x1 , y( x1 ))
x0
x1
x2
yi1 yi1 2h f ( xi , yi ) i 1, ... , n 1
假设 yi1 y( xi1 ), yi y( xi ) ,则可以导出 Ri y( xi1 ) yi1 O(h3 ) 即中点公式具有 2 阶精度。
只要f (x, y)在a,b R1上连续, 且关于 y 满足
Lipschitz 条件,即存在与 x, y无关的常数 L 使 | f (x, y1) f (x, y2 ) | L | y1 y2 |
对任意定义在 a,b上的 y1 x, y2 x都成立,
则上述IVP存在唯一解。
求函数 y(x) 在一系列节点 a = x0< x1<…< xn= b 处的近似值
yi y(xi ) (i 1, ... , n)
的方法称为微分方程的数值解法。 y1,L , yn 称为微分方程的数值解。
称节点间距 hi xi1 xi (i 0, ... , n 1)为步长, 通常采用等距节点,即取 hi = h (常数)。
三、初值问题的离散化方法
离散化方法的基本特点是依照某一递推公式, 按节点从左至右的顺序依次求出y(xi )的近似 yi 值(i 1, ... , n),取 y0。

常微分方程数值解算法

常微分方程数值解算法

常微分方程数值解算法常微分方程是在物理、经济、生物、环境科学等领域中最基本的数学工具之一。

为了解决实际问题,需要求解这些方程的解。

但是,大部分常微分方程是无法求得解析解的,因此需要通过数值方法来求解。

在数值方法中,其基本思想是将微分方程化为一个逐步求解的问题。

通过离散化得到一个差分方程,然后通过数值方法求解这个差分方程。

本文将就常微分方程的数值解算法进行介绍和探讨。

1.欧拉方法欧拉方法是最基本的一种常微分方程数值解方法。

它的基本思想是将微分方程化为差分方程。

欧拉方法是一种一阶的显式方法。

通过计算当前点处的斜率即可进行逼近。

如下所示:y(t + h) = y(t) + hf(t, y(t))其中,h是步长。

f(t, y)是微分方程右边的函数。

欧拉方法的由来是其是以欧拉为名的。

这种方法的优点是简单明了,易于理解。

但是,其与真实解的误差随着步长增大而增大,误差不精,计算速度较慢等缺点也使其并非一个完美的数值解方法。

2.改进的欧拉方法改进的欧拉方法被认为是欧拉方法的一个进化版。

它是二阶数值方法,明显优于欧拉方法。

其基本思想是通过步长的平均值h/2来进行逼近。

y(t + h) = y(t) + h[ f(t, y(t)) + f(t + h, y(t) + hf(t, y(t))/2) ]其优点是能够更准确地逼近微分方程的解,只比欧拉方法多计算一些,但是其步长的误差随着步长增大而减小,并且计算速度比欧拉方法稍快。

因此,改进的欧拉方法是比欧拉方法更好的方法,效果相对较好。

3.龙格库塔方法龙格库塔方法是一种经典的数值解方法。

对于非刚性的方程可以得到较为精确的数值解。

其算法思路是利用多阶段迭代的方式,求解一些重要的插值点,并利用插值点的结果来逼近方程的解。

其公式如下:y(t + h) = y(t) + (h/6)*(k1 + 2k2 + 2k3 + k4)其中,k1 = f(t, y(t))k2 = f(t + h/2, y(t) + h/2k1)k3 = f(t + h/2, y(t) + h/2k2)k4 = f(t + h, y(t) + hk3)其优点是更精确,计算速度更快。

常微分方程数值解法

常微分方程数值解法

常微分方程数值解法常微分方程是研究函数的导数与自变量之间的关系的数学分支,广泛应用于物理、工程、生物等领域的建模与分析。

在实际问题中,我们常常遇到无法通过解析方法求得精确解的常微分方程,因此需要利用数值解法进行求解。

本文将介绍几种常用的常微分方程数值解法。

一、欧拉方法(Euler's Method)欧拉方法是最基本的数值解法之一。

它的思想是将微分方程转化为差分方程,通过逐步逼近解的方式求得数值解。

具体步骤如下:1. 将微分方程转化为差分方程:根据微分方程的定义,可以得到差分方程形式。

2. 选择步长:将自变量范围进行离散化,确定步长h。

3. 迭代计算:根据差分方程递推公式,利用前一步的数值解计算后一步的数值解。

二、改进的欧拉方法(Improved Euler's Method)改进的欧拉方法通过使用欧拉方法中的斜率来进行更准确的数值计算。

具体步骤如下:1. 计算欧拉方法的斜率:根据当前节点的数值解计算斜率。

2. 根据斜率计算改进的数值解:将得到的斜率代入欧拉方法的递推公式中,计算改进的数值解。

三、龙格-库塔方法(Runge-Kutta Method)龙格-库塔方法是一类常微分方程数值解法,其中最著名的是四阶龙格-库塔方法。

它通过计算各阶导数的加权平均值来逼近解,在精度和稳定性方面相对较高。

具体步骤如下:1. 计算每一步的斜率:根据当前节点的数值解计算每一步的斜率。

2. 计算权重:根据斜率计算各个权重。

3. 计算下一步的数值解:根据计算得到的权重,将其代入龙格-库塔方法的递推公式中,计算下一步的数值解。

四、多步法(多步差分法)多步法是需要利用多个前面节点的数值解来计算当前节点的数值解的数值方法。

常见的多步法有Adams-Bashforth法和Adams-Moulton法。

具体步骤如下:1. 选择初始值:根据差分方程的初始条件,确定初始值。

2. 迭代计算:根据递推公式,利用前面节点的数值解计算当前节点的数值解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2/29
郑州大学研究生2011-2012学年课程 数值分析 Numerical Analysis
§8.2 欧拉(Euler)法
通常取 xi+1 − xi = hi = h (常数),则Euler法的计算格式
⎧ ⎨ ⎩
yi+1 = yi + y0 = y(x0 )
hf
(
xi
,
yi
)
i=0,1,…,n
解的存在唯一性(“常微分方程”理论):只要 f (x, y)
在[a, b] × R1 上连续,且关于 y 满足 Lipschitz 条件,即存在与 x, y 无关的常数 L 使
| f (x, y1)− f (x, y2)| ≤ L| y1 − y2 |
对任意定义在 [a, b] 上的 y1(x) 和 y2(x) 都成立,则上述IVP存 在唯一解。

y n +1
=
yn+Fra bibliotekh[ 2
f
(xn ,
yn ) +
f (x, y) = − y ∴
f (xn+1 , yn+1 )]
yn+1
=
yn
+
h 2
[−
yn
− yn+1]
整理成显式
y n +1
=
⎜⎛ ⎝
2 2
− +
h h
⎟⎞ ⎠
y
n
反复迭代,得到
y n+1
=
⎜⎛ ⎝
2 2
− +
h h
⎟⎞ ⎠
y
n
=
⎜⎛ 2 − h ⎟⎞ 2 ⎝2+h⎠
§8.2 欧拉(Euler)法
整体截断误差
记en+1 = y(xn+1) − yn+1.
因为计算 yn+1 时, 用到的y1, y2,",yn是 y(x1), y(x2 ),",
y(xn ) 的近似值,每步产生的误差会累积到计算y(xn+1)的误差
中,因此 en+1 与 y1, y2,",yn 都有关,称为整体截断误差.
≤| y(xn ) − yn | +hL | y(xn ) − yn | (李普希兹条件)
≤ (1+ hL) | en | .
(4)
12/29
郑州大学研究生2011-2012学年课程 数值分析 Numerical Analysis

T
=
max k
| Tk
|, 将(4)代入(3)得
| en+1 |≤ T + (1+ hL) | en |
公 式
Tn+1
=
y(xn+1) −
yn+1
=

h2 2
y′′(xn ) + O(h3)
16/29
郑州大学研究生2011-2012学年课程 数值分析 Numerical Analysis
若将这两种方法进行算术平均,即可消除误差 的主要部分/*leading term*/
而获得更高的精度,称为梯形法
郑州大学研究生课程 (2011-2012学年第一学期)
数值分析 Numerical Analysis
习题课 第八章 常微分方程数值解法
一、要点回顾
待求解的问题:一阶常微分方程的初值问题 /* Initial-Value Problem */:
⎪⎧ dy = f ( x, y) x ∈[a, b] ⎨ dx ⎪⎩ y(a) = y0
h2 2
y′′(ξn )
(1)
假定已知准确值 y(xn ),利用欧拉公式(8.2),定义
yn+1 y(xn ) + h f (xn , y(xn ))
(2)
8/29
郑州大学研究生2011-2012学年课程 数值分析 Numerical Analysis
§8.2 欧拉(Euler)法
局部截断误差
| en+1 |=| y(xn+1) − yn+1 |≤| y(xn+1) − yn+1 | + | yn+1 − yn+1 |
≤| Tn+1 | + | yn+1 − yn+1 | .
(3)
11/29
郑州大学研究生2011-2012学年课程 数值分析 Numerical Analysis
§8.2 欧拉(Euler)法
( 8.2 )
3/29
郑州大学研究生2011-2012学年课程 数值分析 Numerical Analysis
§8.2 欧拉(Euler)法
(1) 用差商近似导数
y′(xn) = f (xn, y(xn))
y′(xn) ≈
y(xn+1) − h
y( xn )
y(xn+1) − h
y( xn )

f
梯形 公式
欧拉法小结
公式
局部截断误差
( ) h2 y(2)
2
xn
− h2 2
y(2)
( xn )
( ) h3 y(3)
3
xn
精显稳 度 隐 定 步数
性 1阶 显 差 单步
1阶 隐 好 单步
2阶 隐 好 单步
19/29
郑州大学研究生2011-2012学年课程 数值分析 Numerical Analysis
17/29
郑州大学研究生2011-2012学年课程 数值分析 Numerical Analysis
例8.2.3
对初值问题
⎧ ⎨ ⎩
y′ + y (0 )
y= =1
0
证明用梯形公式求得的近似解为
yn
=
⎜⎛ 2 − ⎝2+
h ⎟⎞ n h⎠
并证明当步长h→0时,yn收敛于精确解 e − x
证明: 解初值问题的梯形公式为
§8.3 改进欧拉(Euler)方法
先用欧拉公式(8.2)求出一个初步的近似值 y n +1 ,称为预测值, 它的精度不高, 再用梯形公式对它校正 一次,即迭代一次,求得yn+1,称为校正值, 这种预测-校 正方法称为改进的欧拉公式:
⎧ ⎨ ⎩
yn+1 y0 =
= yn + y(a)
hf
(
xn+1,
yn+1
)
向后Euler方法
5/29
郑州大学研究生2011-2012学年课程 数值分析 Numerical Analysis
§8.2 欧拉(Euler)法
∫ ∫ (2)用数值积分方法
xn+1 y′( x)dx = xn+1 f ( x, y( x))dx

y(
xn
)

h 2
f (xn, y(xn))+
f (xn+1, y(xn+1))
[ ] ⎪⎧

yn+1

yn
+
h 2
f (xn, yn ) + f (xn+1, yn+1)
⎪⎩ y0 = y(a)
梯形欧拉公式
7/29
郑州大学研究生2011-2012学年课程 数值分析 Numerical Analysis
( xn ,
y( xn ))
y(xn+1) ≈ y(xn) + hy′(xn) = y(xn) + hf (xn, y(xn))
⎧ ⎨ ⎩
yn+1 y0 =
= yn + y(a)
hf
(
xn
,
yn
)
差分方程初值问题 向前Euler方法
4/29
郑州大学研究生2011-2012学年课程 数值分析 Numerical Analysis
≤ T + (1+ hL)[T + (1+ hL) | en−1 |]
≤ T + (1+ hL)T + (1+ hL)2 | en−1 |≤ "
≤ T + (1+ hL)T + (1+ hL)2T +" + (1+ hL)nT
+ (1+ hL)n+1 | e0 |
≤ (1+ hL)n+1 −1T = (1+ hL)n+1 −1 O(h2 )
9/29
郑州大学研究生2011-2012学年课程 数值分析 Numerical Analysis
§8.2 欧拉(Euler)法
欧拉方法的收敛性
定义 若给定方法的局部截断误差满足 | Tn+1 |= O(h p+1),
则称该方法是 P 阶的,或称为具有 P 阶精度。
10/29
郑州大学研究生2011-2012学年课程 数值分析 Numerical Analysis
§8.2 欧拉(Euler)法 向后欧拉公式
由于未知数 yn+1 同时出现在等式的两边,故称为隐式 /* implicit */ 欧拉公式,而前者称为显式 /* explicit */ 欧拉公 式。隐式公式不能直接求解,一般需要用Euler显式公式 得到初值,然后用Euler隐式公式迭代求解。因此隐式公 式较显式公式计算复杂,但稳定性好(后面分析)。
欧拉方法的收敛性
对yn+1, yn+1应用欧拉公式(8.2)得
相关文档
最新文档