数值分析复习---第八章 常微分方程数值解法

数值分析常微分方程的数值解法

《计算机数学基础》数值部分第五单元辅导 14 常微分方程的数值解法 一.重点内容 1. 欧拉公式: )心知1)a 儿+1 =儿 + hfg ,儿) m 1、 伙=0丄2,…川一 1) I 无=x Q +kh 局部截断误差是0(*)。 2. 改进欧拉公式: 预报一校正公式: 预报值 _v*+1 =儿+ hf (x k ,儿) - h - 校正值 y M = y k +-[f (x kt y k ) + /(x A+1, y M )] 即 儿+1 =儿+ £ "(忑'儿)+心+「儿+ hfg ,儿))] 或表成平均的形式: 儿=儿+ hfg ,儿) '儿=儿+"(无+】,儿) +K ) 改进欧拉法的局部截断误差是0(2) 3. 龙格一库塔法 二阶龙格一库塔法的局部截断误差是0(爪) 三阶龙格一库塔法的局部截断误差是0(护) 四阶龙格F 塔法公式:儿计=儿+ 2(匕+ 2心+ 2? + ?) 四阶龙格一库塔法的局部截断误差是0(爪)。 二实例 y' = — y — xv f2(0 < x < 0.6) 例1用欧拉法解初值问题{ ' ? -取步长/匸02计算过程保留 b (o )= 1 4位小数。 解/i=0.2. f (x )= —y —xy 2<,首先建立欧拉迭代格式 y*+i =儿+ hf g,y k ) = y k -hy k -hx k y ; =0.2 儿(4 - x k y k )(k = 0,1,2) K 2=f(x n +^h, yk+-hK\)t gg+舟人,>'n +y/?A3);

当k=0, xi=0.2 时,已知x()=0,y()=l,有 y(0?2)今i=0?2X l(4-0X 1)=0.8000 当k=\. M=0?4时,已知“=0?2」尸0?8,有 y(0?4)今2=0.2 X 0.8X(4-0.2X0.8)=0.614 4 当k=2, xs=0.6 时,已知x2=0.4,y2=0.6144,有 y(0?6)今3=0.2 X0.6144X (4-0.4 X 0.4613)=0.8000 「J, ,2 ?_ ZX 例2用欧拉预报一校正公式求解初值问题\y + v +V sinx=,取步长/?=0.2,计算 .y ⑴=1 y(0.2),y(0.4)的近似值,计算过程保留5位小数。 解步长力=0.2,此时/(x,y)=—y—fsiiu 欧拉预报一校正公式为: 预报值兀I = y k + hfg y k) - I J_ 校正值)3=儿+尹(忑,儿)+ fg,儿+1)] 有迭代格式] 预报值儿+] = y k 4-h(-y k -y; sin x k) =y k (0?8-0?2儿sin x k) < h 、—— 2 校止值y如]=儿 +尸[(一片一力sinxJ + LN+i-yl sin.v I+1)] ——?> =儿(°?9一0?1儿sin心)一0?1(儿+| +y;j sin心利) 、"M=0.別=1」)=1 时,Xj=1.2> 有 儿=yo(°?8-O?2yo sinx0) = 1 x (0.8-02x lsin 1) = 0.63171 y(1.2) ?= lx(0.9-0.1xlxsinl)-0.1(0.63171+0.631712sinl.2) = 0.71549 当 T xi=1.2, yi=0.71549 时,x2=1.4,有 y2 =儿(0.8-0?2儿sinXj) = 0.71549x(0.8-02x0.71549sinl.2) =0.47697 y(14) z y2 = 0.71549x(0.9-0.1x0.71549xsin 1.2)-0.1(0.47697+ 0.476972 sin 1.4) =0.52608 V = 8 — 3y 例3写出用四阶龙格一库塔法求解初值问题^ ‘的计算公式,取步长/匸0.2计 b(0) = 2 算y(0.4)的近似值。讣算过程保留4位小数。 解此处.心,刃=8 —3”四阶龙格一库塔法公式为 艰=儿 + % + 2? + 2勺 + ?) 1 h, y n+ y/?A3): 本例计算公式为: 0 2 呱严儿+三(32?+2?+心

数值分析复习题1

一、665仍然(10分)已知矩阵?? ????--=4321A 求p A ,∞=,2,1p 二、(10分)设A 、B 为n 阶非奇异矩阵,?表示矩阵的任一种从属范数,试证 ⑴A A 11≥- ⑵B A B A B A -??≤-----1111 三、(10分)试证Newton 迭代法至少具有二阶收敛 四、(10分)证明方程()01263 =--=x x x f 在区间[]5,2内有唯一实根p ,并对任意的初始值[]5,20∈x ,Newton 序列都收敛于根p. 五、(10分)试证不动点定理: 设()[]b a C x f ,∈,且()b x f a ≤≤对一切[]b a x ,∈成立,则()x f 在[]b a ,上有不动 点,并回答满足什么条件不动点唯一(不要求证明)。 六、(10分)设()4 4,5,3,1R x T ∈-=,分别求出p x ,∞=,2,1p 的值 七、(10分)设A 、B 为n 阶非奇异矩阵,?表示矩阵的任一种从属范数,试证 ⑴A A 11≥- ⑵B A B A B A -??≤-----1111 八、(10分).应用复合梯形公式计算积分 dx e I x ?-=10 26 时要求误差不超过610-,试确定所需的步长h 和基点个数。 九、(10分)用Newton 迭代法计算115(迭代三次) 十、(10分)试证不动点定理: 设()[]b a C x f ,∈,且()b x f a ≤≤对一切[]b a x ,∈成立,则()x f 在[]b a ,上有不动 点,并回答满足什么条件不动点唯一(不要求证明)。 一、(10分)求证F F A A A n ≤≤21 其中n n R A ?∈

数值分析第二章复习与思考题

第二章复习与思考题 1.什么是拉格朗日插值基函数?它们是如何构造的?有何重要性质? 答:若n 次多项式()),,1,0(n j x l j =在1+n 个节点n x x x <<< 10上满足条件 (),,,1,0,, ,0, ,1n k j j k j k x l k j =?? ?≠== 则称这1+n 个n 次多项式()()()x l x l x l n ,,,10 为节点n x x x ,,,10 上的n 次拉格朗日插值基函数. 以()x l k 为例,由()x l k 所满足的条件以及()x l k 为n 次多项式,可设 ()()()()()n k k k x x x x x x x x A x l ----=+- 110, 其中A 为常数,利用()1=k k x l 得 ()()()()n k k k k k k x x x x x x x x A ----=+- 1101, 故 ()()()() n k k k k k k x x x x x x x x A ----= +- 1101 , 即 ()()()()()()()()∏ ≠=+-+---=--------=n k j j j k j n k k k k k k n k k k x x x x x x x x x x x x x x x x x x x x x l 0110110)( . 对于()),,1,0(n i x l i =,有 ()n k x x l x n i k i k i ,,1,00 ==∑=,特别当0=k 时,有 ()∑==n i i x l 0 1. 2.什么是牛顿基函数?它与单项式基{ }n x x ,,,1 有何不同? 答:称()()()(){ }10100,,,,1------n x x x x x x x x x x 为节点n x x x ,,,10 上的牛顿基函数,利用牛顿基函数,节点n x x x ,,,10 上的n 次牛顿插值多项式()x P n 可以表示为 ()()()()10010---++-+=n n n x x x x a x x a a x P 其中[]n k x x x f a k k ,,1,0,,,,10 ==.与拉格朗日插值多项式不同,牛顿插值基函数在增加节点时可以通过递推逐步得到高次的插值多项式,例如 ()()()()k k k k x x x x a x P x P --+=++ 011,

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

数值分析分章复习(第七章非线性方程求根)

第七章非线性方程求根 要点:(1)迭代公式局部收敛性及收敛性判断 (2) 迭代公式收敛阶概念 (3) Newton 迭代公式及收敛性左理 复习题: 1、建立一个迭代公式il ?算数G = j5 + 7?+辰二,要求分析所建迭代公式的收敛性 解:迭代式为:「卄产 l/o = 5 数d 应是函数卩(x ) = jrr§的不动点(即满足0(a ) = a ) 注意到(1)当xeI0,5]时,恒有0(人)€[0?习 (2)当xe[(X5]时,恒有0Cr) = — <-< 1 2\J X + 5 2 依据不动点迭代法收敛定理,知该迭代公式收敛到“ 2、对于方程—x = 2 ? 解:(1)记/(X )= 8’ — / 一 2 显然 /(_1.9) = 0.0496 >0, /(一1) =-0.6321 <0 当Jce[-L9,-1]时.恒有/V) = e'-l<0 可见/(X )在区间[-1.9,-I ]内有且仅有一个零点 即方程在区间内有且仅有一个实根 (2)取

严-X-2 兀屛=兀------ 汗七― e" -1 .心=一1?9 3、为求x^-x--\=0/£ L5附近的一个根,现将方程改写成等价形式,且建立相应的 迭代公式:(1) x = l + A: (2) x = (l + x-)h试分析每一种迭代的收敛性 X- 解:记 ⑴ 迭代式为£. = 1+2,这里记9?U)= I+4 注意到/(1?3)/(1?5)<1?并且f\x) = 3x--2x = x(3x-2)>Q. xe[L3J.5] 所以区间[1.3J.5]为有根区间 2 0([l?3J?5])c[l?3J?习,井且当xe[L3J.5]时,恒有I

数值分析第一章学习小结

数值分析 第1章绪论 --------学习小结 一、本章学习体会 通过本章的学习,让我初窥数学的又一个新领域。数值分析这门课,与我之前所学联系紧密,区别却也很大。在本章中,我学到的是对数据误差计算,对误差的分析,以及关于向量和矩阵的数的相关容。 误差的计算方法很多,对于不同的数据需要使用不同的方法,或直接计算,或用泰勒公式。而对于二元函数的误差计算亦有其独自的方法。无论是什么方法,其目的都是为了能够通过误差的计算,发现有效数字、计算方法等对误差的影响。 而对误差的分析,则是通过对大量数据进行分析,从而选择出相对适合的算法,尽可能减少误差。如果能够找到一个好的算法,不仅能够减少计算误差,同时也可以减少计算次数,提高计算效率。 对于向量和矩阵的数,我是第一次接触,而且其概念略微抽象。因此学起来较为吃力,仅仅知道它是向量与矩阵“大小”的度量。故对这部分容的困惑也相对较多。 本章的困惑主要有两方面。一方面是如何能够寻找一个可靠而高效的算法。虽然知道算法选择的原则,但对于很多未接触的问题,真正寻找一个好的算法还是很困难。另一方面困惑来源于数,不明白数的意义和用途究竟算什么。希望通过以后的学习能够渐渐解开自己的疑惑。 二、本章知识梳理

2.1 数值分析的研究对象 数值分析是计算数学的一个重要分支,研究各种数学问题的数值解法,包括方法的构造和求解过程的理论分析。它致力于研究如何用数值计算的方法求解各种基本数学问题以及在求解过程中出现的收敛性,数值稳定性和误差估计等容。 2.2误差知识与算法知识 2.2.1误差来源

误差按来源分为模型误差、观测误差、截断误差、舍入误差与传播误差五种。其中模型误差与观测误差属于建模过程中产生的误差,而截断误差、舍入误差与传播误差属于研究数值方法过程中产生的误差。 2.2.2绝对误差、相对误差与有效数字 1.(1)绝对误差e指的是精确值与近似值的差值。 绝对误差: 绝对误差限: (2)相对误差是指绝对误差在原数中所占的比例。 相对误差: 相对误差限: 结论:凡是经过四舍五入而得到的近似值,其绝对误差不超过该近似值末位的半个单位。 (3)有效数字的定义 有效数字的第一种定义:设a是x的近似值,如果a的误差绝对值不超过x 的第k位小数的半个单位,即则称近似值a准确到小数点后第k位。从小数点后的第k位数字直到最左边非零数字之间的所有数字都叫有效数字。

数值分析复习题要答案

第一章 1、ln2=0.69314718…,精确到 10-3 的近似值是多少? 解 精确到 10-3=0.001,即绝对误差限是 e =0.05%,故至少要保留小数点后三位才可以。 ln2≈0.693。 2、设115.80,1025.621≈≈x x 均具有5位有效数字,试估计由这些数据计算21x x , 21x x +的绝对误差限 解:记126.1025, 80.115x x == 则有11232411 10, | 102|||2 x x x x --≤?-≤?- 所以 121212121212211122||||||||||||x x x x x x x x x x x x x x x x x x -=-+-+≤-- 3411 80.11610 6.10102522 0.007057-==??+≤?? 1212112243|()|||11 |10100.0005522 |x x x x x x x x --≤≤?+?=+-+-+- 3、一个园柱体的工件,直径d 为10.250.25mm,高h 为40.00 1.00mm,则它的体 积V 的近似值、误差和相对误差为多少。 解: ()() 22222222 4 314210254000000330064 221025400002510251002436444 3300624362436 0073873833006 , .....; ()()()......, ..().()..% .r d h V d h V mm d h V dh d d h V mm V V V πππππεεεεε= ≈=??===+=???+?==±====第二章: 1、分别利用下面四个点的Lagrange 插值多项式和Newton 插值多项式N 3(x ), 计算L 3(0.5)及N 3(-0.5) x -2 -1 0 1 f (x ) -1 1 2

数值分析讲义线性方程组的解法

数值分析讲义 第三章线性方程组的解法 §3.0 引言 §3.1 雅可比(Jacobi)迭代法 §3.2 高斯-塞德尔(Gauss-Seidel)迭代法 §3.3 超松驰迭代法§3.7 三角分解法 §3.4 迭代法的收敛性§3.8 追赶法 §3.5 高斯消去法§3.9 其它应用 §3.6 高斯主元素消去法§3.10 误差分析 §3 作业讲评3 §3.11 总结

§3.0 引言 重要性:解线性代数方程组的有效方法在计算数学和科学计算中具有特殊的地位和作用.如弹性力学、电路分析、热传导和振动、以及社会科学及定量分析商业经济中的各种问题. 分类:线性方程组的解法可分为直接法和迭代法两种方法. (a) 直接法:对于给定的方程组,在没有舍入误差的假设下,能在预定的运算次数内求得精确解.最基本的直接法是Gauss消去法,重要的直接法全都受到Gauss消去法的启发.计算代价高. (b) 迭代法:基于一定的递推格式,产生逼近方程组精确解的近似序列.收敛性是其为迭代法的前提,此外,存在收敛速度与误差估计问题.简单实用,诱人.

§3.1 雅可比Jacobi 迭代法 (AX =b ) 1 基本思想: 与解f (x )=0 的不动点迭代相类似,将AX =b 改写为X =BX +f 的形式,建立雅可比方法的迭代格式:X k +1=BX (k )+f ,其中,B 称为迭代矩阵.其计算精度可控,特别适用于求解系数为大型稀疏矩阵(sparse matrices)的方程组. 2 问题: (a) 如何建立迭代格式? (b) 向量序列{X k }是否收敛以及收敛条件? 3 例题分析: 考虑解方程组??? ??=+--=-+-=--2.453.82102 .72103 21321321x x x x x x x x x (1) 其准确解为X *={1, 1.2, 1.3}. 建立与式(1)相等价的形式: ??? ??++=++=++=84.02.01.083.02.01.072 .02.01.02 13312321x x x x x x x x x (2) 据此建立迭代公式: ?????++=++=++=+++84 .02.01.083.02.01.072.02.01.0)(2)(1)1(3 )(3 )(1)1(23)(2)1(1k k k k k k k k k x x x x x x x x x (3) 取迭代初值0) 0(3 )0(2)0(1===x x x ,迭代结果如下表. JocabiMethodP31.cpp

在职研究生数值分析复习资料与答案

在职研究生数值分析复习资料 考试时间:120分钟 一、单项选择题(每小题4分,共20分) 1. 用3.1415作为π的近似值时具有( B )位有效数字。 (A) 3 (B) 4 (C) 5 (D) 6 2. 下列条件中,不是分段线性插值函数 P(x)必须满足的条件为( A )。 (A) P(x) 在各节点处可导 (B) P(x) 在 [a ,b] 上连续 (C) P(x) 在各子区间上是线性函数 (D) P(x k )=y k ,(k=0,1, … ,n) 3. n 阶差商递推定义为:0 1102110] ,,[],,[],,[x x x x x f x x x f x x x f n n n n --=-ΛΛΛ,设 差商表如下: 那么差商f [1,3,4]=( A )。 A. (15-0)/(4-1)=5 B. (13-1)/(4-3)=12 C. 4 D. -5/4 4. 分别改写方程042=-+x x 为42+-=x x 和2ln /)4ln(x x -=的形式,对两者相应迭代公式求所给方程在[1,2]的实根,下列描述正确的是:( B ) (A) 前者收敛,后者发散 (B) 前者发散,后者收敛 (C) 两者均收敛发散 (D) 两者均发散 5. 区间[a ,b]上的三次样条插值函数是( A )。 A. 在[a ,b]上2阶可导,节点的函数值已知,子区间上为3次的多项式 B. 在区间[a ,b]上连续的函数 C. 在区间[a ,b]上每点可微的函数 D. 在每个子区间上可微的多项式

二、填空题(每空2分,共20分) 1. 当x =1,-1,2时,对应的函数值分别为f (-1)=0,f (0)=2,f (4)=10,则f (x )的拉格朗日插值多项式是 226104()25555 P x x x =- ++(题目有问题,或许应该是:x = -1,0,4时…) 2. 求解非线性方程01=-x xe 的牛顿迭代公式是 1,(0,1,2...)1 k x k k k k x e x x k x -+-=-=+ 3. 对任意初始向量0()X 和常数项N ,有迭代公式1()()k k x Mx N +=+产生的向量序列{} ()k X 收敛的充分必要条件是k k X X →∞ =()*lim 。 4 .设 ?? ? ???-=? ?????-=32,1223X A , ‖A ‖∞=___5____,‖A ‖1=___5___,‖X ‖∞=__ 3 _____。 5. 已知a =3.201,b =0.57是经过四舍五入后得到的近似值,则a ?b 有 2 位有效数字,a +b 有 1 位有效数字。 6. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 。 7. 求积公式)4 3 (32)21(31)41(32)(1 0f f f dx x f +-≈ ?具有___3__ 次代数精度。 三、利用100,121,144的平方根,试用二次拉格朗日插值多项式求115的近 似值。要求保留4位有效数字,并写出其拉格朗日插值多项式。 四、已知:已知有数据表如下,用n=8的复合梯形公式 ()]()(2)([211 b f x f a f h T n k k n ++=∑-=),计算积分?=10dx e I x ,并估计误差 (),(),("12 )(2 b a f h a b f R n ∈-- =ηη) 。

数值分析第一章绪论习题答案

第一章绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= == 而ln x 的误差为()1ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) * * * 124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234 ,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为34 3 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

常微分方程的数值解

实验4 常微分方程的数值解 【实验目的】 1.掌握用MATLAB软件求微分方程初值问题数值解的方法; 2.通过实例用微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格-库塔方法的基本思想和计算公式,及稳定性等概念。 【实验内容】 题3 小型火箭初始重量为1400kg,其中包括1080kg燃料。火箭竖直向上发射时燃料燃烧率为18kg/s,由此产生32000N的推力,火箭引擎在燃料用尽时关闭。设火箭上升时空气阻力正比于速度的平方,比例系数为0.4kg/m,求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点的时的高度和加速度,并画出高度、速度、加速度随时间变化的图形。 模型及其求解 火箭在上升的过程可分为两个阶段,在全过程中假设重力加速度始终保持不变,g=9.8m/s2。 在第一个过程中,火箭通过燃烧燃料产生向上的推力,同时它还受到自身重力(包括自重和该时刻剩余燃料的重量)以及与速度平方成正比的空气阻力的作用,根据牛顿第二定律,三个力的合力产生加速度,方向竖直向上。因此有如下二式: a=dv/dt=(F-mg-0.4v2)/m=(32000-0.4v2)/(1400-18t)-9.8 dh/dt=v 又知初始时刻t=0,v=0,h=0。记x(1)=h,x(2)=v,根据MATLAB 可以求出0到60秒内火箭的速度、高度、加速度随时间的变化情况。程序如下: function [ dx ] = rocket( t,x ) a=[(32000-0.4*x(2)^2)/(1400-18*t)]-9.8; dx=[x(2);a]; end ts=0:1:60;

x0=[0,0]; [t,x]=ode45(@rocket,ts,x0); h=x(:,1); v=x(:,2); a=[(32000-0.4*(v.^2))./(1400-18*t)]-9.8; [t,h,v,a]; 数据如下: t h v a 0 0 0 13.06 1.00 6.57 13.19 13.30 2.00 26.44 26.58 1 3.45 3.00 59.76 40.06 13.50 4.00 106.57 53.54 13.43 5.00 16 6.79 66.89 13.26 6.00 240.27 80.02 12.99 7.00 326.72 92.83 12.61 8.00 425.79 105.22 12.15 9.00 536.99 117.11 11.62 10.00 659.80 128.43 11.02 11.00 793.63 139.14 10.38 12.00 937.85 149.18 9.71 13.00 1091.79 158.55 9.02 14.00 1254.71 167.23 8.33 15.00 1425.93 175.22 7.65 16.00 1604.83 182.55 6.99 17.00 1790.78 189.22 6.36 18.00 1983.13 195.27 5.76 19.00 2181.24 200.75 5.21 20.00 2384.47 205.70 4.69 21.00 2592.36 210.18 4.22 22.00 2804.52 214.19 3.79 23.00 3020.56 217.79 3.41 24.00 3240.08 221.01 3.07 25.00 3462.65 223.92 2.77 26.00 3687.88 226.56 2.50 27.00 3915.58 228.97 2.27

数值分析复习题,重点内容,重点题型答案

第一章:绪论 1、数值计算的误差 2、有效数字的概念和确定方法 3、误差定性分析与避免误差危害 习题及参考答案: 一、下列各数都是经过四舍五入得到的近似数 8675.41=x ,08675.42=x ,08675.03=x (1) 他们分别有几位有效数字。 (2) 他们的绝对误差限分别是多少。 (3) 计算下列各近似值的误差限: ①321x x x ++,②21x x ?,③ 2 1 x x 。 解:(1),102 1 ,48675.0108675.4411-?≤ ?==δx 由4,1-=-=n m m 得:5=n ,即1x 有5位有效数字。 同理可得:2x 有6位有效数字,3x 有4位有效数字。 (2)由于各数都是经过四舍五入得到的近似数,则绝对误差限不超过最后一位的半个单 位,即.102 1 ,1021,1021535241---?≤?≤?≤ δδδ (3)①5 321321106)(-?=++≈++δδδδx x x ②4 122121102868.2)(-?≈?+?≈?δδδx x x x ③5 2 2 12212 1 103692.1)( -?≈?+?≈ x x x x x δδδ 二、对于积分 ? =+1 ,2,1,0,999 n dx x x n 。 (1)试推导递推公式 ,2,1,1 9991=+ -=-n n I I n n ; (2)分析上述算法的数值稳定性; (3)若上面算法不稳定,请选择合适的算法,并分析其稳定性。 解:(1)由 ?? ==++= +---1011 111 999999999n dx x dx x x x I I n n n n n ,(#) 可得递推公式 ,2,1,1 9991=+ -=-n n I I n n (2)当仅考虑初始值有误差时,由

数值分析期末复习资料

数值分析期末复习资料

数值分析期末复习 题型:一、填空 二、判断 三、解答(计算) 四、证明 第一章 误差与有效数字 一、 有效数字 1、 定义:若近似值x*的误差限是某一位的半个单位,该位到x*的第一位非零数字共有n 位,就说 x*有n 位有效数字。 2、 两点理解: (1) 四舍五入的一定是有效数字 (2) 绝对误差不会超过末位数字的半个单位eg. 3、 定理1(P6):若x*具有n 位有效数字,则其相对误差限为 4、 考点: (1)计算有效数字位数:一个根据定义理解,一个根据定理1(P7例题3) 二、 避免误差危害原则 1、 原则: (1) 避免大数吃小数(方法:从小到大相加;利用韦达定理:x1*x2= c / a ) (2) 避免相近数相减(方法:有理化)eg. 或 (3) 减少运算次数(方法:秦九韶算法)eg.P20习题14 三、 数值运算的误差估计 1、 公式: (1) 一元函数:|ε*( f (x *))| ≈ | f ’(x *)|·|ε*(x )|或其变形公式求相对误差(两边同时 除以f (x *)) eg.P19习题1、2、5 (2) 多元函数(P8)eg. P8例4,P19习题4 *(1) 11 102n r a ε--≤?;x εx εx εx ++=-+();1ln ln ln ??? ? ??+=-+x εx εx x cos 1-2sin 22x =

第二章 插值法 一、 插值条件 1、 定义:在区间[a,b]上,给定n+1个点,a ≤x 0<x 1<…<x n ≤b 的函数值 yi=f(xi),求次数不超过n 的多项式P(x),使 2、 定理:满足插值条件、n+1个点、点互异、多项式次数≤n 的P(x)存在且唯一 二、 拉格朗日插值及其余项 1、 n 次插值基函数表达式(P26(2.8)) 2、 插值多项式表达式(P26(2.9)) 3、 插值余项(P26(2.12)):用于误差估计 4、 插值基函数性质(P27(2.17及2.18))eg.P28例1 三、 差商(均差)及牛顿插值多项式 1、 差商性质(P30): (1) 可表示为函数值的线性组合 (2) 差商的对称性:差商与节点的排列次序无关 (3) 均差与导数的关系(P31(3.5)) 2、 均差表计算及牛顿插值多项式 四、埃尔米特插值(书P36) 两种解法: (1) 用定义做:设P 3(x)=ax 3+bx 2+cx+d ,将已知条件代入求解(4个条件:节点函数值、导数值相 等各2个) (2) 牛顿法(借助差商):重节点eg.P49习题14 五、三次样条插值定义 n i y x P i i n ,,2,1,0)( ==

数值分析实验2_求解线性方程组直接法

一 实验目的 1.掌握求解线性方程组的高斯消元法及列主元素法; 2. 掌握求解线性方程组的克劳特法; 3. 掌握求解线性方程组的平方根法。 二 实验内容 1.用高斯消元法求解方程组(精度要求为610-=ε): 1231231 233272212240x x x x x x x x x -+=??-+-=-??-+=? 2.用克劳特法求解上述方程组(精度要求为610-=ε)。 3. 用平方根法求解上述方程组(精度要求为610-=ε)。 4. 用列主元素法求解方程组(精度要求为610-=ε): 1231231 233432222325x x x x x x x x x -+=??-+-=??--=-? 三 实验步骤(算法)与结果 1. 程序代码(Python3.6): import numpy as np def Gauss(A,b): n=len(b) for i in range(n-1): if A[i,i]!=0: for j in range(i+1,n): m=-A[j,i]/A[i,i] A[j,i:n]=A[j,i:n]+m*A[i,i:n] b[j]=b[j]+m*b[i] for k in range(n-1,-1,-1): b[k]=(b[k]-sum(A[k,(k+1):n]*b[(k+1):n]))/A[k,k]

print(b) 运行函数: >>> A=np.array([[3,-1,2],[-1,2,-2],[2,-2,4]],dtype=np.float) >>> b=np.array([7,-1,0],dtype=np.float) >>> x=Gauss(A,b) 输出: 结果:解得原方程的解为x1=3.5,x2=-1,x3=-2.25 2 程序代码(Python3.6): import numpy as np A=np.array([[3,-1,2],[-1,2,-2],[2,-2,4]],dtype=float) L=np.array([[1,0,0],[0,1,0],[0,0,1]],dtype=float) U=np.array([[0,0,0],[0,0,0],[0,0,0]],dtype=float) b=np.array([7,-1,0],dtype=float) y=np.array([0,0,0],dtype=float) x=np.array([0,0,0],dtype=float) def LU(A): n=len(A[0]) i=0 while i