七年级数学整式的加减知识点

合集下载

七年级数学整式的加减-知识点总结

七年级数学整式的加减-知识点总结

整式的加减---知识总结4.1整式 单项式定义:表示数或字母的积的代数式(单独的一个数或一个字母也是单项式) 系数:单项式中的数字因数(包括它前面的符号;单项式的系数是1或-1时,1通常不写;当单项式的系数是带分数时,通常写成假分数)次数:一个单项式中,所有字母的指数的和(单项式的系数只与字母有关,且是所有字母的指数之和,与系数无关)注意:(1)单项式中不含加减运算,只含字母与字母或数与字母的乘法(包括乘方)运算(2)分母中含有字母的式子不是单项式(3)n 是常数,在单项式中相当于数字因数(4)定义中的“数”可以是小数,也可以是分数或整数(5)常数没有系数,圆周率x 是常数,单项式中出现x 时,要将其看成系数(6)单独一个字母的次数是1,而不是0.如单项式b 的次数是1,而不是0判断一个式子是不是单项式,关键看两点:一是式子中是否只有乘法运算(包括乘方运算);二是式子的分母中是否只有数字.二者有一项不符合,则不为单项式.多项式定义:几个单项式的和项:多项式中的每个单项式常数项:多项式不含字母的项次数:多项式中次数最高的次数注意:1.一个式子是多项式需具备两个条件:(1)式子中含有运算符号“+”或“-”(2)分母中不含有字母2.识别多项式的各项时,应连同它们前面的符号一起进行识别,特别注意当项的符号为负号时,一定不要将其漏掉.3.多项式的次数不能看成是多项式中各项的次数的和4.一个多项式最高次项的次数是几次、含有几项就叫几次几项式.整式整式:单项式和多项式统称为整式注意:1.判断一个式子是否为整式,就是判断一个式子是否为单项式或多项式;2.单项式、多项式都是整式,所以整式可能是单项式,也可是多项式知识点1 知识点2 知识点34.2整式的加法与减法 同类项定义:所含字母相同,并且相同字母的指数也相同(几个常数项也是同类型)1.判断同类项时的“两相同,两无关”:(1)两相同:①所含字母相同;②相同字母的指数相同.(2)两无关:①与系数无关;②与字母的排列顺序无关.2.同类项不一定是两项,也可以是三项、四项等,但至少为两项合并同类项定义:把多项式中的同类项合并成一项.合并同类项后,所得项的系数是合并前各同类项的合并同类项的方法系数的和,字母连同它的指数不变.“一相加,两不变”,就是把同类项的系数相加,字母不变,字母的指数不变。

人教版七年级数学上册第二章 整式的加减知识点归纳

人教版七年级数学上册第二章  整式的加减知识点归纳

人教版七年级数学上册第二章 整式的加减知识点归纳1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

2.单项式系数:单项式中不为零的数字因数,叫单项式数字系数,简称单项式的系数;3.单项式的次数:单项式中所有字母的指数的和,叫单项式的次数.4.多项式:几个单项式的和叫做多项式。

5.多项式的项与项数:多项式中每个单项式叫多项式的项; 不含字母的项叫做常数项。

多项式里所含单项式的个数就是多项式的项数;6.多项式的次数:多项式里,次数最高项的次数叫多项式的次数;常数项的次数为0注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.7.多项式的升幂排列:把一个多项式的各项按某个字母的指数从小到大排列起来,叫做按这个字母的升幂排列。

多项式的降幂排列:把一个多项式的各项按某个字母的指数从大到小排列起来,叫做按这个字母的降幂排列。

(注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.8.整式:单项式和多项式统称为整式,即凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.9.整式分类: . ( 注意:分母上含有字母的不是整式。

)⎩⎨⎧多项式单项式整式10.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.11.合并同类项法:各同类项系数相加,所得结果作为系数,字母和字母指数不变。

12.去括号的法则:(原理:乘法分配侓)(1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;(2)括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项的符号都要改变。

13.添括号的法则:(1)若括号前边是“+”号,括号里的各项都不变号;(2)若括号前边是“-”号,括号里的各项都要变号.14. 整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项;整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.整式加减的步骤:(1)列出代数式;(2)去括号;(3)添括号(4)合并同类项。

初一数学知识点整式的加减

初一数学知识点整式的加减

初一数学知识点整式的加减
数学知识点整式的加减1.单项式:在代数式中,假定只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中一切字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;留意:(假定a、b、c、p、q是常数)ax2+bx+c和x2+px+q是罕见的两个二次三项式.
5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.
整式分类为:.
6.同类项:所含字母相反,并且相反字母的指数也相反的单项式是同类项.
7.兼并同类项法那么:系数相加,字母与字母的指数不变.
8.去(添)括号法那么:去(添)括号时,假定括号前边是+号,括号里的各项都不变号;假定括号前边是-号,括号里的各项都要变号.
9.整式的加减:整式的加减,实践上是在去括号的基础上,
把多项式的同类项兼并.
10.多项式的升幂和降幂陈列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)陈列起来,叫做按这个字母的升幂陈列(或降幂陈列).留意:多项式计算的最后结果普通应该停止升幂(或降幂)陈列.。

初中数学知识点七年级上册 整式的加减

初中数学知识点七年级上册 整式的加减

初中数学知识点七年级上册整式的加减1、单项式:数字与字母的积或者字母与宇母的积。

一个单独的数字或者具体的数字也是单项式。

注意:数宇与字母或者字母与字母相乘时乘号省略不写,且把数字写在字母的前面。

2、单项式的系数:单项式中的数字蛋数。

如果在一个单项式中没有出现具体的数字,则它的系数是1例如:xy 它的系数是1,-n它的系数是-1•常数项(具体的数宇)的系数就是它本身,例如:3的系数就是了,π的系数就是π。

π是一个常数(具体的数字),不是字母。

3、单项式的次数:单项式中所以字母指数的和。

例如:6xy 的次数是2次,3m2n3的次数是5 次,33X2Y的次数是3次。

常数(具体的数宇)的次数是0次,例如:3的次数就是0,π的次数是0。

4、多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的项叫常数项。

例如:多项式2XY2- 2M + 3Y一4是由单项式2xy2、— 2M、3Y、一7相加组成,所以2XY2、一2m、3y、一7就是多项式2XY2—2M+3Y—4的项,一7就是常数项。

5、多项式的次数:多项式中次数最高项的次数。

要求一个多项式的次数,应该先求出它的每一个项的次数,然后再看哪个项的次数最高,那么次数最高项的次数就是这个多项式的次数。

其中次数最高的项叫最高次项,例如:多项式2XY2—2M+3Y—4,2XY2的次数是3次,—2M的次数是1次,3Y的次数是1次,—7的次数是0次,所以2xy2的次数最高,那么2xy2就是最高次项,则这个多项式的次数就是3次。

6、整式:多项式和单项式统称为整式。

如果一个式子的分母中出现了字母(π除外),那么它就不是整式(即它不是单项式,也不是多项式)。

7、同类项:含有相同的字母且相同字母的指数也相同的项叫做同类项,例如—3M3N2和5N2M3是同类项,因为这两个项中都含有字母M、N,并且字母M的指数都是3,字母N的指数都是2,所以他们是同类项。

同类项与系数和字母的顺序无关,只与字母和字母的指数有关。

七年级整式的加减知识点

七年级整式的加减知识点

七年级整式的加减知识点整式是由常数、变量及它们的积或幂次积,以及它们的和或差组成的代数式。

整式的加减是初中阶段数学中基础且重要的知识点,本文将从整式的定义、基本概念、加减法规则等方面,为大家详细介绍七年级整式的加减知识点。

一、整式的定义及基本概念1. 整式的定义:由常数和变量的积、幂以及它们的和或差组成的关于变量的代数式。

例如:2xy+3y-5a²b+4ab²+a²b+2a²b²2. 同类项:整式中,含有相同的字母和相同的次数的代数式称为同类项。

例如:2xy, 5xy, -9xy都是同类项;4a²b², -3a²b², 2a²b²也都是同类项。

3. 非同类项:整式中,不是同类项的代数式称为非同类项。

例如:2xy, 5xz, -9y都是非同类项;4a²b, -3h²j, 2cd也都是非同类项。

二、整式的加法原则两个整式相加,将它们的同类项合并在一起,非同类项则保留原样。

具体来说,可按如下方法进行:1. 去括号:如果有括号,先把括号去掉。

例如:(3x + 4y) + (2x - 5y) = 3x + 4y + 2x - 5y2. 合并同类项:把其中相同的项相加或相减,并保留非同类项。

例如:3x + 4y + 2x - 5y = 5x - y三、整式的减法原则整式相减时,也是先合并同类项,再保留非同类项。

具体来说,可按如下方法进行:1. 按一般加法步骤准备整式,要注意被减式的所有项都要取相反数。

例如:(5x² - 3x + 2) - (2x² - 4x + 1) = 5x² - 3x + 2 + (-2x² + 4x - 1)2. 合并同类项。

例如:5x² - 3x + 2 + (-2x² + 4x - 1) = 3x² + x + 1四、整式加减混合运算整式加减混合运算是指在同一道题目中,既有整式的加法运算,又有整式的减法运算。

七年级数学整式的加减

七年级数学整式的加减

七年级数学整式的加减【原创实用版】目录1.整式的概念2.整式的加减运算法则3.整式的加减运算实例4.整式的加减运算技巧和方法5.整式的加减运算在实际问题中的应用正文一、整式的概念整式是指由常数、变量和它们的积或和所组成的代数式,其中变量的次数是非负整数。

整式是代数学的基本对象之一,它在数学的各个领域中都有广泛的应用。

二、整式的加减运算法则整式的加减运算是指将两个或多个整式按照一定的规则进行合并。

整式的加减运算法则主要包括以下几点:1.同类项相加减:同类项是指具有相同变量和相同次数的项,例如 3x 和 2x 就是同类项,而 3x 和 2y 就不是同类项。

在进行整式的加减运算时,我们只需要将同类项的系数相加减,变量和次数保持不变。

2.合并同类项:将所有同类项的系数相加减,得到一个新的系数,然后将新的系数与原变量和次数组合成新的项。

3.保持变量和次数不变:在进行整式的加减运算时,我们只能改变项的系数,不能改变变量和次数。

三、整式的加减运算实例例如,对于整式 3x+2y-5x+y,我们可以按照以下步骤进行加减运算:1.找出同类项:3x 和 -5x 是同类项,2y 和 y 也是同类项。

2.合并同类项:3x 和 -5x 的和为 -2x,2y 和 y 的和为 3y。

3.将新的同类项组合成新的整式:-2x+3y。

四、整式的加减运算技巧和方法在进行整式的加减运算时,我们可以使用以下一些技巧和方法,以提高运算效率和准确性:1.先找出同类项,再进行加减运算。

2.使用括号将整式分组,以避免运算错误。

3.先化简每个括号内的整式,再进行加减运算。

五、整式的加减运算在实际问题中的应用整式的加减运算在实际问题中有广泛的应用,例如在物理、化学、经济等领域的问题中,我们常常需要对一些变量进行加减运算,以得到新的变量或结果。

七年级整式加减知识点

七年级整式加减知识点

七年级整式加减知识点在七年级数学课程中,整式加减是重要的基础知识点。

掌握了整式加减,对学习其他数学知识也会产生积极的影响。

下面,本文将介绍七年级整式加减的一些基本知识点。

一、整式的基本概念整式是指由常数和各种字母乘方及它们的积的和构成的代数式。

比如,x + 3、2x² - 5x + 1、y³ + 2y² - y 等都是整式。

二、同类项的概念同类项是指只有字母的指数不同的代数式。

例如,3x²和-2x²是同类项,因为它们都只有x的平方,并且它们的系数不同。

三、整式的加减整式的加减实际上就是把同类项合并起来,得到简化的整式。

比如,对于3x² + 2xy - 5x² + 3xy + 7,我们可以先把同类项3x²和-5x²合并,把同类项2xy和3xy合并,得到-2x² + 5xy + 7。

四、加减的练习方法对于初学者来说,整式的加减并不是一件容易的事情。

因此,我们需要进行一些练习,以提高我们的能力。

1.练习识别同类项。

在练习中,我们需要将不同的整式拆分成同类项,然后再进行合并。

2.练习合并同类项。

在练习中,我们需要手动计算每个同类项的系数,然后再把它们相加或相减。

3.练习整理整式。

在练习中,我们需要把整式溯源到它最简单的形式,也就是没有括号和乘积的形式。

五、常见的错误在学习整式加减过程中,有一些常见的错误需要注意:1.错误识别同类项。

如果我们没有正确地识别同类项,我们就无法正确地计算整式。

2.错误加减系数。

如果我们没有正确地计算系数,我们就会得到错误的结果。

3.错误理解复杂的整式。

在处理复杂的整式时,我们需要仔细分析它们,并考虑清楚每个步骤的细节。

总之,七年级的整式加减是数学的基本知识,它对学习其他数学知识也是至关重要的。

我们需要了解整式的基本概念和概念,练习合并同类项,并避免常见的错误。

只有通过反复练习,我们才能提高自己的技能。

七年级数学整式的加减的知识点

七年级数学整式的加减的知识点

七年级数学整式的加减的知识点数学整式的加减是中学数学中非常基础的一部分内容。

整式是指由单项式相加或相减而得到的代数式。

整式的加减可以说是计算整式的基础,也是后续高阶计算的基础,因此,掌握好七年级数学整式的加减知识点是非常重要的。

本文将从整式的定义及性质、加减的基本法则、加减的特殊情况等方面全面介绍七年级数学整式的加减知识点。

一、整式的定义及性质整式不是单项式,而是由单项式相加或相减得到的代数式,通式为f(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0,其中a_n,a_{n-1},……,a_0为常数,n为非负整数。

整式中变量的最高指数n叫做整式的次数。

整式的次数与单项式不同,可以是0次,也可以是0次以上的整数次。

两个整式相等,当且仅当它们的各项系数相等,次数相等。

二、加减的基本法则整式的加减与数的加减相似,只需将同类项合并,并对各项常数进行相加或相减。

整式相加减的基本法则如下:1、同类项相加减同类项是指具有相同变量的指数的项,例如,对于整式F(x)=3x^2+4x+1和G(x)=2x^2+2x+2,它们的同类项分别为3x^2和2x^2、4x和2x、1和2。

将同类项相加减,可以得到下列结果:F(x)+G(x)=(3+2)x^2+(4+2)x+(1+2)=5x^2+6x+3F(x)-G(x)=(3-2)x^2+(4-2)x+(1-2)=x^2+2x-12、去括号在整式中进行加减运算时,需要先将括号内各项进行相加减,再将相加减得到的整式与括号外面的整式进行相加减。

具体地说,可以运用“分配律”和“结合律”的规则,将括号内的数先乘以括号前的数,再进行加减运算。

举个例子,对于整式F(x)=(2x+4)(3x-2),先用“分配律”将整式展开,得到:F(x)=2x(3x-2)+4(3x-2)=6x^2-4x+12x-8=6x^2+8x-83、合并同类项在计算加减时,需要将同类项合并,得到一个简化的整式。

人教版七年级上册数学《整式的加减》和《一元一次方程》知识点详细梳理

人教版七年级上册数学《整式的加减》和《一元一次方程》知识点详细梳理

人教版七年级上册数学《整式的加减》和《一元一次方程》知识点详细梳理人教版七年级上册数学《整式的加减》知识点详细梳理一.用字母表示数(代数初步知识)1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式;用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc 。

2. 代数式书写规范:(1)数与字母相乘,或字母与字母相乘中通常使用“· ” 乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a ;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a ×211应写成23a ; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a3的形式; (6)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a .出现除式时,用分数表示;(7)若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。

3.几个重要的代数式:(m 、n 表示整数)(1)a 与b 的平方差是: a 2-b 2 ; a 与b 差的平方是:(a-b )2;(2)若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c ;(3)若m 、n 是整数,则被5除商m 余n 的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n 、n+1 ;(4)若b >0,则正数是:a 2+b ,负数是: -a 2-b ,非负数是: a 2 ,非正数是:-a 2 . 二.整式1.单项式:表示数与字母的乘积的代数式叫单项式。

七年级数学第二章整式的加减全章知识点总结

七年级数学第二章整式的加减全章知识点总结

第二章 整式的加减知识点1、单项式的概念式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,象这样的式子叫做单项式,单独的一个数或一个字母也是单项式.注意:单项式是一种特殊的式子,它包含一种运算、三种类型。

一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,。

知识点2、单项式的系数单项式中的数字因数叫做这个单项式的系数.注意:(1)单项式的系数可以是整数,也可能是分数或小数.如42x的系数是2;3ab 的系数是31,2.7m 的系数是2。

7。

(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如-()xy 2的系数是-2(3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1. (4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母.如2πxy 的系数就是2π知识点3、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。

注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况.如单项式z y x342的次数是字母z y x,,的指数和,即4+3+1=8,而不是7次,应注意字母Z的指数是1而不是0.(2)单项式是一个单独字母时,它的指数是1,如单项式m的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。

(3)单项式的指数只和字母的指数有关,与系数的指数无关。

如单项式-43242z y x的次数是2+3+4=9而不是13次。

(4)单项式通常根据实验室的次数进行命名。

如x6是一次单项式,xyz2是三次单项式。

知识点4、多项式的有关概念(1)多项式:几个单项式的和叫做多项式。

七年级上册数学整式的加减法知识点归纳

七年级上册数学整式的加减法知识点归纳

整式的加减法是初中数学中的重要知识点,掌握好整式的加减法对于学生来说非常关键。

在七年级上册数学教学中,学生们将接触整式的加减法,并且在以后的学习中会不断用到这些知识。

我们有必要对七年级上册数学整式的加减法知识点进行归纳和总结。

一、整式的概念整式是指由常数、变量及其指数和次数有限次加、减、乘、除运算得到的代数和。

一般表示为a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0,其中a_n、a_{n-1}、...、a_1、a_0为常数,x为变量,n为自然数。

二、整式的加法1. 同类项的加法同类项是指它们具有相同的字母和字母的指数相同的项。

在进行整式的加法时,首先要将同类项合并,然后将它们的系数相加。

例如:3x^2y+2xy^2-5x^2y-3xy^2= 3x^2y-5x^2y+2xy^2-3xy^2= -2x^2y-xy^22. 不同类项的加法对于不同类项的加法,直接将它们按照位置进行相加即可。

例如:2x^2y+3xy^2+4xy-5y+ 3x^2y+6xy^2-2xy+8y= 5x^2y+9xy^2+2xy+3y三、整式的减法整式的减法与加法相似,只是减法需要将被减数取相反数,然后按照加法的规则进行计算。

例如:2x^2y-3xy+4y-5- (x^2y+2xy-3y+6)= 2x^2y-3xy+4y-5-x^2y-2xy+3y-6= x^2y-5xy+7y-11四、综合运用在实际运用整式的加减法时,需要综合运用多种运算法则。

例如:(3x^2y+5xy^2-2xy+7y) - (2x^2y-3xy+4y-5)= 3x^2y+5xy^2-2xy+7y-2x^2y+3xy-4y+5= x^2y+5xy^2-5xy+3y+2五、练习题1. 计算:(2x^2y-3xy+4y-5) + (x^2y+2xy-3y+6)2. 计算:(3x^2y+5xy^2-2xy+7y) - (2x^2y-3xy+4y-5)3. 计算:2x^2y+3xy^2+4xy-5y - (3x^2y+6xy^2-2xy+8y)4. 计算:(3x^2y+2xy^2-5x^2y-3xy^2) + (4x^2y-xy^2+2x^2y+3xy^2)六、总结与思考整式的加减法是基础中的基础,对学生来说需要理解清楚,并且在反复练习中掌握。

七年级数学整式的加减知识点

七年级数学整式的加减知识点

七年级数学整式的加减知识点一、整式的有关概念。

1. 单项式。

- 定义:由数与字母的乘积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。

例如:3x,-2y,5,a等都是单项式。

- 系数:单项式中的数字因数叫做这个单项式的系数。

例如在单项式3x中,系数是3;在单项式-(2)/(3)y中,系数是-(2)/(3);对于单项式5,可以看作5×1,系数就是5。

- 次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

例如单项式3x^2的次数是2,因为x的指数是2;单项式-2xy的次数是2(x的次数是1,y 的次数是1,1 + 1=2)。

2. 多项式。

- 定义:几个单项式的和叫做多项式。

例如2x+3y,x^2-2x + 1等都是多项式。

- 项:在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

例如在多项式x^2-2x+1中,x^2、-2x、1都是它的项,1是常数项。

- 次数:多项式里次数最高项的次数,叫做这个多项式的次数。

例如多项式2x^3-x^2+3x - 4的次数是3,因为次数最高的项2x^3的次数是3。

3. 整式。

- 定义:单项式与多项式统称为整式。

二、整式的加减。

1. 同类项。

- 定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

几个常数项也是同类项。

例如3x^2y与-5x^2y是同类项,2与7是同类项。

- 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。

例如3x^2y-5x^2y=(3 - 5)x^2y=-2x^2y。

2. 去括号法则。

- 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

例如a+(b + c)=a + b + c。

- 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

例如a-(b + c)=a - b - c。

数学七年级上册整式的加减知识点

数学七年级上册整式的加减知识点

数学七年级上册整式的加减知识点数学七年级上册整式的加减知识点主要包括以下内容:1. 整式的加法和减法:整式是由常数和字母按照乘法运算符号连接起来的表达式。

整式的加法和减法是指将同类项相加或相减,并保留结果中的同类项。

例如,对于整式3x^2 + 2xy + 5和2x^2 - 3xy + 6,进行加法运算时,将同类项相加得到:(3x^2 + 2xy + 5) + (2x^2 - 3xy + 6) = 5x^2 - xy + 11。

2. 合并同类项:在整式中,有时会出现相同的字母的幂次相同的项,这些项叫做同类项。

进行整式的加减运算时,需要将同类项合并,即将同类项的系数相加或相减,并保留相同的字母和幂次。

例如,对于整式2x^2 + 3x^2 + 4x^2,将同类项合并得到:2x^2 + 3x^2 + 4x^2 = 9x^2。

3. 去括号:在整式的加减运算中,如果遇到括号,需要先去括号。

可以使用分配律进行括号的去除。

例如,对于整式2(x + y) - 3x(x - y),可以先去括号得到:2(x + y) = 2x + 2y,-3x(x - y) = -3x^2 + 3xy,然后再进行合并同类项或简化运算。

4. 提取公因式:在整式的加减运算中,如果遇到相同的公因式,可以将公因式提取出来。

公因式是指能够整除所有同类项的因式。

例如,对于整式4x^2 + 6xy,可以提取公因式2得到:4x^2 + 6xy = 2(2x^2 + 3xy)。

5. 消去同类项:在整式的加减运算中,如果遇到相反数的同类项,可以互相消去。

相反数是指具有相同绝对值但符号相反的数。

例如,对于整式5x + 2y - 3x - 2y,可以将同类项5x和-3x互相消去,将2y和-2y互相消去,最终得到:5x + 2y - 3x - 2y = 2x。

七年级数学上《整式的加减》期末复习知识点+检测试卷

七年级数学上《整式的加减》期末复习知识点+检测试卷

2016-2017学年度七年级上期末复习(整式的加减)知识点1:列代数式 知识回顾:(1)数学中的式子指的是用运算符号把数与字母连接而成的算式,单独的一个数或字母也叫是式子。

可以用式子把数量关系简明地表示出来。

(2)在含有字母的式子中如果出现乘号,通常将乘号写作“⋅”或省略不写。

例如,100×t 可以写成100⋅t 或100t 。

巩固练习: 1.(2015-2016北京市海淀区七上期末)某4名工人3月份完成的总工作量比此月人均定额的4倍多15件,如果设此月人均定额是x 件,那么这4名工人此月实际人均工作量 为 件.(用含x 的式子表示) 2.(2015-2016清远市连州市七上期末)a 与b 的平方的和可表示为( )A .(a+b)2;B .a 2+b 2;C .a 2+b ;D .a+b 2。

3.(2015-2016衡阳市耒阳市七上期末)a 的2倍与b 的和,用代数式表示为( )A .2a+b ;B .a 2+b ; C .2(a+b); D .a+2b 。

4.(2015-2016北京市西城区七上期末)用含a 的式子表示: (1)比a 的6倍小5的数: ;(2)如果北京某天的最低气温为a ℃,中午12点的气温比最低气温上升了10℃,那么中午12点的气温为 ℃. 5.(2015-2016潍坊市寿光市七上期末)甲数为x ,乙数为y ,则甲数的3倍与乙数的和除甲数与乙数的3倍的差,可表示为( ) A .y 3x y x 3-+; B .y 3x y x 3+-; C .y x 3y 3x +-; D .yx 3y3x -+。

6.(2015-2016深圳市龙华新区七上期末)小明每个月收集废电池a 个,小亮比小明多收集20%,则小亮每个月收集的废电池数为( ) A .(a+20%)个; B .a (1+20%)个; C .%201a -个; D .%201a-个。

7.(2015-2016吕梁市孝义市七上期末)一个三位数,个位数是a ,十位数是b ,百位数是c ,这个三位数是( )A .a+b+c ;B .abc ;C .100a+10b+c ;D .100c+10b+a 。

人教版初中七年级数学上册第二章《整式的加减》知识点(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》知识点(含答案解析)

1.与(-b)-(-a)相等的式子是( ) A .(+b)-(-a) B .(-b)+a C .(-b)+(-a) D .(-b)-(+a)B解析:B 【分析】将各选项去括号,然后与所给代数式比较即可﹒ 【详解】解: (-b)-(-a)=-b+a A. (+b)-(-a)=b+a ; B. (-b)+a=-b+a ; C. (-b)+(-a)=-b-a ; D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒ 故选:B ﹒ 【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒ 2.若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3- B .0C .3D .6C解析:C 【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值. 【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==,所以303a b +=+=, 故选:C . 【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键. 3.下列计算正确的是( ) A .﹣1﹣1=0 B .2(a ﹣3b )=2a ﹣3b C .a 3﹣a=a 2D .﹣32=﹣9D解析:D 【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答. 【详解】解:A .﹣1﹣1=﹣2,故本选项错误; B .2(a ﹣3b )=2a ﹣6b ,故本选项错误; C .a 3÷a =a 2,故本选项错误; D .﹣32=﹣9,正确; 故选:D . 【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 4.下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D解析:D 【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D . 【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n x B .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B解析:B 【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n . 【详解】因为第一个单项式是1112(1)2x x -=-⨯; 第二个单项式是222222(1)2x x =-⨯; 第三个单项式是333332(1)2x x -=-⨯, …,所以第n 个单项式是(1)2nnnx -. 故选:B . 【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键. 6.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个A解析:A 【分析】几个单项式的和叫做多项式,结合各式进行判断即可. 【详解】22a b ,3,2ab,4,m -都是单项式; 2x yzx+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab cxy y π--,是多项式,共有2个.故选:A . 【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C 【分析】本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积. 【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-. 故选:C . 【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( ) A .1 B .2 C .3 D .4D解析:D 【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可. 【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4, ∴a ,b ,c ,d 四个数的和是4, 故选:D . 【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 9.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2 C .3 D .﹣3D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值. 10.下列去括号正确的是( ) A .221135135122x y x x y y ⎛⎫--+=-++⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x+--=+-+D .()()223423422x y x x y x--+=--+ C解析:C 【分析】依据去括号法则计算即可判断正误. 【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+-⎪⎝⎭,故此选项错误;B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y x x y x+--=+-+,此选项正确;D. ()()223423422x y x x y x--+=---,故此选项错误;故选:C. 【点睛】此题考查整式的化简,注意去括号法则.11.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .m B .n C .m n + D .m ,n 中较大者D解析:D 【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项. 【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,mnx x 中指数大的,即m ,n 中较大的,故答案选D. 【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.12.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( ) A .2和8 B .4和8-C .6和8D .2-和8- D解析:D 【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答. 【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8. 故选D . 【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以(1)单项式中的数字因数叫做这个单项式的系数; (2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.13.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B =C .A B <D .无法确定A解析:A 【分析】作差进行比较即可. 【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6) =x 2-5x +2- x 2+5x +6 =8>0, 所以A >B . 故选A . 【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B . 14.式子5x x-是( ). A .一次二项式 B .二次二项式C .代数式D .都不是C解析:C 【分析】根据代数式以及整式的定义即可作出判断. 【详解】式子5x x -分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C . 【点睛】本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.15.﹣(a ﹣b +c )变形后的结果是( ) A .﹣a +b +c B .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B 【分析】根据去括号法则解题即可. 【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c 故选B .本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.1.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m的值应是_______.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m的值.2.数字解密:第一个数是3=2+1,第二个数5=3+2,第三个数是9=5+4,第四个数17=9+8,……,观察并猜想第六个数是_______.65【分析】设该数列中第n个数为an (n为正整数)根据给定数列中的前几个数之间的关系可找出变换规律an=2an ﹣1﹣1依此规律即可得出结论【详解】解:设该数列中第n个数为an(n为正整数)观察发现规解析:65【分析】设该数列中第n个数为a n(n为正整数),根据给定数列中的前几个数之间的关系可找出变换规律“a n=2a n﹣1﹣1”,依此规律即可得出结论.【详解】解:设该数列中第n个数为a n(n为正整数),观察,发现规律:a1=3=2+1,a2=5=2a1﹣1,a3=9=2a2﹣1,a4=17=2a3﹣1,…,a n=2a n﹣1﹣1.∴a 6=2a 5﹣1=2×(2a 4﹣1)﹣1=2×(2×17﹣1)﹣1=65. 故答案为65.3.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.【分析】分别从单项式的系数与次数两方面总结即可得出规律进而可得答案【详解】解:由已知单项式的排列规律可得第n 个单项式为:故答案为:【点睛】本题考查了单项式的规律探求通过所给的单项式找到规律并能准确的 解析:(2)n n x -【分析】分别从单项式的系数与次数两方面总结即可得出规律,进而可得答案. 【详解】解:由已知单项式的排列规律可得第n 个单项式为:(2)nnx -. 故答案为:(2)nnx -. 【点睛】本题考查了单项式的规律探求,通过所给的单项式找到规律,并能准确的用代数式表示是解题的关键.4.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:3n+1. 【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n 次时,共有4+3(n-1)=3n+1. 试题故剪n 次时,共有4+3(n-1)=3n+1. 考点:规律型:图形的变化类.5.化简:226334xx x x_________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键 解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可. 【详解】 解:226334xx x x226334xx x x2(64)(33)xx=2106x x -+, 故答案为:2106x x -+. 【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 6.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.08a 【解析】试题分析:根据题意得:a•(1+20)×90=108a ;故答案为108a 考点:列代数式解析:08a 【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a ;故答案为1.08a . 考点:列代数式.7.计算7a 2b ﹣5ba 2=_____.2a2b 【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b 【分析】根据合并同类项法则化简即可. 【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 8.如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.【分析】由长方形的面积减去PQLM 与RKTS 的面积再加上重叠部分面积即可得到结果【详解】S 矩形ABCD=AB•AD=abS 道路面积=ca+cb-c2所以可绿化面积=S 矩形ABCD-S 道路面积=ab- 解析:2ab bc ac c --+【分析】由长方形的面积减去PQLM 与RKTS 的面积,再加上重叠部分面积即可得到结果. 【详解】S 矩形ABCD =AB•AD=ab , S 道路面积=ca+cb-c 2,所以可绿化面积=S 矩形ABCD -S 道路面积 =ab-(ca+cb-c 2), =ab-ca-cb+c 2. 故答案为:ab-bc-ac+c 2. 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.9.已知()11nn a =-+,当1n =时,10a =;当2n =时,22a =;当3n =时,30a =;…;则123a a a ++456a a a +++的值为______.【分析】利用乘方符号的规律当n 为奇数时(-1)n=-1;当n 为偶数时(-1)n=1找到此规律就不难得到答案6【详解】∵当n 为奇数时此时;当n 为偶数时(-1)n=1此时∴故填:6【点睛】本题乘方符号的解析:【分析】利用乘方符号的规律,当n 为奇数时,(-1)n =-1;当n 为偶数时,(-1)n =1.找到此规律就不难得到答案6. 【详解】∵当n 为奇数时,(1)1n -=-,此时110n a =-+=;当n 为偶数时,(-1)n =1,此时112n a =+=.∴1234560202026a a a a a a +++++=+++++=.故填:6.【点睛】本题乘方符号的规律,解题的关键是找出(1)n -的符号规律.10.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.11.关于a ,b 的多项式-7ab-5a 4b+2ab 3+9为______次_______项式.其次数最高项的系数是__________.五四-5【分析】多项式共有四项其最高次项的次数为5次系数为-5由此可以确定多项式的项数次数及次数最高项的系数【详解】∵该多项式共有四项其最高次项是为5次∴该多项式为五次四项式∵次数最高项为∴它的系数 解析:五 四 -5【分析】多项式共有四项437,5,2,9ab a b ab --,其最高次项45a b -的次数为5次,系数为-5,由此可以确定多项式的项数、次数及次数最高项的系数.【详解】∵该多项式共有四项437,5,2,9ab a b ab --,其最高次项是45a b -,为5次∴该多项式为五次四项式∵次数最高项为45a b -∴它的系数为-5故填:五,四,-5.【点睛】本题考查了多项式的项数,次数和系数的求解.多项式中含有单项式的个数即为多项式的项数,包含的单项式中未知数的次数总和的最大值即为多项式的次数.1.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题. 解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.2.某校利用二维码进行学生学号统一编排.黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式 321222a b c d ⨯+⨯+⨯+计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为________.解析:070629【分析】利用公式求出图2中每行表示的数据,将其组合起来即可得出结论.【详解】解:∵第一行:0×23+1×22+1×21+1=7,计作07,第二行:0×23+1×22+1×21+0=6,计作06,第三行:0×23+0×22+1×21+0=2,计作2,第四行:1×23+0×22+0×21+1=9,计作9,∴他的统一学号为070629.故答案为:070629.【点睛】本题考查了规律型:图形的变化类以及尾数特征,读懂题意,利用公式求出图2中每行表示的数据是解题的关键.3.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.4.计算:(1)()223537a ab a ab -+-++;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭. 解析:(1)62ab --;(2)2321a a --+【分析】先去括号,然后合并同类项即可.【详解】解:(1)()223537a ab a ab -+-++ 223537a ab a ab =-+--- 2ab =-6-;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭ 2222261a a a a =+--+ 2321a a =--+.【点睛】本题考查了整式的加减运算,熟记去括号法则和合并同类项的法则是解决此题的关键.。

人教七年级数学上册第四章 整式的加减

人教七年级数学上册第四章 整式的加减
解:5(a+16)-3(a-16)=5a+80-3a+48=2a+128(千 米).
答:轮船顺水航行5小时的行程与逆水航行3小时的行程相差 (2a+128)千米.
例4:为落实“阳光体育”工程,某校计划采购网球及网球拍.已 知网球拍每个250元,网球每桶30元,甲、乙两个商场推出如 下优惠活动:甲商场:按购买金额打九折付款;乙商场:买 一个网球拍送一桶网球.
(2)甲商场的购买费用为27×40+4 050=5 130(元),乙商场 的购买费用为30×40+3 960=5 160(元). 因为5 130<5 160,所以购买18个这种网球拍和40桶网球在 甲商场更省钱一些.
1.整式加减运算的步骤是哪些? 有括号先去括号,然后再合并同类项
2.整式的加减运算需要注意哪些地方? 去括号时,注意不要漏乘,注意符号变化
活动导入 如图,用火柴棒排出m个正方形共需多少根火柴?说说你的方法。
问题导入 化简3a-[a-2(-a+b)]+b,并思考整式加减的步骤.
1.请同学们完成课本100页例6,并思考: (1)在例6(1)中表示多项式_2_x_-__3_y__和_5_x_+_4_y___的和;
(2)在例6(2)中表示多项式__8_a_-__7_b___和_4_a_-_5_b____的_差_____.
或由小到大排列.
知识点2:通过整式的加减化简求值(重点) 求整式的值时,一般需要先化简,再代入数值计算.
知识点3:整式加减的应用 通过分析实际问题列出整式,利用整式加减法则解决问题.
【题型一】利用整式的加减法则计算
例1:化简:2(a+3a2+1)-3(2a2-a+2).
解:原式=2a+6a2+2-6a2+3a-6=ቤተ መጻሕፍቲ ባይዱa-4.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的加减
1.都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。

2.单项式中的数字因数叫做这个单项式的系数。

3.一个单项式中,所有字母的指数的和叫做这个单项式的次数。

4.几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

5.多项式里次数最高项的次数,叫做这个多项式的次数。

6.把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

7.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

8.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

9.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

相关文档
最新文档