织物的基本力学性质共20页
织物的基本力学性质
织物的基本力学性质织物是由纤维通过编织、织造等工艺形成的平面结构,具有一定的力学性能。
了解织物的基本力学性质,对于合理使用和设计织物产品具有重要意义。
本文将介绍织物的拉伸性能、强度和弹性以及其与纤维属性的关系。
1. 拉伸性能织物的拉伸性能是指织物在受到拉力作用时的变形和破坏性能。
一般来说,织物在受到拉伸力作用时会产生一定的变形,取决于纤维的延性和结构布局。
织物的拉伸行为可以通过拉伸试验来研究。
拉伸试验会将样品固定在拉伸试验机上,使之受到拉力,并测量拉力与伸长之间的关系。
通过拉伸试验可以得到织物的应变-应力曲线,从而确定织物的拉伸性能。
织物的拉伸性能可以用拉伸强度和断裂伸长率来衡量。
拉伸强度是指织物在拉伸过程中承受的最大力量,断裂伸长率是指织物在被拉断前能够延长的比例。
2. 强度和弹性织物的强度是指织物抵抗外力破坏的能力。
织物的强度与其纤维的强度、结构布局和加工工艺等因素有关。
纤维的强度会直接影响织物的强度,而结构布局和加工工艺对织物的强度也有一定的影响。
在织物的设计和使用中,强度是一个非常重要的指标。
如果织物的强度不符合要求,可能会导致产品的破损和功能受限。
因此,合理选择纤维材料和设计结构布局,以提高织物的强度是非常重要的。
织物的弹性是指织物在受到应力后恢复原状的性能。
织物的弹性可以通过测试织物的弹性模量来评估。
弹性模量是指织物在受到应力后,单位变形时所需的应力。
织物的弹性模量与纤维的弹性模量和织物的结构布局有关。
纤维的弹性模量越大,织物的弹性模量也越大。
而结构布局则会影响织物的内部相互作用和变形程度,从而影响织物的弹性。
3. 织物性能与纤维属性的关系织物的性能与纤维的属性密切相关。
不同纤维具有不同的力学性能,这会直接影响织物的性能。
下面是一些常见的纤维属性对织物性能的影响。
•纤维强度对织物的强度有直接影响。
纤维强度越高,织物的强度也会相应提高。
•纤维的弹性模量决定了织物的弹性,纤维弹性模量越高,织物的弹性也会越好。
第9章 纺织材料的基本力学性质
纱线的蠕变和松弛与纤维的蠕变和松弛基 本相似.
原因: (1)纤维蠕变和松弛的存在。 (2)纱线内纤维相互滑移和错位。
(二)纺织材料拉伸弹性回复率
1.弹性指标:
弹性回复率: Rε=[(ε3+ε4)/εa] × 100% ε3--急弹性回缩率 ε4 --缓弹性回复率 εa--拉伸变形总量(ε1+ε2)
一般纱线断裂的原因既有纤维的断裂,又有纤维的 滑脱,断口是不整齐的。当捻度较大时,纤维滑脱的可 能性很小,纤维由外向内逐层扩展断裂,此时纱线断口 比较整齐。
2.影响纱线一次拉伸断裂的因素 (1)纤维的性能
① 纤维的长度较长,细度较细时,纤维较柔软,在 纱中互相抱合就较紧贴,滑脱长度缩短,纱截面中纤维根 数可以较多,使纤维在纱内外层转移的机会增加,各根纤 维受力比较均匀,因而成纱强度较高。
Et * I p
L:长度 Et:剪切弹性模量(cN/cm2) Ip:截面的极断面惯性矩(cm4)
T:扭矩(cN.cm) :扭转角
(二)纤维和纱线的扭转破坏
T为外力矩,Q为扭转角。当外力矩很大时,纤
维和纱线产生的扭转角和剪切应力就大,从而纤维
Et
Ip
中的大分子或纱线中纤维因剪切产生滑移而被破
(3)试验条件
试样长度较长时,测得的强度较低、试样越长,可能出 现的最薄弱环节的机会多,测得的强度就较低。
试样根数多,由于断裂的伸长率不均匀,纤维断裂不同时, 故测得的平均强度越小,(根数↑--差异越大↑--强度↓)
拉伸速度越大,拉伸至断裂的时间越短,测得的强力较 大而伸长较小。
(二)纱线拉伸断机理及主要影响因素
◆常用纺织纤维的拉伸曲线
◆高强低伸型曲线: 棉、麻等拉伸曲线近似于直线,斜率很大,该
第九章 织物的力学性质
混纺比:不同原料混纺时,视情况分析。
纱线的特数和结构
特数: 增加特数,织物强度提高;
股线织物强力大于相当于同支单纱织物强力。
结构:临界捻度,织物强力先增加后降低; 经纬纱捻向相同,强力有所提高;
转杯纱较环锭纱织物强力有所提高。
织物的密度与组织
机织物:同密,粗特纱织物>细特纱织物; 平纹>斜纹>缎纹(断裂强力)
纤维疲劳断裂纤维抽出纤维切割断裂纤维表面磨损纱线的捻度纱线的条干单纱与股线混纺纱的径向分布厚度组织经纬纱线密度经纬纱密度单位面积的重量表观密度结构相和支持面织物的硬挺和柔软程度
第九章
织物的力学性质
(Fabric Physical and Mechanical properties)
第一部分 织物的力学性质(基础知识)
二、织物的撕破性(Tearing ability )
1、撕破性概念 ➢ 定义:织物边缘在一集中负荷
作用下而被撕开的现象
➢ 指标:最高撕破强力、平均撕破强力
五峰平均值、经纬向平均撕破强力
2、撕破机理
❖ 受力三角区:
纵向受拉系统纱线上下分开; 而横向纱线靠拢形成撕破口。
❖ 撕破类型:
舌形法:断裂的纱线是非受拉系统纱线 梯形法:断裂的纱线是受拉系统的纱线
针织物:纵横、密小;断裂强度较差; 纬编组织>经编组织(断裂强力)
后整理 采用树脂整理,织物伸长性能下降
4、其他性能
❖ 拉伸弹性——织物在小于其断裂强力的小负荷下拉伸变 形的恢复程度。
❖ 耐疲劳性——织物经多次加负荷-去负荷的反复拉伸循 环作用直至破坏的特性。
❖ 针织物的横拉性——针织物在定负荷下横向伸长长度称 为拉伸性。
新第八章 纺织材料的基本力学性质)
第八章 纺织材料的基本力学性质1. 拉伸变形曲线(1)负荷—伸长曲线(P —△l ):负荷为纵坐标,伸长为横坐标。
对不同粗细和不同试样长度的材料没有可比性。
(2)应力-应变曲线(σ -ε )相对负荷(应力、比强度等)为纵坐标,伸长率为横坐标。
(2)断裂应力σa :断裂点a 对应的拉伸应力。
断裂伸长率εa :断裂时的伸长率。
不同的材料拉伸曲线形状不同,分三类: ① 高强低伸型:如麻、棉② ②高强高伸型:如锦纶、涤纶 ③低强高伸型:如羊毛(1)初始模量纺织材料应力-应变曲线上初始一段直线部分的应力应变比值。
(简便求法:应变1%处应力的100倍)物理意义:表示材料在小负荷下变形的难易程度,即材料的刚性。
小,柔软,如羊毛、粘胶等;涤纶的E 高,故织物挺括;E的大小与分子结构及聚集状态有关。
b.功系数(充满系数):断裂功/(强力×断裂伸长)。
2. 影响纤维拉伸断裂强度的因素1)纤维的内部结构聚合度n:聚合度越大,强度越高(不易滑移、抽拔)。
取向度:取向度增大,强度增加,断裂伸长减小。
结晶度:结晶度愈高(缝隙孔洞少,分子结合力大),断裂强度、屈服应力和初始模量较高,伸长小,脆性大。
(2)温湿度①温度高强力减小,伸长率增加。
温度升高,大分子热运动能高,柔曲性提高,分子间结合力削弱,强力减小。
②纤维回潮率大,分子间结合力弱,纤维强力小,伸长增大。
棉、麻例外,因其聚合度高,分子链长,回潮率提高后,分子间的氢键减弱,分子间的滑移提高了张力均匀性,故纤维强力增加。
(3)试验条件①试样长度------试样长度长,测得的强度较低(弱环定理)。
弱环定理:沿纤维长度方向,强度是不均一的,纤维总是在最薄弱处断裂,试样愈长,出现最薄弱环节的概率越大,越容易发生断裂,则平均强力下降。
②试样根数---------试样根数增加,束纤维强度折算成单纤维强度下降。
(断裂的不同时性)③拉伸速度拉伸速度大,测得强力较大而伸长小。
拉伸速度快时,大分子还未来得及滑脱,承受拉力的根数多,所以强力高。
织物的基本力学性质
织物的基本力学性质其次,织物的强度和耐磨性也是其重要的力学性质。
一般来说,织物的强度和耐磨性与其纤维的品质和编织密度有密切的关系。
高品质的纤维和更紧密的编织可以使织物具有更高的强度和耐磨性,从而延长其使用寿命。
此外,织物的形变特性也是其重要的力学性质之一。
在受到外部力的作用下,织物会发生不同程度的变形,并且对于不同的织物来说,其形变特性也会有所不同。
了解织物的形变特性有助于在设计和制造过程中更好地控制其形状和结构。
总的来说,织物作为一种重要的材料,其基本力学性质包括弹性、强度、耐磨性和形变特性,这些性质对于织物的设计、制造和使用都具有重要意义。
通过深入研究和了解这些性质,可以更好地开发出具有优良性能的织物产品,满足人们日常生活和工业生产的需要。
织物作为一种在日常生活和工业生产中广泛使用的材料,其基本力学性质对于其设计、制造和应用具有重要的意义。
织物的力学性质包括弹性、强度、耐磨性和形变特性等,这些性质的不同组合使得织物可以适应各种复杂的应力环境,并且在服装、家庭用品、建筑材料等领域都发挥着重要作用。
首先,弹性是织物的重要力学性质之一。
织物的弹性是指其在受力后能够恢复原状的能力。
弹性的大小取决于织物中使用的纤维和编织方式。
通常,棉、羊毛等天然纤维的织物柔软、具有较好的弹性,而丝、尼龙等人造纤维的织物具有更高程度的弹性。
弹性的差异也决定了织物在服装、床品等领域中的不同应用场景。
其次,织物的强度和耐磨性是其力学性质的重要指标。
织物的强度是指其抵抗撕裂或断裂的能力,而耐磨性则表示织物对外界磨擦、摩擦的抵抗能力。
织物的强度和耐磨性与纤维的品质、编织密度以及织物的表面处理等因素密切相关。
高品质的纤维和更紧密的编织可以使织物具有更高的强度和耐磨性,从而提高了其在各种应用中的可靠性和持久性。
另外,织物的形变特性也是其力学性质的重要组成部分。
当受到外部作用力时,织物会发生一定程度的变形,而不同类型的织物会表现出不同的形变行为。
第十六章 织物的基本力学性质
第十六章 织物的基本力学性质织物的基本力学性质包括拉伸、撕裂、顶破和弯曲等。
第一节 织物的拉伸性质一、拉伸性质的测定方法和指标1. 拉伸性质测试方法 (1)机织物扯边纱条样法(Raveled-Strip Method): 抓样法(Grab Method):切割条样法(Cut-Strip Method):(a)(b)图16-1 拉伸试验织物试样及夹持方式(2)针织物 (3)非织造布2. 织物的拉伸曲线及指标拉伸力(N )(a) 纯纺织物 (b) 方向和混纺织物图16-2不同织物及不同混纺经纬向拉伸曲伸长(cm)伸长(cm)图16-3几种针织物的拉伸曲线3. 织物的拉伸性能指标 (1) 断裂强度和断裂伸长率双轴向拉伸试验机,拉伸作用原理如图16-5所示, (a)为两向拉伸力均等的情况;(b)为两向拉伸力不等(或保持一端不动)的情况;(c)为非对称的平行四边形变形拉伸。
(b)(c) 图16-5 双轴拉伸试验(2) 断裂功二、织物的拉伸断裂机理图16-6 拉伸中的束腰现象与断裂三、织物断裂强力的估算1. 机织物F Y W T,2e P P P e =(16-4)2. 针织物F L B A,21e P P P e =(16-5) 3. 非织造布B F0F0p e p = (16-6)四、影响织物拉伸性质的因素1. 机织物 (1) 纤维性质(2)纱线的线密度和结构(3)经纬密度和织物结构(4)上机张力(5)测试条件2. 针织物3. 非织造布第二节 织物的撕裂性质织物在使用过程中经常会受到集中负荷的作用,使局部损坏而断裂。
织物边缘在一集中负荷作用下被撕开的现象称为撕裂,亦称撕破。
一、 撕裂强力的测试方法1. 舌形法上夹头 (a) 单缝法试样P织物(b) 夹持与拉伸(c) 的下夹头图16-7 舌形法的试样与夹持方法2. 梯形法(Trapezoid method)上夹头织物(b)图16-8 梯形法的试样与夹持方法3. 落锤法(falling pendulum method)(a) 落锤法撕破仪 (b) 落锤撕破试样图16-9 落锤法的仪器和试样4. 翼形法(Wing tear method)(b)夹持方法图16-10 翼形法试样和夹持方法二、撕裂破坏机理P(a)单缝法P图16-11 单缝法撕裂破坏过程三、织物的撕裂曲线及撕裂强力指标1. 撕裂曲线2. 撕裂指标图16-12 两种典型撕裂过程曲线四、影响织物撕裂强力的因素1. 影响织物撕裂强力的内在因素(1) 纱线性质图16-13 织物撕裂强度与涤纶混纺比的关系(2) 织物组织(3) 织物织缩(4) 织物的经纬密(5) 织物的后整理2. 试验条件对织物撕裂强力的影响(1) 试样尺寸的影响(2)撕裂速度的影响(3)温湿度条件五、织物的纰裂织物的纰裂是指织物在使用过程中受到外力作用后所产生的纱线横向滑移。
13.纺织材料的基本力学性质.
一、拉伸断裂性能的基本指标
图例为10η-4,中称,为当“曲充线满oa系下数的”面,积断占裂矩功形的op计aa算la的式面可积以的写比成:
W=palaη
纱线或纤维的粗细不同时,拉伸断裂功不能反映材料的 相对强弱,故为比较起见,要取它的相对值,即折合成 单位体积(mm3)时拉断纤维或纱线所需作的功(即折 合成同样截面积,同样试样长度时的断裂功),这叫拉 伸断裂比功。
对应的拉伸应力为屈服应力(σb),对应的伸长率就是屈服 应变(εb)。
其定义为在拉伸变形曲线上,由斜率较大转向斜率较小时 的转折点,或者说纺织材料经过弹性变形区后进入到黏弹 性区域(在此区域变形迅速增加),从弹性变形到黏弹性 变形的转折点。
一、拉伸断裂性能的基本指标
纤维材料的屈服点不明显,往往表现为一区段。由作图法定出,目前 有三种方法:
图10-2 不同纤维应力应变曲线
一、拉伸断裂性能的基本指标
不同材料的拉伸变形曲线形状不同,如图10-2所示,基本上 分为三类:
①高强低伸型:例如麻、棉纤维,表现出脆性特征; ②高强高伸型:例如锦纶、涤纶纤维,表现出延展性特征; ③低强高伸型:例如羊毛纤维,表现出弹性特征。
当然上述分类并不很严格,对于化学纤维的加工工艺不同, 加工条件不同,它的拉伸变形曲线也会不同。
公斤力
0.101972 1.01972×10-6
1 10-3
克力
101.972 1.01972×10-8
1000 1
一. 纤维拉伸断裂性能的指标
2.相对强度 纤维粗细不同时,强力也不同,因而对于不同粗
细的纤维,强力指标无可比性,为了便于比较, 可以将强力折合成规定粗细时的力,这就是相对 强度。 纤维的相对强度因折合的细度标准不同而有很多 种,最常用的有以下三种。
纺织材料学课件第十章 纺织材料的力学性质
(3) 断裂功和断裂比功 a.断裂功 拉伸纤维或纱线至断裂时外力所作的功,是材
料抵抗外力破坏所具有的能量,单位cN·mm。 意义:断裂功是强力和伸长的综合指标,它可
以有效地评定材料的坚牢度和耐用性能。大,韧 性好、耐磨损、坚牢度好。
16
b.功系数(充满系数) 断裂功/(强力×断裂伸长)。
c.断裂比功 拉断单位体积(折合成同样截面积,同样试
3
(二)相对强度
将强力折合成规定粗细时的力,用以比较不 同粗细的纤维或纱线拉伸断裂性质的指标。因折 合的细度标准不同,故相对强度指标有多种:
1.断裂应力σ 纤维或纱线单位截面上能承受的最大拉力。
σ=Pb / S
标准单位N/m2(帕),常用N/mm2(兆帕,MPa) 。
因纤维或纱线的截面积难以测量,生产上应用 较少,多应用于理论研究中。
交错次数越多,强力越高。同条件下,平 纹的断裂强力和伸长率大于斜纹,斜纹又大于 缎纹。
43
(2)纱线的线密度(即特数)和结构 ①纱线特数大,强度高; ②线织物大于同特纱织物的强度(因线织物条干
好,捻度不匀小)。 ③捻度,在接近临界捻度时,织物强力开始下降; ④捻向的配置,同捻向,强力高(纱线交叉处纤
维相互啮合,交织阻力大);
捻向 经 表观
相同
反向
纬
交织点
(a)
同向
经
捻向
表观
相反
同向
纬
交织点 反向
(b)
44
纱线捻向对织物性质的影响
(3)纤维品种与混纺比 ①纤维品种
是织物强伸性的决定因素。 ②混纺比
混纺纱中两种纤维的断裂伸长率不同时,混纺织 物的强力有时会比强力最差的纯纺织物的强力低;
(完整版)第9章纺织材料的基本力学性质
2.影响纱线一次拉伸断裂的因素 (1)纤维的性能
① 纤维的长度较长,细度较细时,纤维较柔软,在纱 中互相抱合就较紧贴,滑脱长度缩短,纱截面中纤维根数 可以较多,使纤维在纱内外层转移的机会增加,各根纤维 受力比较均匀,因而成纱强度较高。
③纤维的结 晶度:
结晶度↑--大 分子排列规整, 缝隙孔洞较少, 而且纤维的强 度高、伸长小、 屈服应力和初 始模量较高, 但脆性可能也 增加。
④纤维形态结构:
纤维的裂缝孔洞等缺陷和形态结构的不均一 会使纤维的强度下降。
(2)温湿度
①温度:
在回潮率一定时, 温度↑---大分子热运动 能高,大分子柔曲性 提高,分子间结合力 削弱---强度↓
(3)试验条件
试样长度较长时,测得的强度较低、试样越长,可能出现 的最薄弱环节的机会多,测得的强度就较低。
试样根数多,由于断裂的伸长率不均匀,纤维断裂不同时, 故测得的平均强度越小,(根数↑--差异越大↑--强度↓)
拉伸速度越大,拉伸至断裂的时间越短,测得的强力较大 而伸长较小。
(二)纱线拉伸断机理及主要影响因素
曲线上的b点为屈服点,这一点对应的拉伸 应力为屈服应力(σb),对应的伸长率就是屈 服应变(εb)。 屈服点所代表的物理概念是什么呢?
对于纺织材料来说,在屈服点பைடு நூலகம்下时,变形绝大部 分是弹性变形(完全可恢复),而屈服点以上部分所 产生的主要是塑性变形(不可恢复)。
屈服点高的纤维,其织物的保形性就好,不易起皱。
如涤纶、锦纶。
▪ 拉伸变形曲线有关指标: 1、初始模量:ob段斜率较大,斜率即拉伸 模量E。在曲线ob段接近0点附近,模量较高, 即为初始模量,它代表纺织纤维、纱线和织 物在受拉伸力很小时抵抗变形的能力。
第9章纺织材料基本力学性质PPT课件
纤维的蠕变和松弛的原因: 纤维在一定恒定拉伸外力的作用下,纤维内基原纤、大分子皱 曲状态的变化,特别是大分子链键长的伸长或缩短、键角的张 开或收合,只需要极短的时间完成,这是急弹性变形。随着时 间的延续,大分子主链局部旋转,微原纤间位置的调整和基原 纤的取向度逐渐增加,特别是大分子在结晶区中被抽拔滑移, 使纤维伸长不断变化,呈蠕变现象。 在恒定的拉伸变形一定时,相邻大分子相互滑移错位,各大分 子逐渐自动皱曲,张力逐渐减少,出现应力松驰现象。
蠕变:纺织材料在一定恒定拉伸外力的作用下,变形 随时间而变化的现象称为蠕变。
松驰:纺织材料在拉伸变形一定条件下,内部应力 随时间的延长而逐渐减小的现象称松驰。
从图中可以看出纤维和纱线的拉伸变形可分为以下三种: 1、急弹性变形:加上外力,几乎立即产生的伸长变形,如 ab段;外力去除后,键角和键长立即复原,即立即产生回缩变 形,如ce段。 2、缓弹性变形:拉伸力不变的情况下,伸长变形或回缩变形 随着时间变化的变形称为缓弹性变形,如bc段、dc段。 3、塑性变形:外力去除后,不能恢复的这一部分变形称为塑性 变形。这是因为外力作用下,大分子间产生相对滑移造成不可 恢复的变形。
②混纺比:
A、当混纺在一起的两种纤维断裂伸长率相近时, 随着强度大的纤维 的混纺比的增加,混纺纱的强度增加。
B、当混纺在一起的两种纤维断裂伸长率差异大时, 随着强力大的纤 维的混纺比的增加,开始下降,以后上升。
三、纺织材料的蠕变、松驰 (一)蠕变、松驰的基本概念
纺织材料在一定拉伸外力作用下,它的变形量 与拉伸力的某种关系。 ε1-ab为一加上外力立即产生的瞬时变形。 ε2-bc为保持外力不变,随时间延长,伸长逐渐增加 的曲线。 ε3-cd去除外力立即恢复的变伸。 ε4-de去除外力逐渐恢复的变伸。 ε5---去除外力后不能恢复的变形。
织物——第二章织物的力学性质
如某些织物品种,由于其紧度过大,或织物中各根纱线张力不匀,织造 中纱线承受过度的反复拉伸、弯曲、摩擦作用,尤其是当纱线采用过大 的捻系数(接近甚至超过临界捻系数)时,交织点的挤压作用已不能再增 大纱线强力,相反,应力的增加反而导致抵抗外力能力的削弱,此时,
点越多,经、纬纱越不容易相对滑动,形成的受力三角形越小,三角形内同时受力
的纱线根数就越少,因此,织物撕破强力越小。由此可见,平纹织物的撕破强力较
小,缎纹织物的撕破强力较大,斜纹织物介于两者之间。
织物内经、纬密对撕破强力的影响较为复杂。在纱线直径相同的条件下,经、 纬密低的织物,撕破强力较大。这是因为经、纬密低时,织物中经、纬纱交织点较 少,经、纬纱容易相对滑动,形成的受力三角形较大,三角形内同时受力的纱线根 数较多,撕破强力较大。如纱布就较不容易撕破。当经、纬密相近时,经、纬向撕 破强力较接近。当经密比纬密大时,有助于经向撕破强力,不利于纬向撕破强力。 府绸织物由于经密比纬密大得多,因此,经纱受力根数远超过纬纱受力根数,经向 撕破强力远大于纬向撕破强力。实际穿着也表明,府绸织物在撕破时,通常都是纬 纱逐一断裂,沿经向撕开。此外,当经、纬密相差过大时,在撕破试验中还会发生 不沿着切口、而沿横向撕开的现象.称为“跃向”。
在机织物中,经、纬纱同捻向配置时,将有助于织物断裂强力。这是 由于经、纬纱同捻向时,在经、纬纱交叉点的接触面上的纤维斜倾方向 趋于平行,从而使经、纬纱交叉处啮合得较为紧密,拉伸织物时,经、 纬两系统纱线间的切向滑动阻力较大,使织物断裂强力提高。 3、织物结构 三原组织中,平纹组织的交织点最多,浮长最短,纱线 屈曲最多,缎纹组织的交织点最少,浮长最长,纱线屈曲最少;斜纹组 织介于两者之间,所以平纹织物的断裂强力和断裂伸长率最大,斜纹其 次,缎纹最小。 4、树脂整理
东华纺材第十六章____织物的基本力学性质
2. 梯形法(Trapezoid method)
夹持线 织物 上夹头 下夹头
30°
开缝
(a)
(b)
图16-8
梯形法的试样与夹持方法
3. 落锤法(falling pendulum method)
(a) 落锤法撕破仪
(b) 落锤撕破试样
图16-9 落锤法的仪器和试样
4. 翼形法(Wing tear method)
σ (cN/tex)
交叉 纵向
针刺非织造布
热轧非织造布
ε (%) (a) 不同取向铺网的影响
ε (%) (b) 不同成形方式的影响
图16-4 非织造布的拉伸应力-应变曲线
3. 织物的拉伸性能指标 织物拉伸断裂所应用的主要指标为断裂强度与断 裂伸长率、断裂功和断裂比功等。这些指标与纤维、 纱线拉伸断裂的指标意义相同。 (1)断裂强度和断裂伸长率 断裂强度指标:5cm宽度的织物的断裂强力,N/5cm; 也可与纤维、纱线一样采用相对强度指标: N/m2,N/tex等
上夹头
115mm
下夹头
(a) 翼形 法试样
(b)夹持 方法
图16-10
翼形法试样和夹持方法
二 、 撕裂破坏机理 (1)单缝法 在裂口处形成一个纱线受力三角区, 断裂的纱线是非受拉系统的纱线 撕强大小取决于: P 纱线的断裂功 纱线间摩擦阻力 (2)梯形法 断裂的是受拉系统纱线; 撕强大小主要取决于纱线 断裂强力。
(4) 上机张力 上机张力大,织物强度降低; (5)测试条件 夹持长度 拉伸速度 温湿度
2. 针织物 除影响机织物拉伸性能的因素外,还有线圈及 圈套结构等。 3. 非织造布 纤维性质及纤维的排列状态 织物的密度或空隙率或体积分数 引入的固结物质及其粘结作用
第十五章 织物的力学性质
– 4、后整理
第五节 织物的耐磨损性能
• 一、磨损机理 • 二、测试方法与指标 • 三、影响织物耐磨损性的因素
第五节 织物的耐磨损性能
• 一、磨损机理
第十四章 织物的力学性质
第十五章 织物的力学性质
• 第一节 • 第二节 • 第三节 • 第四节 • 第五节 织物的拉伸性能 织物的撕裂性能 织物的顶破性能 织物的弯曲性能 织物的耐磨损性能
第一节 织物的拉伸性能
• • • • 一、测定方法和指标* 二、织物的拉伸断裂机理 三、织物断裂强力估算 四、影响机织物拉伸性能因素*
–N/5cm,N/m2,N/(g/m2)
• 断裂(比)功
第一节 织物的拉伸性能
• 四、影响机织物拉伸性能因素
–1、纤维性质 •(1)长度 •(2)细度 •(3)强度 •(4)摩擦性能
第一节 织物的拉伸性能
• 四、影响机织物拉伸性能因素
–2、纱线结构
•(1)线密度 •(2)捻系数 •(3)捻向
第一节 织物的拉伸性能
织物拉伸试验的试样及夹持方式
扯边条样法
抓样法
梯形法
环形条样法
织物的拉伸断裂过程曲线
织物的拉伸曲线
舌形法的试样与夹持方法
梯形法的试样与夹持方法
落锤法的仪器和试样
翼形法的试样与夹持方法
撕裂破坏过程
撕裂过程曲线
顶破试验仪原理示意
斜面法测量原理示意图
C l0 f
心形法
织物表面受磨损的示意图
– 2、指标
• (1)顶破强度p(N/mm2) • (2)顶破伸长(mm) • (3)顶破时间(s)
纺织材料学课件第十章 纺织材料的力学性质
30
②断口形式 齐口式
纤维以断裂为主,如捻度很高的短纤纱。 毛笔头式
纤维以滑脱为主,如捻度很低的短纤纱和 无捻长丝纱。
31
(2)混纺短纤纱
拉伸过程还受其它因素的影响。
① 当两种纤维断裂伸长率接近时,随强度大 的纤维含量↑,混纺纱的强度↑。图a。
A
屈服点Y的求法: 纺织材料屈服点不明显,而是一区域,常用
作图法求屈服点。 角平分线法,图(a); //X轴法,图(a) ; //OA法,切点为Y点,图(b) 。
15
(3) 断裂功和断裂比功 a.断裂功 拉伸纤维或纱线至断裂时外力所作的功,是材
料抵抗外力破坏所具有的能量,单位cN·mm。 意义:断裂功是强力和伸长的综合指标,它可
41
拉伸
继续 拉伸
(a) 原样
(b) 拉伸束腰
(c) 断裂
拉伸中的束腰现象与断裂
纱线的强力利用系数K:
K Pw
Py
Pw-织物断裂强力N( ); Py-受拉系统纱线断裂 力强 (N)
一般大于1,也有时小于1。 42
3.影响织物拉伸强度的因素
(1)织物密度与织物组织 ①密度
经密增加,经纬向强力都增加(交织阻力 大);纬密增加,纬向强力增加,经向强力减 小(经纱开口次数增加,拉伸、摩擦增加) ②织物组织
第十章纺织材料的力学性质2本章主要内容第一节纺织材料的拉伸性质第二节表面摩擦性质第三节拉伸疲劳第一节纺织材料的拉伸性质第二节表面摩擦性质第三节拉伸疲劳3第一节纺织材料的拉伸性质一拉伸性能的基本指标p51一拉伸断裂强力ppbb?定义
纺织材料学课件第十章 纺织材料的力学性质
本章主要内容 第一节 纺织材料的拉伸性质 第二节 表面摩擦性质 第三节 拉伸疲劳
第八章纺织材料的力学性质
• 3.纤维的弹性
• (1)定义:指纤维变形的恢复能力。
• (2)常用指标:
• 弹性回复率Re
•
Re =(l急+l缓)/(l急+l缓+l塑)
•
=(L1-L2)/(L1-L0)
• 式中: L0——纤维加预加张力使之伸直但不伸长时的长度(mm)
•
L1——纤维加负荷伸长的长度(mm)
•
L2——纤维去负荷再加预张力后的长度(mm)
• 2应力松弛:纤维在拉伸变形恒定条件下,应力随时间的延长而逐渐 减小的现象称为应力松弛。
0
变形
t1
t
0
(t)
或 P(t)
张力
∞
t1
t
图 纤维的应力松弛曲线
• 实质:t持续—纤维在产生一定变形时所具有的内应力,用来促使纤 维中已在新位置上的大分子拆开新的结合点复位,需消耗内能,故内 应力逐渐下降。
• 超分子结构(取向度、结晶度);
• 形态结构(裂缝孔洞缺陷、形态结构、不均一性)等。
•
• 外因:
• 温度、湿度;
• 测试条件 a.试样长度:L↑,出现弱环的机会↑
•
b.试样根数:根数↑,折算成单纤维强度↓
•
c.拉伸速度:v↑,强力↑,ε↓,E↑
• (二)纱线的拉伸断裂机理 和影响因素
• 1纱线的拉伸断裂机理
第八章 纺织材料的 力学性质
拉伸性质、蠕变和松弛、摩擦性 质疲劳、
第一节 拉伸性质
• 一拉伸断裂性能指标
• 1断裂强力(绝对强力)
•
——是纤维能够承受的最大拉伸外力。
• 单位:牛顿(N);厘牛(cN);克力(gf)。
• (对不同粗细的纤维,强力没有可比性。)
15织物的基本力学性能
寸的织物试验扯去边纱到规定的宽度,并全部夹入夹持内 的一种测试方法,如下图(a)所示,然后在适宜的强力 试验仪上进行,我国国家标准中可采用三种强力试验机, 等速伸长强力机、等速牵引强力机和等加负荷强力机。但 各种强力机都必须在下相同的时间下进行试验。试验的平 均断裂时间为20±3s,但毛织物试样的平均断裂时间为 30±5s。试样的夹持长度棉、蚕丝、麻类及其混纺织物为 200mm,毛织物为100mm,测试时施加于试样的预加张 力按试样单位面积质量而定。每一样品的测试次数经、纬 向各5条。
the trapezoid method) • 试验原理是将有梯形夹持线印记的条样织 物试样,如图所示。
梯形法撕裂试验Leabharlann • 梯形法撕破曲线如图所示:
梯形法撕破曲线
• 落锤法撕裂强力(Tearing Strength by falling
•
pendulum apparatus) 试验原理是将一矩形织物试样夹紧与如图所示的 落锤式撕裂强力机(Elmendorf)的动夹钳与固 定夹钳之间,在试样中间开一切口,利用扇形锤 下落,动夹钳4和固定夹钳3迅速分离,使试样受 到撕裂。本法是一种快速的单缝型试验方法,因 此测得的撕裂强力也称为冲击撕裂强力。此法的 适用范围与试验结果近似于单舌法。指针2指示 值为平均撕裂强力。
梯形法撕破曲线落锤法撕裂强力落锤法撕裂强力tearingstrengthfallingtearingstrengthfallingpendulumapparatuspendulumapparatus试验原理是将一矩形织物试样夹紧与如图所示的试验原理是将一矩形织物试样夹紧与如图所示的落锤式撕裂强力机落锤式撕裂强力机elmendorfelmendorf的动夹钳与固的动夹钳与固定夹钳之间在试样中间开一切口利用扇形锤定夹钳之间在试样中间开一切口利用扇形锤下落动夹钳下落动夹钳44和固定夹钳和固定夹钳33迅速分离使试样受迅速分离使试样受到撕裂
纺织纤维的力学性质
第十四页,共83页
二、 拉伸曲线及有关指标▲
纺织纤维在拉伸外力作用下产生的应力应变关系称为拉 伸性质。
1、 拉伸曲线定义 负荷-伸长曲线:表示纤维在拉伸过程中的负荷和伸长的
关系曲线。
应力-应变曲线:表示纤维在拉伸过程中的应力和应变的
关系曲线。
两个曲线所反映的纤维强伸关系规律是一致的,不同 的只是坐标的量纲。
❖ 屈服点高的纤维,不易产生塑性变形,拉伸弹 性较好,其制品保形性好,不易起拱,起皱。
第二十二页,共83页
5.断裂功、断裂比功和功系数
(1)断裂功W
定义:指拉断纤维过程中外力所作的功,或纤
维受拉伸到断裂时所吸收的能量。
W是强力和伸长的综合指标,用来有效评价纤维的坚牢
度与耐用性能。
W大,说明纤维的韧性好,耐疲劳性能强,能承受较 大的冲击。
第九页,共83页
(3)断裂长度(LR)
定义:纤维的自身重量与其断裂强力相等时所 具有的长度。
即一定长度的纤维,其重量可将自身拉断,该 长度为断裂长度。 其计算公式为:
LP=(P/g)*Nm 式中:LP——纤维的断裂长度(km)
P ——纤维的强力(N) g ——重力加速度(等于9.8m/s2)
Nm——纤维的公制支数。
第十九页,共83页
4.屈服应力与屈服伸长率(屈服应变)
屈服点:曲线坡度由较大转向较小(伸长由较 小转向较大)部分的转折点。 屈服应力:屈服点处所对应的应力。 屈服应变:屈服点处所对应的应变。
第二十页,共83页
p
1
2
Yc
Y
p Y
(a)
(b)
第二十一页,共83页
❖ 纤维在屈服以前产生的变形主要是纤维大分子 链本身的键长、键角的伸长和分子链间次价键 的剪切,所以基本上是可恢复的急弹性变形。 而屈服点以后产生的变形中,有一部分是大分 子链段间相互滑移而产生的不可恢复的塑性变 形。
第12章 织物的力学性质
将一规定尺寸的织物试样仅一部分宽度被夹入夹钳内的试 验方法
❖ (3) 切割条样法(Cut-Strip Method) 将剪切成规定尺寸的织物试样全部夹入夹钳内的实验方法。
织物拉伸图
上夹头 织物
针织 缝边 梯形 样
(a) 下夹头 (b)
(c)
(d)
1.2 针织物
❖ 应用:评价后整理产品的耐用性
❖ 经向撕破强力试验——经纱被拉断的试验 ❖ 纬向撕破强力试验——纬纱被拉断的试验
1. 撕破强力的测试方法
❖ 1.1 舌形法
上夹头
织物 夹持线
(a) 单缝法试样
下夹头
P (b) 夹持与拉伸
(c) 双缝法(舌形法) 的
1.2 梯形法(Trapezoid method)
2. 织物的拉伸曲线
麻织物
棉织物 蚕丝 织物 毛织物
经向 高强低伸 涤/棉织物
纬向
低强 高伸 涤/棉 织物
拉伸力 (N) 拉伸力 (N)
伸长(cm)
(a) 纯纺织物
伸长(cm)
(b) 方向和混纺织物
织物拉伸曲线对比
❖ 织物拉伸曲线特征与组成织物的纤维和纱线拉伸曲 线基本相似
❖ 混纺织物的拉伸曲线保持所用混纺纤维的特性曲线 形态(接近比例大的纤维)
❖ 如衣裤接缝、多次受摩擦的外拱处
4.1 织物纰裂产生的原因
❖ 纤维:摩擦系数小、伸直度高、硬度和抗弯刚度大 ❖ 织物:经纬密度小、结构松、交织点小 ❖ 纱线:结构紧、表面光滑、捻度大 ❖ 织造:上机张力
❖ 丝绸织物、长丝纤维机织物和低密度机织物 ❖ 纰裂测试指标:织物中纱线的滑移阻力和滑移量 ❖ 方法:缝合法、模拟缝合法和摩擦法