数学建模作业(三)

合集下载

数学建模作业及答案

数学建模作业及答案

数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。

数学建模作业练习

数学建模作业练习

优化作业(1)1.(本题只写模型不求解)某工厂向用户提供发动机,按合同规定,其交货数量和日期是:第一季度末交40台,第二季度末交60台,第三季度末交80台。

工厂的最大生产能力为每季度100台,每季度的生产费用是22.050)(x x x f +=元,其中x 为该季度生产发动机的台数。

若工厂生产得多,多余的发动机可移到下季度向用户交货,这样,工厂就需要支付存储费用,每台发动机每季度的存储费用为4元。

问该厂每季度生产多少台发动机,才能既满足交货合同,又使工厂所花费的费用最少(假定第一季度开始时发动机无存货)?2.(本题只写模型不求解)某市为方便小学生上学,拟在新建的8个居民小区821,,,A A A 增设若干所小学,经过论证知备选校址有621,,,B B B ,它们能够覆盖的居民小区如下表所列,试建立一个数学模型,确定出最小个数的建校地址,使其能覆盖所有的居民小区。

备选校址B 1 B 2 B 3 B 4 B 5 B 6 覆盖小区 A 1,A 5,A 7 A 1,A 2,A 5,A 8 A 1,A 3,A 5 A 2,A 4,A 8 A 3,A 6 A 4,A 6,A 83.写出下面LINGO 程序所对应的完整数学模型。

SETS: HANG/1..3/:B; LIE/1..4/:X,C; XISHU(HANG,LIE):A;ENDSETSDATA:A= 1 2 3 12 5 1 23 1 6 -2;B=4 5 7;C=1 3 4 5;ENDDATAmin=@sum(LIE(I):C(I)*X(I));@FOR(HANG(I):@SUM(LIE(J):A(I,J)*X(J))>B(I));4.根据下面LINGO 程序的集合段和模型段写出其所对应的数学模型。

SETS: HANG/1..3/:A;LIE/1..4/:B;XISHU(HANG,LIE):C,X;ENDSETSmin=@sum(XISHU(I,J):C(I,J)*X(I,J));@FOR(HANG(I):@SUM(LIE(J):X(I,J))=A(I));@FOR(LIE(J):@SUM(HANG(I):X(I,J))=B(J));5.某校篮球队准备从十名预备队员中选择五名作为正式队员,队员的各种情况如下表:队员号码身高(厘米)技术分位置1 185 8.6 中锋2 186 9 中锋3 193 8.4 中锋4 190 9.5 中锋5 182 9.1 前锋6 184 9 前锋7 188 8.1 前锋8 186 7.8 后卫9 190 8.2 后卫10 192 9.2 后卫队员的挑选要满足下面条件:(1)至少补充一名前锋。

数学建模课作业范例

数学建模课作业范例

数学建模课作业范例范例题目:一家具公司签定了一项合同,合同要求在第一个月月底前,交付80把椅子,在第二个月月底前,交付120把椅子。

若每月生产x把椅子时,成本为50x+0.2x2(元);如第一个月生产的数量超过订货数,每把椅子库存一个月的费用是8元。

公司每月最多能生产200把椅子。

求完成以上合同的最佳生产安排。

家具公司最佳生产安排问题一问题的提出一家具公司签定了一项合同,合同要求在第一个月月底前,交付80把椅子,在第二个月月底前,交付120把椅子。

若每月生产x把椅子时,成本为50x+0.2x2(元);如第一个月生产的数量超过订货数,每把椅子库存一个月的费用是8元。

公司每月最多能生产200把椅子求成以上合同的最佳生产安排。

二假设与变量说明1.)模型假设1.椅子的成本和库存费没有变化2.该公司签定的合同并未发生变化3.该公司生产的椅子质量合格4.除了成本费和库存费并未产生其他额外的费用2)变量说明x1: 公司第一个月生产的椅子数x2: 公司第二个月生产的椅子数y1: 公司第一个月的成本费y2: 公司第二个月的成本费z: 库存费Y: 总的费用三模型分析和建立1. 模型分析:该家具公司需要每月制定一个最佳的椅子生产数(x1、x2),使该公司完成合同所需成本最小,而获得最大利润。

本模型的问题焦点就是确定最小成本,即使Y=y1+y2+z最小的数学问题。

2. 模型建立第一个月的生产成本:y1=50x1+0.2x12第二个月的生产成本:y2=50x2+0.2x22所需库存费: z=(x1-80)*8总成本: Y=y1+y2+z=(50x1+0.2x12)+(50x2+0.2x22)+(x1-80)*8其中:x1 +x2=200 80≤x1≤200综上所述,可建立如下数学模型:Min Y=(50x1+0.2x12)+(50x2+0.2x22)+(x1-80)*8 s.t 80≤x1≤200x 1 + x2=200四.求解用LINGO对模型直接求解,输入格式为:model:min=(50*x1+0.2*x1^2)+( 50*x2+0.2*x2^2)+8*(x1-80);x1>=80;x1<=200;x1+x2=200;end运行后结果为:Optimal solution found at step: 4Objective value: 14120.00Variable Value Reduced CostX1 90.00000 0.0000000X2 110.0000 0.0000000Row Slack or Surplus Dual Price1 14120.00 1.0000002 9.999998 0.2158310E-053 110.0000 0.00000004 0.0000000 -94.00000五.结果与分析由计算可知,当x1=90,x2=110时成本费最底,所以生产的最佳安排是第一月生产90把椅子,第二月生产110把椅子.。

数学建模作业

数学建模作业

一、摘要本文根据所给出的数据,运用excel软件并采用数据分析法,制定了一个具体可行的调整方案(其可靠性为95%)。

首先,本文对题中的12组数据,进行相关性分析,求出各观测站所测的年平均降雨γ>的观测站组合。

其次,对这量间的相关系数γj i,,找出满足,0.381i j些组合进行一元线性回归,得到一元回归模型,并作F检验。

经过检验进行优化选择,可先去掉5,9,11三个观测站。

通过对一元线性回归模型分析知,观测站8的年平均降雨量可由观测站6预测得到。

因此在满足足够大的信息量下,本模型可减少5,8,9,11四个观测站,而他们的信息均可由6观测站来预测,可靠性为95%。

由于降雨量具有随机性,为更精确预测该地区未来十年的年平均降雨量,本文利用精简后的数据建立时间序列模型。

对原数据列进行一阶差分处理,得到稳定的新时间序列。

分析新时间序列的自相关函数与偏自相关函数图像,然后采用自相关函数和偏相关函数检验法对模型进行识别,确定使用ARMA(1,1)模型。

借助于SPSS软件对数据进行处理,并对理论结果进行白噪声检验,结果表明ARMA(1,1)具有可靠性与实用性。

关键字:相关性分析数据分析一元线性回归时间序列自相关函数 arma(1,1)模型白噪声检验二、问题重述问题一:某地区内有12个气象观测站,根据27年来各观测站测得的年降雨量(见附表1),由于经费问题, 有关单位拟减少气象站数目以节约开支, 但又希望还能够尽量多地获取该地区的降水量信息。

现要求设计一个方案:尽量减少观测站,而所得到的年降水量的信息量仍足够大。

问题二:为研究该地区的降雨量特点,需要对该地区未来十年的降雨量进行预测分析。

三、模型假设1.该地区的地理特征具有一定的均匀性,而不是表现为复杂多变的地理特征。

2.不考虑其它区域及天气对本地区降雨量的影响3.该市的气候特征较稳定,不出现较大的自然灾害,27年的统计数据能够全面地反映该市的气候特征;4.该市的气候不会因环境的变化而发生较大的变化; 四、符号说明γji,为任意两个观测站间的相关系数)1(t --p n α为自由度n-p-1的t 分布双侧临界值y为欲预测值p 为p 元回归数px x x y s .....21为剩余标准差X t(,,,...12X X X n )为平稳时间序列X表示原始序列Y表示一阶差分序列白噪声序列方差a五、问题分析5.1 问题一的分析本案例实质上是个典型的预测问题,即用较少的测站来预测12个站的年降水量,本模型的基本思想是:如果某一观测站的年降水量可用其它观测站的年降水量来线性回归的话,就可删去这一观测站。

数学建模第三次作业——追击问题

数学建模第三次作业——追击问题

数学建模实验报告机械工程及自动化75班07011114丁鑫四人追击问题问题:在一个边长为1的正方形跑道的四个顶点上各站有一人,他们同时开始以等速顺时针追逐下一人,在追逐过程中,每个人时刻对准目标,试模拟追击路线。

并讨论:(1) 四个人能否追到一起?(2)若能追到一起,则每个人跑过多少路程?(3)追到一起所需要的时间(设速率为1)?(4)如果四个人追逐的速度不一样,情况又如何呢分析:先建立坐标系,设计程序使从A,B,C,D 四个点同时出发,画出图形并判断。

程序设计流程:四个人追击的速度相等,则有14321=====v v v v v 。

针对这种情形,可有以下的程序。

hold onaxis([0 2 0 2]);gridA=[0,0];B=[0,1];C=[1,1];D=[1,0];k=0;s1=0;s2=0;s3=0;s4=0; %四个人分别走过的路程t=0;v=1;dt=0.002;while k<10000k=k+1;plot(A(1),A(2),'r.','markersize',15);plot(B(1),B(2),'b.','markersize',15);plot(C(1),C(2),'m.','markersize',15);plot(D(1),D(2),'k.','markersize',15);e1=B-A;d1=norm(e1);e2=C-B;d2=norm(e2);e3=D-C;d3=norm(e3);e4=A-D;d4=norm(e4);fprintf('k=%.0f ',k)fprintf('A(%.2f,%.2f) d1=%.2f ',A(1),A(2),d1)fprintf('B(%.2f,%.2f) d2=%.2f ',B(1),B(2),d2)fprintf('C(%.2f,%.2f) d3=%.2f ',C(1),C(2),d3)fprintf('D(%.2f,%.2f) d4=%.2f\n',D(1),D(2),d4)A=A+v*dt*e1/d1;B=B+v*dt*e2/d2;C=C+v*dt*e3/d3;D=D+v*dt*e4/d4;t=t+dt;s1=s1+v*dt;s2=s2+v*dt;s3=s3+v*dt;s4=s4+v*dt;if norm(A-C)<=5.0e-3&norm(B-D)<=5.0e-3 breakendendts1s2s3s4部分运行结果:k=481 A(0.52,0.52) d1=0.04 B(0.52,0.48) d2=0.04 C(0.48,0.48) d3=0.04 D(0.48,0.52) d4=0.04 k=482 A(0.52,0.52) d1=0.04 B(0.52,0.48) d2=0.04 C(0.48,0.48) d3=0.04 D(0.48,0.52) d4=0.04 k=483 A(0.52,0.52) d1=0.04 B(0.52,0.48) d2=0.04 C(0.48,0.48) d3=0.04 D(0.48,0.52) d4=0.04 k=484 A(0.52,0.51) d1=0.04 B(0.51,0.48) d2=0.04 C(0.48,0.49) d3=0.04 D(0.49,0.52) d4=0.04 k=485 A(0.52,0.51) d1=0.04 B(0.51,0.48) d2=0.04 C(0.48,0.49) d3=0.04 D(0.49,0.52) d4=0.04 k=486 A(0.52,0.51) d1=0.03 B(0.51,0.48) d2=0.03 C(0.48,0.49) d3=0.03 D(0.49,0.52) d4=0.03 k=487 A(0.52,0.51) d1=0.03 B(0.51,0.48) d2=0.03 C(0.48,0.49) d3=0.03 D(0.49,0.52) d4=0.03 k=488 A(0.52,0.51) d1=0.03 B(0.51,0.48) d2=0.03 C(0.48,0.49) d3=0.03 D(0.49,0.52) d4=0.03 k=489 A(0.52,0.51) d1=0.03 B(0.51,0.48) d2=0.03 C(0.48,0.49) d3=0.03 D(0.49,0.52) d4=0.03 k=490 A(0.52,0.50) d1=0.03 B(0.50,0.48) d2=0.03 C(0.48,0.50) d3=0.03 D(0.50,0.52) d4=0.03 k=491 A(0.52,0.50) d1=0.02 B(0.50,0.48) d2=0.02 C(0.48,0.50) d3=0.02 D(0.50,0.52) d4=0.02 k=492 A(0.52,0.50) d1=0.02 B(0.50,0.48) d2=0.02 C(0.48,0.50) d3=0.02 D(0.50,0.52) d4=0.02 k=493 A(0.51,0.50) d1=0.02 B(0.50,0.49) d2=0.02 C(0.49,0.50) d3=0.02 D(0.50,0.51) d4=0.02 k=494 A(0.51,0.50) d1=0.02 B(0.50,0.49) d2=0.02 C(0.49,0.50) d3=0.02 D(0.50,0.51) d4=0.02 k=495 A(0.51,0.50) d1=0.02 B(0.50,0.49) d2=0.02 C(0.49,0.50) d3=0.02 D(0.50,0.51) d4=0.02 k=496 A(0.51,0.50) d1=0.01 B(0.50,0.49) d2=0.01 C(0.49,0.50) d3=0.01 D(0.50,0.51) d4=0.01 k=497 A(0.51,0.49) d1=0.01 B(0.49,0.49) d2=0.01 C(0.49,0.51) d3=0.01 D(0.51,0.51) d4=0.01 k=498 A(0.51,0.49) d1=0.01 B(0.49,0.49) d2=0.01 C(0.49,0.51) d3=0.01 D(0.51,0.51) d4=0.01 k=499 A(0.50,0.49) d1=0.01 B(0.49,0.50) d2=0.01 C(0.50,0.51) d3=0.01 D(0.51,0.50) d4=0.01k=500 A(0.50,0.50) d1=0.01 B(0.50,0.50) d2=0.01 C(0.50,0.50) d3=0.01 D(0.50,0.50) d4=0.01 k=501 A(0.50,0.50) d1=0.01 B(0.50,0.50) d2=0.01 C(0.50,0.50) d3=0.01 D(0.50,0.50) d4=0.01 k=502 A(0.50,0.50) d1=0.00 B(0.50,0.50) d2=0.00 C(0.50,0.50) d3=0.00 D(0.50,0.50) d4=0.00 t =1.0040s1 =1.0040s2 =1.0040s3 =1.0040s4 =1.0040从运行的结果来看,如果四个人的追击速度相同,均为1,可有以下的结果:(1) 四人最后可以追到一起。

数学建模作业题+答案

数学建模作业题+答案

数学建模MATLAB 语言及应用上机作业11. 在matlab 中建立一个矩阵135792468101234501234A ⎡⎤⎢⎥⎢⎥=⎢⎥-----⎢⎥⎣⎦答案:A = [1,3,5,7,9;2,4,6,8,10;-1,-2,-3,-4,-5;0,1,2,3,4]2. 试着利用matlab 求解出下列方程的解(线性代数22页例14)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩ 答案:A=[2 ,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6]; B=[8;9;-5;0]; X=A\B 或A=[2,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6] b=[8,9,-5,0]' X=inv(A)*b3. 生成一个5阶服从标准正态分布的随机方阵,并计算出其行列式的值,逆矩阵以及转置矩阵。

答案:A=randn(5) det(A) inv(A) A'4. 利用matlab 求解出110430002A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的特征值和特征向量。

答案:A=[-1,1,0;-4,3,0;0,0,2] [V,D]=eig(A)5.画出衰减振荡曲线3sin3t y et -=在[0,4]π上的图像。

要求,画线颜色调整为黑色,画布底面为白色。

(在实际中,很多打印机时黑白的,因此大多数作图要考虑黑白打印机的效果。

) 给出恰当的x ,y 坐标轴标题,图像x 轴的最大值为4π。

6. 生成一个0-1分布的具有10个元素的随机向量,试着编写程序挑选出向量中大于0.5的元素。

数学建模和Matlab 上机作业2(2016-9-20)跟老师做(不用整合进作业中):上机演示讲解:函数,递归的两个例子的写法。

附:1. Fibonacci Sequence (斐波那契数列)在数学上,费波那西数列是以递归的方法来定义: F1= 1;F2= 1;F (n )=F (n-1)+F (n-2) 2. 阶乘举例:数学描述:n!=1×2×……×n ;计算机描述:n!=n*(n-1)!自己做(需要整合进作业中,提交到系统中):1. 写一个m 文件完成分值百分制到5分制的转换(即输入一个百分制,转换后输出一个5级对应的得分,联系条件控制语句)。

经济数学建模作业及答案

经济数学建模作业及答案

2、如果连续复利时,以什么利率才能使本金在8年内变成3倍?1、在每半年复利一次的情况下,以8%的利率,需要经过多长时间才能使现值增到2.5倍?3、连续收益流量每年按80万元持续5年,若以年利率5%贴现,其现值应是多少?T=11.68年r=13.73%55%00S 80353.92t e dt -==⎰8003S S re =4、某汽车使用寿命为10年,若购买此车需35000元,若租用此车每年租金为7200元,若资金的年利率为14%,按连续复利计算,问买车与租车哪一种方式合算。

计算租车资金流量总值的现值,然后与购买费相比。

租车租金流量总值的现值为所以买车比租车合算。

002.5S S +=2T0.08(1)2101014141172003875635000i i i i i S e e -%-%==≈>=∑∑5、一商家销售某种商品的价格满足关系x p 2.07-=(万元/吨),x 为销售量(单位:吨);商品的成本函数是C =3x +1(万元)。

(1) 若每销售一吨商品,政府要征税t (万元),求该商家获最大利润时商品的销售量;(2) t 为何值时,政府税收总额最大。

6、已知某企业生产的商品的需求弹性为1.2,如果该企业准备明年将价格降低15%,问这种商品的销量预期会增长多少?总收益会增长多少?2'5(2) 10 0 22T tx t t T t ==-=⇒=R18%,3%R Q Q∆∆==令2(70.2)31(4)0.21Px C Tx x x tx t x x --=----=---'''5()0,()0102L x L x x t=<⇒=-(1)利润L(x)=7、某消费者打算购买两种商品q 1和q 2,他的预算约束是240元,两种商品的单价分别是10元和2元,其效用函数为U=q 1q 2,消费者的最优商品组合是什么?一元钱的边际效用是多少?8、效用函数U (q 1,q 2) 应满足的条件是以下的A,B 之一:A. U (q 1,q 2) =c 所确定的函数q 2=q 2(q 1)单调减、下凸;0,0,0,0,0.B 21222221221>∂∂∂<∂∂<∂∂>∂∂>∂∂q q Uq U q U q U q U AB ⇒证明:对U (q ,q 2) =c 两端求q 1的一阶导和二阶导12102240q q +=1212MU MU P P =1212,60q q ==解建立方程组得解出一元钱边际效用为610、在确定性存贮模型中,在费用中增加购买货物本身的费用,确定不允许缺货的最优订货周期和订货批量。

数学建模作业及答案

数学建模作业及答案

数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。

数学建模课后习题作业

数学建模课后习题作业

选修课——数学建模部分习题详细解答【陈文滨】1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?【模型假设】(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。

【模型建立】在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。

于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置.其次,把椅脚是否着地用数学形式表示出来.我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。

数学建模样题及答案

数学建模样题及答案

数学建模作业一学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。

学生们要组织一个10人的委员会,试用下列方法分配各宿舍的委员数:(1) 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大的。

(2) Q 值方法:m 方席位分配方案:设第i 方人数为i p ,已经占有i n 个席位,i=1,2,…,m .当总席位增加1席时,计算2(1)i i i i p Q n n =+,i=1,2,…,m 把这一席分给Q 值大的一方。

(3) d ’Hondt 方法:将A ,B ,C 各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

(试解释其道理。

)(4) 试提出其他的方法。

数学建模作业二假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,t 到t+ t 时间内人口的增长与m x -)(t x 成正比例(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较。

解:=r(x m -x),r 为比例系数,x(0)=x 0 解为:x(t)= x m -( x m - x 0),如下图粗线,当t →∞时,它与Logistic 模型相似。

数学建模作业三一容器内盛入盐水100L,含盐50g .然后将含有2g/L的盐水流如容器内,流量为3L/min.设流入盐水与原盐水搅拌而成均匀的混合物。

同时,此混合物又以2L/min的流量流出,试求在30min时,容器内所含的盐量。

若以同样流量放进的是淡水,则30min时,容器内还剩下多少盐?要求写出分析过程。

解:设x(t)为t时刻容器内剩余的盐的质量①x(t)=2(100+t)-1.5(100+t)-2X(t=30)=171.24② x(t)=(100+t)-2 X(t=30)=29.59数学建模作业四商业集团公司在123,,A A A 三地设有仓库,它们分别库存40,20,40个单位质量的货物,而其零售商店分布在地区,1,,5i B i ,它们需要的货物量分别是25,10,20,30,15个单位质量。

数学建模之下料问题

数学建模之下料问题

数学建模第三次作业下料问题摘要本文是针对如何对钢管进行下料问题,根据题目要求以及下料时有关问题进行建立切割费用最少以及切割总根数最少两个目标函数通过结果分析需要使用何种切割模式。

生产方式所花费的成本价格或多或少有所不同,如何选取合理的生产方式以节约成本成为了很多厂家的急需解决的问题。

这不仅仅关系到厂家的利益,也影响到一个国家甚至整个人类星球的可利用资源,人们的生活水平不断提高对物资的需求量也不断上升,制定有效合理的生产方式不仅可以为生产者节约成本也可以为社会节约资源,以达到资源利用最大化。

本文以用于切割钢管花费最省及切割总根数最少为优化目标,通过构建多元函数和建立线性整数规划模型,利用数学及相关方面的知识对钢管的切割方式进行优化求解最佳方案。

本文最大的特色在于通过求解出切割钢管花费最省及切割总根数最少时分别得出两种目标函数取最小值时的切割模式。

通过结果发现两种目标函数取最小值时所需切割根数都一样。

于是选择切割钢管花费最省为目标函数,此时的切割模式达到最少,这样既满足了总根数最小有满足了切割费用最小。

关键词:切割模式LINGO软件线性整数一、问题的提出某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后出售。

从钢管厂进货时得到的原料钢管的长度都是1850mm。

现有一客户需要15根290mm、28根315mm、21根350mm和30根455mm的钢管。

为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,依次类推,且每种切割模式下的切割次数不能太多(一根钢管最多生产5根产品)。

此外,为了减少余料浪费,每种切割模式下的余料不能超过100mm。

为了使总费用最小,应如何下料?二、基本假设1、假设所研究的每根钢管的长度均为1850mm的钢管。

2、假设每次切割都准确无误。

3、假设切割费用短时间内不会波动为固定值。

数学建模作业完整版

数学建模作业完整版

数学建模作业HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】《数学建模》作业学号姓名工作量 100 %专业所属学院指导教师二〇一七年六月数学建模作业第一部分:请在以下两题中任选一题完成(20 分)。

1、(马王堆一号墓入葬年代的测定建模问题)湖南省长沙市马王堆一号墓于 1972 年 8 月发掘出土,其时测得出土的木炭标本中碳-14 平均原子蜕变数为次/分钟,而新烧成的同种木材的木炭标本中碳-14(C-14)原子蜕变数为次/分钟. 又知碳-14 的半衰期为 5730 年,试推断该一号墓入葬的大致年代。

问题分析:放射性元素衰变的速度是不受环境影响的,它总是和该元素当前的量成正比,运用碳—14测定文物或化石年代的方法是基于下面的理由:(1)宇宙射线不断轰击大气层,使大气层中产生碳—14而同时碳—14又在不断衰变,从而大气层中碳—14含量处于动态平衡中,且其含量自古至今基本上是不变的;(2)碳—14被动植物体所吸收,所以活着的生物体由于不断的新陈代谢,体内的碳—14也处于动态平衡中,其含量在物体中所占的百分比自古至今都是一样的;(3)动植物的尸体由于停止了从环境中摄取碳—14,从而其体内碳—14含量将由于衰变的不断减少,碳定年代法就是根据碳—14的减少量来判断物体的大致死亡时间。

模型建立设t 时刻生物体中碳—14的含量为x (t ),放射性物质的半衰期(即放射性物质的原子数衰减一半所需的时间)为T ,生物体死亡时间为t0,则由放射性物质衰变规律得数学模型⎪⎩⎪⎨⎧=-=,)(,00x t x x dtdx λ ① 其中0>λ称为衰变系数,由放射性物质所决定,x 0为生物体在死亡时刻t 0时的碳—14含量。

模型求解对所得的一阶线性微分方程模型①采用同变量分离法求解,得 e x t t x t )(00)(--=λ??由于T t t =-0时,有 0021)()(x T t x t x =+=??代入上式,有 T e T 2ln ,212==-λ????? 所以得 ? T t t e x t x )(2ln 00)(--= ②这就是生物体中碳—14的含量随时间衰变的规律,由之易解得 )()(ln 2ln 00t x t x T t t =- ③ 将所得的数学模型的一般解应用于本例,此时以T=5730,37.380=x (新木炭标准中碳—14原子蜕变数),X(1972)=(出土的木炭标本中碳—14原子蜕变数) 代入到③式,得 ?209578.2937.38ln 2ln 57300≈=-t t 年 于是得??1232095197220950-=-=-≈t t 年结果表明,马王堆墓入葬年代大约在公元前123年左右的西汉中期,该结论与马王堆出土文物的考证结果相一致。

北师大高中数学选择性必修第一册第四章课时作业32数学建模活动(三)

北师大高中数学选择性必修第一册第四章课时作业32数学建模活动(三)

北师大高中数学选择性必修第一册第四章量课时作业32数学建模活动(三)(原卷版)一、选择题1.若矩形ABCD的一边长为x,周长为20,则当矩形面积最大时,x =()A.3B.4C.5D.162.某食品加工厂2021年获利20万元,经调整食品结构,开发新产品.计划从2022年开始每年比上一年获利增加20%,问从哪一年开始这家加工厂年获利超过60万元(已知lg2≈0.3010,lg3≈0.4771).()A.2026年B.2027年C.2028年D.2029年3.某商场经营一批进价为30元/件的商品,在市场试销中发现,此商品的销售单价x(单位:元)与日销售量y(单位:件)之间有如下表所示的关系:x…30404550…y…6030150…销售单价为x元时,才能获得最大日销售利润p,则x,p分别为()A.35,225B.40,300C.45,350D.45,4004.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m元收费;用水超过10立方米的,超过部分按每立方米2m元收费.某职工某月缴水费16m元,则该职工这个月实际用水为()A.13立方米B.14立方米C.18立方米D.26立方米5.已知光通过一块某种玻璃,强度要损失10%.那么要使光的强度减弱到原来的以下,则至少需要通过这样的玻璃(参考数据:lg3≈0. 4771,lg2≈0.3010)()A.6块B.7块C.8块D.9块6.2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除:(3)专项附加扣除包括①赡养老人费用,②子女教育费用,③继续教育费用,④大病医疗费用等.其中前两项的扣除标准为①赡养老人费用:每月扣除2000元,②子女教育费用:每个子女每月扣除1000元.新的个税政策的税率表部分内容如下:级数一级二级三级…每月应纳税所得额x元(含税)x≤30003000<x≤1200012000<x≤25000…税率(%)31020…现有李某月收入为19000元,膝下有一名子女,需赡养老人(除此之外无其他专项附加扣除),则他该月应交纳的个税金额为() A.570 B.890C.1100D.19007.某游轮在A处看灯塔B在A的北偏东75°方向上,距离为12海里,灯塔C在A的北偏西30°方向上,距离为8海里.游轮由A 向正北方向航行到D处时,再看灯塔B在D的南偏东60°方向上,则C与D的距离为()A.20海里B.8海里C.23海里D.24海里8.(多选题)如下图,△OAB是边长为2的正三角形,记△OAB位于直线x=t(0<t<2)左侧的图形的面积为f(t),现给出函数f(t)的四个性质,其中说法正确的是()A.fB.f(t)在(0,2)上单调递增C.当t=1时,f(t)取得最大值D.对于任意的t∈(0,2),都有f(t)+f(2-t)=二、填空题9.某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…自然对数的底数,k,b为常数),若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是24小时.10.某药厂生产一种口服液,按药品标准要求其杂质含量不能超过0. 01%,若初始时含杂质0.2%,每次过滤可使杂质含量减少三分之一,则应过滤8次才能使得这种液体达到要求.(已知lg2≈0.301 0,lg3≈0.4771)11.学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y与听课时间x(单位:分钟)之间的关系满足如图所示的图象,当x∈(0,12]时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x∈[12,40]时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳.要使得学生学习效果最佳,则教师安排核心内容的时间段为(4,28).(写成区间形式)三、解答题12.某工厂有一个容量为300吨的水塔,每天从早上6时起到晚上10时止,供应该厂的生产和生活用水,已知该厂生活用水为每小时10吨,工业用水量W(吨)与时间t(小时,且规定早上6时t=0)的函数关系为W=100.水塔的进水量分为10级,第一级每小时进水10吨,以后每提高一级,每小时进水量就增加10吨.若某天水塔原有水100吨,在开始供水的同时打开进水管,问进水量选为第几级时,既能保证该厂的用水(水塔中水不空)又不会使水溢出?13.某旅游景点为吸引游客,推出团体购票优惠方案如下表:购票人数1~5051~100100以上门票价格13元/人11元/人9元/人两个旅游团队计划游览该景点.若分别购票,则共需支付门票费1290元;若合并成一个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为()A.20B.30C.35D.4014.近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式v=v0ln计算火箭的最大速度v m/s,其中v0m/s是喷流相对速度,m kg是火箭(除推进剂外)的质量,M kg是推进剂与火箭质量的总和,称为“总质比”.已知A型火箭的喷流相对速度为2000 m/s.经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的,若要使火箭的最大速度至少增加800m/s,则在材料更新和技术改进前总质比的最小整数值为279. (参考数据:ln330≈5.8,2.225<e0.8<2.226)15.某企业参加A项目生产的工人为1000人,平均每人每年创造利润10万元.根据现实的需要,从A项目中调出x人参与B项目的售后服务工作,每人每年可以创造利润10万元(a>0),A项目余下的工人每人每年创造利润将提高0.2x%.(1)若要保证A项目余下的工人创造的年总利润不低于原来1000名工人创造的年总利润,则最多调出多少人参加B项目从事售后服务工作?(2)在(1)的条件下,当从A项目调出的人数不能超过总人数的40%时,才能使得A项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数a的取值范围.北师大高中数学选择性必修第一册第四章量课时作业32数学建模活动(三)(解析版)一、选择题1.若矩形ABCD的一边长为x,周长为20,则当矩形面积最大时,x =(C)A.3B.4C.5D.16解析:矩形另一边长为=10-x,且有0<x<10,面积为f(x)=x(10-x)=-(x-5)2+25,所以,当x=5时,y=f(x)取最大值.故选C.2.某食品加工厂2021年获利20万元,经调整食品结构,开发新产品.计划从2022年开始每年比上一年获利增加20%,问从哪一年开始这家加工厂年获利超过60万元(已知lg2≈0.3010,lg3≈0.4771).(C)A.2026年B.2027年C.2028年D.2029年解析:设第n年获利y元,则y=20×1.2n,n∈N*,2022年即第1年,20×1.2n>60,n>log1.23==≈6.03,所以n≥7,即从2028年开始这家加工厂年获利超过60万元.故选C.3.某商场经营一批进价为30元/件的商品,在市场试销中发现,此商品的销售单价x(单位:元)与日销售量y(单位:件)之间有如下表所示的关系:x…30404550…y…6030150…销售单价为x元时,才能获得最大日销售利润p,则x,p分别为(B)A.35,225B.40,300C.45,350D.45,400解析:在平面直角坐标系中画出表格中的各点,如图,猜测为一次函数,故设y=kx+b(k,b为常数),将(30,60)和(40,30)代入得解得故y=-3x+150,30≤x≤50,把点(45,15)和(50,0)代入解析式验证,检验成立.则日销售利润P=(x-30)(-3x+150)=-3x2+240x-4500,30≤x≤50,当取x=-=40∈[30,50]时,日销售利润最大为300元.故选B.4.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m元收费;用水超过10立方米的,超过部分按每立方米2m元收费.某职工某月缴水费16m元,则该职工这个月实际用水为(A)A.13立方米B.14立方米C.18立方米D.26立方米解析:设职工的用水量为x立方米,需要交纳的水费为f(x)元,当0≤x≤10时,f(x)=mx,当x>10时,f(x)=10×m+(x-10)×2m=2mx-10m,即函数的解析式为f(x)=据此分类讨论:当0≤x≤10时,mx=16m,解得x=16,不合题意,舍去;当x>10时,2mx-10m=16m,解得x=13,符合题意;综上可得,该职工这个月实际用水为13立方米.故选A.5.已知光通过一块某种玻璃,强度要损失10%.那么要使光的强度减弱到原来的以下,则至少需要通过这样的玻璃(参考数据:lg3≈0. 4771,lg2≈0.3010)(B)A.6块B.7块C.8块D.9块解析:由题意知,经过n块玻璃后光的强度可记为f(n)=0.9n(n∈N*),要使光的强度减弱到原来的以下,即f(n)=0.9n <⇔n>log0. 9≈6.6,即n≥7.故选B.6.2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除:(3)专项附加扣除包括①赡养老人费用,②子女教育费用,③继续教育费用,④大病医疗费用等.其中前两项的扣除标准为①赡养老人费用:每月扣除2000元,②子女教育费用:每个子女每月扣除1000元.新的个税政策的税率表部分内容如下:级数一级二级三级…每月应纳税所得额x元(含税)x≤30003000<x≤1200012000<x≤25000…税率(%)31020…现有李某月收入为19000元,膝下有一名子女,需赡养老人(除此之外无其他专项附加扣除),则他该月应交纳的个税金额为(B) A.570 B.890C.1100D.1900解析:由题意,李某月应纳税所得额(含税)为19000-5000-1000-2000=11000(元),不超过3000的部分的税额为3000×3%=90(元),超过3000元至12000元的部分税额为8000×10%=800(元),所以李某该月应交纳的个税金额为90+800=890(元).故选B.7.某游轮在A处看灯塔B在A的北偏东75°方向上,距离为12海里,灯塔C在A的北偏西30°方向上,距离为8海里.游轮由A 向正北方向航行到D处时,再看灯塔B在D的南偏东60°方向上,则C与D的距离为(B)A.20海里B.8海里C.23海里D.24海里解析:根据题意画出示意图,如图.在△ABD中,∵∠DAB=75°,∠ADB=60°,AB=12,∴∠B=180°-75°-60°=45°.由正弦定理得,∴AD==24.在△ACD中,AD=24,AC=8,∠CAD=30°,∴由余弦定理,得CD2=AD2+AC2-2AD·AC cos∠CAD=242+(8)2-2×24×8=192,∴CD=8.故选B.8.(多选题)如下图,△OAB是边长为2的正三角形,记△OAB位于直线x=t(0<t<2)左侧的图形的面积为f(t),现给出函数f(t)的四个性质,其中说法正确的是(BD)A.fB.f(t)在(0,2)上单调递增C.当t=1时,f(t)取得最大值D.对于任意的t∈(0,2),都有f(t)+f(2-t)=解析:由题可知,OB所在直线为y=x,AB所在直线为y=2x,则当0<t≤1时,f(t)=t·t2;当1<t<2时,f(t)=×22-(2-t)(2t)=-t2+2;则f(t)=对于A,当t=时,f,故A错误;对于B,易知,f(t)在(0,1]上单调递增,在(1,2)上单调递增,且×12=×12+2×1-,则f(t)在(0,2)上单调递增,故B正确;对于C,因为f(t)在(0,2)上单调递增,则无最大值,故C错误;对于D,由题意知,当1<t<2时,f(t)=-t2+2(t -2)2+,当0<t<1时,1<2-t<2,则f(t)+f(2-t)=t2-[(2-t)-2]2+,当1<t<2时,0<2-t<1,则f(2-t)+f(t)=(2-t)2-(t-2)2+,当t=1时,2-t=1,则f(t)+f(2-t)=2f(1)=2××12=,故D正确.故选BD.二、填空题9.某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…自然对数的底数,k,b为常数),若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是24小时.解析:由题意可得,当x=0时,y=192;当x=22时,y=48,代入函数y=e kx+b,可得即则当x=33时,y=e33k+b=×192=24(小时).10.某药厂生产一种口服液,按药品标准要求其杂质含量不能超过0. 01%,若初始时含杂质0.2%,每次过滤可使杂质含量减少三分之一,则应过滤8次才能使得这种液体达到要求.(已知lg2≈0.3010,lg3≈0.4771)解析:设过滤n次才能达到要求,则,即,所以n×lg≤lg,即n≥≈7.4,又∵n∈N,∴取n=8,即至少要过滤8次才能达到要求.11.学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y与听课时间x(单位:分钟)之间的关系满足如图所示的图象,当x∈(0,12]时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x∈[12,40]时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳.要使得学生学习效果最佳,则教师安排核心内容的时间段为(4,28).(写成区间形式)解析:当x∈(0,12]时,设f(x)=a(x-10)2+80,过点(12,78),代入,解得a=-,则f(x)=-(x-10)2+80.当x∈(12,40]时,设y=kx+b,过点B(12,78),C(40,50),得即y=-x+90,由题意得或解得4<x≤12或12<x<28,所以4<x<28,则老师在x∈(4,28)时段内安排核心内容,能使得学生学习效果最佳.三、解答题12.某工厂有一个容量为300吨的水塔,每天从早上6时起到晚上10时止,供应该厂的生产和生活用水,已知该厂生活用水为每小时10吨,工业用水量W(吨)与时间t(小时,且规定早上6时t=0)的函数关系为W=100.水塔的进水量分为10级,第一级每小时进水10吨,以后每提高一级,每小时进水量就增加10吨.若某天水塔原有水100吨,在开始供水的同时打开进水管,问进水量选为第几级时,既能保证该厂的用水(水塔中水不空)又不会使水溢出?解:设进水量选为第x级,则t小时后水塔中水的剩余量为y=100+10xt-10t-100,且0≤t≤16.由题意得0<y≤300,所以0<100+10xt-10t-100≤300.当t=0时,结论成立.当t>0时,由不等式100+10xt-10t-100>0可得x>1+10.令f(t)=1+10,则f(t)=-10+3.5,由于0≤t≤16,所以当t=4时,f(t)取最大值3.5.故x>3.5.又由100+10xt-10t-100≤300可得x≤1+.令g(t)=1+,由于0<t≤16,所以当t=16时,g(t)取最小值4.75,故3.5<x≤4.75,由于x∈N*,所以x=4.即进水量选为第4级时,既能保证该厂的用水(水塔中水不空)又不会使水溢出.13.某旅游景点为吸引游客,推出团体购票优惠方案如下表:购票人数1~5051~100100以上门票价格13元/人11元/人9元/人两个旅游团队计划游览该景点.若分别购票,则共需支付门票费1290元;若合并成一个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为(B)A.20B.30C.35D.40解析:设两个旅游团队的人数分别为a,b,因为990不能被13整除,所以两个旅游团队人数之和a+b≥51,若51≤a+b≤100,则11(a +b)=990,得a+b=90①.当a>50时,b<40,则11a+13b=1 290②,由①②得b=150,a=-60,不符合题意.当a<50,b<50时,13(a+b)=1290,易知该式不成立.若a+b>100,则9(a+b)=990,得a+b=110③,当a≤50,51≤b≤100时,得13a+11b =1290④,由③④得a=40,b=70.当a≤50,b>100时,13a+9b=1290⑤,由③⑤得,a=75,b=35,矛盾.当51≤a≤100,51≤b≤100时,11(a+b)=1290,易知该式不成立.所以这两个旅游团队的人数之差为70-40=30.故选B.14.近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式v=v0ln计算火箭的最大速度v m/s,其中v0m/s是喷流相对速度,m kg是火箭(除推进剂外)的质量,M kg是推进剂与火箭质量的总和,称为“总质比”.已知A型火箭的喷流相对速度为2000 m/s.经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的,若要使火箭的最大速度至少增加800m/s,则在材料更新和技术改进前总质比的最小整数值为279. (参考数据:ln330≈5.8,2.225<e0.8<2.226)解析:由题意,经过材料更新和技术改进后,A型火箭的喷流相对速度为3000m/s,总质比变为.要使火箭的最大速度至少增加800 m/s,则需3000ln-2000ln≥800,化简得3ln-2ln≥0.8.∴ln-ln≥0.8,整理得ln≥0.8.∴≥e0.8,则≥125×e0.8.由参考数据,知2.225<e0.8<2.226.∴278.125<125×e0.8<278.25.∴材料更新和技术改进前总质比的最小整数值为279.15.某企业参加A项目生产的工人为1000人,平均每人每年创造利润10万元.根据现实的需要,从A项目中调出x人参与B项目的售后服务工作,每人每年可以创造利润10万元(a>0),A项目余下的工人每人每年创造利润将提高0.2x%.(1)若要保证A项目余下的工人创造的年总利润不低于原来1000名工人创造的年总利润,则最多调出多少人参加B项目从事售后服务工作?(2)在(1)的条件下,当从A项目调出的人数不能超过总人数的40%时,才能使得A项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数a的取值范围.解:设调出x人参加B项目从事售后服务工作.(1)由题意得10(1000-x)(1+0.2x%)≥10×1000,即x2-500x≤0,又x>0,所以0<x≤500.即最多调出500名员工从事B项目售后服务工作.(2)由题知,0<x≤400,从事B项目售后服务工作的员工创造的年总利润为10x万元,从事A项目的员工的年总利润为10(1000-x)万元,则10x≤10(1000-x)(1+0.2x%),所以ax-≤1000+2x-x-x2,所以ax≤+1000+x,即a≤+1恒成立,因为0<x≤400,所以+1≥+1=5.1,所以a≤5.1,又a>0,所以0<a≤5.1,即a的取值范围为(0,5.1].。

4.建模作业_MATLAB(3)

4.建模作业_MATLAB(3)

《数学建模》课程作业题第七章MATLAB(3)1.MATLAB图形处理的高级技术都有哪些?颜色映像。

1)colormap函数进行调用颜色映像;2)Pcolor、rgbplot、colorbar等函数用户可以条用所定义的颜色映像为图形服务;3)pcolor一般与函数shading相结合,用于以不同方式为图形着色;4)Rgbplot是一种直接显示颜色的函数;5)第三个用来显示颜色映像最常用的函数是colorbar。

视角与光照。

1)视角控制函数view,viewmtx及rotate3D;2)光照控制函数lighting‘光源模式’;3)图像处理。

2.MATLAB图形处理的基本技术都有哪些?1)图像控制坐标控制:axis([xmin,xmax,ymin,ymax])平面坐标网格函数:grid on/grid off2)图形的标注①.坐标轴标注:xlabel(‘标注’,’属性’),ylabel,zlabel②.文本标注:text(x,y,’标注文本及控制字符串’)③.交互式文本标注:gtext④.图例标注:legend (‘标注1’,‘标注2’) 3)图形的保持与子图:hold on,hold off,subplot(m,n,p) 3.3. 编写如下问题的M 文件7.4.1绘制下列曲线.(1) 21100x y +=, 运行程序:clear; clc; x=0:0.1:1; y=100./(1+x.^2); plot(x,y);(2) 2221xe y -=π, 运行程序 clear;clc; x=0:0.01:1;y=(1/(2*pi))*exp(((-x.^2)/2)); plot(x,y);(3) 122=+y x ,ezplot('x^2+y^2=1')(4) ⎩⎨⎧==325ty t x . t=0:1:50; x=t.^2; y=t.^3; plot(x,y)title('参数方程 ');7.4.2绘制下列极坐标图.(1) 4cos 5+=θρ,clear; clc;x=0:0.01*pi:2*pi; y=5*cos(x)+4; polar(x,y)(2) θρ12=,clear; clc;x=0:0.01*pi:2*pi; y=12./sqrt(x); polar(x,y);(3) 7cos 5-=θρ, clear; clc;x=0:0.01*pi:2*pi; y=5./cos(x)-7; polar(x,y)(4) 23θπρ=.clear;clc;x=0:0.01*pi:2*pi; y=pi/3*x.^2; polar(x,y)7.4.3绘制下列三维图形.(1) ⎪⎩⎪⎨⎧===t z t y t x sin cos ,clear; clc;t=0:0.01*pi:2*pi; x=cos(t); y=sin(t); z=t;plot3(x,y,z)(2) ⎪⎩⎪⎨⎧=+=+=u z v u y v u x sin sin )cos 1(cos )cos 1(,u=0:pi/20:10*pi; v=0:pi/20:10*pi; x2=(1+cos(u)).*cos(v); y2=(1+cos(u)).*sin(v); z2=sin(u); plot3(x,y,z)(3) 5=z ,[x3,y3]=meshgrid(-100:100);%形成一个100×100的网格z3=5*ones(size(x3));%将Z与上面网格对应起来mesh(x3,y3,z3)(4) 半径为10的球面.x0=2;y0=3;z0=0;%球心r=10;%半径[x,y,z]=sphere;mesh(r*x+x0,r*y+y0,r*z+z0);axis equal7.4.4在同一图形窗口采用子图形式分别绘制正方形、圆、三角形和六边形.ord=[3 4 6 2^20] for i=1:4 subplot(2,2,i)theta=linspace(pi/ord(i),2*pi+pi/ord(i),ord(i)+1);%%圆等分点 plot(cos(theta),sin(theta));xlim(1.5*[-1,1]);ylim(1.5*[-1,1]);axis equal ; end7.4.5分别用plot 和fplot 函数绘制下列分段函数的曲线:⎪⎩⎪⎨⎧<--+=>+++=0 ,510 ,00 ,51)(342x x x x x x x x ffunction y=work414(x) y=[];%定义空矩阵 for i = x if i > 0y = [y, i^2+(1+i)^0.25+5]; %将算出值与矩阵y 结合形成新矩阵y elseif i == 0 y = [y, 0]; elsey = [y, i^3+sqrt(1-i)-5]; end end endclearclcx=-10:0.5:10;y=work414(x);subplot(2, 1, 1);plot(x,y)grid on; title('plot');subplot(2, 1, 2);fplot(@(x)work414(x),[-5,5])grid on; title('fplot');7.4.6某工厂2005年度各季度产值(单位:万元)分别为:450.6、395.9、410.2、450.9,试绘制折线图和柄状图,并说明图形的实际意义.subplot(1, 1, 1); clear; clc;x = 1 : 4;y = [450.6, 395.9, 410.2, 450.9];subplot(1, 2, 1);plot(x, y);title('折线图-四个季度产值变化'); xlabel('第i个季度'); ylabel('产值/万元'); grid on; axis([0, 5, 360, 480]);subplot(1, 2, 2);pie(y);title('饼图-每个季度占总产值的百分比');意义:第一季度与第四季度产值高,二三季度产值偏低7.4.7绘制一个长方形,将长方形3等份,每等份分别着不同的颜色.vert = [0, 0; 1, 0; 2, 0; 3, 0; 3, 1; 2, 1; 1, 1; 0, 1]; %画最大长方形fac = [1, 8, 7, 2; 2, 7, 6, 3; 3, 6, 5, 4];%区域涂色分割mc = jet(3);patch('Vertices', vert, 'Faces', fac, 'FaceVertexCData', mc, 'FaceColor', 'flat'); %着色函数7.4.8生成一个长方体,每小面着不同颜色,并进行光照和材质处理.clear;clc;vert = [0, 0, 0; 1, 0, 0; 1, 1, 0; 0, 1, 0; 0, 0, 1; 1, 0, 1; 1, 1, 1; 0, 1, 1];fac = [1, 5, 6, 2; 2, 6, 7, 3; 3, 7, 8, 4; 4, 8, 5, 1; 1, 4, 3, 2;5, 8, 7, 6];mc = jet(6);patch('Vertices', vert, 'Faces', fac, 'FaceVertexCData', mc,'FaceColor', 'Flat'); % 顶点集,小面上定点axis([-0.5, 2.5, -0.5, 2.5, -0.5, 2.5]); grid on; axis square;xlabel('x-axis'); ylabel('y-axis'); zlabel('z-axis');title('方块');light('Color', 'b', 'Style', 'local', 'Position', [1, 1, 1]);lighting flat; % 均匀入射光material shiny; % 镜面反射光hold on;plot3(2, 2, 2, 'p'); text(2, 2, 2, 'light');hold off7.4.9气象变换情况的可视化:下表是气象学家测量得到的气象数据,它们分别表示在南半球地区按不同纬度、不同月份的平均气旋数字,根据这些数据,绘制出气旋分布曲面图,并计算2月份在纬度11度处的气旋值.南半球气旋数据表clear;clc;x=1:12;y=5:10:85;z=[2.4 1.6 2.4 3.2 1.0 0.5 0.4 0.2 0.5 0.8 2.4 3.6 ;18.7 21.4 16.2 9.2 2.8 1.7 1.4 2.4 5.8 9.2 10.3 16;20.8 18.5 18.2 16.6 12.9 10.1 8.3 11.2 12.5 21.1 23.9 25.5;22.1 20.1 20.5 25.1 29.2 32.6 33.0 31.0 28.6 32.0 28.1 25.6;37.3 28.8 27.8 37.2 40.3 41.7 46.2 39.9 35.9 40.3 38.2 43.4;48.2 36.6 35.5 40 37.6 35.4 35 34.7 35.7 39.5 40 41.9;25.6 24.2 25.5 24.6 21.1 22.2 20.2 21.2 22.6 28.5 25.3 24.3;5.3 5.3 5.4 4.9 4.9 7.1 5.3 7.3 7 8.66.3 6.6;0.3 0 0 0.3 0 0 0.1 0.2 0.3 0 0.1 0.3];[xi,yi]=meshgrid(1:12,5:1:85);zi=interp2(x,y,z,xi,yi,'cubic');z=interp2(x,y,z,2,11,'cubic')mesh(xi,yi,zi)hold on;plot3(2,11,z,'*r')xlabel('月份'),ylabel('纬度'),zlabel('气旋'),axis([0 12 0 90 0 50])title('南半球气旋可视化图形')红点表示2月份在纬度11度处的气旋值z =16.2040。

数学建模作业

数学建模作业

输油管的布置1问题的提出某油田计划在铁路线一侧建造两家炼油厂,同时在铁路线上增建一个车站,用来运送成品油;由于这种模式具有一定的普遍性,油田设计院希望建立管线建设费用最省的一般数学模型与方法;1. 针对两炼油厂到铁路线距离和两炼油厂间距离的各种不同情形,提出你的设计方案;在方案设计时,若有共用管线,应考虑共用管线费用与非共用管线费用相同或不同的情形;2. 设计院目前需对一更为复杂的情形进行具体的设计;两炼油厂的具体位置由附图所示,其中A厂位于郊区图中的I区域,B厂位于城区图中的II区域,两个区域的分界线用图中的虚线表示;图中各字母表示的距离单位:千米分别为a = 5,b = 8,c = 15,l = 20;若所有管线的铺设费用均为每千米万元; 铺设在城区的管线还需增加拆迁和工程补偿等附加费用,为对此项附加费用进行估计,聘请三家工程咨询公司其中公司一具有甲级资质,公司二和公司三具有乙级资质进行了估算;估算结果如下表所示:工程咨询公司公司一公司二公司三附加费用万元/千米21 24 20请为设计院给出管线布置方案及相应的费用;3. 在该实际问题中,为进一步节省费用,可以根据炼油厂的生产能力,选用相适应的油管;这时的管线铺设费用将分别降为输送A 厂成品油的每千米万元,输送B 厂成品油的每千米万元,共用管线费用为每千米万元,拆迁等附加费用同上;请给出管线最佳布置方案及相应的费用;2假设与分析假设A,B 两厂不共用的管道长分别为1f 、2f 千米,而A 、B 两厂共用管道长为3f ;路径如图所示:设A 点的坐标是a,0,B 点的坐标是l,b,车站的坐标是1x ,0,管道的交点坐标是11,y x ,假设B 路途中的一点的坐标是,c 2y ;而A 厂、B 厂、及A 、B 共用管道的价格分别为1p 、2p 、3p ;要使总费用最低,则目标函数 min Z=1f 1p +2f 2p +3f 3p 在满足:1f =2121)(y a x -+ 2f =21221)()(y y x c -+-+222)()(b b c l -+- 3f =1y 1x ,1y ,2y ≥0 的条件下有最优解;而题设的第二问中,A,B 两厂由于区域不同,B 厂额外加了附加费用;设附加费为4p ,由于公司一具有甲级资质,估算更近似,故4p =21.故可设途中E 点所在处的虚线为两区域交线;BE 路径设为22f ,EH 路径设为21f ,2f =21f +22f ;则由题意可知:a=5 ; b=8 ; c=15 ; l=20 ;1p =2p =3p =题二; 1p = , 2p =, 3p =题三 3模型的建立与求解 1题二的模型为: 目标函数:min Z=2121)5(y x -++21221)()15(y y x -+-++2122)8(25y -+ +1y.⎪⎩⎪⎨⎧≤≤≤≤≤≤8050150211y y x 利用matlab 优化工具向求解得: 1x = , 1y = , 2y = , 最优值为.见源程序1即H,,E15,即A 厂B 厂分别单独铺设到H,然后再共用管道,而B 厂单独铺设时先铺设到点E15,再从此点往H 点铺设,则最小费用为万元;源程序1::function f=funxf=sqrtx1^2+5-x2^2+sqrt15-x1^2+x3-x2^2+sqrt25+8-x3^2+x2;MATLAB 输入程序: x0=160/13;0;19/4; A=; B=; Aeq=; beq=; vlb=0 0 0; vub=15 5 8;x,fval=fmincon'tlxz',x0,A,B,Aeq,beq,vlb,vub2题三的模型为: 目标函数:min Z=2121)5(y x -++21221)()15(y y x -+-++2122)8(25y -+ +1y.⎪⎩⎪⎨⎧≤≤≤≤≤≤8050150211y y x 利用matlab 优化工具向求解得: 1x = , 1y = , 2y =. , 最优值为.见源程序2即H,E15,为即A 厂B 厂分别单独铺设到E,干后再共用管道,而B 厂单独铺设时先铺设到点E15,再从此点往H 点铺设,则最小费用为万元;源程序2:function f=funxf =sqrtx1^2+5-x2^2+sqrt15-x1^2+x3-x2^2+27sqrt25+8-x3^2+x2; MATLAB输入程序:x0=160/13;0;19/4;A=;B=;Aeq=;beq=;vlb=0 0 0;vub=15 5 8;x,fval=fmincon'tlxz',x0,A,B,Aeq,beq,vlb,vub。

姜启源数学模型课后答案(3版)

姜启源数学模型课后答案(3版)

《数学模型》作业解答第二章(1)(2008年9月16日)1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑N=10的分配方案,,432 ,333 ,235321===p p p ∑==31.1000i ip方法一(按比例分配) ,35.23111==∑=i ipNp q ,33.33122==∑=i ipNp q 32.43133==∑=i ipNp q分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为:4 ,3 ,2321===n n n第10个席位:计算Q 值为,17.92043223521=⨯=Q ,75.92404333322=⨯=Q 2.93315443223=⨯=Q3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).iin p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i ii n p尽量接近.再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得⎰⎰+=ntdn wkn r k vdt 0)(2π)22 2n wk k(r n πvt +=∴ .2 22n vk w n v rk t ππ+=∴第二章(2)(2008年10月9日)15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-T ML , [v ]=1-LT ,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L齐次线性方程组为:⎪⎩⎪⎨⎧=--=+=-++03032221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y由量纲i P 定理得 1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1)由量纲i P 定理 得 g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数. 16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0 ,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(210010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 即⎪⎩⎪⎨⎧=---=+=+--+020035414354321y y y y y y y y y y 的基本解为⎪⎩⎪⎨⎧---=--=)21,1,1,23,0()21,0,0,21,1(21y y得到两个相互独立的无量纲量⎩⎨⎧==-----2/112/322/12/11g g v μργπγπ 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为0),,,,(=k g m l t f其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t 10-=MT L , 其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()()(120011010001010k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- 齐次线性方程组⎪⎩⎪⎨⎧=--=+=+02005415342y y y y y y y 的基本解为⎪⎩⎪⎨⎧--=-=)1,21,1,21,0()0,21,0,21,1(21Y Y 得到两个相互独立的无量纲量∴g l t =1π, )(21πϕπ=, 2/12/12mg kl =π ∴)(2/12/1mg kl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1gm l k g l t '''='ϕ 当无量纲量l l mm '='时, 就有 ll l g g l tt '=⋅'='. 《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.⎩⎨⎧==---22/112/112/12/1ππk g m l g tl解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:kr rT c T c T C ++=2)(212221r c Tc dT dC+-= 令0=dTdC, 解得 r c c T 21*2= 由rT Q = , 得212c rc rT Q ==**与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:⎥⎦⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c T Q T C 23221)(221),(2223322221222T kQ rT Q c r c rT Q c T c T C--+--=∂∂Tk rT Q c c rT Qc Q C ++-=∂∂332 令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00QCTC, 得到驻点:⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=**323222233232132233221)(22c c krc c c r k c c c c c r c Q c c k c c c rc c T与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆i Ti i t TT r k c dt t g c t g c 1022022))()(limξ又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kTT r k r c 2)(2⋅-=于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的. 总费用函数()xc b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b k c b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t TT t <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为⎪⎩⎪⎨⎧<<-<<-=T t T bp a T t bp a x 2,20,21又 t q t q β+=0)(.于是总利润为[][]⎰⎰--+--=22221121)()()()(),(TTT dt bp a t q p dt bp a t q p p p=22)(022)(20222011T Tt t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- )(2)822(12011bp a T T T q T p b p -+---=∂∂β)(2)8322(22022bp a T T t q T p b p -+---=∂∂β 0,021=∂∂=∂∂p p 令, 得到最优价格为: ⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=)43(21)4(210201T q b a b p T q b a b p ββ 在销售期T 内的总销量为⎰⎰+-=-+-=20221210)(2)()(T TT p p bTaT dt bp a dt bp a Q 于是得到如下极值问题:)8322)(()822)((),(m ax 2022201121T t q T p bp a T T q T p bp a p p ββ---+---=t s . 021)(2Q p p bTaT =+-利用拉格朗日乘数法,解得:⎪⎩⎪⎨⎧+-=--=880201TbT Q b a p T bT Q b a p ββ 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天)根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++=令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 又k T C 10035095025003)(*+⨯+⨯==300+100kk T C 100309302500)(0+⨯+==353.33+100k)(0T C -)(*T C =(353.33+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克,B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:max S=20x+30ys.t. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =702l以及x=0,y=0组成的凸四边形区域.925002+-=TdT dC直线l :20x+30y=c 在可行域内平行移动.易知:当l 过1l 与2l 的交点时, x S 取最大值.由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 m ax S =2053010⨯+⨯=350(元)2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为211020 m ax x x z +=⎪⎩⎪⎨⎧∈≥≤+≤+Z y x x x x x x x st ,,0,13522445212121这是一个整线性规划问题. 用图解法求解. 可行域为:由直线2445:211=+x x l1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.2ll1x1l2x易知:当l 过l 1与l 2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为:max S=3x +2ys.t. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .m ax S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于5.1节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s(2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0.01,1单调减少时当t i dtdis s ∴-σσ .0)(lim .0)18(t ==∞→∞t i i 即式知又由书上.)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s ,1,10 dtdit s s σσσ从而则若()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第五章2(2008年11月14日)6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为(),0t f ()()()()().,,0/t VC t x t f t kx t x k ==+则排除速率为常数(1)快速静脉注射: 设给药量为,0D 则()()().,0,0000t k e VDt C V D C t f -===解得 (2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得()()()()⎪⎩⎪⎨⎧-≤≤-=----τττ t e e Vkk t e Vkk t C t k kt kt,10 ,10(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010tk eD k t f -=()()()⎪⎪⎩⎪⎪⎨⎧=≠--=---010101001 ,,01k k te V kD k k e e k k V D k t C kt t k kt3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在5.5节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e eba v aw Q v bl a vl β ()10/10==l M w 其中,()()97628571.0502002.008.0212===⨯----ee Q Q vl b β(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbl a e b a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v ble e b a v aw Q 1'21'04 .256531719.1110096.0032.0012.004.0508002.03.0508002.05010002.03.05010002.043111'1'≈--=--=--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯⨯⨯⨯--e e e e e e e e e e e e e e e e Q Q v abl v bl v abl v bl v bl a v bl v bl a vbl 44.235,84.29543≈≈ QQ4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxr ay dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即《数学模型》作业解答第六章(2008年11月20日)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点;②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定;③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h 即 )1(max Nxrx h -=,易得 2*0N x = 此时 4rN h =, 但2*0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2Nx >,且尽量接近2N ,但不能等于2N .2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln '=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h 由前面的结果可得 rE ENeh -=r Er Ee r EN Ne dE dh ---=,令.0=dEdh 得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点;Ex()x f② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrx r N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定;③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max N x rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定. 要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.《数学模型》第七章作业(2008年12月4日)1.对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2. 对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为:⎪⎩⎪⎨⎧=+=+++)()2(111k k k k k y h x x x f y 在),(000y x P 点附近用直线来近似曲线h f ,,得到⎪⎩⎪⎨⎧>-=->-+-=-+++)2( 0, )()1( 0),2(0010101 ββααy y x x x x x y y k k k k k 由(2)得 )3( )(0102 y y x x k k -=-++β(1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ 0012222 x x x x x k k k αβαβαβ+=++∴++对应齐次方程的特征方程为 02 2=++αβαβλλ特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则248)()4(2222,1αβαβαβαβλ=+-+= 2 12,1<⇔<∴αβλ即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为:⎪⎩⎪⎨⎧>-+=->-+-=--+++)5( 0 , )2()4( 0),2(01010101 ββααy y y x x x x x y y k k k k k k 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得 ⎥⎦⎤⎢⎣⎡-+--+-=-++++)2()2()(20101203x x x x x x x x k k k k k ααβ 001234424 x x x x x x k k k k αβαβαβαβ+=+++∴+++对应齐次方程的特征方程为(7) 024 23=+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++424321133221321αβλλλαβλλλλλλαβλλλ 对(7)作变换:,12αβμλ-=则,03=++q p μμ其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w pq q p q q μμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3) 上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 解:已知商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y kk k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3) (1)代入(3),可得)2(0102x x x x x kk k -+-=-++αβ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4) 上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答第八章(2008年12月9日)1. 证明8.1节层次分析模型中定义的n 阶一致阵A 有下列性质: (1) A 的秩为1,唯一非零特征根为n ; (2) A 的任一列向量都是对应于n 的特征向量. 证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkika a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例. 从而对A 作初等行变换可得:∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C 易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又 对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()Tnk k k a a a ,,,21 ,()n k ,,2,1 =有()()T nk k k nk k k n j nkn j k n j k n j jk nj n j jk j n j jk j Tnk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑======A ∴的任一列向量()Tnk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次.解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton 圈为332541→→→→→.所以此竞赛图是双向连通的.32154→→→→13542→→→→42135→→→→→→→41325→等都是完全路径.此竞赛图的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0011110100000010110001010A令()Te 1,1,1,1,1=,各级得分向量为()()TAe S 3,2,1,2,21==, ()()()TAS S 5,4,2,3,412==,()()()TAS S 9,7,4,6,723== , ()()()TAS S 17,13,7,11,1334==由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()TS 2769.0,2137.0,1162.0,1794.0,2137.0=数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层准则层方案层2.简述层次分析法的基本步骤. 问对于一个即将毕业的大学生选择工作岗位的决策问题要分成哪3个层次?具体内容分别是什么?答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次?试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好.解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=nm n m D 21112 当mn2较小,1 n 时,有()m n m n n m n m D 41181211122--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--≈E D -=1 , mnE 4≈② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-;记mq m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为nq ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为 ()1122--+=⋅+⋅n n n nnpq q m npqm q m于是带走产品的平均数是 ()122-+-n n npqq m m , 未带走产品的平均数是 ()()122-+--n n npq q m m n )∴此时传送带效率公式为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--=+-=--1111112222'n n n n m m n m n m n npq q m m D ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- ()()2112211111mn n m n m n --+--≈⎪⎭⎫ ⎝⎛-- ∴ ()()26211'm n n D ---≈当1 n 时,并令'1'D E -=,则 226'mn E ≈ ④ 两种办法的比较:由上知:mnE 4≈,226'm n E ≈∴ m n E E 32/'=,当n m 时,132 mn, ∴ E E '. 所以第二种办法比第一种办法好.《数学模型》作业解答第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)? 解:设每天订购n 百份纸,则收益函数为⎩⎨⎧≤--+=n r n nr r n r r f 7))(4(7)( 收益的期望值为G(n) =∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值. G(0)=0;G(1)=4-×0.05+7×0.1+7×(0.25+0.35+0.15+0.1)=6.45; G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=; G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14= G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13=G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10= 当报童每天订300份时,收益的期望值最大.数模复习资料第一章。

数学建模大作业舟山市历年大黄鱼的捕捞量

数学建模大作业舟山市历年大黄鱼的捕捞量

论文题目:E题:舟山渔场的鱼儿会濒临灭绝吗?学生一:学号: 姓名: 专业:学生二:学号: 姓名: 专业:摘要:文章针对近50年来舟山渔场大黄鱼的捕捞量进行了分析,根据舟山渔场大黄鱼的捕捞量进行了多项式拟合,经检验,模型能够有效地反应舟山渔场大黄鱼的捕捞量随时间的变化。

之后,利用模型对舟山渔场2012年大黄鱼的捕捞量进行了计算,发现大黄鱼已经濒临灭绝;针对大黄鱼濒临灭绝这一现状,提出了两种有效的解决方法:实行休渔期和投放幼年大黄鱼鱼苗。

最后,针对模型的优点与不足进行了介绍。

关键词:捕捞量多项式拟合残差分析题目:E题-舟山渔场的鱼儿会濒临灭绝吗?一、问题描述舟山渔场是中国最大的渔场。

该渔场也是浙江省、江苏省、福建省和上海市3省1市渔民的传统作业区域。

其以大黄鱼、小黄鱼、带鱼和墨鱼(乌贼)四大类鱼为主要渔产。

据报道,由于上世纪70年代后大批机动渔船轮番滥捕等原因,先后出现生长型和补充型群体数量逐年减少,渔场的生态平衡遭到严重破坏。

尽管这些年设立了休鱼期,但面对大量捕捞渔业资源还是得不到改善,大黄鱼、小黄鱼逐年递减或几乎不见踪影,带鱼也很难寻到2、3龄鱼。

请你对此情况进行分析调研,判断四种鱼群是否已灭绝或濒临灭绝?能不能有什么拯救措施,使得四种鱼群数量恢复到一定水平?(可以对四种鱼群的某一种展开讨论)二、问题假设1、忽略种群之间的竞争;2、除渔船捕捞之外的其他因素,如饵料,水温,气候等,都适合鱼类的生长、繁衍;3、仅就大黄鱼的数量变化做讨论;4、1988年以后大黄鱼数量的变化近似符合模型。

三、问题分析在自然环境下,鱼类的数量变化服从Logistic模型=-x t rx x N()(1/)鱼类数量在自然环境的选择下可以近似保持稳定,但随着人类对鱼类资源的大肆干预,破坏了鱼类原有的生长平衡,造成鱼类数量持续下降,有的甚至濒临灭绝。

人类影响鱼类的因素有很多,如大肆捕捞,水域污染,气候变化等。

针对舟山渔场的情形来看,大批机动渔船轮番滥捕造成了鱼类的后续资源不足,使得鱼类数量持续下降,是造成某些鱼类资源枯竭的主要原因。

数学建模大作业_操场追及问题

数学建模大作业_操场追及问题

2
由于小明室友从中心开始追小明,因此初始条件为 我们发现,由于没有小明的位置与时间的关系,因此我们无法求出上述微分方程的 解。因此,接下来我们应该尝试建立 X 与 Y 关于时间的表达式。 引入椭圆的参变量方程, 给出 X 和 Y 关于参变量 的表达式:X a cos , Y b sin . 而 得: ,由于小明速度为 1,因此在时间 t 内小明走过的弧长为 t ,依据弧长公式可
图1
图2
3
36.5 400 ,模仿椭圆的概念, c a 2 b2 36.5 85 36.5 长轴 a 短轴 b 36.5 .可以计算出离心率为 e 0.89 , 79 , a a 2 查阅椭圆周长计算公式 , 将以上两式联立方程组可以求得建模后椭圆 长轴及短轴的值。解得 a 79.35, b 36.18.
参考《田径场地设施标准手册 1999》 ,我们得到 400m 跑道的设计标准如下:大多数 适宜的 400 米椭圆跑道被建成弯道半径为 35.00m 到 38.00m 之间,最好的是 36.50m , 国际田联建议所有新造的跑道应该按后者的规定建造,并被称之为“400 米标准跑道” , 图 1 给出了实际的 400m 跑道设计图,图 2 是根据标准手册简化的 400m 跑道图。
1
一、问题重述
小明在平面上沿 400 周长的操场(可考虑为椭圆)以恒定的速率 v=1 跑步。 他的室友从操场中心出发,以恒定速率 w 跑向小明,室友的跑步的方向始终指向小 明。讨论 w 大约为多大时,室友能追上小明,做出轨迹图,并讨论追上的时间。
二、问题分析
本题是一个追及问题,追及问题的三个要素是路程、速度和时间,在此题中时间为 未知量,速度大小的给出方式常规,因此此题的关键就在于速度方向的模型化。 为解决此问题,我们提出了两个模型,第一个为从实际跑道中抽象化的椭圆轨道模 型,第二个为实际 400m 跑道模型。 在一个模型中,我们采取了速度分解的方法。将系统置于平面直角坐标系中,设出 小明和他室友的位置坐标,连线方向即为舍友下一时刻的运动方向,也即速度的方向, 通过在水平和竖直两个方向的分解,可以得出室友横坐标与纵坐标随着时间变化的微分 方程。此微分方程包含小明的位置坐标,方程右侧并不是显含时间的,为解决这个问题 引入参变量 ,根据椭圆的参数方程将小明的位置坐标表示成 的函数,并依据弧长公 式将 表示成 t 的函数进而建立起完整的微分方程组,最后用 Matlab 进行数值模拟。 第二个模型利用了第一个模型速度分解的理论,唯一不同的是在给出小明位置坐标 时直接写出了位置与时间的显式分段表达式,进而建立了完整的微分方程组,并最终给 出了追及轨迹及数值结果。

数学建模第三次作业

数学建模第三次作业

院系: 数学学院专业: 信息与计算科学年级: 2014级学生姓名: 王继禹学号: 2教师姓名: 徐霞6、6 习题3、一个慢跑者在平面上沿着她喜欢的路径跑步,突然一只狗攻击她,这只狗以恒定速率跑向慢跑者,狗的运动方向始终指向慢跑者,计算并画出狗的轨迹。

解:(1)模型分析建立:狗的轨迹:在任意时刻,狗的速度向量都指向它的目标慢跑者。

假设1:慢跑者在某路径上跑步,她的运动由两个函数X(t)与Y(t)描述。

假设2:当t=0时,狗就是在点(x0,y0)处,在时刻t时,它的位置就是(x(t),y(t))那么下列方程成立:(1)狗以恒定速率跑: X’2+y’2=w2(2) 狗的速度向量平行于慢跑者与狗的位置的差向量:将上述方程带入等式:,可得:再将λ代入第二个方程,可得狗的轨迹的微分方程:(2)程序及结果dog函数[dog、m]function [zs,isterminal,direction] = dog(t,z,flag) global w;% w=speed of the dogX=jogger(t);h = X-z;nh=norm(h);if nargin<3 || isempty(flag)zs=(w/nh)*h;elseswitch(flag)case'events'zs = nh-1e-3;isterminal = 1;direction = 0;otherwiseerror(['Unknow flag:' flag]);endend慢跑者的运动轨迹方程,水平向右[jogger、m]function s = jogger(t);s = [8*t;0];标记的函数[cross、m]function cross(Cx,Cy,v)Kx = [Cx Cx Cx Cx-v Cx+v];Ky = [Cy Cy+2、5*v Cy+1、5*v Cy+1、5*v Cy+1、5*v] plot(Kx,Ky);plot(Cx,Cy,'o');主程序:静态显示[main1、m]global wy0 = [60;70];w=10;options = odeset('RelTol',1e-5,'Events','on');[t,Y] = ode23('dog',[0,20],y0,options);clf;hold on;axis([-10,100,-10,70]);plot(Y(:,1),Y(:,2));J=[];for h=1:length(t),w = jogger(t(h));J=[J;w'];endplot(J(:,1),J(:,2),':');p = max(size(Y));cross(Y(p,1),Y(p,2),2)hold off;动态显示[main2、m]global w;y0=[60;70];w=10;options = odeset('RelTol',1e-5,'Events','on');[t,Y]=ode23('dog',[0,20],y0,options); J=[];for h=1:length(t);w= jogger(t(h));J=[J;w'];endxmin = min(min(Y(:,1)),min(J(:,1)));xmax = max(max(Y(:,1)),max(J(:,1)));ymin = min(min(Y(:,2)),min(J(:,2)));ymax = max(max(Y(:,2)),max(J(:,2)));clf;hold on;axis([xmin-10 xmax ymin-10 ymax]);title('The jogger and the Dog');for h = 1:length(t)-1,plot([Y(h,1),Y(h+1,1)],[Y(h,2),Y(h+1,2)],'-','Color','red','EraseMode ','none');plot([J(h,1),J(h+1,1)],[J(h,2),J(h+1,2)],'-','Color','green','EraseMo de','none');drawnow;pause(0、1);endplot(J(:,1),J(:,2),':');p = max(size(Y));cross(Y(p,1),Y(p,2),2)hold off;结果t=12、2761812635281,在12、27秒后狗追上慢跑者。

数学建模大作业题目

数学建模大作业题目

(1) 用起泡法对10个数由小到大排序. 即将相邻两个数比较,将小的调到前头. (10个数字自己选择,方法要一般)(2)有一个45⨯矩阵,编程求出其绝对值最大值及其所处的位置.(用abs 函数求绝对值)(3)编程求201!n n =∑ ( 分别用for 和while 循环)(4)一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下. 求它在第10次落地时,共经过多少米?第10次反弹有多高?(5)有一函数2(,)sin 2f x y x xy y =++ ,写一程序,输入自变量的值,输出函数值,并画出其图像,加上图例和注释. (区间自理)(6) 建立一个脚本M 文件将向量a,b 的值互换。

(7) 某商场对顾客所购买的商品实行打折销售,标准如下(商品价格用price 来表示): price<200 没有折扣; 200≤price<500 3%折扣; 500≤price<1000 5%折扣; 1000≤price<2500 8%折扣; 2500≤price<5000 10%折扣;5000≤price 14%折扣;输入所售商品的价格,求其实际销售价格。

(用input 函数)(9) 画出分段函数222 1y 1 122 1 2x x x x x x x ⎧<⎪=-≤<⎨⎪-+≥⎩的图像,并求分段函数在任意几点的函数值。

(用hold on 函数)(10) 给定5阶方阵,求方阵的行列式、特征值、迹、上三角元素的和。

(11) 输入40个数字,按照从小到大的顺序排列输出。

(12) 把当前窗口分成四个区域,在每个区域中分别用不同的颜色和线形画sin ;tan y x y x ==,x y e =和31y x x =++的图像。

(区间自理)(13) 对于,AX B YA B ==,如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=282637B ,,求解X,Y;(14) 如果⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=753467294A ,242679836B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求1122,*,.*,,,,T A B A B A B AB A B A A ---。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模作业(三)第三章习题
2013/04/09
速度为v 的风吹在迎风面积为s 的风车上,空气的密度是ρ,用量纲分析法确定风车获得的功率p 与v ,s ,ρ的关系。

● 对于风车获得的功率p 与v ,s ,ρ的关系我们假设:
1.忽略其它因素对功率的影响
2.将其视为理想化模型
● 在这些假设下,风车获得的功率与以下物理量有关:
风车获得的功率p ,风速v ,迎风面积s ,空气密度ρ。

● 它们的量纲分别是
23[]p ML T -=,1[]v LT -=,23[],].[L L s M ρ-==
● 设1234=p v s ααααπρ,有
1234
1412341223123+2++2-3-3-[]()()()()MLT LT L ML M L T ααααααααααααπ---==
由[]1π=得到以下线性方程组
141234*********
αααααααα⎧+=⎪++-=⎨⎪--=⎩
不难验证,这个方程组的秩为3.
因此方程组的解空间是4维。


()()1
=1α 可得方程组的基本解:
1(1,3,1,1),=---e
于是,与这四个参数有关的量纲乘积为
3111=,pv s πρ---
● 四个物理量之间的关系为()10.f π=即
()
3110.f pv s ρ---=
● 根据隐函数运算法则,得
● 3p s v λρ=,
其中λ为无单位的常比例系数。

俗话说“大饺子能装馅”,试自建一个“包饺子”的数学模型并进行分析,判断这一说法是否正确。

● “大饺子能装馅”考虑到实际是相同面积的饺子皮可以用掉更多体积的饺子馅。

● 为了简化模型,我们做出以下假设
1. 饺子都是标准球形
2.
3. 饺子大小全部一致
4.
5. 饺子皮的厚度相同
6. 饺子皮的厚度忽略不计
● 涉及到的物理量:
饺子皮总面积S ,一个饺子皮的面积s ,饺子数n ,饺子半径r ,所包馅的总体积V ,一个饺子包含馅的体积v

● 这些物理量有以下关系:
2
3
s=443
/r v r n S s
V nv
ππ===
可得S V =● 因此,大饺子能装馅,这一说法正确。

考察一个模拟水下爆炸的实验,爆炸物的质量m 在距爆炸点的距离为r 处接受冲击波,产生压强为p 。

记大气初始压强为p 0,水的密度为ρ,水的体积弹性模量为k 。

由量纲分析法已经得到300(/,/)p p p k r m ϕρ=。

设模拟现场与现场的p 。

,ρ,k 相同,而爆炸物模型的质量为原型的1/10000.为使实验中接受到与现场相同的压强,试计算接受冲击波仪器的相对位置(是现场仪器与爆炸点之间距离的多少倍)。


● 设模拟实验时现场仪器与爆炸点之间距离为r 1,爆炸物质量为m 1.现场爆炸时现场仪器
与爆炸点之间距离为r 2,爆炸物质量为m 2.
● 根据题目假设有模拟现场与现场的p 。

,ρ,k 相同,而爆炸物模型的质量为原型的
1/10000。


● 根据量纲分析法得到的公式有300(/,/)p p p k r m ϕρ=。

为使实验中接受到与现
场相同的压强,需要使得
331122//r m r m ρρ=,因此有1
3
22111.m r r m ⎛⎫==
⎪⎝⎭

● 即132211r m r m ⎛⎫== ⎪⎝⎭。

相关文档
最新文档